ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.186 by root, Sat Dec 15 23:14:38 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
167#endif 205#endif
168 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
169#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 217# include <winsock.h>
171#endif 218#endif
172 219
173/**/ 220/**/
174 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 235
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 236#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 238# define noinline __attribute__ ((noinline))
189#else 239#else
190# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
191# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
192#endif 245#endif
193 246
194#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
196 256
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 259
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
202 262
203typedef struct ev_watcher *W; 263typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
206 266
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 268
209#ifdef _WIN32 269#ifdef _WIN32
210# include "ev_win32.c" 270# include "ev_win32.c"
212 272
213/*****************************************************************************/ 273/*****************************************************************************/
214 274
215static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
216 276
277void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 279{
219 syserr_cb = cb; 280 syserr_cb = cb;
220} 281}
221 282
222static void 283static void noinline
223syserr (const char *msg) 284syserr (const char *msg)
224{ 285{
225 if (!msg) 286 if (!msg)
226 msg = "(libev) system error"; 287 msg = "(libev) system error";
227 288
234 } 295 }
235} 296}
236 297
237static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
238 299
300void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 302{
241 alloc = cb; 303 alloc = cb;
242} 304}
243 305
244static void * 306inline_speed void *
245ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
246{ 308{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 310
249 if (!ptr && size) 311 if (!ptr && size)
273typedef struct 335typedef struct
274{ 336{
275 W w; 337 W w;
276 int events; 338 int events;
277} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
278 347
279#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
280 349
281 struct ev_loop 350 struct ev_loop
282 { 351 {
316 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 387#endif
319} 388}
320 389
321inline ev_tstamp 390ev_tstamp inline_size
322get_clock (void) 391get_clock (void)
323{ 392{
324#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
326 { 395 {
339{ 408{
340 return ev_rt_now; 409 return ev_rt_now;
341} 410}
342#endif 411#endif
343 412
344#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
345 440
346#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
348 { \ 443 { \
349 int newcnt = cur; \ 444 int ocur_ = (cur); \
350 do \ 445 (base) = (type *)array_realloc \
351 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 448 }
360 449
450#if 0
361#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 453 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 457 }
458#endif
368 459
369#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 462
372/*****************************************************************************/ 463/*****************************************************************************/
373 464
374static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
375anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
376{ 495{
377 while (count--) 496 while (count--)
378 { 497 {
379 base->head = 0; 498 base->head = 0;
382 501
383 ++base; 502 ++base;
384 } 503 }
385} 504}
386 505
387void 506void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
415{ 508{
416 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 510 ev_io *w;
418 511
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 513 {
421 int ev = w->events & revents; 514 int ev = w->events & revents;
422 515
423 if (ev) 516 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
426} 519}
427 520
428void 521void
429ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 523{
524 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
432} 526}
433 527
434/*****************************************************************************/ 528void inline_size
435
436inline void
437fd_reify (EV_P) 529fd_reify (EV_P)
438{ 530{
439 int i; 531 int i;
440 532
441 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
442 { 534 {
443 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 537 ev_io *w;
446 538
447 int events = 0; 539 unsigned char events = 0;
448 540
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 542 events |= (unsigned char)w->events;
451 543
452#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
453 if (events) 545 if (events)
454 { 546 {
455 unsigned long argp; 547 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 550 }
459#endif 551#endif
460 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
461 anfd->reify = 0; 557 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
465 } 563 }
466 564
467 fdchangecnt = 0; 565 fdchangecnt = 0;
468} 566}
469 567
470static void 568void inline_size
471fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
472{ 570{
473 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
477 573
574 if (expect_true (!reify))
575 {
478 ++fdchangecnt; 576 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
481} 580}
482 581
483static void 582void inline_speed
484fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
485{ 584{
486 struct ev_io *w; 585 ev_io *w;
487 586
488 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
489 { 588 {
490 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 591 }
493} 592}
494 593
495inline int 594int inline_size
496fd_valid (int fd) 595fd_valid (int fd)
497{ 596{
498#ifdef _WIN32 597#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 598 return _get_osfhandle (fd) != -1;
500#else 599#else
501 return fcntl (fd, F_GETFD) != -1; 600 return fcntl (fd, F_GETFD) != -1;
502#endif 601#endif
503} 602}
504 603
505/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
506static void 605static void noinline
507fd_ebadf (EV_P) 606fd_ebadf (EV_P)
508{ 607{
509 int fd; 608 int fd;
510 609
511 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
515} 614}
516 615
517/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 617static void noinline
519fd_enomem (EV_P) 618fd_enomem (EV_P)
520{ 619{
521 int fd; 620 int fd;
522 621
523 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
527 return; 626 return;
528 } 627 }
529} 628}
530 629
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 631static void noinline
533fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
534{ 633{
535 int fd; 634 int fd;
536 635
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 637 if (anfds [fd].events)
540 { 638 {
541 anfds [fd].events = 0; 639 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 641 }
544} 642}
545 643
546/*****************************************************************************/ 644/*****************************************************************************/
547 645
548static void 646void inline_speed
549upheap (WT *heap, int k) 647upheap (WT *heap, int k)
550{ 648{
551 WT w = heap [k]; 649 WT w = heap [k];
552 650
553 while (k && heap [k >> 1]->at > w->at) 651 while (k)
554 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
555 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
557 k >>= 1; 660 k = p;
558 } 661 }
559 662
560 heap [k] = w; 663 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
562
563} 665}
564 666
565static void 667void inline_speed
566downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
567{ 669{
568 WT w = heap [k]; 670 WT w = heap [k];
569 671
570 while (k < (N >> 1)) 672 for (;;)
571 { 673 {
572 int j = k << 1; 674 int c = (k << 1) + 1;
573 675
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 677 break;
579 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
580 heap [k] = heap [j]; 685 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
582 k = j; 688 k = c;
583 } 689 }
584 690
585 heap [k] = w; 691 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
587} 693}
588 694
589inline void 695void inline_size
590adjustheap (WT *heap, int N, int k) 696adjustheap (WT *heap, int N, int k)
591{ 697{
592 upheap (heap, k); 698 upheap (heap, k);
593 downheap (heap, N, k); 699 downheap (heap, N, k);
594} 700}
604static ANSIG *signals; 710static ANSIG *signals;
605static int signalmax; 711static int signalmax;
606 712
607static int sigpipe [2]; 713static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 715static ev_io sigev;
610 716
611static void 717void inline_size
612signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
613{ 719{
614 while (count--) 720 while (count--)
615 { 721 {
616 base->head = 0; 722 base->head = 0;
636 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 743 errno = old_errno;
638 } 744 }
639} 745}
640 746
641void 747void noinline
642ev_feed_signal_event (EV_P_ int signum) 748ev_feed_signal_event (EV_P_ int signum)
643{ 749{
644 WL w; 750 WL w;
645 751
646#if EV_MULTIPLICITY 752#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 763 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 765}
660 766
661static void 767static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
663{ 769{
664 int signum; 770 int signum;
665 771
666 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 773 gotsig = 0;
669 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
672} 778}
673 779
674static void 780void inline_speed
675fd_intern (int fd) 781fd_intern (int fd)
676{ 782{
677#ifdef _WIN32 783#ifdef _WIN32
678 int arg = 1; 784 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 787 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 788 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 789#endif
684} 790}
685 791
686static void 792static void noinline
687siginit (EV_P) 793siginit (EV_P)
688{ 794{
689 fd_intern (sigpipe [0]); 795 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 796 fd_intern (sigpipe [1]);
691 797
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 801}
696 802
697/*****************************************************************************/ 803/*****************************************************************************/
698 804
699static struct ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
700 806
701#ifndef _WIN32 807#ifndef _WIN32
702 808
703static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
704 825
705#ifndef WCONTINUED 826#ifndef WCONTINUED
706# define WCONTINUED 0 827# define WCONTINUED 0
707#endif 828#endif
708 829
709static void 830static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
726{ 832{
727 int pid, status; 833 int pid, status;
728 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
731 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 845
734 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 849}
738 850
739#endif 851#endif
740 852
741/*****************************************************************************/ 853/*****************************************************************************/
767{ 879{
768 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
769} 881}
770 882
771/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
772static int 884int inline_size
773enable_secure (void) 885enable_secure (void)
774{ 886{
775#ifdef _WIN32 887#ifdef _WIN32
776 return 0; 888 return 0;
777#else 889#else
795} 907}
796 908
797unsigned int 909unsigned int
798ev_recommended_backends (void) 910ev_recommended_backends (void)
799{ 911{
800 unsigned int flags = ev_recommended_backends (); 912 unsigned int flags = ev_supported_backends ();
801 913
802#ifndef __NetBSD__ 914#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 915 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 916 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 917 flags &= ~EVBACKEND_KQUEUE;
811 923
812 return flags; 924 return flags;
813} 925}
814 926
815unsigned int 927unsigned int
928ev_embeddable_backends (void)
929{
930 return EVBACKEND_EPOLL
931 | EVBACKEND_KQUEUE
932 | EVBACKEND_PORT;
933}
934
935unsigned int
816ev_backend (EV_P) 936ev_backend (EV_P)
817{ 937{
818 return backend; 938 return backend;
819} 939}
820 940
821static void 941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
822loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
823{ 949{
824 if (!backend) 950 if (!backend)
825 { 951 {
826#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 961 mn_now = get_clock ();
836 now_floor = mn_now; 962 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
838 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
839 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 972 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
843 975
844 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
846 978
847 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
848#if EV_USE_PORT 985#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 987#endif
851#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1003 }
867} 1004}
868 1005
869static void 1006static void noinline
870loop_destroy (EV_P) 1007loop_destroy (EV_P)
871{ 1008{
872 int i; 1009 int i;
1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
873 1018
874#if EV_USE_PORT 1019#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1021#endif
877#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1031#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1033#endif
889 1034
890 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
891 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
1042
1043 ev_free (anfds); anfdmax = 0;
892 1044
893 /* have to use the microsoft-never-gets-it-right macro */ 1045 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1046 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1047 array_free (timer, EMPTY);
896#if EV_PERIODICS 1048#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1049 array_free (periodic, EMPTY);
898#endif 1050#endif
899 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 1051 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1052 array_free (check, EMPTY);
1053 array_free (fork, EMPTY);
902 1054
903 backend = 0; 1055 backend = 0;
904} 1056}
905 1057
906static void 1058void inline_size infy_fork (EV_P);
1059
1060void inline_size
907loop_fork (EV_P) 1061loop_fork (EV_P)
908{ 1062{
909#if EV_USE_PORT 1063#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1064 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1065#endif
912#if EV_USE_KQUEUE 1066#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1067 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1068#endif
915#if EV_USE_EPOLL 1069#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1070 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1071#endif
1072#if EV_USE_INOTIFY
1073 infy_fork (EV_A);
917#endif 1074#endif
918 1075
919 if (ev_is_active (&sigev)) 1076 if (ev_is_active (&sigev))
920 { 1077 {
921 /* default loop */ 1078 /* default loop */
1037 postfork = 1; 1194 postfork = 1;
1038} 1195}
1039 1196
1040/*****************************************************************************/ 1197/*****************************************************************************/
1041 1198
1042static int 1199void
1043any_pending (EV_P) 1200ev_invoke (EV_P_ void *w, int revents)
1044{ 1201{
1045 int pri; 1202 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1203}
1053 1204
1054inline void 1205void inline_speed
1055call_pending (EV_P) 1206call_pending (EV_P)
1056{ 1207{
1057 int pri; 1208 int pri;
1058 1209
1059 for (pri = NUMPRI; pri--; ) 1210 for (pri = NUMPRI; pri--; )
1061 { 1212 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1213 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1214
1064 if (expect_true (p->w)) 1215 if (expect_true (p->w))
1065 { 1216 {
1217 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1218
1066 p->w->pending = 0; 1219 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1220 EV_CB_INVOKE (p->w, p->events);
1068 } 1221 }
1069 } 1222 }
1070} 1223}
1071 1224
1072inline void 1225void inline_size
1073timers_reify (EV_P) 1226timers_reify (EV_P)
1074{ 1227{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1228 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1229 {
1077 struct ev_timer *w = timers [0]; 1230 ev_timer *w = (ev_timer *)timers [0];
1078 1231
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1232 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1233
1081 /* first reschedule or stop timer */ 1234 /* first reschedule or stop timer */
1082 if (w->repeat) 1235 if (w->repeat)
1083 { 1236 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1237 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1238
1086 ((WT)w)->at += w->repeat; 1239 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1240 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1241 ((WT)w)->at = mn_now;
1089 1242
1090 downheap ((WT *)timers, timercnt, 0); 1243 downheap (timers, timercnt, 0);
1091 } 1244 }
1092 else 1245 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1247
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1248 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1249 }
1097} 1250}
1098 1251
1099#if EV_PERIODICS 1252#if EV_PERIODIC_ENABLE
1100inline void 1253void inline_size
1101periodics_reify (EV_P) 1254periodics_reify (EV_P)
1102{ 1255{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1256 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1257 {
1105 struct ev_periodic *w = periodics [0]; 1258 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1259
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1260 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1261
1109 /* first reschedule or stop timer */ 1262 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1263 if (w->reschedule_cb)
1111 { 1264 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1265 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1266 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1267 downheap (periodics, periodiccnt, 0);
1115 } 1268 }
1116 else if (w->interval) 1269 else if (w->interval)
1117 { 1270 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1271 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1272 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1273 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1274 downheap (periodics, periodiccnt, 0);
1121 } 1275 }
1122 else 1276 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1277 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1278
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1279 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1280 }
1127} 1281}
1128 1282
1129static void 1283static void noinline
1130periodics_reschedule (EV_P) 1284periodics_reschedule (EV_P)
1131{ 1285{
1132 int i; 1286 int i;
1133 1287
1134 /* adjust periodics after time jump */ 1288 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1289 for (i = 0; i < periodiccnt; ++i)
1136 { 1290 {
1137 struct ev_periodic *w = periodics [i]; 1291 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1292
1139 if (w->reschedule_cb) 1293 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1294 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1295 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1296 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1297 }
1144 1298
1145 /* now rebuild the heap */ 1299 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1300 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1301 downheap (periodics, periodiccnt, i);
1148} 1302}
1149#endif 1303#endif
1150 1304
1151inline int 1305#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1306void inline_size
1307idle_reify (EV_P)
1153{ 1308{
1309 if (expect_false (idleall))
1310 {
1311 int pri;
1312
1313 for (pri = NUMPRI; pri--; )
1314 {
1315 if (pendingcnt [pri])
1316 break;
1317
1318 if (idlecnt [pri])
1319 {
1320 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1321 break;
1322 }
1323 }
1324 }
1325}
1326#endif
1327
1328void inline_speed
1329time_update (EV_P_ ev_tstamp max_block)
1330{
1331 int i;
1332
1333#if EV_USE_MONOTONIC
1334 if (expect_true (have_monotonic))
1335 {
1336 ev_tstamp odiff = rtmn_diff;
1337
1154 mn_now = get_clock (); 1338 mn_now = get_clock ();
1155 1339
1340 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1341 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1342 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1343 {
1158 ev_rt_now = rtmn_diff + mn_now; 1344 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1345 return;
1160 } 1346 }
1161 else 1347
1162 {
1163 now_floor = mn_now; 1348 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1349 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1350
1169inline void 1351 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1352 * on the choice of "4": one iteration isn't enough,
1171{ 1353 * in case we get preempted during the calls to
1172 int i; 1354 * ev_time and get_clock. a second call is almost guaranteed
1173 1355 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1356 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1357 * in the unlikely event of having been preempted here.
1176 { 1358 */
1177 if (time_update_monotonic (EV_A)) 1359 for (i = 4; --i; )
1178 { 1360 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1361 rtmn_diff = ev_rt_now - mn_now;
1184 1362
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1363 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1364 return; /* all is well */
1187 1365
1188 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1367 mn_now = get_clock ();
1190 now_floor = mn_now; 1368 now_floor = mn_now;
1191 } 1369 }
1192 1370
1193# if EV_PERIODICS 1371# if EV_PERIODIC_ENABLE
1372 periodics_reschedule (EV_A);
1373# endif
1374 /* no timer adjustment, as the monotonic clock doesn't jump */
1375 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1376 }
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381
1382 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1383 {
1384#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1385 periodics_reschedule (EV_A);
1195# endif 1386#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1387 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1388 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1389 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1390 }
1215 1391
1216 mn_now = ev_rt_now; 1392 mn_now = ev_rt_now;
1232static int loop_done; 1408static int loop_done;
1233 1409
1234void 1410void
1235ev_loop (EV_P_ int flags) 1411ev_loop (EV_P_ int flags)
1236{ 1412{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1413 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1414 ? EVUNLOOP_ONE
1415 : EVUNLOOP_CANCEL;
1239 1416
1240 while (activecnt) 1417 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1418
1419 do
1241 { 1420 {
1421#ifndef _WIN32
1422 if (expect_false (curpid)) /* penalise the forking check even more */
1423 if (expect_false (getpid () != curpid))
1424 {
1425 curpid = getpid ();
1426 postfork = 1;
1427 }
1428#endif
1429
1430#if EV_FORK_ENABLE
1431 /* we might have forked, so queue fork handlers */
1432 if (expect_false (postfork))
1433 if (forkcnt)
1434 {
1435 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1436 call_pending (EV_A);
1437 }
1438#endif
1439
1242 /* queue check watchers (and execute them) */ 1440 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1441 if (expect_false (preparecnt))
1244 { 1442 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1443 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1444 call_pending (EV_A);
1247 } 1445 }
1248 1446
1447 if (expect_false (!activecnt))
1448 break;
1449
1249 /* we might have forked, so reify kernel state if necessary */ 1450 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1451 if (expect_false (postfork))
1251 loop_fork (EV_A); 1452 loop_fork (EV_A);
1252 1453
1253 /* update fd-related kernel structures */ 1454 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1455 fd_reify (EV_A);
1255 1456
1256 /* calculate blocking time */ 1457 /* calculate blocking time */
1458 {
1459 ev_tstamp block;
1257 1460
1258 /* we only need this for !monotonic clock or timers, but as we basically 1461 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1259 always have timers, we just calculate it always */ 1462 block = 0.; /* do not block at all */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else 1463 else
1264#endif
1265 { 1464 {
1266 ev_rt_now = ev_time (); 1465 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1466 time_update (EV_A_ 1e100);
1268 }
1269 1467
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1468 block = MAX_BLOCKTIME;
1275 1469
1276 if (timercnt) 1470 if (timercnt)
1277 { 1471 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1472 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1473 if (block > to) block = to;
1280 } 1474 }
1281 1475
1282#if EV_PERIODICS 1476#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1477 if (periodiccnt)
1284 { 1478 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1479 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1480 if (block > to) block = to;
1287 } 1481 }
1288#endif 1482#endif
1289 1483
1290 if (expect_false (block < 0.)) block = 0.; 1484 if (expect_false (block < 0.)) block = 0.;
1291 } 1485 }
1292 1486
1487 ++loop_count;
1293 backend_poll (EV_A_ block); 1488 backend_poll (EV_A_ block);
1294 1489
1295 /* update ev_rt_now, do magic */ 1490 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1491 time_update (EV_A_ block);
1492 }
1297 1493
1298 /* queue pending timers and reschedule them */ 1494 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1495 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1496#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1497 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1498#endif
1303 1499
1500#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1501 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1502 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1503#endif
1307 1504
1308 /* queue check watchers, to be executed first */ 1505 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1506 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1507 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1508
1312 call_pending (EV_A); 1509 call_pending (EV_A);
1313 1510
1314 if (expect_false (loop_done))
1315 break;
1316 } 1511 }
1512 while (expect_true (activecnt && !loop_done));
1317 1513
1318 if (loop_done != 2) 1514 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1515 loop_done = EVUNLOOP_CANCEL;
1320} 1516}
1321 1517
1322void 1518void
1323ev_unloop (EV_P_ int how) 1519ev_unloop (EV_P_ int how)
1324{ 1520{
1325 loop_done = how; 1521 loop_done = how;
1326} 1522}
1327 1523
1328/*****************************************************************************/ 1524/*****************************************************************************/
1329 1525
1330inline void 1526void inline_size
1331wlist_add (WL *head, WL elem) 1527wlist_add (WL *head, WL elem)
1332{ 1528{
1333 elem->next = *head; 1529 elem->next = *head;
1334 *head = elem; 1530 *head = elem;
1335} 1531}
1336 1532
1337inline void 1533void inline_size
1338wlist_del (WL *head, WL elem) 1534wlist_del (WL *head, WL elem)
1339{ 1535{
1340 while (*head) 1536 while (*head)
1341 { 1537 {
1342 if (*head == elem) 1538 if (*head == elem)
1347 1543
1348 head = &(*head)->next; 1544 head = &(*head)->next;
1349 } 1545 }
1350} 1546}
1351 1547
1352inline void 1548void inline_speed
1353ev_clear_pending (EV_P_ W w) 1549clear_pending (EV_P_ W w)
1354{ 1550{
1355 if (w->pending) 1551 if (w->pending)
1356 { 1552 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1553 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1554 w->pending = 0;
1359 } 1555 }
1360} 1556}
1361 1557
1362inline void 1558int
1559ev_clear_pending (EV_P_ void *w)
1560{
1561 W w_ = (W)w;
1562 int pending = w_->pending;
1563
1564 if (expect_true (pending))
1565 {
1566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1567 w_->pending = 0;
1568 p->w = 0;
1569 return p->events;
1570 }
1571 else
1572 return 0;
1573}
1574
1575void inline_size
1576pri_adjust (EV_P_ W w)
1577{
1578 int pri = w->priority;
1579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1581 w->priority = pri;
1582}
1583
1584void inline_speed
1363ev_start (EV_P_ W w, int active) 1585ev_start (EV_P_ W w, int active)
1364{ 1586{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1587 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1588 w->active = active;
1369 ev_ref (EV_A); 1589 ev_ref (EV_A);
1370} 1590}
1371 1591
1372inline void 1592void inline_size
1373ev_stop (EV_P_ W w) 1593ev_stop (EV_P_ W w)
1374{ 1594{
1375 ev_unref (EV_A); 1595 ev_unref (EV_A);
1376 w->active = 0; 1596 w->active = 0;
1377} 1597}
1378 1598
1379/*****************************************************************************/ 1599/*****************************************************************************/
1380 1600
1381void 1601void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1602ev_io_start (EV_P_ ev_io *w)
1383{ 1603{
1384 int fd = w->fd; 1604 int fd = w->fd;
1385 1605
1386 if (expect_false (ev_is_active (w))) 1606 if (expect_false (ev_is_active (w)))
1387 return; 1607 return;
1388 1608
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1609 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1610
1391 ev_start (EV_A_ (W)w, 1); 1611 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1612 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1613 wlist_add (&anfds[fd].head, (WL)w);
1394 1614
1395 fd_change (EV_A_ fd); 1615 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1616 w->events &= ~EV_IOFDSET;
1396} 1617}
1397 1618
1398void 1619void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1620ev_io_stop (EV_P_ ev_io *w)
1400{ 1621{
1401 ev_clear_pending (EV_A_ (W)w); 1622 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1623 if (expect_false (!ev_is_active (w)))
1403 return; 1624 return;
1404 1625
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1626 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1627
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1628 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1629 ev_stop (EV_A_ (W)w);
1409 1630
1410 fd_change (EV_A_ w->fd); 1631 fd_change (EV_A_ w->fd, 1);
1411} 1632}
1412 1633
1413void 1634void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1635ev_timer_start (EV_P_ ev_timer *w)
1415{ 1636{
1416 if (expect_false (ev_is_active (w))) 1637 if (expect_false (ev_is_active (w)))
1417 return; 1638 return;
1418 1639
1419 ((WT)w)->at += mn_now; 1640 ((WT)w)->at += mn_now;
1420 1641
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1642 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1643
1423 ev_start (EV_A_ (W)w, ++timercnt); 1644 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1645 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1646 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1647 upheap (timers, timercnt - 1);
1427 1648
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1650}
1430 1651
1431void 1652void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1653ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1654{
1434 ev_clear_pending (EV_A_ (W)w); 1655 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1656 if (expect_false (!ev_is_active (w)))
1436 return; 1657 return;
1437 1658
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1659 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1660
1661 {
1662 int active = ((W)w)->active;
1663
1440 if (expect_true (((W)w)->active < timercnt--)) 1664 if (expect_true (--active < --timercnt))
1441 { 1665 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1666 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1667 adjustheap (timers, timercnt, active);
1444 } 1668 }
1669 }
1445 1670
1446 ((WT)w)->at -= mn_now; 1671 ((WT)w)->at -= mn_now;
1447 1672
1448 ev_stop (EV_A_ (W)w); 1673 ev_stop (EV_A_ (W)w);
1449} 1674}
1450 1675
1451void 1676void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1677ev_timer_again (EV_P_ ev_timer *w)
1453{ 1678{
1454 if (ev_is_active (w)) 1679 if (ev_is_active (w))
1455 { 1680 {
1456 if (w->repeat) 1681 if (w->repeat)
1457 { 1682 {
1458 ((WT)w)->at = mn_now + w->repeat; 1683 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1684 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1685 }
1461 else 1686 else
1462 ev_timer_stop (EV_A_ w); 1687 ev_timer_stop (EV_A_ w);
1463 } 1688 }
1464 else if (w->repeat) 1689 else if (w->repeat)
1466 w->at = w->repeat; 1691 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1692 ev_timer_start (EV_A_ w);
1468 } 1693 }
1469} 1694}
1470 1695
1471#if EV_PERIODICS 1696#if EV_PERIODIC_ENABLE
1472void 1697void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1698ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1699{
1475 if (expect_false (ev_is_active (w))) 1700 if (expect_false (ev_is_active (w)))
1476 return; 1701 return;
1477 1702
1478 if (w->reschedule_cb) 1703 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1704 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1705 else if (w->interval)
1481 { 1706 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1707 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1708 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1710 }
1711 else
1712 ((WT)w)->at = w->offset;
1486 1713
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1714 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1715 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1716 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1717 upheap (periodics, periodiccnt - 1);
1491 1718
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1720}
1494 1721
1495void 1722void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1723ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1724{
1498 ev_clear_pending (EV_A_ (W)w); 1725 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1726 if (expect_false (!ev_is_active (w)))
1500 return; 1727 return;
1501 1728
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1729 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1730
1731 {
1732 int active = ((W)w)->active;
1733
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1734 if (expect_true (--active < --periodiccnt))
1505 { 1735 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1736 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1737 adjustheap (periodics, periodiccnt, active);
1508 } 1738 }
1739 }
1509 1740
1510 ev_stop (EV_A_ (W)w); 1741 ev_stop (EV_A_ (W)w);
1511} 1742}
1512 1743
1513void 1744void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1745ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1746{
1516 /* TODO: use adjustheap and recalculation */ 1747 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1748 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1749 ev_periodic_start (EV_A_ w);
1519} 1750}
1520#endif 1751#endif
1521 1752
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1753#ifndef SA_RESTART
1589# define SA_RESTART 0 1754# define SA_RESTART 0
1590#endif 1755#endif
1591 1756
1592void 1757void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1758ev_signal_start (EV_P_ ev_signal *w)
1594{ 1759{
1595#if EV_MULTIPLICITY 1760#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1761 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1762#endif
1598 if (expect_false (ev_is_active (w))) 1763 if (expect_false (ev_is_active (w)))
1599 return; 1764 return;
1600 1765
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1766 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1767
1768 {
1769#ifndef _WIN32
1770 sigset_t full, prev;
1771 sigfillset (&full);
1772 sigprocmask (SIG_SETMASK, &full, &prev);
1773#endif
1774
1775 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1776
1777#ifndef _WIN32
1778 sigprocmask (SIG_SETMASK, &prev, 0);
1779#endif
1780 }
1781
1603 ev_start (EV_A_ (W)w, 1); 1782 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1783 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1784
1607 if (!((WL)w)->next) 1785 if (!((WL)w)->next)
1608 { 1786 {
1609#if _WIN32 1787#if _WIN32
1610 signal (w->signum, sighandler); 1788 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1794 sigaction (w->signum, &sa, 0);
1617#endif 1795#endif
1618 } 1796 }
1619} 1797}
1620 1798
1621void 1799void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1800ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1801{
1624 ev_clear_pending (EV_A_ (W)w); 1802 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1803 if (expect_false (!ev_is_active (w)))
1626 return; 1804 return;
1627 1805
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1806 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1807 ev_stop (EV_A_ (W)w);
1630 1808
1631 if (!signals [w->signum - 1].head) 1809 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1810 signal (w->signum, SIG_DFL);
1633} 1811}
1634 1812
1635void 1813void
1636ev_child_start (EV_P_ struct ev_child *w) 1814ev_child_start (EV_P_ ev_child *w)
1637{ 1815{
1638#if EV_MULTIPLICITY 1816#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1817 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1818#endif
1641 if (expect_false (ev_is_active (w))) 1819 if (expect_false (ev_is_active (w)))
1642 return; 1820 return;
1643 1821
1644 ev_start (EV_A_ (W)w, 1); 1822 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1824}
1647 1825
1648void 1826void
1649ev_child_stop (EV_P_ struct ev_child *w) 1827ev_child_stop (EV_P_ ev_child *w)
1650{ 1828{
1651 ev_clear_pending (EV_A_ (W)w); 1829 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1830 if (expect_false (!ev_is_active (w)))
1653 return; 1831 return;
1654 1832
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1833 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1834 ev_stop (EV_A_ (W)w);
1657} 1835}
1658 1836
1837#if EV_STAT_ENABLE
1838
1839# ifdef _WIN32
1840# undef lstat
1841# define lstat(a,b) _stati64 (a,b)
1842# endif
1843
1844#define DEF_STAT_INTERVAL 5.0074891
1845#define MIN_STAT_INTERVAL 0.1074891
1846
1847static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1848
1849#if EV_USE_INOTIFY
1850# define EV_INOTIFY_BUFSIZE 8192
1851
1852static void noinline
1853infy_add (EV_P_ ev_stat *w)
1854{
1855 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1856
1857 if (w->wd < 0)
1858 {
1859 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1860
1861 /* monitor some parent directory for speedup hints */
1862 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1863 {
1864 char path [4096];
1865 strcpy (path, w->path);
1866
1867 do
1868 {
1869 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1870 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1871
1872 char *pend = strrchr (path, '/');
1873
1874 if (!pend)
1875 break; /* whoops, no '/', complain to your admin */
1876
1877 *pend = 0;
1878 w->wd = inotify_add_watch (fs_fd, path, mask);
1879 }
1880 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1881 }
1882 }
1883 else
1884 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1885
1886 if (w->wd >= 0)
1887 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1888}
1889
1890static void noinline
1891infy_del (EV_P_ ev_stat *w)
1892{
1893 int slot;
1894 int wd = w->wd;
1895
1896 if (wd < 0)
1897 return;
1898
1899 w->wd = -2;
1900 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1901 wlist_del (&fs_hash [slot].head, (WL)w);
1902
1903 /* remove this watcher, if others are watching it, they will rearm */
1904 inotify_rm_watch (fs_fd, wd);
1905}
1906
1907static void noinline
1908infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1909{
1910 if (slot < 0)
1911 /* overflow, need to check for all hahs slots */
1912 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1913 infy_wd (EV_A_ slot, wd, ev);
1914 else
1915 {
1916 WL w_;
1917
1918 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1919 {
1920 ev_stat *w = (ev_stat *)w_;
1921 w_ = w_->next; /* lets us remove this watcher and all before it */
1922
1923 if (w->wd == wd || wd == -1)
1924 {
1925 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1926 {
1927 w->wd = -1;
1928 infy_add (EV_A_ w); /* re-add, no matter what */
1929 }
1930
1931 stat_timer_cb (EV_A_ &w->timer, 0);
1932 }
1933 }
1934 }
1935}
1936
1937static void
1938infy_cb (EV_P_ ev_io *w, int revents)
1939{
1940 char buf [EV_INOTIFY_BUFSIZE];
1941 struct inotify_event *ev = (struct inotify_event *)buf;
1942 int ofs;
1943 int len = read (fs_fd, buf, sizeof (buf));
1944
1945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1947}
1948
1949void inline_size
1950infy_init (EV_P)
1951{
1952 if (fs_fd != -2)
1953 return;
1954
1955 fs_fd = inotify_init ();
1956
1957 if (fs_fd >= 0)
1958 {
1959 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1960 ev_set_priority (&fs_w, EV_MAXPRI);
1961 ev_io_start (EV_A_ &fs_w);
1962 }
1963}
1964
1965void inline_size
1966infy_fork (EV_P)
1967{
1968 int slot;
1969
1970 if (fs_fd < 0)
1971 return;
1972
1973 close (fs_fd);
1974 fs_fd = inotify_init ();
1975
1976 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1977 {
1978 WL w_ = fs_hash [slot].head;
1979 fs_hash [slot].head = 0;
1980
1981 while (w_)
1982 {
1983 ev_stat *w = (ev_stat *)w_;
1984 w_ = w_->next; /* lets us add this watcher */
1985
1986 w->wd = -1;
1987
1988 if (fs_fd >= 0)
1989 infy_add (EV_A_ w); /* re-add, no matter what */
1990 else
1991 ev_timer_start (EV_A_ &w->timer);
1992 }
1993
1994 }
1995}
1996
1997#endif
1998
1999void
2000ev_stat_stat (EV_P_ ev_stat *w)
2001{
2002 if (lstat (w->path, &w->attr) < 0)
2003 w->attr.st_nlink = 0;
2004 else if (!w->attr.st_nlink)
2005 w->attr.st_nlink = 1;
2006}
2007
2008static void noinline
2009stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2010{
2011 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2012
2013 /* we copy this here each the time so that */
2014 /* prev has the old value when the callback gets invoked */
2015 w->prev = w->attr;
2016 ev_stat_stat (EV_A_ w);
2017
2018 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2019 if (
2020 w->prev.st_dev != w->attr.st_dev
2021 || w->prev.st_ino != w->attr.st_ino
2022 || w->prev.st_mode != w->attr.st_mode
2023 || w->prev.st_nlink != w->attr.st_nlink
2024 || w->prev.st_uid != w->attr.st_uid
2025 || w->prev.st_gid != w->attr.st_gid
2026 || w->prev.st_rdev != w->attr.st_rdev
2027 || w->prev.st_size != w->attr.st_size
2028 || w->prev.st_atime != w->attr.st_atime
2029 || w->prev.st_mtime != w->attr.st_mtime
2030 || w->prev.st_ctime != w->attr.st_ctime
2031 ) {
2032 #if EV_USE_INOTIFY
2033 infy_del (EV_A_ w);
2034 infy_add (EV_A_ w);
2035 ev_stat_stat (EV_A_ w); /* avoid race... */
2036 #endif
2037
2038 ev_feed_event (EV_A_ w, EV_STAT);
2039 }
2040}
2041
2042void
2043ev_stat_start (EV_P_ ev_stat *w)
2044{
2045 if (expect_false (ev_is_active (w)))
2046 return;
2047
2048 /* since we use memcmp, we need to clear any padding data etc. */
2049 memset (&w->prev, 0, sizeof (ev_statdata));
2050 memset (&w->attr, 0, sizeof (ev_statdata));
2051
2052 ev_stat_stat (EV_A_ w);
2053
2054 if (w->interval < MIN_STAT_INTERVAL)
2055 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2056
2057 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2058 ev_set_priority (&w->timer, ev_priority (w));
2059
2060#if EV_USE_INOTIFY
2061 infy_init (EV_A);
2062
2063 if (fs_fd >= 0)
2064 infy_add (EV_A_ w);
2065 else
2066#endif
2067 ev_timer_start (EV_A_ &w->timer);
2068
2069 ev_start (EV_A_ (W)w, 1);
2070}
2071
2072void
2073ev_stat_stop (EV_P_ ev_stat *w)
2074{
2075 clear_pending (EV_A_ (W)w);
2076 if (expect_false (!ev_is_active (w)))
2077 return;
2078
2079#if EV_USE_INOTIFY
2080 infy_del (EV_A_ w);
2081#endif
2082 ev_timer_stop (EV_A_ &w->timer);
2083
2084 ev_stop (EV_A_ (W)w);
2085}
2086#endif
2087
2088#if EV_IDLE_ENABLE
2089void
2090ev_idle_start (EV_P_ ev_idle *w)
2091{
2092 if (expect_false (ev_is_active (w)))
2093 return;
2094
2095 pri_adjust (EV_A_ (W)w);
2096
2097 {
2098 int active = ++idlecnt [ABSPRI (w)];
2099
2100 ++idleall;
2101 ev_start (EV_A_ (W)w, active);
2102
2103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2104 idles [ABSPRI (w)][active - 1] = w;
2105 }
2106}
2107
2108void
2109ev_idle_stop (EV_P_ ev_idle *w)
2110{
2111 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w)))
2113 return;
2114
2115 {
2116 int active = ((W)w)->active;
2117
2118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2119 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2120
2121 ev_stop (EV_A_ (W)w);
2122 --idleall;
2123 }
2124}
2125#endif
2126
2127void
2128ev_prepare_start (EV_P_ ev_prepare *w)
2129{
2130 if (expect_false (ev_is_active (w)))
2131 return;
2132
2133 ev_start (EV_A_ (W)w, ++preparecnt);
2134 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2135 prepares [preparecnt - 1] = w;
2136}
2137
2138void
2139ev_prepare_stop (EV_P_ ev_prepare *w)
2140{
2141 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w)))
2143 return;
2144
2145 {
2146 int active = ((W)w)->active;
2147 prepares [active - 1] = prepares [--preparecnt];
2148 ((W)prepares [active - 1])->active = active;
2149 }
2150
2151 ev_stop (EV_A_ (W)w);
2152}
2153
2154void
2155ev_check_start (EV_P_ ev_check *w)
2156{
2157 if (expect_false (ev_is_active (w)))
2158 return;
2159
2160 ev_start (EV_A_ (W)w, ++checkcnt);
2161 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2162 checks [checkcnt - 1] = w;
2163}
2164
2165void
2166ev_check_stop (EV_P_ ev_check *w)
2167{
2168 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w)))
2170 return;
2171
2172 {
2173 int active = ((W)w)->active;
2174 checks [active - 1] = checks [--checkcnt];
2175 ((W)checks [active - 1])->active = active;
2176 }
2177
2178 ev_stop (EV_A_ (W)w);
2179}
2180
2181#if EV_EMBED_ENABLE
2182void noinline
2183ev_embed_sweep (EV_P_ ev_embed *w)
2184{
2185 ev_loop (w->loop, EVLOOP_NONBLOCK);
2186}
2187
2188static void
2189embed_cb (EV_P_ ev_io *io, int revents)
2190{
2191 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2192
2193 if (ev_cb (w))
2194 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2195 else
2196 ev_embed_sweep (loop, w);
2197}
2198
2199void
2200ev_embed_start (EV_P_ ev_embed *w)
2201{
2202 if (expect_false (ev_is_active (w)))
2203 return;
2204
2205 {
2206 struct ev_loop *loop = w->loop;
2207 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2208 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2209 }
2210
2211 ev_set_priority (&w->io, ev_priority (w));
2212 ev_io_start (EV_A_ &w->io);
2213
2214 ev_start (EV_A_ (W)w, 1);
2215}
2216
2217void
2218ev_embed_stop (EV_P_ ev_embed *w)
2219{
2220 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w)))
2222 return;
2223
2224 ev_io_stop (EV_A_ &w->io);
2225
2226 ev_stop (EV_A_ (W)w);
2227}
2228#endif
2229
2230#if EV_FORK_ENABLE
2231void
2232ev_fork_start (EV_P_ ev_fork *w)
2233{
2234 if (expect_false (ev_is_active (w)))
2235 return;
2236
2237 ev_start (EV_A_ (W)w, ++forkcnt);
2238 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2239 forks [forkcnt - 1] = w;
2240}
2241
2242void
2243ev_fork_stop (EV_P_ ev_fork *w)
2244{
2245 clear_pending (EV_A_ (W)w);
2246 if (expect_false (!ev_is_active (w)))
2247 return;
2248
2249 {
2250 int active = ((W)w)->active;
2251 forks [active - 1] = forks [--forkcnt];
2252 ((W)forks [active - 1])->active = active;
2253 }
2254
2255 ev_stop (EV_A_ (W)w);
2256}
2257#endif
2258
1659/*****************************************************************************/ 2259/*****************************************************************************/
1660 2260
1661struct ev_once 2261struct ev_once
1662{ 2262{
1663 struct ev_io io; 2263 ev_io io;
1664 struct ev_timer to; 2264 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2265 void (*cb)(int revents, void *arg);
1666 void *arg; 2266 void *arg;
1667}; 2267};
1668 2268
1669static void 2269static void
1678 2278
1679 cb (revents, arg); 2279 cb (revents, arg);
1680} 2280}
1681 2281
1682static void 2282static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2283once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2284{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2285 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2286}
1687 2287
1688static void 2288static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2289once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2290{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2291 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2292}
1693 2293
1694void 2294void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines