ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
174 220
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 224
186#if __GNUC__ >= 3 225#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
188# define inline static inline 233# define inline_speed static inline
234# endif
189#else 235#else
190# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
191# define inline static 238# define inline_size static
239# define noinline
192#endif 240#endif
193 241
194#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
196 244
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 247
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
202 250
203typedef struct ev_watcher *W; 251typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
206 254
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 256
209#ifdef _WIN32 257#ifdef _WIN32
210# include "ev_win32.c" 258# include "ev_win32.c"
212 260
213/*****************************************************************************/ 261/*****************************************************************************/
214 262
215static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
216 264
265void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 267{
219 syserr_cb = cb; 268 syserr_cb = cb;
220} 269}
221 270
222static void 271static void noinline
223syserr (const char *msg) 272syserr (const char *msg)
224{ 273{
225 if (!msg) 274 if (!msg)
226 msg = "(libev) system error"; 275 msg = "(libev) system error";
227 276
234 } 283 }
235} 284}
236 285
237static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, long size);
238 287
288void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 290{
241 alloc = cb; 291 alloc = cb;
242} 292}
243 293
244static void * 294inline_speed void *
245ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, long size)
246{ 296{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 298
249 if (!ptr && size) 299 if (!ptr && size)
273typedef struct 323typedef struct
274{ 324{
275 W w; 325 W w;
276 int events; 326 int events;
277} ANPENDING; 327} ANPENDING;
328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
278 335
279#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
280 337
281 struct ev_loop 338 struct ev_loop
282 { 339 {
316 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 375#endif
319} 376}
320 377
321inline ev_tstamp 378ev_tstamp inline_size
322get_clock (void) 379get_clock (void)
323{ 380{
324#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
326 { 383 {
369#define array_free(stem, idx) \ 426#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 428
372/*****************************************************************************/ 429/*****************************************************************************/
373 430
374static void 431void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 432ev_feed_event (EV_P_ void *w, int revents)
389{ 433{
390 W w_ = (W)w; 434 W w_ = (W)w;
391 435
392 if (expect_false (w_->pending)) 436 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 446}
403 447
404static void 448void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 449queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 450{
407 int i; 451 int i;
408 452
409 for (i = 0; i < eventcnt; ++i) 453 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 454 ev_feed_event (EV_A_ events [i], type);
411} 455}
412 456
413inline void 457/*****************************************************************************/
458
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
414fd_event (EV_P_ int fd, int revents) 473fd_event (EV_P_ int fd, int revents)
415{ 474{
416 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 476 ev_io *w;
418 477
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 479 {
421 int ev = w->events & revents; 480 int ev = w->events & revents;
422 481
423 if (ev) 482 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 488ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 489{
431 fd_event (EV_A_ fd, revents); 490 fd_event (EV_A_ fd, revents);
432} 491}
433 492
434/*****************************************************************************/ 493void inline_size
435
436inline void
437fd_reify (EV_P) 494fd_reify (EV_P)
438{ 495{
439 int i; 496 int i;
440 497
441 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
442 { 499 {
443 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 502 ev_io *w;
446 503
447 int events = 0; 504 int events = 0;
448 505
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 507 events |= w->events;
451 508
452#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
453 if (events) 510 if (events)
454 { 511 {
465 } 522 }
466 523
467 fdchangecnt = 0; 524 fdchangecnt = 0;
468} 525}
469 526
470static void 527void inline_size
471fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
472{ 529{
473 if (expect_false (anfds [fd].reify)) 530 if (expect_false (anfds [fd].reify))
474 return; 531 return;
475 532
478 ++fdchangecnt; 535 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
481} 538}
482 539
483static void 540void inline_speed
484fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
485{ 542{
486 struct ev_io *w; 543 ev_io *w;
487 544
488 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
489 { 546 {
490 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 549 }
493} 550}
494 551
495inline int 552int inline_size
496fd_valid (int fd) 553fd_valid (int fd)
497{ 554{
498#ifdef _WIN32 555#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 556 return _get_osfhandle (fd) != -1;
500#else 557#else
501 return fcntl (fd, F_GETFD) != -1; 558 return fcntl (fd, F_GETFD) != -1;
502#endif 559#endif
503} 560}
504 561
505/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
506static void 563static void noinline
507fd_ebadf (EV_P) 564fd_ebadf (EV_P)
508{ 565{
509 int fd; 566 int fd;
510 567
511 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
515} 572}
516 573
517/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 575static void noinline
519fd_enomem (EV_P) 576fd_enomem (EV_P)
520{ 577{
521 int fd; 578 int fd;
522 579
523 for (fd = anfdmax; fd--; ) 580 for (fd = anfdmax; fd--; )
527 return; 584 return;
528 } 585 }
529} 586}
530 587
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 588/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 589static void noinline
533fd_rearm_all (EV_P) 590fd_rearm_all (EV_P)
534{ 591{
535 int fd; 592 int fd;
536 593
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 594 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 595 if (anfds [fd].events)
540 { 596 {
541 anfds [fd].events = 0; 597 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 598 fd_change (EV_A_ fd);
543 } 599 }
544} 600}
545 601
546/*****************************************************************************/ 602/*****************************************************************************/
547 603
548static void 604void inline_speed
549upheap (WT *heap, int k) 605upheap (WT *heap, int k)
550{ 606{
551 WT w = heap [k]; 607 WT w = heap [k];
552 608
553 while (k && heap [k >> 1]->at > w->at) 609 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 616 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 617 ((W)heap [k])->active = k + 1;
562 618
563} 619}
564 620
565static void 621void inline_speed
566downheap (WT *heap, int N, int k) 622downheap (WT *heap, int N, int k)
567{ 623{
568 WT w = heap [k]; 624 WT w = heap [k];
569 625
570 while (k < (N >> 1)) 626 while (k < (N >> 1))
584 640
585 heap [k] = w; 641 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 642 ((W)heap [k])->active = k + 1;
587} 643}
588 644
589inline void 645void inline_size
590adjustheap (WT *heap, int N, int k) 646adjustheap (WT *heap, int N, int k)
591{ 647{
592 upheap (heap, k); 648 upheap (heap, k);
593 downheap (heap, N, k); 649 downheap (heap, N, k);
594} 650}
604static ANSIG *signals; 660static ANSIG *signals;
605static int signalmax; 661static int signalmax;
606 662
607static int sigpipe [2]; 663static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 664static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 665static ev_io sigev;
610 666
611static void 667void inline_size
612signals_init (ANSIG *base, int count) 668signals_init (ANSIG *base, int count)
613{ 669{
614 while (count--) 670 while (count--)
615 { 671 {
616 base->head = 0; 672 base->head = 0;
636 write (sigpipe [1], &signum, 1); 692 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 693 errno = old_errno;
638 } 694 }
639} 695}
640 696
641void 697void noinline
642ev_feed_signal_event (EV_P_ int signum) 698ev_feed_signal_event (EV_P_ int signum)
643{ 699{
644 WL w; 700 WL w;
645 701
646#if EV_MULTIPLICITY 702#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 713 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 715}
660 716
661static void 717static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 718sigcb (EV_P_ ev_io *iow, int revents)
663{ 719{
664 int signum; 720 int signum;
665 721
666 read (sigpipe [0], &revents, 1); 722 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 723 gotsig = 0;
669 for (signum = signalmax; signum--; ) 725 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 726 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 727 ev_feed_signal_event (EV_A_ signum + 1);
672} 728}
673 729
674static void 730void inline_size
675fd_intern (int fd) 731fd_intern (int fd)
676{ 732{
677#ifdef _WIN32 733#ifdef _WIN32
678 int arg = 1; 734 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 737 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 738 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 739#endif
684} 740}
685 741
686static void 742static void noinline
687siginit (EV_P) 743siginit (EV_P)
688{ 744{
689 fd_intern (sigpipe [0]); 745 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 746 fd_intern (sigpipe [1]);
691 747
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 750 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 751}
696 752
697/*****************************************************************************/ 753/*****************************************************************************/
698 754
699static struct ev_child *childs [PID_HASHSIZE]; 755static ev_child *childs [EV_PID_HASHSIZE];
700 756
701#ifndef _WIN32 757#ifndef _WIN32
702 758
703static struct ev_signal childev; 759static ev_signal childev;
704 760
705#ifndef WCONTINUED 761void inline_speed
706# define WCONTINUED 0
707#endif
708
709static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 763{
712 struct ev_child *w; 764 ev_child *w;
713 765
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 767 if (w->pid == pid || !w->pid)
716 { 768 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 770 w->rpid = pid;
719 w->rstatus = status; 771 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 772 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 773 }
722} 774}
723 775
776#ifndef WCONTINUED
777# define WCONTINUED 0
778#endif
779
724static void 780static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 781childcb (EV_P_ ev_signal *sw, int revents)
726{ 782{
727 int pid, status; 783 int pid, status;
728 784
785 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 786 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 787 if (!WCONTINUED
788 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return;
791
731 /* make sure we are called again until all childs have been reaped */ 792 /* make sure we are called again until all childs have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 795
734 child_reap (EV_A_ sw, pid, pid, status); 796 child_reap (EV_A_ sw, pid, pid, status);
797 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 799}
738 800
739#endif 801#endif
740 802
741/*****************************************************************************/ 803/*****************************************************************************/
767{ 829{
768 return EV_VERSION_MINOR; 830 return EV_VERSION_MINOR;
769} 831}
770 832
771/* return true if we are running with elevated privileges and should ignore env variables */ 833/* return true if we are running with elevated privileges and should ignore env variables */
772static int 834int inline_size
773enable_secure (void) 835enable_secure (void)
774{ 836{
775#ifdef _WIN32 837#ifdef _WIN32
776 return 0; 838 return 0;
777#else 839#else
795} 857}
796 858
797unsigned int 859unsigned int
798ev_recommended_backends (void) 860ev_recommended_backends (void)
799{ 861{
800 unsigned int flags = ev_recommended_backends (); 862 unsigned int flags = ev_supported_backends ();
801 863
802#ifndef __NetBSD__ 864#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 865 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 866 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 867 flags &= ~EVBACKEND_KQUEUE;
811 873
812 return flags; 874 return flags;
813} 875}
814 876
815unsigned int 877unsigned int
878ev_embeddable_backends (void)
879{
880 return EVBACKEND_EPOLL
881 | EVBACKEND_KQUEUE
882 | EVBACKEND_PORT;
883}
884
885unsigned int
816ev_backend (EV_P) 886ev_backend (EV_P)
817{ 887{
818 return backend; 888 return backend;
819} 889}
820 890
821static void 891static void noinline
822loop_init (EV_P_ unsigned int flags) 892loop_init (EV_P_ unsigned int flags)
823{ 893{
824 if (!backend) 894 if (!backend)
825 { 895 {
826#if EV_USE_MONOTONIC 896#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 904 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 905 mn_now = get_clock ();
836 now_floor = mn_now; 906 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 907 rtmn_diff = ev_rt_now - mn_now;
838 908
909 /* pid check not overridable via env */
910#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid ();
913#endif
914
839 if (!(flags & EVFLAG_NOENV) 915 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 916 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 917 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 918 flags = atoi (getenv ("LIBEV_FLAGS"));
843 919
844 if (!(flags & 0x0000ffffUL)) 920 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 921 flags |= ev_recommended_backends ();
846 922
847 backend = 0; 923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928
848#if EV_USE_PORT 929#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 931#endif
851#if EV_USE_KQUEUE 932#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 933 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 945 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 946 ev_set_priority (&sigev, EV_MAXPRI);
866 } 947 }
867} 948}
868 949
869static void 950static void noinline
870loop_destroy (EV_P) 951loop_destroy (EV_P)
871{ 952{
872 int i; 953 int i;
954
955#if EV_USE_INOTIFY
956 if (fs_fd >= 0)
957 close (fs_fd);
958#endif
959
960 if (backend_fd >= 0)
961 close (backend_fd);
873 962
874#if EV_USE_PORT 963#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 964 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 965#endif
877#if EV_USE_KQUEUE 966#if EV_USE_KQUEUE
891 array_free (pending, [i]); 980 array_free (pending, [i]);
892 981
893 /* have to use the microsoft-never-gets-it-right macro */ 982 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 983 array_free (fdchange, EMPTY0);
895 array_free (timer, EMPTY0); 984 array_free (timer, EMPTY0);
896#if EV_PERIODICS 985#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 986 array_free (periodic, EMPTY0);
898#endif 987#endif
899 array_free (idle, EMPTY0); 988 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 989 array_free (prepare, EMPTY0);
901 array_free (check, EMPTY0); 990 array_free (check, EMPTY0);
902 991
903 backend = 0; 992 backend = 0;
904} 993}
905 994
906static void 995void inline_size infy_fork (EV_P);
996
997void inline_size
907loop_fork (EV_P) 998loop_fork (EV_P)
908{ 999{
909#if EV_USE_PORT 1000#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1002#endif
912#if EV_USE_KQUEUE 1003#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1004 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1005#endif
915#if EV_USE_EPOLL 1006#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1007 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1008#endif
1009#if EV_USE_INOTIFY
1010 infy_fork (EV_A);
917#endif 1011#endif
918 1012
919 if (ev_is_active (&sigev)) 1013 if (ev_is_active (&sigev))
920 { 1014 {
921 /* default loop */ 1015 /* default loop */
1037 postfork = 1; 1131 postfork = 1;
1038} 1132}
1039 1133
1040/*****************************************************************************/ 1134/*****************************************************************************/
1041 1135
1042static int 1136int inline_size
1043any_pending (EV_P) 1137any_pending (EV_P)
1044{ 1138{
1045 int pri; 1139 int pri;
1046 1140
1047 for (pri = NUMPRI; pri--; ) 1141 for (pri = NUMPRI; pri--; )
1049 return 1; 1143 return 1;
1050 1144
1051 return 0; 1145 return 0;
1052} 1146}
1053 1147
1054inline void 1148void inline_speed
1055call_pending (EV_P) 1149call_pending (EV_P)
1056{ 1150{
1057 int pri; 1151 int pri;
1058 1152
1059 for (pri = NUMPRI; pri--; ) 1153 for (pri = NUMPRI; pri--; )
1061 { 1155 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1157
1064 if (expect_true (p->w)) 1158 if (expect_true (p->w))
1065 { 1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1161
1066 p->w->pending = 0; 1162 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1163 EV_CB_INVOKE (p->w, p->events);
1068 } 1164 }
1069 } 1165 }
1070} 1166}
1071 1167
1072inline void 1168void inline_size
1073timers_reify (EV_P) 1169timers_reify (EV_P)
1074{ 1170{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1171 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1172 {
1077 struct ev_timer *w = timers [0]; 1173 ev_timer *w = timers [0];
1078 1174
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1176
1081 /* first reschedule or stop timer */ 1177 /* first reschedule or stop timer */
1082 if (w->repeat) 1178 if (w->repeat)
1083 { 1179 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1094 1190
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1192 }
1097} 1193}
1098 1194
1099#if EV_PERIODICS 1195#if EV_PERIODIC_ENABLE
1100inline void 1196void inline_size
1101periodics_reify (EV_P) 1197periodics_reify (EV_P)
1102{ 1198{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1200 {
1105 struct ev_periodic *w = periodics [0]; 1201 ev_periodic *w = periodics [0];
1106 1202
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1204
1109 /* first reschedule or stop timer */ 1205 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1206 if (w->reschedule_cb)
1111 { 1207 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1124 1220
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1222 }
1127} 1223}
1128 1224
1129static void 1225static void noinline
1130periodics_reschedule (EV_P) 1226periodics_reschedule (EV_P)
1131{ 1227{
1132 int i; 1228 int i;
1133 1229
1134 /* adjust periodics after time jump */ 1230 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1231 for (i = 0; i < periodiccnt; ++i)
1136 { 1232 {
1137 struct ev_periodic *w = periodics [i]; 1233 ev_periodic *w = periodics [i];
1138 1234
1139 if (w->reschedule_cb) 1235 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1237 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1146 for (i = periodiccnt >> 1; i--; ) 1242 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1243 downheap ((WT *)periodics, periodiccnt, i);
1148} 1244}
1149#endif 1245#endif
1150 1246
1151inline int 1247int inline_size
1152time_update_monotonic (EV_P) 1248time_update_monotonic (EV_P)
1153{ 1249{
1154 mn_now = get_clock (); 1250 mn_now = get_clock ();
1155 1251
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1164 ev_rt_now = ev_time (); 1260 ev_rt_now = ev_time ();
1165 return 1; 1261 return 1;
1166 } 1262 }
1167} 1263}
1168 1264
1169inline void 1265void inline_size
1170time_update (EV_P) 1266time_update (EV_P)
1171{ 1267{
1172 int i; 1268 int i;
1173 1269
1174#if EV_USE_MONOTONIC 1270#if EV_USE_MONOTONIC
1176 { 1272 {
1177 if (time_update_monotonic (EV_A)) 1273 if (time_update_monotonic (EV_A))
1178 { 1274 {
1179 ev_tstamp odiff = rtmn_diff; 1275 ev_tstamp odiff = rtmn_diff;
1180 1276
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1182 { 1286 {
1183 rtmn_diff = ev_rt_now - mn_now; 1287 rtmn_diff = ev_rt_now - mn_now;
1184 1288
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1290 return; /* all is well */
1188 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1293 mn_now = get_clock ();
1190 now_floor = mn_now; 1294 now_floor = mn_now;
1191 } 1295 }
1192 1296
1193# if EV_PERIODICS 1297# if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1298 periodics_reschedule (EV_A);
1195# endif 1299# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1302 }
1202 { 1306 {
1203 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
1204 1308
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 { 1310 {
1207#if EV_PERIODICS 1311#if EV_PERIODIC_ENABLE
1208 periodics_reschedule (EV_A); 1312 periodics_reschedule (EV_A);
1209#endif 1313#endif
1210 1314
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1316 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1318 }
1215 1319
1216 mn_now = ev_rt_now; 1320 mn_now = ev_rt_now;
1232static int loop_done; 1336static int loop_done;
1233 1337
1234void 1338void
1235ev_loop (EV_P_ int flags) 1339ev_loop (EV_P_ int flags)
1236{ 1340{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1342 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL;
1344
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1239 1346
1240 while (activecnt) 1347 while (activecnt)
1241 { 1348 {
1349#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid))
1352 {
1353 curpid = getpid ();
1354 postfork = 1;
1355 }
1356#endif
1357
1358#if EV_FORK_ENABLE
1359 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork))
1361 if (forkcnt)
1362 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A);
1365 }
1366#endif
1367
1242 /* queue check watchers (and execute them) */ 1368 /* queue check watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1369 if (expect_false (preparecnt))
1244 { 1370 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1372 call_pending (EV_A);
1252 1378
1253 /* update fd-related kernel structures */ 1379 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1380 fd_reify (EV_A);
1255 1381
1256 /* calculate blocking time */ 1382 /* calculate blocking time */
1383 {
1384 ev_tstamp block;
1257 1385
1258 /* we only need this for !monotonic clock or timers, but as we basically 1386 if (flags & EVLOOP_NONBLOCK || idlecnt)
1259 always have timers, we just calculate it always */ 1387 block = 0.; /* do not block at all */
1388 else
1389 {
1390 /* update time to cancel out callback processing overhead */
1260#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic)) 1392 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A); 1393 time_update_monotonic (EV_A);
1263 else 1394 else
1264#endif 1395#endif
1265 { 1396 {
1266 ev_rt_now = ev_time (); 1397 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now; 1398 mn_now = ev_rt_now;
1268 } 1399 }
1269 1400
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1401 block = MAX_BLOCKTIME;
1275 1402
1276 if (timercnt) 1403 if (timercnt)
1277 { 1404 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1406 if (block > to) block = to;
1280 } 1407 }
1281 1408
1282#if EV_PERIODICS 1409#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1410 if (periodiccnt)
1284 { 1411 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1413 if (block > to) block = to;
1287 } 1414 }
1288#endif 1415#endif
1289 1416
1290 if (expect_false (block < 0.)) block = 0.; 1417 if (expect_false (block < 0.)) block = 0.;
1291 } 1418 }
1292 1419
1293 backend_poll (EV_A_ block); 1420 backend_poll (EV_A_ block);
1421 }
1294 1422
1295 /* update ev_rt_now, do magic */ 1423 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1424 time_update (EV_A);
1297 1425
1298 /* queue pending timers and reschedule them */ 1426 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1427 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1428#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1429 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1430#endif
1303 1431
1304 /* queue idle watchers unless io or timers are pending */ 1432 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1433 if (idlecnt && !any_pending (EV_A))
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1307 1435
1308 /* queue check watchers, to be executed first */ 1436 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1437 if (expect_false (checkcnt))
1313 1441
1314 if (expect_false (loop_done)) 1442 if (expect_false (loop_done))
1315 break; 1443 break;
1316 } 1444 }
1317 1445
1318 if (loop_done != 2) 1446 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1447 loop_done = EVUNLOOP_CANCEL;
1320} 1448}
1321 1449
1322void 1450void
1323ev_unloop (EV_P_ int how) 1451ev_unloop (EV_P_ int how)
1324{ 1452{
1325 loop_done = how; 1453 loop_done = how;
1326} 1454}
1327 1455
1328/*****************************************************************************/ 1456/*****************************************************************************/
1329 1457
1330inline void 1458void inline_size
1331wlist_add (WL *head, WL elem) 1459wlist_add (WL *head, WL elem)
1332{ 1460{
1333 elem->next = *head; 1461 elem->next = *head;
1334 *head = elem; 1462 *head = elem;
1335} 1463}
1336 1464
1337inline void 1465void inline_size
1338wlist_del (WL *head, WL elem) 1466wlist_del (WL *head, WL elem)
1339{ 1467{
1340 while (*head) 1468 while (*head)
1341 { 1469 {
1342 if (*head == elem) 1470 if (*head == elem)
1347 1475
1348 head = &(*head)->next; 1476 head = &(*head)->next;
1349 } 1477 }
1350} 1478}
1351 1479
1352inline void 1480void inline_speed
1353ev_clear_pending (EV_P_ W w) 1481ev_clear_pending (EV_P_ W w)
1354{ 1482{
1355 if (w->pending) 1483 if (w->pending)
1356 { 1484 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1485 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1486 w->pending = 0;
1359 } 1487 }
1360} 1488}
1361 1489
1362inline void 1490void inline_speed
1363ev_start (EV_P_ W w, int active) 1491ev_start (EV_P_ W w, int active)
1364{ 1492{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367 1495
1368 w->active = active; 1496 w->active = active;
1369 ev_ref (EV_A); 1497 ev_ref (EV_A);
1370} 1498}
1371 1499
1372inline void 1500void inline_size
1373ev_stop (EV_P_ W w) 1501ev_stop (EV_P_ W w)
1374{ 1502{
1375 ev_unref (EV_A); 1503 ev_unref (EV_A);
1376 w->active = 0; 1504 w->active = 0;
1377} 1505}
1378 1506
1379/*****************************************************************************/ 1507/*****************************************************************************/
1380 1508
1381void 1509void
1382ev_io_start (EV_P_ struct ev_io *w) 1510ev_io_start (EV_P_ ev_io *w)
1383{ 1511{
1384 int fd = w->fd; 1512 int fd = w->fd;
1385 1513
1386 if (expect_false (ev_is_active (w))) 1514 if (expect_false (ev_is_active (w)))
1387 return; 1515 return;
1394 1522
1395 fd_change (EV_A_ fd); 1523 fd_change (EV_A_ fd);
1396} 1524}
1397 1525
1398void 1526void
1399ev_io_stop (EV_P_ struct ev_io *w) 1527ev_io_stop (EV_P_ ev_io *w)
1400{ 1528{
1401 ev_clear_pending (EV_A_ (W)w); 1529 ev_clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1530 if (expect_false (!ev_is_active (w)))
1403 return; 1531 return;
1404 1532
1409 1537
1410 fd_change (EV_A_ w->fd); 1538 fd_change (EV_A_ w->fd);
1411} 1539}
1412 1540
1413void 1541void
1414ev_timer_start (EV_P_ struct ev_timer *w) 1542ev_timer_start (EV_P_ ev_timer *w)
1415{ 1543{
1416 if (expect_false (ev_is_active (w))) 1544 if (expect_false (ev_is_active (w)))
1417 return; 1545 return;
1418 1546
1419 ((WT)w)->at += mn_now; 1547 ((WT)w)->at += mn_now;
1420 1548
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1550
1423 ev_start (EV_A_ (W)w, ++timercnt); 1551 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1553 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1554 upheap ((WT *)timers, timercnt - 1);
1427 1555
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1557}
1430 1558
1431void 1559void
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1560ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1561{
1434 ev_clear_pending (EV_A_ (W)w); 1562 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1563 if (expect_false (!ev_is_active (w)))
1436 return; 1564 return;
1437 1565
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1439 1567
1568 {
1569 int active = ((W)w)->active;
1570
1440 if (expect_true (((W)w)->active < timercnt--)) 1571 if (expect_true (--active < --timercnt))
1441 { 1572 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1573 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1574 adjustheap ((WT *)timers, timercnt, active);
1444 } 1575 }
1576 }
1445 1577
1446 ((WT)w)->at -= mn_now; 1578 ((WT)w)->at -= mn_now;
1447 1579
1448 ev_stop (EV_A_ (W)w); 1580 ev_stop (EV_A_ (W)w);
1449} 1581}
1450 1582
1451void 1583void
1452ev_timer_again (EV_P_ struct ev_timer *w) 1584ev_timer_again (EV_P_ ev_timer *w)
1453{ 1585{
1454 if (ev_is_active (w)) 1586 if (ev_is_active (w))
1455 { 1587 {
1456 if (w->repeat) 1588 if (w->repeat)
1457 { 1589 {
1466 w->at = w->repeat; 1598 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1599 ev_timer_start (EV_A_ w);
1468 } 1600 }
1469} 1601}
1470 1602
1471#if EV_PERIODICS 1603#if EV_PERIODIC_ENABLE
1472void 1604void
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1605ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1606{
1475 if (expect_false (ev_is_active (w))) 1607 if (expect_false (ev_is_active (w)))
1476 return; 1608 return;
1477 1609
1478 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1615 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 1617 }
1486 1618
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1619 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1621 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1622 upheap ((WT *)periodics, periodiccnt - 1);
1491 1623
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1625}
1494 1626
1495void 1627void
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1628ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1629{
1498 ev_clear_pending (EV_A_ (W)w); 1630 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1631 if (expect_false (!ev_is_active (w)))
1500 return; 1632 return;
1501 1633
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1503 1635
1636 {
1637 int active = ((W)w)->active;
1638
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1639 if (expect_true (--active < --periodiccnt))
1505 { 1640 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1641 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1642 adjustheap ((WT *)periodics, periodiccnt, active);
1508 } 1643 }
1644 }
1509 1645
1510 ev_stop (EV_A_ (W)w); 1646 ev_stop (EV_A_ (W)w);
1511} 1647}
1512 1648
1513void 1649void
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1650ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1651{
1516 /* TODO: use adjustheap and recalculation */ 1652 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1653 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1654 ev_periodic_start (EV_A_ w);
1519} 1655}
1520#endif 1656#endif
1521 1657
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1658#ifndef SA_RESTART
1589# define SA_RESTART 0 1659# define SA_RESTART 0
1590#endif 1660#endif
1591 1661
1592void 1662void
1593ev_signal_start (EV_P_ struct ev_signal *w) 1663ev_signal_start (EV_P_ ev_signal *w)
1594{ 1664{
1595#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1667#endif
1598 if (expect_false (ev_is_active (w))) 1668 if (expect_false (ev_is_active (w)))
1617#endif 1687#endif
1618 } 1688 }
1619} 1689}
1620 1690
1621void 1691void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1692ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1693{
1624 ev_clear_pending (EV_A_ (W)w); 1694 ev_clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1695 if (expect_false (!ev_is_active (w)))
1626 return; 1696 return;
1627 1697
1631 if (!signals [w->signum - 1].head) 1701 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1702 signal (w->signum, SIG_DFL);
1633} 1703}
1634 1704
1635void 1705void
1636ev_child_start (EV_P_ struct ev_child *w) 1706ev_child_start (EV_P_ ev_child *w)
1637{ 1707{
1638#if EV_MULTIPLICITY 1708#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1710#endif
1641 if (expect_false (ev_is_active (w))) 1711 if (expect_false (ev_is_active (w)))
1642 return; 1712 return;
1643 1713
1644 ev_start (EV_A_ (W)w, 1); 1714 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1716}
1647 1717
1648void 1718void
1649ev_child_stop (EV_P_ struct ev_child *w) 1719ev_child_stop (EV_P_ ev_child *w)
1650{ 1720{
1651 ev_clear_pending (EV_A_ (W)w); 1721 ev_clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1722 if (expect_false (!ev_is_active (w)))
1653 return; 1723 return;
1654 1724
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1726 ev_stop (EV_A_ (W)w);
1657} 1727}
1658 1728
1729#if EV_STAT_ENABLE
1730
1731# ifdef _WIN32
1732# undef lstat
1733# define lstat(a,b) _stati64 (a,b)
1734# endif
1735
1736#define DEF_STAT_INTERVAL 5.0074891
1737#define MIN_STAT_INTERVAL 0.1074891
1738
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740
1741#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192
1743
1744static void noinline
1745infy_add (EV_P_ ev_stat *w)
1746{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748
1749 if (w->wd < 0)
1750 {
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1752
1753 /* monitor some parent directory for speedup hints */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 {
1756 char path [4096];
1757 strcpy (path, w->path);
1758
1759 do
1760 {
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763
1764 char *pend = strrchr (path, '/');
1765
1766 if (!pend)
1767 break; /* whoops, no '/', complain to your admin */
1768
1769 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 }
1774 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777
1778 if (w->wd >= 0)
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1780}
1781
1782static void noinline
1783infy_del (EV_P_ ev_stat *w)
1784{
1785 int slot;
1786 int wd = w->wd;
1787
1788 if (wd < 0)
1789 return;
1790
1791 w->wd = -2;
1792 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1793 wlist_del (&fs_hash [slot].head, (WL)w);
1794
1795 /* remove this watcher, if others are watching it, they will rearm */
1796 inotify_rm_watch (fs_fd, wd);
1797}
1798
1799static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{
1802 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1805 infy_wd (EV_A_ slot, wd, ev);
1806 else
1807 {
1808 WL w_;
1809
1810 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1811 {
1812 ev_stat *w = (ev_stat *)w_;
1813 w_ = w_->next; /* lets us remove this watcher and all before it */
1814
1815 if (w->wd == wd || wd == -1)
1816 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 {
1819 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */
1821 }
1822
1823 stat_timer_cb (EV_A_ &w->timer, 0);
1824 }
1825 }
1826 }
1827}
1828
1829static void
1830infy_cb (EV_P_ ev_io *w, int revents)
1831{
1832 char buf [EV_INOTIFY_BUFSIZE];
1833 struct inotify_event *ev = (struct inotify_event *)buf;
1834 int ofs;
1835 int len = read (fs_fd, buf, sizeof (buf));
1836
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1839}
1840
1841void inline_size
1842infy_init (EV_P)
1843{
1844 if (fs_fd != -2)
1845 return;
1846
1847 fs_fd = inotify_init ();
1848
1849 if (fs_fd >= 0)
1850 {
1851 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1852 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w);
1854 }
1855}
1856
1857void inline_size
1858infy_fork (EV_P)
1859{
1860 int slot;
1861
1862 if (fs_fd < 0)
1863 return;
1864
1865 close (fs_fd);
1866 fs_fd = inotify_init ();
1867
1868 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1869 {
1870 WL w_ = fs_hash [slot].head;
1871 fs_hash [slot].head = 0;
1872
1873 while (w_)
1874 {
1875 ev_stat *w = (ev_stat *)w_;
1876 w_ = w_->next; /* lets us add this watcher */
1877
1878 w->wd = -1;
1879
1880 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else
1883 ev_timer_start (EV_A_ &w->timer);
1884 }
1885
1886 }
1887}
1888
1889#endif
1890
1891void
1892ev_stat_stat (EV_P_ ev_stat *w)
1893{
1894 if (lstat (w->path, &w->attr) < 0)
1895 w->attr.st_nlink = 0;
1896 else if (!w->attr.st_nlink)
1897 w->attr.st_nlink = 1;
1898}
1899
1900static void noinline
1901stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1902{
1903 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1904
1905 /* we copy this here each the time so that */
1906 /* prev has the old value when the callback gets invoked */
1907 w->prev = w->attr;
1908 ev_stat_stat (EV_A_ w);
1909
1910 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1911 if (
1912 w->prev.st_dev != w->attr.st_dev
1913 || w->prev.st_ino != w->attr.st_ino
1914 || w->prev.st_mode != w->attr.st_mode
1915 || w->prev.st_nlink != w->attr.st_nlink
1916 || w->prev.st_uid != w->attr.st_uid
1917 || w->prev.st_gid != w->attr.st_gid
1918 || w->prev.st_rdev != w->attr.st_rdev
1919 || w->prev.st_size != w->attr.st_size
1920 || w->prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime
1923 ) {
1924 #if EV_USE_INOTIFY
1925 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */
1928 #endif
1929
1930 ev_feed_event (EV_A_ w, EV_STAT);
1931 }
1932}
1933
1934void
1935ev_stat_start (EV_P_ ev_stat *w)
1936{
1937 if (expect_false (ev_is_active (w)))
1938 return;
1939
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w);
1945
1946 if (w->interval < MIN_STAT_INTERVAL)
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1950 ev_set_priority (&w->timer, ev_priority (w));
1951
1952#if EV_USE_INOTIFY
1953 infy_init (EV_A);
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w);
1957 else
1958#endif
1959 ev_timer_start (EV_A_ &w->timer);
1960
1961 ev_start (EV_A_ (W)w, 1);
1962}
1963
1964void
1965ev_stat_stop (EV_P_ ev_stat *w)
1966{
1967 ev_clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w)))
1969 return;
1970
1971#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w);
1973#endif
1974 ev_timer_stop (EV_A_ &w->timer);
1975
1976 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979
1980void
1981ev_idle_start (EV_P_ ev_idle *w)
1982{
1983 if (expect_false (ev_is_active (w)))
1984 return;
1985
1986 ev_start (EV_A_ (W)w, ++idlecnt);
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1988 idles [idlecnt - 1] = w;
1989}
1990
1991void
1992ev_idle_stop (EV_P_ ev_idle *w)
1993{
1994 ev_clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w)))
1996 return;
1997
1998 {
1999 int active = ((W)w)->active;
2000 idles [active - 1] = idles [--idlecnt];
2001 ((W)idles [active - 1])->active = active;
2002 }
2003
2004 ev_stop (EV_A_ (W)w);
2005}
2006
2007void
2008ev_prepare_start (EV_P_ ev_prepare *w)
2009{
2010 if (expect_false (ev_is_active (w)))
2011 return;
2012
2013 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w;
2016}
2017
2018void
2019ev_prepare_stop (EV_P_ ev_prepare *w)
2020{
2021 ev_clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w)))
2023 return;
2024
2025 {
2026 int active = ((W)w)->active;
2027 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active;
2029 }
2030
2031 ev_stop (EV_A_ (W)w);
2032}
2033
2034void
2035ev_check_start (EV_P_ ev_check *w)
2036{
2037 if (expect_false (ev_is_active (w)))
2038 return;
2039
2040 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w;
2043}
2044
2045void
2046ev_check_stop (EV_P_ ev_check *w)
2047{
2048 ev_clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w)))
2050 return;
2051
2052 {
2053 int active = ((W)w)->active;
2054 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active;
2056 }
2057
2058 ev_stop (EV_A_ (W)w);
2059}
2060
2061#if EV_EMBED_ENABLE
2062void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w)
2064{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK);
2066}
2067
2068static void
2069embed_cb (EV_P_ ev_io *io, int revents)
2070{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072
2073 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else
2076 ev_embed_sweep (loop, w);
2077}
2078
2079void
2080ev_embed_start (EV_P_ ev_embed *w)
2081{
2082 if (expect_false (ev_is_active (w)))
2083 return;
2084
2085 {
2086 struct ev_loop *loop = w->loop;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2089 }
2090
2091 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io);
2093
2094 ev_start (EV_A_ (W)w, 1);
2095}
2096
2097void
2098ev_embed_stop (EV_P_ ev_embed *w)
2099{
2100 ev_clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w)))
2102 return;
2103
2104 ev_io_stop (EV_A_ &w->io);
2105
2106 ev_stop (EV_A_ (W)w);
2107}
2108#endif
2109
2110#if EV_FORK_ENABLE
2111void
2112ev_fork_start (EV_P_ ev_fork *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w;
2120}
2121
2122void
2123ev_fork_stop (EV_P_ ev_fork *w)
2124{
2125 ev_clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137#endif
2138
1659/*****************************************************************************/ 2139/*****************************************************************************/
1660 2140
1661struct ev_once 2141struct ev_once
1662{ 2142{
1663 struct ev_io io; 2143 ev_io io;
1664 struct ev_timer to; 2144 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2145 void (*cb)(int revents, void *arg);
1666 void *arg; 2146 void *arg;
1667}; 2147};
1668 2148
1669static void 2149static void
1678 2158
1679 cb (revents, arg); 2159 cb (revents, arg);
1680} 2160}
1681 2161
1682static void 2162static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2163once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2164{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2166}
1687 2167
1688static void 2168static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2169once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2170{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2172}
1693 2173
1694void 2174void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines