ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
107#include <time.h> 111#include <time.h>
108 112
109#include <signal.h> 113#include <signal.h>
110 114
111#ifndef _WIN32 115#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 116# include <sys/time.h>
114# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
115#else 119#else
116# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 121# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
183# include "ev.h" 187# include "ev.h"
184#endif 188#endif
185 189
186#if __GNUC__ >= 3 190#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
188# define inline static inline 198# define inline_speed static inline
199# endif
189#else 200#else
190# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
191# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
192#endif 205#endif
193 206
194#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
196 209
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 212
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
202 215
203typedef struct ev_watcher *W; 216typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
206 219
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 221
209#ifdef _WIN32 222#ifdef _WIN32
210# include "ev_win32.c" 223# include "ev_win32.c"
302 315
303#endif 316#endif
304 317
305/*****************************************************************************/ 318/*****************************************************************************/
306 319
307ev_tstamp 320ev_tstamp noinline
308ev_time (void) 321ev_time (void)
309{ 322{
310#if EV_USE_REALTIME 323#if EV_USE_REALTIME
311 struct timespec ts; 324 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
316 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 331#endif
319} 332}
320 333
321inline ev_tstamp 334ev_tstamp inline_size
322get_clock (void) 335get_clock (void)
323{ 336{
324#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
326 { 339 {
369#define array_free(stem, idx) \ 382#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 384
372/*****************************************************************************/ 385/*****************************************************************************/
373 386
374static void 387void inline_size
375anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
376{ 389{
377 while (count--) 390 while (count--)
378 { 391 {
379 base->head = 0; 392 base->head = 0;
382 395
383 ++base; 396 ++base;
384 } 397 }
385} 398}
386 399
387void 400void noinline
388ev_feed_event (EV_P_ void *w, int revents) 401ev_feed_event (EV_P_ void *w, int revents)
389{ 402{
390 W w_ = (W)w; 403 W w_ = (W)w;
391 404
392 if (expect_false (w_->pending)) 405 if (expect_false (w_->pending))
408 421
409 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
411} 424}
412 425
413inline void 426void inline_speed
414fd_event (EV_P_ int fd, int revents) 427fd_event (EV_P_ int fd, int revents)
415{ 428{
416 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 430 ev_io *w;
418 431
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 433 {
421 int ev = w->events & revents; 434 int ev = w->events & revents;
422 435
423 if (ev) 436 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
431 fd_event (EV_A_ fd, revents); 444 fd_event (EV_A_ fd, revents);
432} 445}
433 446
434/*****************************************************************************/ 447/*****************************************************************************/
435 448
436inline void 449void inline_size
437fd_reify (EV_P) 450fd_reify (EV_P)
438{ 451{
439 int i; 452 int i;
440 453
441 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
442 { 455 {
443 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 458 ev_io *w;
446 459
447 int events = 0; 460 int events = 0;
448 461
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 463 events |= w->events;
451 464
452#if EV_SELECT_IS_WINSOCKET 465#if EV_SELECT_IS_WINSOCKET
453 if (events) 466 if (events)
454 { 467 {
465 } 478 }
466 479
467 fdchangecnt = 0; 480 fdchangecnt = 0;
468} 481}
469 482
470static void 483void inline_size
471fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
472{ 485{
473 if (expect_false (anfds [fd].reify)) 486 if (expect_false (anfds [fd].reify))
474 return; 487 return;
475 488
478 ++fdchangecnt; 491 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
481} 494}
482 495
483static void 496void inline_speed
484fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
485{ 498{
486 struct ev_io *w; 499 ev_io *w;
487 500
488 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
489 { 502 {
490 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 505 }
493} 506}
494 507
495inline int 508int inline_size
496fd_valid (int fd) 509fd_valid (int fd)
497{ 510{
498#ifdef _WIN32 511#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 512 return _get_osfhandle (fd) != -1;
500#else 513#else
501 return fcntl (fd, F_GETFD) != -1; 514 return fcntl (fd, F_GETFD) != -1;
502#endif 515#endif
503} 516}
504 517
505/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
506static void 519static void noinline
507fd_ebadf (EV_P) 520fd_ebadf (EV_P)
508{ 521{
509 int fd; 522 int fd;
510 523
511 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
515} 528}
516 529
517/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 531static void noinline
519fd_enomem (EV_P) 532fd_enomem (EV_P)
520{ 533{
521 int fd; 534 int fd;
522 535
523 for (fd = anfdmax; fd--; ) 536 for (fd = anfdmax; fd--; )
527 return; 540 return;
528 } 541 }
529} 542}
530 543
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 545static void noinline
533fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
534{ 547{
535 int fd; 548 int fd;
536 549
537 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
543 } 556 }
544} 557}
545 558
546/*****************************************************************************/ 559/*****************************************************************************/
547 560
548static void 561void inline_speed
549upheap (WT *heap, int k) 562upheap (WT *heap, int k)
550{ 563{
551 WT w = heap [k]; 564 WT w = heap [k];
552 565
553 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 573 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 574 ((W)heap [k])->active = k + 1;
562 575
563} 576}
564 577
565static void 578void inline_speed
566downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
567{ 580{
568 WT w = heap [k]; 581 WT w = heap [k];
569 582
570 while (k < (N >> 1)) 583 while (k < (N >> 1))
584 597
585 heap [k] = w; 598 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 599 ((W)heap [k])->active = k + 1;
587} 600}
588 601
589inline void 602void inline_size
590adjustheap (WT *heap, int N, int k) 603adjustheap (WT *heap, int N, int k)
591{ 604{
592 upheap (heap, k); 605 upheap (heap, k);
593 downheap (heap, N, k); 606 downheap (heap, N, k);
594} 607}
604static ANSIG *signals; 617static ANSIG *signals;
605static int signalmax; 618static int signalmax;
606 619
607static int sigpipe [2]; 620static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 622static ev_io sigev;
610 623
611static void 624void inline_size
612signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
613{ 626{
614 while (count--) 627 while (count--)
615 { 628 {
616 base->head = 0; 629 base->head = 0;
636 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 650 errno = old_errno;
638 } 651 }
639} 652}
640 653
641void 654void noinline
642ev_feed_signal_event (EV_P_ int signum) 655ev_feed_signal_event (EV_P_ int signum)
643{ 656{
644 WL w; 657 WL w;
645 658
646#if EV_MULTIPLICITY 659#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 670 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 672}
660 673
661static void 674static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
663{ 676{
664 int signum; 677 int signum;
665 678
666 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 680 gotsig = 0;
669 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 684 ev_feed_signal_event (EV_A_ signum + 1);
672} 685}
673 686
674static void 687void inline_size
675fd_intern (int fd) 688fd_intern (int fd)
676{ 689{
677#ifdef _WIN32 690#ifdef _WIN32
678 int arg = 1; 691 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 694 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 695 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 696#endif
684} 697}
685 698
686static void 699static void noinline
687siginit (EV_P) 700siginit (EV_P)
688{ 701{
689 fd_intern (sigpipe [0]); 702 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 703 fd_intern (sigpipe [1]);
691 704
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 708}
696 709
697/*****************************************************************************/ 710/*****************************************************************************/
698 711
699static struct ev_child *childs [PID_HASHSIZE]; 712static ev_child *childs [PID_HASHSIZE];
700 713
701#ifndef _WIN32 714#ifndef _WIN32
702 715
703static struct ev_signal childev; 716static ev_signal childev;
704 717
705#ifndef WCONTINUED 718#ifndef WCONTINUED
706# define WCONTINUED 0 719# define WCONTINUED 0
707#endif 720#endif
708 721
709static void 722void inline_speed
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 724{
712 struct ev_child *w; 725 ev_child *w;
713 726
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
716 { 729 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 731 w->rpid = pid;
719 w->rstatus = status; 732 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 734 }
722} 735}
723 736
724static void 737static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
726{ 739{
727 int pid, status; 740 int pid, status;
728 741
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 743 {
731 /* make sure we are called again until all childs have been reaped */ 744 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 747
734 child_reap (EV_A_ sw, pid, pid, status); 748 child_reap (EV_A_ sw, pid, pid, status);
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 } 750 }
737} 751}
738 752
739#endif 753#endif
740 754
767{ 781{
768 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
769} 783}
770 784
771/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
772static int 786int inline_size
773enable_secure (void) 787enable_secure (void)
774{ 788{
775#ifdef _WIN32 789#ifdef _WIN32
776 return 0; 790 return 0;
777#else 791#else
795} 809}
796 810
797unsigned int 811unsigned int
798ev_recommended_backends (void) 812ev_recommended_backends (void)
799{ 813{
800 unsigned int flags = ev_recommended_backends (); 814 unsigned int flags = ev_supported_backends ();
801 815
802#ifndef __NetBSD__ 816#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 817 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 818 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 819 flags &= ~EVBACKEND_KQUEUE;
808 // flags &= ~EVBACKEND_KQUEUE; for documentation 822 // flags &= ~EVBACKEND_KQUEUE; for documentation
809 flags &= ~EVBACKEND_POLL; 823 flags &= ~EVBACKEND_POLL;
810#endif 824#endif
811 825
812 return flags; 826 return flags;
827}
828
829unsigned int
830ev_embeddable_backends (void)
831{
832 return EVBACKEND_EPOLL
833 | EVBACKEND_KQUEUE
834 | EVBACKEND_PORT;
813} 835}
814 836
815unsigned int 837unsigned int
816ev_backend (EV_P) 838ev_backend (EV_P)
817{ 839{
891 array_free (pending, [i]); 913 array_free (pending, [i]);
892 914
893 /* have to use the microsoft-never-gets-it-right macro */ 915 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 916 array_free (fdchange, EMPTY0);
895 array_free (timer, EMPTY0); 917 array_free (timer, EMPTY0);
896#if EV_PERIODICS 918#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 919 array_free (periodic, EMPTY0);
898#endif 920#endif
899 array_free (idle, EMPTY0); 921 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 922 array_free (prepare, EMPTY0);
901 array_free (check, EMPTY0); 923 array_free (check, EMPTY0);
1037 postfork = 1; 1059 postfork = 1;
1038} 1060}
1039 1061
1040/*****************************************************************************/ 1062/*****************************************************************************/
1041 1063
1042static int 1064int inline_size
1043any_pending (EV_P) 1065any_pending (EV_P)
1044{ 1066{
1045 int pri; 1067 int pri;
1046 1068
1047 for (pri = NUMPRI; pri--; ) 1069 for (pri = NUMPRI; pri--; )
1049 return 1; 1071 return 1;
1050 1072
1051 return 0; 1073 return 0;
1052} 1074}
1053 1075
1054inline void 1076void inline_speed
1055call_pending (EV_P) 1077call_pending (EV_P)
1056{ 1078{
1057 int pri; 1079 int pri;
1058 1080
1059 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
1061 { 1083 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1085
1064 if (expect_true (p->w)) 1086 if (expect_true (p->w))
1065 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
1066 p->w->pending = 0; 1090 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
1068 } 1092 }
1069 } 1093 }
1070} 1094}
1071 1095
1072inline void 1096void inline_size
1073timers_reify (EV_P) 1097timers_reify (EV_P)
1074{ 1098{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1100 {
1077 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
1078 1102
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1080 1104
1081 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
1082 if (w->repeat) 1106 if (w->repeat)
1094 1118
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1120 }
1097} 1121}
1098 1122
1099#if EV_PERIODICS 1123#if EV_PERIODIC_ENABLE
1100inline void 1124void inline_size
1101periodics_reify (EV_P) 1125periodics_reify (EV_P)
1102{ 1126{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1128 {
1105 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
1106 1130
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1108 1132
1109 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1134 if (w->reschedule_cb)
1124 1148
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1150 }
1127} 1151}
1128 1152
1129static void 1153static void noinline
1130periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
1131{ 1155{
1132 int i; 1156 int i;
1133 1157
1134 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
1136 { 1160 {
1137 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
1138 1162
1139 if (w->reschedule_cb) 1163 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1165 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1146 for (i = periodiccnt >> 1; i--; ) 1170 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1171 downheap ((WT *)periodics, periodiccnt, i);
1148} 1172}
1149#endif 1173#endif
1150 1174
1151inline int 1175int inline_size
1152time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
1153{ 1177{
1154 mn_now = get_clock (); 1178 mn_now = get_clock ();
1155 1179
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1164 ev_rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
1165 return 1; 1189 return 1;
1166 } 1190 }
1167} 1191}
1168 1192
1169inline void 1193void inline_size
1170time_update (EV_P) 1194time_update (EV_P)
1171{ 1195{
1172 int i; 1196 int i;
1173 1197
1174#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
1176 { 1200 {
1177 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
1178 { 1202 {
1179 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
1180 1204
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1182 { 1214 {
1183 rtmn_diff = ev_rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
1184 1216
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1218 return; /* all is well */
1188 ev_rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1221 mn_now = get_clock ();
1190 now_floor = mn_now; 1222 now_floor = mn_now;
1191 } 1223 }
1192 1224
1193# if EV_PERIODICS 1225# if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1195# endif 1227# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1230 }
1202 { 1234 {
1203 ev_rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
1204 1236
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 { 1238 {
1207#if EV_PERIODICS 1239#if EV_PERIODIC_ENABLE
1208 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1209#endif 1241#endif
1210 1242
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
1232static int loop_done; 1264static int loop_done;
1233 1265
1234void 1266void
1235ev_loop (EV_P_ int flags) 1267ev_loop (EV_P_ int flags)
1236{ 1268{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1239 1272
1240 while (activecnt) 1273 while (activecnt)
1241 { 1274 {
1242 /* queue check watchers (and execute them) */ 1275 /* queue check watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1276 if (expect_false (preparecnt))
1252 1285
1253 /* update fd-related kernel structures */ 1286 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1287 fd_reify (EV_A);
1255 1288
1256 /* calculate blocking time */ 1289 /* calculate blocking time */
1290 {
1291 double block;
1257 1292
1258 /* we only need this for !monotonic clock or timers, but as we basically 1293 if (flags & EVLOOP_NONBLOCK || idlecnt)
1259 always have timers, we just calculate it always */ 1294 block = 0.; /* do not block at all */
1295 else
1296 {
1297 /* update time to cancel out callback processing overhead */
1260#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic)) 1299 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A); 1300 time_update_monotonic (EV_A);
1263 else 1301 else
1264#endif 1302#endif
1265 { 1303 {
1266 ev_rt_now = ev_time (); 1304 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now; 1305 mn_now = ev_rt_now;
1268 } 1306 }
1269 1307
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1308 block = MAX_BLOCKTIME;
1275 1309
1276 if (timercnt) 1310 if (timercnt)
1277 { 1311 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1313 if (block > to) block = to;
1280 } 1314 }
1281 1315
1282#if EV_PERIODICS 1316#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1317 if (periodiccnt)
1284 { 1318 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1320 if (block > to) block = to;
1287 } 1321 }
1288#endif 1322#endif
1289 1323
1290 if (expect_false (block < 0.)) block = 0.; 1324 if (expect_false (block < 0.)) block = 0.;
1291 } 1325 }
1292 1326
1293 backend_poll (EV_A_ block); 1327 backend_poll (EV_A_ block);
1328 }
1294 1329
1295 /* update ev_rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1331 time_update (EV_A);
1297 1332
1298 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1337#endif
1303 1338
1304 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1340 if (idlecnt && !any_pending (EV_A))
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1307 1342
1308 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1344 if (expect_false (checkcnt))
1313 1348
1314 if (expect_false (loop_done)) 1349 if (expect_false (loop_done))
1315 break; 1350 break;
1316 } 1351 }
1317 1352
1318 if (loop_done != 2) 1353 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1354 loop_done = EVUNLOOP_CANCEL;
1320} 1355}
1321 1356
1322void 1357void
1323ev_unloop (EV_P_ int how) 1358ev_unloop (EV_P_ int how)
1324{ 1359{
1325 loop_done = how; 1360 loop_done = how;
1326} 1361}
1327 1362
1328/*****************************************************************************/ 1363/*****************************************************************************/
1329 1364
1330inline void 1365void inline_size
1331wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
1332{ 1367{
1333 elem->next = *head; 1368 elem->next = *head;
1334 *head = elem; 1369 *head = elem;
1335} 1370}
1336 1371
1337inline void 1372void inline_size
1338wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1339{ 1374{
1340 while (*head) 1375 while (*head)
1341 { 1376 {
1342 if (*head == elem) 1377 if (*head == elem)
1347 1382
1348 head = &(*head)->next; 1383 head = &(*head)->next;
1349 } 1384 }
1350} 1385}
1351 1386
1352inline void 1387void inline_speed
1353ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1354{ 1389{
1355 if (w->pending) 1390 if (w->pending)
1356 { 1391 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1393 w->pending = 0;
1359 } 1394 }
1360} 1395}
1361 1396
1362inline void 1397void inline_speed
1363ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1364{ 1399{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367 1402
1368 w->active = active; 1403 w->active = active;
1369 ev_ref (EV_A); 1404 ev_ref (EV_A);
1370} 1405}
1371 1406
1372inline void 1407void inline_size
1373ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1374{ 1409{
1375 ev_unref (EV_A); 1410 ev_unref (EV_A);
1376 w->active = 0; 1411 w->active = 0;
1377} 1412}
1378 1413
1379/*****************************************************************************/ 1414/*****************************************************************************/
1380 1415
1381void 1416void
1382ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1383{ 1418{
1384 int fd = w->fd; 1419 int fd = w->fd;
1385 1420
1386 if (expect_false (ev_is_active (w))) 1421 if (expect_false (ev_is_active (w)))
1387 return; 1422 return;
1394 1429
1395 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1396} 1431}
1397 1432
1398void 1433void
1399ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1400{ 1435{
1401 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1437 if (expect_false (!ev_is_active (w)))
1403 return; 1438 return;
1404 1439
1409 1444
1410 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1411} 1446}
1412 1447
1413void 1448void
1414ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1415{ 1450{
1416 if (expect_false (ev_is_active (w))) 1451 if (expect_false (ev_is_active (w)))
1417 return; 1452 return;
1418 1453
1419 ((WT)w)->at += mn_now; 1454 ((WT)w)->at += mn_now;
1420 1455
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1457
1423 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1427 1462
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1429} 1464}
1430 1465
1431void 1466void
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1468{
1434 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1470 if (expect_false (!ev_is_active (w)))
1436 return; 1471 return;
1437 1472
1447 1482
1448 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1449} 1484}
1450 1485
1451void 1486void
1452ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1453{ 1488{
1454 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1455 { 1490 {
1456 if (w->repeat) 1491 if (w->repeat)
1457 { 1492 {
1466 w->at = w->repeat; 1501 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1468 } 1503 }
1469} 1504}
1470 1505
1471#if EV_PERIODICS 1506#if EV_PERIODIC_ENABLE
1472void 1507void
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1509{
1475 if (expect_false (ev_is_active (w))) 1510 if (expect_false (ev_is_active (w)))
1476 return; 1511 return;
1477 1512
1478 if (w->reschedule_cb) 1513 if (w->reschedule_cb)
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 1520 }
1486 1521
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1491 1526
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1493} 1528}
1494 1529
1495void 1530void
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1532{
1498 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1534 if (expect_false (!ev_is_active (w)))
1500 return; 1535 return;
1501 1536
1509 1544
1510 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1511} 1546}
1512 1547
1513void 1548void
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1549ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1550{
1516 /* TODO: use adjustheap and recalculation */ 1551 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1552 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1553 ev_periodic_start (EV_A_ w);
1519} 1554}
1520#endif 1555#endif
1521 1556
1522void 1557void
1523ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1524{ 1559{
1525 if (expect_false (ev_is_active (w))) 1560 if (expect_false (ev_is_active (w)))
1526 return; 1561 return;
1527 1562
1528 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1531} 1566}
1532 1567
1533void 1568void
1534ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1535{ 1570{
1536 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w))) 1572 if (expect_false (!ev_is_active (w)))
1538 return; 1573 return;
1539 1574
1575 {
1576 int active = ((W)w)->active;
1540 idles [((W)w)->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1541 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1542} 1582}
1543 1583
1544void 1584void
1545ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1546{ 1586{
1547 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1548 return; 1588 return;
1549 1589
1550 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1553} 1593}
1554 1594
1555void 1595void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1557{ 1597{
1558 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w))) 1599 if (expect_false (!ev_is_active (w)))
1560 return; 1600 return;
1561 1601
1602 {
1603 int active = ((W)w)->active;
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1563 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1564} 1609}
1565 1610
1566void 1611void
1567ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1568{ 1613{
1569 if (expect_false (ev_is_active (w))) 1614 if (expect_false (ev_is_active (w)))
1570 return; 1615 return;
1571 1616
1572 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1575} 1620}
1576 1621
1577void 1622void
1578ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1579{ 1624{
1580 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w))) 1626 if (expect_false (!ev_is_active (w)))
1582 return; 1627 return;
1583 1628
1629 {
1630 int active = ((W)w)->active;
1584 checks [((W)w)->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1585 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1586} 1636}
1587 1637
1588#ifndef SA_RESTART 1638#ifndef SA_RESTART
1589# define SA_RESTART 0 1639# define SA_RESTART 0
1590#endif 1640#endif
1591 1641
1592void 1642void
1593ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1594{ 1644{
1595#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1647#endif
1598 if (expect_false (ev_is_active (w))) 1648 if (expect_false (ev_is_active (w)))
1617#endif 1667#endif
1618 } 1668 }
1619} 1669}
1620 1670
1621void 1671void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1673{
1624 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1675 if (expect_false (!ev_is_active (w)))
1626 return; 1676 return;
1627 1677
1631 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1633} 1683}
1634 1684
1635void 1685void
1636ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1637{ 1687{
1638#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1690#endif
1641 if (expect_false (ev_is_active (w))) 1691 if (expect_false (ev_is_active (w)))
1644 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1646} 1696}
1647 1697
1648void 1698void
1649ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1650{ 1700{
1651 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1702 if (expect_false (!ev_is_active (w)))
1653 return; 1703 return;
1654 1704
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1657} 1707}
1658 1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1659/*****************************************************************************/ 1819/*****************************************************************************/
1660 1820
1661struct ev_once 1821struct ev_once
1662{ 1822{
1663 struct ev_io io; 1823 ev_io io;
1664 struct ev_timer to; 1824 ev_timer to;
1665 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1666 void *arg; 1826 void *arg;
1667}; 1827};
1668 1828
1669static void 1829static void
1678 1838
1679 cb (revents, arg); 1839 cb (revents, arg);
1680} 1840}
1681 1841
1682static void 1842static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 1844{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 1846}
1687 1847
1688static void 1848static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 1850{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 1852}
1693 1853
1694void 1854void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines