ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
47# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
49# endif 61# endif
50# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
52# endif 72# endif
53# endif 73# endif
54 74
55# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 110# else
91# define EV_USE_PORT 0 111# define EV_USE_PORT 0
92# endif 112# endif
93# endif 113# endif
94 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
95#endif 123#endif
96 124
97#include <math.h> 125#include <math.h>
98#include <stdlib.h> 126#include <stdlib.h>
99#include <fcntl.h> 127#include <fcntl.h>
106#include <sys/types.h> 134#include <sys/types.h>
107#include <time.h> 135#include <time.h>
108 136
109#include <signal.h> 137#include <signal.h>
110 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
111#ifndef _WIN32 145#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 146# include <sys/time.h>
114# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
115#else 149#else
116# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 151# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
128 162
129#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
131#endif 165#endif
132 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
133#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
135#endif 173#endif
136 174
137#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
152 190
153#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 192# define EV_USE_PORT 0
155#endif 193#endif
156 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
157/**/ 215/**/
158 216
159#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
167#endif 225#endif
168 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
169#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 243# include <winsock.h>
171#endif 244#endif
172 245
173/**/ 246/**/
174 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 261
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 262#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 264# define noinline __attribute__ ((noinline))
189#else 265#else
190# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
191# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
192#endif 271#endif
193 272
194#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
196 282
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 285
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
202 288
203typedef struct ev_watcher *W; 289typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
206 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
208 298
209#ifdef _WIN32 299#ifdef _WIN32
210# include "ev_win32.c" 300# include "ev_win32.c"
211#endif 301#endif
212 302
213/*****************************************************************************/ 303/*****************************************************************************/
214 304
215static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
216 306
307void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 309{
219 syserr_cb = cb; 310 syserr_cb = cb;
220} 311}
221 312
222static void 313static void noinline
223syserr (const char *msg) 314syserr (const char *msg)
224{ 315{
225 if (!msg) 316 if (!msg)
226 msg = "(libev) system error"; 317 msg = "(libev) system error";
227 318
234 } 325 }
235} 326}
236 327
237static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
238 329
330void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 332{
241 alloc = cb; 333 alloc = cb;
242} 334}
243 335
244static void * 336inline_speed void *
245ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
246{ 338{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 340
249 if (!ptr && size) 341 if (!ptr && size)
273typedef struct 365typedef struct
274{ 366{
275 W w; 367 W w;
276 int events; 368 int events;
277} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
278 377
279#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
280 379
281 struct ev_loop 380 struct ev_loop
282 { 381 {
316 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 417#endif
319} 418}
320 419
321inline ev_tstamp 420ev_tstamp inline_size
322get_clock (void) 421get_clock (void)
323{ 422{
324#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
326 { 425 {
339{ 438{
340 return ev_rt_now; 439 return ev_rt_now;
341} 440}
342#endif 441#endif
343 442
344#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
345 497
346#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
348 { \ 500 { \
349 int newcnt = cur; \ 501 int ocur_ = (cur); \
350 do \ 502 (base) = (type *)array_realloc \
351 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 505 }
360 506
507#if 0
361#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 510 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 514 }
515#endif
368 516
369#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 519
372/*****************************************************************************/ 520/*****************************************************************************/
373 521
374static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
375anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
376{ 552{
377 while (count--) 553 while (count--)
378 { 554 {
379 base->head = 0; 555 base->head = 0;
382 558
383 ++base; 559 ++base;
384 } 560 }
385} 561}
386 562
387void 563void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
415{ 565{
416 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 567 ev_io *w;
418 568
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 570 {
421 int ev = w->events & revents; 571 int ev = w->events & revents;
422 572
423 if (ev) 573 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
426} 576}
427 577
428void 578void
429ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 580{
581 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
432} 583}
433 584
434/*****************************************************************************/ 585void inline_size
435
436inline void
437fd_reify (EV_P) 586fd_reify (EV_P)
438{ 587{
439 int i; 588 int i;
440 589
441 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
442 { 591 {
443 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 594 ev_io *w;
446 595
447 int events = 0; 596 unsigned char events = 0;
448 597
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 599 events |= (unsigned char)w->events;
451 600
452#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
453 if (events) 602 if (events)
454 { 603 {
455 unsigned long argp; 604 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 607 }
459#endif 608#endif
460 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
461 anfd->reify = 0; 614 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
465 } 620 }
466 621
467 fdchangecnt = 0; 622 fdchangecnt = 0;
468} 623}
469 624
470static void 625void inline_size
471fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
472{ 627{
473 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
477 630
631 if (expect_true (!reify))
632 {
478 ++fdchangecnt; 633 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
481} 637}
482 638
483static void 639void inline_speed
484fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
485{ 641{
486 struct ev_io *w; 642 ev_io *w;
487 643
488 while ((w = (struct ev_io *)anfds [fd].head)) 644 while ((w = (ev_io *)anfds [fd].head))
489 { 645 {
490 ev_io_stop (EV_A_ w); 646 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 648 }
493} 649}
494 650
495inline int 651int inline_size
496fd_valid (int fd) 652fd_valid (int fd)
497{ 653{
498#ifdef _WIN32 654#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 655 return _get_osfhandle (fd) != -1;
500#else 656#else
501 return fcntl (fd, F_GETFD) != -1; 657 return fcntl (fd, F_GETFD) != -1;
502#endif 658#endif
503} 659}
504 660
505/* called on EBADF to verify fds */ 661/* called on EBADF to verify fds */
506static void 662static void noinline
507fd_ebadf (EV_P) 663fd_ebadf (EV_P)
508{ 664{
509 int fd; 665 int fd;
510 666
511 for (fd = 0; fd < anfdmax; ++fd) 667 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 669 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
515} 671}
516 672
517/* called on ENOMEM in select/poll to kill some fds and retry */ 673/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 674static void noinline
519fd_enomem (EV_P) 675fd_enomem (EV_P)
520{ 676{
521 int fd; 677 int fd;
522 678
523 for (fd = anfdmax; fd--; ) 679 for (fd = anfdmax; fd--; )
527 return; 683 return;
528 } 684 }
529} 685}
530 686
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 687/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 688static void noinline
533fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
534{ 690{
535 int fd; 691 int fd;
536 692
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 694 if (anfds [fd].events)
540 { 695 {
541 anfds [fd].events = 0; 696 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 698 }
544} 699}
545 700
546/*****************************************************************************/ 701/*****************************************************************************/
547 702
548static void 703void inline_speed
549upheap (WT *heap, int k) 704upheap (WT *heap, int k)
550{ 705{
551 WT w = heap [k]; 706 WT w = heap [k];
552 707
553 while (k && heap [k >> 1]->at > w->at) 708 while (k)
554 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
555 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
557 k >>= 1; 717 k = p;
558 } 718 }
559 719
560 heap [k] = w; 720 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
562
563} 722}
564 723
565static void 724void inline_speed
566downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
567{ 726{
568 WT w = heap [k]; 727 WT w = heap [k];
569 728
570 while (k < (N >> 1)) 729 for (;;)
571 { 730 {
572 int j = k << 1; 731 int c = (k << 1) + 1;
573 732
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 734 break;
579 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
580 heap [k] = heap [j]; 742 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
582 k = j; 745 k = c;
583 } 746 }
584 747
585 heap [k] = w; 748 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
587} 750}
588 751
589inline void 752void inline_size
590adjustheap (WT *heap, int N, int k) 753adjustheap (WT *heap, int N, int k)
591{ 754{
592 upheap (heap, k); 755 upheap (heap, k);
593 downheap (heap, N, k); 756 downheap (heap, N, k);
594} 757}
604static ANSIG *signals; 767static ANSIG *signals;
605static int signalmax; 768static int signalmax;
606 769
607static int sigpipe [2]; 770static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 771static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 772static ev_io sigev;
610 773
611static void 774void inline_size
612signals_init (ANSIG *base, int count) 775signals_init (ANSIG *base, int count)
613{ 776{
614 while (count--) 777 while (count--)
615 { 778 {
616 base->head = 0; 779 base->head = 0;
636 write (sigpipe [1], &signum, 1); 799 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 800 errno = old_errno;
638 } 801 }
639} 802}
640 803
641void 804void noinline
642ev_feed_signal_event (EV_P_ int signum) 805ev_feed_signal_event (EV_P_ int signum)
643{ 806{
644 WL w; 807 WL w;
645 808
646#if EV_MULTIPLICITY 809#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 820 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 822}
660 823
661static void 824static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 825sigcb (EV_P_ ev_io *iow, int revents)
663{ 826{
664 int signum; 827 int signum;
665 828
666 read (sigpipe [0], &revents, 1); 829 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 830 gotsig = 0;
669 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
672} 835}
673 836
674static void 837void inline_speed
675fd_intern (int fd) 838fd_intern (int fd)
676{ 839{
677#ifdef _WIN32 840#ifdef _WIN32
678 int arg = 1; 841 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 844 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 845 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 846#endif
684} 847}
685 848
686static void 849static void noinline
687siginit (EV_P) 850siginit (EV_P)
688{ 851{
689 fd_intern (sigpipe [0]); 852 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 853 fd_intern (sigpipe [1]);
691 854
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 858}
696 859
697/*****************************************************************************/ 860/*****************************************************************************/
698 861
699static struct ev_child *childs [PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
700 863
701#ifndef _WIN32 864#ifndef _WIN32
702 865
703static struct ev_signal childev; 866static ev_signal childev;
867
868void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
870{
871 ev_child *w;
872
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
874 if (w->pid == pid || !w->pid)
875 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
877 w->rpid = pid;
878 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 }
881}
704 882
705#ifndef WCONTINUED 883#ifndef WCONTINUED
706# define WCONTINUED 0 884# define WCONTINUED 0
707#endif 885#endif
708 886
709static void 887static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 888childcb (EV_P_ ev_signal *sw, int revents)
726{ 889{
727 int pid, status; 890 int pid, status;
728 891
892 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 893 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 894 if (!WCONTINUED
895 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return;
898
731 /* make sure we are called again until all childs have been reaped */ 899 /* make sure we are called again until all childs have been reaped */
900 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 902
734 child_reap (EV_A_ sw, pid, pid, status); 903 child_reap (EV_A_ sw, pid, pid, status);
904 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 906}
738 907
739#endif 908#endif
740 909
741/*****************************************************************************/ 910/*****************************************************************************/
767{ 936{
768 return EV_VERSION_MINOR; 937 return EV_VERSION_MINOR;
769} 938}
770 939
771/* return true if we are running with elevated privileges and should ignore env variables */ 940/* return true if we are running with elevated privileges and should ignore env variables */
772static int 941int inline_size
773enable_secure (void) 942enable_secure (void)
774{ 943{
775#ifdef _WIN32 944#ifdef _WIN32
776 return 0; 945 return 0;
777#else 946#else
795} 964}
796 965
797unsigned int 966unsigned int
798ev_recommended_backends (void) 967ev_recommended_backends (void)
799{ 968{
800 unsigned int flags = ev_recommended_backends (); 969 unsigned int flags = ev_supported_backends ();
801 970
802#ifndef __NetBSD__ 971#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 972 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 973 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 974 flags &= ~EVBACKEND_KQUEUE;
811 980
812 return flags; 981 return flags;
813} 982}
814 983
815unsigned int 984unsigned int
985ev_embeddable_backends (void)
986{
987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
988
989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
994}
995
996unsigned int
816ev_backend (EV_P) 997ev_backend (EV_P)
817{ 998{
818 return backend; 999 return backend;
819} 1000}
820 1001
821static void 1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
1018}
1019
1020static void noinline
822loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
823{ 1022{
824 if (!backend) 1023 if (!backend)
825 { 1024 {
826#if EV_USE_MONOTONIC 1025#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1034 mn_now = get_clock ();
836 now_floor = mn_now; 1035 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
838 1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
839 if (!(flags & EVFLAG_NOENV) 1047 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1048 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1049 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1051
844 if (!(flags & 0x0000ffffUL)) 1052 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 1053 flags |= ev_recommended_backends ();
846 1054
847 backend = 0; 1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060
848#if EV_USE_PORT 1061#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1063#endif
851#if EV_USE_KQUEUE 1064#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1077 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1078 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1079 }
867} 1080}
868 1081
869static void 1082static void noinline
870loop_destroy (EV_P) 1083loop_destroy (EV_P)
871{ 1084{
872 int i; 1085 int i;
1086
1087#if EV_USE_INOTIFY
1088 if (fs_fd >= 0)
1089 close (fs_fd);
1090#endif
1091
1092 if (backend_fd >= 0)
1093 close (backend_fd);
873 1094
874#if EV_USE_PORT 1095#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1097#endif
877#if EV_USE_KQUEUE 1098#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1107#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1109#endif
889 1110
890 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
891 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
892 1120
893 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
896#if EV_PERIODICS 1124#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
898#endif 1126#endif
1127#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
900 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
902 1132
903 backend = 0; 1133 backend = 0;
904} 1134}
905 1135
906static void 1136void inline_size infy_fork (EV_P);
1137
1138void inline_size
907loop_fork (EV_P) 1139loop_fork (EV_P)
908{ 1140{
909#if EV_USE_PORT 1141#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1143#endif
912#if EV_USE_KQUEUE 1144#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1145 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1146#endif
915#if EV_USE_EPOLL 1147#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1148 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1149#endif
1150#if EV_USE_INOTIFY
1151 infy_fork (EV_A);
917#endif 1152#endif
918 1153
919 if (ev_is_active (&sigev)) 1154 if (ev_is_active (&sigev))
920 { 1155 {
921 /* default loop */ 1156 /* default loop */
1037 postfork = 1; 1272 postfork = 1;
1038} 1273}
1039 1274
1040/*****************************************************************************/ 1275/*****************************************************************************/
1041 1276
1042static int 1277void
1043any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1044{ 1279{
1045 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1281}
1053 1282
1054inline void 1283void inline_speed
1055call_pending (EV_P) 1284call_pending (EV_P)
1056{ 1285{
1057 int pri; 1286 int pri;
1058 1287
1059 for (pri = NUMPRI; pri--; ) 1288 for (pri = NUMPRI; pri--; )
1061 { 1290 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1292
1064 if (expect_true (p->w)) 1293 if (expect_true (p->w))
1065 { 1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
1066 p->w->pending = 0; 1297 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1298 EV_CB_INVOKE (p->w, p->events);
1068 } 1299 }
1069 } 1300 }
1070} 1301}
1071 1302
1072inline void 1303void inline_size
1073timers_reify (EV_P) 1304timers_reify (EV_P)
1074{ 1305{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1307 {
1077 struct ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1078 1309
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1311
1081 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1082 if (w->repeat) 1313 if (w->repeat)
1083 { 1314 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1316
1086 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1089 1320
1090 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1091 } 1322 }
1092 else 1323 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1325
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1327 }
1097} 1328}
1098 1329
1099#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1100inline void 1331void inline_size
1101periodics_reify (EV_P) 1332periodics_reify (EV_P)
1102{ 1333{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1335 {
1105 struct ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1337
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1339
1109 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1111 { 1342 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1115 } 1346 }
1116 else if (w->interval) 1347 else if (w->interval)
1117 { 1348 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1121 } 1353 }
1122 else 1354 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1356
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1358 }
1127} 1359}
1128 1360
1129static void 1361static void noinline
1130periodics_reschedule (EV_P) 1362periodics_reschedule (EV_P)
1131{ 1363{
1132 int i; 1364 int i;
1133 1365
1134 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1136 { 1368 {
1137 struct ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1370
1139 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1373 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1375 }
1144 1376
1145 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1148} 1380}
1149#endif 1381#endif
1150 1382
1151inline int 1383#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1384void inline_size
1385idle_reify (EV_P)
1153{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1154 mn_now = get_clock (); 1416 mn_now = get_clock ();
1155 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1421 {
1158 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1423 return;
1160 } 1424 }
1161 else 1425
1162 {
1163 now_floor = mn_now; 1426 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1428
1169inline void 1429 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1171{ 1431 * in case we get preempted during the calls to
1172 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1173 1433 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1176 { 1436 */
1177 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1178 { 1438 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1184 1440
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1442 return; /* all is well */
1187 1443
1188 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1445 mn_now = get_clock ();
1190 now_floor = mn_now; 1446 now_floor = mn_now;
1191 } 1447 }
1192 1448
1193# if EV_PERIODICS 1449# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A);
1451# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 }
1455 else
1456#endif
1457 {
1458 ev_rt_now = ev_time ();
1459
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 {
1462#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1195# endif 1464#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1468 }
1215 1469
1216 mn_now = ev_rt_now; 1470 mn_now = ev_rt_now;
1232static int loop_done; 1486static int loop_done;
1233 1487
1234void 1488void
1235ev_loop (EV_P_ int flags) 1489ev_loop (EV_P_ int flags)
1236{ 1490{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1492 ? EVUNLOOP_ONE
1493 : EVUNLOOP_CANCEL;
1239 1494
1240 while (activecnt) 1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496
1497 do
1241 { 1498 {
1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork))
1511 if (forkcnt)
1512 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A);
1515 }
1516#endif
1517
1242 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1244 { 1520 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1522 call_pending (EV_A);
1247 } 1523 }
1248 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1249 /* we might have forked, so reify kernel state if necessary */ 1528 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1529 if (expect_false (postfork))
1251 loop_fork (EV_A); 1530 loop_fork (EV_A);
1252 1531
1253 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1533 fd_reify (EV_A);
1255 1534
1256 /* calculate blocking time */ 1535 /* calculate blocking time */
1536 {
1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1257 1539
1258 /* we only need this for !monotonic clock or timers, but as we basically 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1541 {
1266 ev_rt_now = ev_time (); 1542 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1543 time_update (EV_A_ 1e100);
1268 }
1269 1544
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1275 1546
1276 if (timercnt) 1547 if (timercnt)
1277 { 1548 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1280 } 1551 }
1281 1552
1282#if EV_PERIODICS 1553#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1554 if (periodiccnt)
1284 { 1555 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1287 } 1558 }
1288#endif 1559#endif
1289 1560
1290 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1291 } 1574 }
1292 1575
1576 ++loop_count;
1293 backend_poll (EV_A_ block); 1577 backend_poll (EV_A_ waittime);
1294 1578
1295 /* update ev_rt_now, do magic */ 1579 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1580 time_update (EV_A_ waittime + sleeptime);
1581 }
1297 1582
1298 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1585#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1587#endif
1303 1588
1589#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1590 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1307 1593
1308 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1597
1312 call_pending (EV_A); 1598 call_pending (EV_A);
1313 1599
1314 if (expect_false (loop_done))
1315 break;
1316 } 1600 }
1601 while (expect_true (activecnt && !loop_done));
1317 1602
1318 if (loop_done != 2) 1603 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1604 loop_done = EVUNLOOP_CANCEL;
1320} 1605}
1321 1606
1322void 1607void
1323ev_unloop (EV_P_ int how) 1608ev_unloop (EV_P_ int how)
1324{ 1609{
1325 loop_done = how; 1610 loop_done = how;
1326} 1611}
1327 1612
1328/*****************************************************************************/ 1613/*****************************************************************************/
1329 1614
1330inline void 1615void inline_size
1331wlist_add (WL *head, WL elem) 1616wlist_add (WL *head, WL elem)
1332{ 1617{
1333 elem->next = *head; 1618 elem->next = *head;
1334 *head = elem; 1619 *head = elem;
1335} 1620}
1336 1621
1337inline void 1622void inline_size
1338wlist_del (WL *head, WL elem) 1623wlist_del (WL *head, WL elem)
1339{ 1624{
1340 while (*head) 1625 while (*head)
1341 { 1626 {
1342 if (*head == elem) 1627 if (*head == elem)
1347 1632
1348 head = &(*head)->next; 1633 head = &(*head)->next;
1349 } 1634 }
1350} 1635}
1351 1636
1352inline void 1637void inline_speed
1353ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1354{ 1639{
1355 if (w->pending) 1640 if (w->pending)
1356 { 1641 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1643 w->pending = 0;
1359 } 1644 }
1360} 1645}
1361 1646
1362inline void 1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1673void inline_speed
1363ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1364{ 1675{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1677 w->active = active;
1369 ev_ref (EV_A); 1678 ev_ref (EV_A);
1370} 1679}
1371 1680
1372inline void 1681void inline_size
1373ev_stop (EV_P_ W w) 1682ev_stop (EV_P_ W w)
1374{ 1683{
1375 ev_unref (EV_A); 1684 ev_unref (EV_A);
1376 w->active = 0; 1685 w->active = 0;
1377} 1686}
1378 1687
1379/*****************************************************************************/ 1688/*****************************************************************************/
1380 1689
1381void 1690void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1383{ 1692{
1384 int fd = w->fd; 1693 int fd = w->fd;
1385 1694
1386 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1387 return; 1696 return;
1388 1697
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1699
1391 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1394 1703
1395 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1396} 1706}
1397 1707
1398void 1708void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1400{ 1710{
1401 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1403 return; 1713 return;
1404 1714
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1716
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1409 1719
1410 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1411} 1721}
1412 1722
1413void 1723void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1415{ 1725{
1416 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1417 return; 1727 return;
1418 1728
1419 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1420 1730
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1732
1423 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1427 1737
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1739}
1430 1740
1431void 1741void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1743{
1434 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1436 return; 1746 return;
1437 1747
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1749
1750 {
1751 int active = ((W)w)->active;
1752
1440 if (expect_true (((W)w)->active < timercnt--)) 1753 if (expect_true (--active < --timercnt))
1441 { 1754 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1756 adjustheap (timers, timercnt, active);
1444 } 1757 }
1758 }
1445 1759
1446 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1447 1761
1448 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1449} 1763}
1450 1764
1451void 1765void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1453{ 1767{
1454 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1455 { 1769 {
1456 if (w->repeat) 1770 if (w->repeat)
1457 { 1771 {
1458 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1774 }
1461 else 1775 else
1462 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1463 } 1777 }
1464 else if (w->repeat) 1778 else if (w->repeat)
1466 w->at = w->repeat; 1780 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1468 } 1782 }
1469} 1783}
1470 1784
1471#if EV_PERIODICS 1785#if EV_PERIODIC_ENABLE
1472void 1786void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1788{
1475 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1476 return; 1790 return;
1477 1791
1478 if (w->reschedule_cb) 1792 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1794 else if (w->interval)
1481 { 1795 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1486 1802
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1491 1807
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1809}
1494 1810
1495void 1811void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1813{
1498 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1500 return; 1816 return;
1501 1817
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1819
1820 {
1821 int active = ((W)w)->active;
1822
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1823 if (expect_true (--active < --periodiccnt))
1505 { 1824 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1826 adjustheap (periodics, periodiccnt, active);
1508 } 1827 }
1828 }
1509 1829
1510 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1511} 1831}
1512 1832
1513void 1833void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1835{
1516 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1519} 1839}
1520#endif 1840#endif
1521 1841
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1842#ifndef SA_RESTART
1589# define SA_RESTART 0 1843# define SA_RESTART 0
1590#endif 1844#endif
1591 1845
1592void 1846void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1594{ 1848{
1595#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1851#endif
1598 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1599 return; 1853 return;
1600 1854
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1603 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1873
1607 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1608 { 1875 {
1609#if _WIN32 1876#if _WIN32
1610 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1617#endif 1884#endif
1618 } 1885 }
1619} 1886}
1620 1887
1621void 1888void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1890{
1624 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1626 return; 1893 return;
1627 1894
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1630 1897
1631 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1633} 1900}
1634 1901
1635void 1902void
1636ev_child_start (EV_P_ struct ev_child *w) 1903ev_child_start (EV_P_ ev_child *w)
1637{ 1904{
1638#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1907#endif
1641 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1642 return; 1909 return;
1643 1910
1644 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1913}
1647 1914
1648void 1915void
1649ev_child_stop (EV_P_ struct ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1650{ 1917{
1651 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1653 return; 1920 return;
1654 1921
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1657} 1924}
1658 1925
1926#if EV_STAT_ENABLE
1927
1928# ifdef _WIN32
1929# undef lstat
1930# define lstat(a,b) _stati64 (a,b)
1931# endif
1932
1933#define DEF_STAT_INTERVAL 5.0074891
1934#define MIN_STAT_INTERVAL 0.1074891
1935
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937
1938#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192
1940
1941static void noinline
1942infy_add (EV_P_ ev_stat *w)
1943{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945
1946 if (w->wd < 0)
1947 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949
1950 /* monitor some parent directory for speedup hints */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 {
1953 char path [4096];
1954 strcpy (path, w->path);
1955
1956 do
1957 {
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960
1961 char *pend = strrchr (path, '/');
1962
1963 if (!pend)
1964 break; /* whoops, no '/', complain to your admin */
1965
1966 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 }
1971 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974
1975 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1977}
1978
1979static void noinline
1980infy_del (EV_P_ ev_stat *w)
1981{
1982 int slot;
1983 int wd = w->wd;
1984
1985 if (wd < 0)
1986 return;
1987
1988 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w);
1991
1992 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd);
1994}
1995
1996static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{
1999 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev);
2003 else
2004 {
2005 WL w_;
2006
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2008 {
2009 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */
2011
2012 if (w->wd == wd || wd == -1)
2013 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 {
2016 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */
2018 }
2019
2020 stat_timer_cb (EV_A_ &w->timer, 0);
2021 }
2022 }
2023 }
2024}
2025
2026static void
2027infy_cb (EV_P_ ev_io *w, int revents)
2028{
2029 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf));
2033
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036}
2037
2038void inline_size
2039infy_init (EV_P)
2040{
2041 if (fs_fd != -2)
2042 return;
2043
2044 fs_fd = inotify_init ();
2045
2046 if (fs_fd >= 0)
2047 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w);
2051 }
2052}
2053
2054void inline_size
2055infy_fork (EV_P)
2056{
2057 int slot;
2058
2059 if (fs_fd < 0)
2060 return;
2061
2062 close (fs_fd);
2063 fs_fd = inotify_init ();
2064
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2066 {
2067 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0;
2069
2070 while (w_)
2071 {
2072 ev_stat *w = (ev_stat *)w_;
2073 w_ = w_->next; /* lets us add this watcher */
2074
2075 w->wd = -1;
2076
2077 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else
2080 ev_timer_start (EV_A_ &w->timer);
2081 }
2082
2083 }
2084}
2085
2086#endif
2087
2088void
2089ev_stat_stat (EV_P_ ev_stat *w)
2090{
2091 if (lstat (w->path, &w->attr) < 0)
2092 w->attr.st_nlink = 0;
2093 else if (!w->attr.st_nlink)
2094 w->attr.st_nlink = 1;
2095}
2096
2097static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101
2102 /* we copy this here each the time so that */
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w);
2106
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
2120 ) {
2121 #if EV_USE_INOTIFY
2122 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */
2125 #endif
2126
2127 ev_feed_event (EV_A_ w, EV_STAT);
2128 }
2129}
2130
2131void
2132ev_stat_start (EV_P_ ev_stat *w)
2133{
2134 if (expect_false (ev_is_active (w)))
2135 return;
2136
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w);
2142
2143 if (w->interval < MIN_STAT_INTERVAL)
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2147 ev_set_priority (&w->timer, ev_priority (w));
2148
2149#if EV_USE_INOTIFY
2150 infy_init (EV_A);
2151
2152 if (fs_fd >= 0)
2153 infy_add (EV_A_ w);
2154 else
2155#endif
2156 ev_timer_start (EV_A_ &w->timer);
2157
2158 ev_start (EV_A_ (W)w, 1);
2159}
2160
2161void
2162ev_stat_stop (EV_P_ ev_stat *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w);
2170#endif
2171 ev_timer_stop (EV_A_ &w->timer);
2172
2173 ev_stop (EV_A_ (W)w);
2174}
2175#endif
2176
2177#if EV_IDLE_ENABLE
2178void
2179ev_idle_start (EV_P_ ev_idle *w)
2180{
2181 if (expect_false (ev_is_active (w)))
2182 return;
2183
2184 pri_adjust (EV_A_ (W)w);
2185
2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2190 ev_start (EV_A_ (W)w, active);
2191
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2195}
2196
2197void
2198ev_idle_stop (EV_P_ ev_idle *w)
2199{
2200 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w)))
2202 return;
2203
2204 {
2205 int active = ((W)w)->active;
2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2212 }
2213}
2214#endif
2215
2216void
2217ev_prepare_start (EV_P_ ev_prepare *w)
2218{
2219 if (expect_false (ev_is_active (w)))
2220 return;
2221
2222 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w;
2225}
2226
2227void
2228ev_prepare_stop (EV_P_ ev_prepare *w)
2229{
2230 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w)))
2232 return;
2233
2234 {
2235 int active = ((W)w)->active;
2236 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active;
2238 }
2239
2240 ev_stop (EV_A_ (W)w);
2241}
2242
2243void
2244ev_check_start (EV_P_ ev_check *w)
2245{
2246 if (expect_false (ev_is_active (w)))
2247 return;
2248
2249 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w;
2252}
2253
2254void
2255ev_check_stop (EV_P_ ev_check *w)
2256{
2257 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w)))
2259 return;
2260
2261 {
2262 int active = ((W)w)->active;
2263 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active;
2265 }
2266
2267 ev_stop (EV_A_ (W)w);
2268}
2269
2270#if EV_EMBED_ENABLE
2271void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w)
2273{
2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2275}
2276
2277static void
2278embed_io_cb (EV_P_ ev_io *io, int revents)
2279{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281
2282 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2311
2312void
2313ev_embed_start (EV_P_ ev_embed *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 {
2319 struct ev_loop *loop = w->other;
2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2322 }
2323
2324 ev_set_priority (&w->io, ev_priority (w));
2325 ev_io_start (EV_A_ &w->io);
2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
2333 ev_start (EV_A_ (W)w, 1);
2334}
2335
2336void
2337ev_embed_stop (EV_P_ ev_embed *w)
2338{
2339 clear_pending (EV_A_ (W)w);
2340 if (expect_false (!ev_is_active (w)))
2341 return;
2342
2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2345
2346 ev_stop (EV_A_ (W)w);
2347}
2348#endif
2349
2350#if EV_FORK_ENABLE
2351void
2352ev_fork_start (EV_P_ ev_fork *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w;
2360}
2361
2362void
2363ev_fork_stop (EV_P_ ev_fork *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377#endif
2378
1659/*****************************************************************************/ 2379/*****************************************************************************/
1660 2380
1661struct ev_once 2381struct ev_once
1662{ 2382{
1663 struct ev_io io; 2383 ev_io io;
1664 struct ev_timer to; 2384 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2385 void (*cb)(int revents, void *arg);
1666 void *arg; 2386 void *arg;
1667}; 2387};
1668 2388
1669static void 2389static void
1678 2398
1679 cb (revents, arg); 2399 cb (revents, arg);
1680} 2400}
1681 2401
1682static void 2402static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2403once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2404{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2406}
1687 2407
1688static void 2408static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2409once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2410{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2412}
1693 2413
1694void 2414void
1718 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
1720 } 2440 }
1721} 2441}
1722 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
1723#ifdef __cplusplus 2447#ifdef __cplusplus
1724} 2448}
1725#endif 2449#endif
1726 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines