ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 259
159#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
162#endif 263#endif
164#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
167#endif 268#endif
168 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
169#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 286# include <winsock.h>
171#endif 287#endif
172 288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
173/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 318
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 322
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 323#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 325# define noinline __attribute__ ((noinline))
189#else 326#else
190# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
191# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
192#endif 332#endif
193 333
194#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
196 343
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 346
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 347#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 348#define EMPTY2(a,b) /* used to suppress some warnings */
202 349
203typedef struct ev_watcher *W; 350typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
206 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
208 362
209#ifdef _WIN32 363#ifdef _WIN32
210# include "ev_win32.c" 364# include "ev_win32.c"
211#endif 365#endif
212 366
213/*****************************************************************************/ 367/*****************************************************************************/
214 368
215static void (*syserr_cb)(const char *msg); 369static void (*syserr_cb)(const char *msg);
216 370
371void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 372ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 373{
219 syserr_cb = cb; 374 syserr_cb = cb;
220} 375}
221 376
222static void 377static void noinline
223syserr (const char *msg) 378syserr (const char *msg)
224{ 379{
225 if (!msg) 380 if (!msg)
226 msg = "(libev) system error"; 381 msg = "(libev) system error";
227 382
232 perror (msg); 387 perror (msg);
233 abort (); 388 abort ();
234 } 389 }
235} 390}
236 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
237static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 408
409void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 411{
241 alloc = cb; 412 alloc = cb;
242} 413}
243 414
244static void * 415inline_speed void *
245ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
246{ 417{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
248 419
249 if (!ptr && size) 420 if (!ptr && size)
250 { 421 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 423 abort ();
273typedef struct 444typedef struct
274{ 445{
275 W w; 446 W w;
276 int events; 447 int events;
277} ANPENDING; 448} ANPENDING;
449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
278 475
279#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
280 477
281 struct ev_loop 478 struct ev_loop
282 { 479 {
316 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 515#endif
319} 516}
320 517
321inline ev_tstamp 518ev_tstamp inline_size
322get_clock (void) 519get_clock (void)
323{ 520{
324#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
326 { 523 {
339{ 536{
340 return ev_rt_now; 537 return ev_rt_now;
341} 538}
342#endif 539#endif
343 540
344#define array_roundsize(type,n) (((n) | 4) & ~3) 541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
345 597
346#define array_needsize(type,base,cur,cnt,init) \ 598#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 599 if (expect_false ((cnt) > (cur))) \
348 { \ 600 { \
349 int newcnt = cur; \ 601 int ocur_ = (cur); \
350 do \ 602 (base) = (type *)array_realloc \
351 { \ 603 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 604 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 605 }
360 606
607#if 0
361#define array_slim(type,stem) \ 608#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 610 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 611 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 614 }
615#endif
368 616
369#define array_free(stem, idx) \ 617#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 619
372/*****************************************************************************/ 620/*****************************************************************************/
373 621
374static void 622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
375anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
376{ 652{
377 while (count--) 653 while (count--)
378 { 654 {
379 base->head = 0; 655 base->head = 0;
382 658
383 ++base; 659 ++base;
384 } 660 }
385} 661}
386 662
387void 663void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 664fd_event (EV_P_ int fd, int revents)
415{ 665{
416 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 667 ev_io *w;
418 668
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 670 {
421 int ev = w->events & revents; 671 int ev = w->events & revents;
422 672
423 if (ev) 673 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
426} 676}
427 677
428void 678void
429ev_feed_fd_event (EV_P_ int fd, int revents) 679ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 680{
681 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 682 fd_event (EV_A_ fd, revents);
432} 683}
433 684
434/*****************************************************************************/ 685void inline_size
435
436inline void
437fd_reify (EV_P) 686fd_reify (EV_P)
438{ 687{
439 int i; 688 int i;
440 689
441 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
442 { 691 {
443 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 694 ev_io *w;
446 695
447 int events = 0; 696 unsigned char events = 0;
448 697
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 699 events |= (unsigned char)w->events;
451 700
452#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
453 if (events) 702 if (events)
454 { 703 {
455 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
456 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 711 }
459#endif 712#endif
460 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
461 anfd->reify = 0; 718 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
465 } 724 }
466 725
467 fdchangecnt = 0; 726 fdchangecnt = 0;
468} 727}
469 728
470static void 729void inline_size
471fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
472{ 731{
473 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
477 734
735 if (expect_true (!reify))
736 {
478 ++fdchangecnt; 737 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
481} 741}
482 742
483static void 743void inline_speed
484fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
485{ 745{
486 struct ev_io *w; 746 ev_io *w;
487 747
488 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
489 { 749 {
490 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 752 }
493} 753}
494 754
495inline int 755int inline_size
496fd_valid (int fd) 756fd_valid (int fd)
497{ 757{
498#ifdef _WIN32 758#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 759 return _get_osfhandle (fd) != -1;
500#else 760#else
501 return fcntl (fd, F_GETFD) != -1; 761 return fcntl (fd, F_GETFD) != -1;
502#endif 762#endif
503} 763}
504 764
505/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
506static void 766static void noinline
507fd_ebadf (EV_P) 767fd_ebadf (EV_P)
508{ 768{
509 int fd; 769 int fd;
510 770
511 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
515} 775}
516 776
517/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 778static void noinline
519fd_enomem (EV_P) 779fd_enomem (EV_P)
520{ 780{
521 int fd; 781 int fd;
522 782
523 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
527 return; 787 return;
528 } 788 }
529} 789}
530 790
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 792static void noinline
533fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
534{ 794{
535 int fd; 795 int fd;
536 796
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 798 if (anfds [fd].events)
540 { 799 {
541 anfds [fd].events = 0; 800 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 802 }
544} 803}
545 804
546/*****************************************************************************/ 805/*****************************************************************************/
547 806
548static void 807/*
549upheap (WT *heap, int k) 808 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 810 * the branching factor of the d-tree.
811 */
552 812
553 while (k && heap [k >> 1]->at > w->at) 813/*
554 { 814 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 816 * which is more cache-efficient.
557 k >>= 1; 817 * the difference is about 5% with 50000+ watchers.
558 } 818 */
819#if EV_USE_4HEAP
559 820
560 heap [k] = w; 821#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
562 825
563} 826/* away from the root */
564 827void inline_speed
565static void
566downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
567{ 829{
568 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
569 832
570 while (k < (N >> 1)) 833 for (;;)
571 { 834 {
572 int j = k << 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 838
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 841 {
576 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
578 break; 855 break;
579 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
580 heap [k] = heap [j]; 895 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
582 k = j; 898 k = c;
583 } 899 }
584 900
585 heap [k] = w; 901 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
587} 903}
904#endif
588 905
589inline void 906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
590adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
591{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
592 upheap (heap, k); 932 upheap (heap, k);
933 else
593 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
594} 947}
595 948
596/*****************************************************************************/ 949/*****************************************************************************/
597 950
598typedef struct 951typedef struct
599{ 952{
600 WL head; 953 WL head;
601 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
602} ANSIG; 955} ANSIG;
603 956
604static ANSIG *signals; 957static ANSIG *signals;
605static int signalmax; 958static int signalmax;
606 959
607static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 961
611static void 962void inline_size
612signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
613{ 964{
614 while (count--) 965 while (count--)
615 { 966 {
616 base->head = 0; 967 base->head = 0;
618 969
619 ++base; 970 ++base;
620 } 971 }
621} 972}
622 973
623static void 974/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 975
630 signals [signum - 1].gotsig = 1; 976void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 977fd_intern (int fd)
676{ 978{
677#ifdef _WIN32 979#ifdef _WIN32
678 int arg = 1; 980 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 983 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 985#endif
684} 986}
685 987
988static void noinline
989evpipe_init (EV_P)
990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
1006 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
1011 ev_io_start (EV_A_ &pipeev);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
686static void 1039static void
687siginit (EV_P) 1040pipecb (EV_P_ ev_io *iow, int revents)
688{ 1041{
689 fd_intern (sigpipe [0]); 1042#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
691 1054
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1055 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1056 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
695} 1079}
696 1080
697/*****************************************************************************/ 1081/*****************************************************************************/
698 1082
699static struct ev_child *childs [PID_HASHSIZE]; 1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
1120static WL childs [EV_PID_HASHSIZE];
700 1121
701#ifndef _WIN32 1122#ifndef _WIN32
702 1123
703static struct ev_signal childev; 1124static ev_signal childev;
1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
1130void inline_speed
1131child_reap (EV_P_ int chain, int pid, int status)
1132{
1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
1140 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1142 w->rpid = pid;
1143 w->rstatus = status;
1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1145 }
1146 }
1147}
704 1148
705#ifndef WCONTINUED 1149#ifndef WCONTINUED
706# define WCONTINUED 0 1150# define WCONTINUED 0
707#endif 1151#endif
708 1152
709static void 1153static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1154childcb (EV_P_ ev_signal *sw, int revents)
726{ 1155{
727 int pid, status; 1156 int pid, status;
728 1157
1158 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1159 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1160 if (!WCONTINUED
1161 || errno != EINVAL
1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1163 return;
1164
731 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1168
734 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1172}
738 1173
739#endif 1174#endif
740 1175
741/*****************************************************************************/ 1176/*****************************************************************************/
767{ 1202{
768 return EV_VERSION_MINOR; 1203 return EV_VERSION_MINOR;
769} 1204}
770 1205
771/* return true if we are running with elevated privileges and should ignore env variables */ 1206/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1207int inline_size
773enable_secure (void) 1208enable_secure (void)
774{ 1209{
775#ifdef _WIN32 1210#ifdef _WIN32
776 return 0; 1211 return 0;
777#else 1212#else
795} 1230}
796 1231
797unsigned int 1232unsigned int
798ev_recommended_backends (void) 1233ev_recommended_backends (void)
799{ 1234{
800 unsigned int flags = ev_recommended_backends (); 1235 unsigned int flags = ev_supported_backends ();
801 1236
802#ifndef __NetBSD__ 1237#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 1238 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 1239 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 1240 flags &= ~EVBACKEND_KQUEUE;
811 1246
812 return flags; 1247 return flags;
813} 1248}
814 1249
815unsigned int 1250unsigned int
1251ev_embeddable_backends (void)
1252{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260}
1261
1262unsigned int
816ev_backend (EV_P) 1263ev_backend (EV_P)
817{ 1264{
818 return backend; 1265 return backend;
819} 1266}
820 1267
821static void 1268unsigned int
1269ev_loop_count (EV_P)
1270{
1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
1284}
1285
1286static void noinline
822loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
823{ 1288{
824 if (!backend) 1289 if (!backend)
825 { 1290 {
826#if EV_USE_MONOTONIC 1291#if EV_USE_MONOTONIC
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 1295 have_monotonic = 1;
831 } 1296 }
832#endif 1297#endif
833 1298
834 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1300 mn_now = get_clock ();
836 now_floor = mn_now; 1301 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1312
1313 /* pid check not overridable via env */
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif
838 1318
839 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1320 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1323
844 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
845 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
846 1326
847 backend = 0;
848#if EV_USE_PORT 1327#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1329#endif
851#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 1338#endif
860#if EV_USE_SELECT 1339#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 1341#endif
863 1342
864 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
866 } 1345 }
867} 1346}
868 1347
869static void 1348static void noinline
870loop_destroy (EV_P) 1349loop_destroy (EV_P)
871{ 1350{
872 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369
1370#if EV_USE_INOTIFY
1371 if (fs_fd >= 0)
1372 close (fs_fd);
1373#endif
1374
1375 if (backend_fd >= 0)
1376 close (backend_fd);
873 1377
874#if EV_USE_PORT 1378#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1380#endif
877#if EV_USE_KQUEUE 1381#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1390#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1392#endif
889 1393
890 for (i = NUMPRI; i--; ) 1394 for (i = NUMPRI; i--; )
1395 {
891 array_free (pending, [i]); 1396 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399#endif
1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
892 1403
893 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1405 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1406 array_free (timer, EMPTY);
896#if EV_PERIODICS 1407#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1408 array_free (periodic, EMPTY);
898#endif 1409#endif
1410#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1411 array_free (fork, EMPTY);
1412#endif
900 array_free (prepare, EMPTY0); 1413 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
902 1418
903 backend = 0; 1419 backend = 0;
904} 1420}
905 1421
906static void 1422#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P);
1424#endif
1425
1426void inline_size
907loop_fork (EV_P) 1427loop_fork (EV_P)
908{ 1428{
909#if EV_USE_PORT 1429#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1431#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1434#endif
915#if EV_USE_EPOLL 1435#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 1437#endif
1438#if EV_USE_INOTIFY
1439 infy_fork (EV_A);
1440#endif
918 1441
919 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
920 { 1443 {
921 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
922 1450
923 ev_ref (EV_A); 1451 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
925 close (sigpipe [0]); 1461 close (evpipe [0]);
926 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
927 1464
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
932 } 1468 }
933 1469
934 postfork = 0; 1470 postfork = 0;
935} 1471}
936 1472
937#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
938struct ev_loop * 1475struct ev_loop *
939ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
940{ 1477{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 1479
958} 1495}
959 1496
960void 1497void
961ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
962{ 1499{
963 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
964} 1501}
965 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
966#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
967 1603
968#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
969struct ev_loop * 1605struct ev_loop *
970ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
971#else 1607#else
972int 1608int
973ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
974#endif 1610#endif
975{ 1611{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
981 { 1613 {
982#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
984#else 1616#else
987 1619
988 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
989 1621
990 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
991 { 1623 {
992 siginit (EV_A);
993
994#ifndef _WIN32 1624#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#ifndef _WIN32 1645#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1018#endif 1648#endif
1019 1649
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1027} 1651}
1028 1652
1029void 1653void
1030ev_default_fork (void) 1654ev_default_fork (void)
1032#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1658#endif
1035 1659
1036 if (backend) 1660 if (backend)
1037 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1038} 1662}
1039 1663
1040/*****************************************************************************/ 1664/*****************************************************************************/
1041 1665
1042static int 1666void
1043any_pending (EV_P) 1667ev_invoke (EV_P_ void *w, int revents)
1044{ 1668{
1045 int pri; 1669 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1670}
1053 1671
1054inline void 1672void inline_speed
1055call_pending (EV_P) 1673call_pending (EV_P)
1056{ 1674{
1057 int pri; 1675 int pri;
1058 1676
1059 for (pri = NUMPRI; pri--; ) 1677 for (pri = NUMPRI; pri--; )
1061 { 1679 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1681
1064 if (expect_true (p->w)) 1682 if (expect_true (p->w))
1065 { 1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1685
1066 p->w->pending = 0; 1686 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1068 } 1689 }
1069 } 1690 }
1070} 1691}
1071 1692
1072inline void 1693#if EV_IDLE_ENABLE
1694void inline_size
1695idle_reify (EV_P)
1696{
1697 if (expect_false (idleall))
1698 {
1699 int pri;
1700
1701 for (pri = NUMPRI; pri--; )
1702 {
1703 if (pendingcnt [pri])
1704 break;
1705
1706 if (idlecnt [pri])
1707 {
1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1709 break;
1710 }
1711 }
1712 }
1713}
1714#endif
1715
1716void inline_size
1073timers_reify (EV_P) 1717timers_reify (EV_P)
1074{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 1722 {
1077 struct ev_timer *w = timers [0]; 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1078 1724
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1726
1081 /* first reschedule or stop timer */ 1727 /* first reschedule or stop timer */
1082 if (w->repeat) 1728 if (w->repeat)
1083 { 1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1735
1086 ((WT)w)->at += w->repeat; 1736 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 1737 downheap (timers, timercnt, HEAP0);
1091 } 1738 }
1092 else 1739 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1741
1742 EV_FREQUENT_CHECK;
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1744 }
1097} 1745}
1098 1746
1099#if EV_PERIODICS 1747#if EV_PERIODIC_ENABLE
1100inline void 1748void inline_size
1101periodics_reify (EV_P) 1749periodics_reify (EV_P)
1102{ 1750{
1751 EV_FREQUENT_CHECK;
1752
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 1754 {
1105 struct ev_periodic *w = periodics [0]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1106 1756
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1758
1109 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
1111 { 1761 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1114 downheap ((WT *)periodics, periodiccnt, 0); 1767 downheap (periodics, periodiccnt, HEAP0);
1115 } 1768 }
1116 else if (w->interval) 1769 else if (w->interval)
1117 { 1770 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1120 downheap ((WT *)periodics, periodiccnt, 0); 1786 downheap (periodics, periodiccnt, HEAP0);
1121 } 1787 }
1122 else 1788 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1790
1791 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1793 }
1127} 1794}
1128 1795
1129static void 1796static void noinline
1130periodics_reschedule (EV_P) 1797periodics_reschedule (EV_P)
1131{ 1798{
1132 int i; 1799 int i;
1133 1800
1134 /* adjust periodics after time jump */ 1801 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1136 { 1803 {
1137 struct ev_periodic *w = periodics [i]; 1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1138 1805
1139 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1808 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1815}
1816#endif
1817
1818void inline_speed
1819time_update (EV_P_ ev_tstamp max_block)
1820{
1821 int i;
1822
1823#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic))
1143 } 1825 {
1826 ev_tstamp odiff = rtmn_diff;
1144 1827
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock (); 1828 mn_now = get_clock ();
1155 1829
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1831 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1833 {
1158 ev_rt_now = rtmn_diff + mn_now; 1834 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1835 return;
1160 } 1836 }
1161 else 1837
1162 {
1163 now_floor = mn_now; 1838 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1839 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1840
1169inline void 1841 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1842 * on the choice of "4": one iteration isn't enough,
1171{ 1843 * in case we get preempted during the calls to
1172 int i; 1844 * ev_time and get_clock. a second call is almost guaranteed
1173 1845 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1846 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1847 * in the unlikely event of having been preempted here.
1176 { 1848 */
1177 if (time_update_monotonic (EV_A)) 1849 for (i = 4; --i; )
1178 { 1850 {
1179 ev_tstamp odiff = rtmn_diff; 1851 rtmn_diff = ev_rt_now - mn_now;
1180 1852
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1854 return; /* all is well */
1855
1856 ev_rt_now = ev_time ();
1857 mn_now = get_clock ();
1858 now_floor = mn_now;
1859 }
1860
1861# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A);
1863# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 }
1867 else
1868#endif
1869 {
1870 ev_rt_now = ev_time ();
1871
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 {
1874#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A);
1876#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1182 { 1879 {
1183 rtmn_diff = ev_rt_now - mn_now; 1880 ANHE *he = timers + i + HEAP0;
1184 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1882 ANHE_at_cache (*he);
1186 return; /* all is well */
1187
1188 ev_rt_now = ev_time ();
1189 mn_now = get_clock ();
1190 now_floor = mn_now;
1191 } 1883 }
1192
1193# if EV_PERIODICS
1194 periodics_reschedule (EV_A);
1195# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1884 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 1885
1216 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1217 } 1887 }
1218} 1888}
1219 1889
1232static int loop_done; 1902static int loop_done;
1233 1903
1234void 1904void
1235ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1236{ 1906{
1237 double block; 1907 loop_done = EVUNLOOP_CANCEL;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1239 1908
1240 while (activecnt) 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1910
1911 do
1241 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1917#ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid))
1920 {
1921 curpid = getpid ();
1922 postfork = 1;
1923 }
1924#endif
1925
1926#if EV_FORK_ENABLE
1927 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork))
1929 if (forkcnt)
1930 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A);
1933 }
1934#endif
1935
1242 /* queue check watchers (and execute them) */ 1936 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1937 if (expect_false (preparecnt))
1244 { 1938 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1940 call_pending (EV_A);
1247 } 1941 }
1248 1942
1943 if (expect_false (!activecnt))
1944 break;
1945
1249 /* we might have forked, so reify kernel state if necessary */ 1946 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1947 if (expect_false (postfork))
1251 loop_fork (EV_A); 1948 loop_fork (EV_A);
1252 1949
1253 /* update fd-related kernel structures */ 1950 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1951 fd_reify (EV_A);
1255 1952
1256 /* calculate blocking time */ 1953 /* calculate blocking time */
1954 {
1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1257 1957
1258 /* we only need this for !monotonic clock or timers, but as we basically 1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1959 {
1266 ev_rt_now = ev_time (); 1960 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1961 time_update (EV_A_ 1e100);
1268 }
1269 1962
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1275 1964
1276 if (timercnt) 1965 if (timercnt)
1277 { 1966 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1279 if (block > to) block = to; 1968 if (waittime > to) waittime = to;
1280 } 1969 }
1281 1970
1282#if EV_PERIODICS 1971#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1972 if (periodiccnt)
1284 { 1973 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1287 } 1976 }
1288#endif 1977#endif
1289 1978
1290 if (expect_false (block < 0.)) block = 0.; 1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1291 } 1992 }
1292 1993
1994 ++loop_count;
1293 backend_poll (EV_A_ block); 1995 backend_poll (EV_A_ waittime);
1294 1996
1295 /* update ev_rt_now, do magic */ 1997 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1998 time_update (EV_A_ waittime + sleeptime);
1999 }
1297 2000
1298 /* queue pending timers and reschedule them */ 2001 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 2002 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 2003#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 2004 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 2005#endif
1303 2006
2007#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 2008 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 2009 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2010#endif
1307 2011
1308 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 2015
1312 call_pending (EV_A); 2016 call_pending (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 2017 }
2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1317 2023
1318 if (loop_done != 2) 2024 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 2025 loop_done = EVUNLOOP_CANCEL;
1320} 2026}
1321 2027
1322void 2028void
1323ev_unloop (EV_P_ int how) 2029ev_unloop (EV_P_ int how)
1324{ 2030{
1325 loop_done = how; 2031 loop_done = how;
1326} 2032}
1327 2033
1328/*****************************************************************************/ 2034/*****************************************************************************/
1329 2035
1330inline void 2036void inline_size
1331wlist_add (WL *head, WL elem) 2037wlist_add (WL *head, WL elem)
1332{ 2038{
1333 elem->next = *head; 2039 elem->next = *head;
1334 *head = elem; 2040 *head = elem;
1335} 2041}
1336 2042
1337inline void 2043void inline_size
1338wlist_del (WL *head, WL elem) 2044wlist_del (WL *head, WL elem)
1339{ 2045{
1340 while (*head) 2046 while (*head)
1341 { 2047 {
1342 if (*head == elem) 2048 if (*head == elem)
1347 2053
1348 head = &(*head)->next; 2054 head = &(*head)->next;
1349 } 2055 }
1350} 2056}
1351 2057
1352inline void 2058void inline_speed
1353ev_clear_pending (EV_P_ W w) 2059clear_pending (EV_P_ W w)
1354{ 2060{
1355 if (w->pending) 2061 if (w->pending)
1356 { 2062 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2063 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 2064 w->pending = 0;
1359 } 2065 }
1360} 2066}
1361 2067
1362inline void 2068int
2069ev_clear_pending (EV_P_ void *w)
2070{
2071 W w_ = (W)w;
2072 int pending = w_->pending;
2073
2074 if (expect_true (pending))
2075 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2077 w_->pending = 0;
2078 p->w = 0;
2079 return p->events;
2080 }
2081 else
2082 return 0;
2083}
2084
2085void inline_size
2086pri_adjust (EV_P_ W w)
2087{
2088 int pri = w->priority;
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri;
2092}
2093
2094void inline_speed
1363ev_start (EV_P_ W w, int active) 2095ev_start (EV_P_ W w, int active)
1364{ 2096{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2097 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 2098 w->active = active;
1369 ev_ref (EV_A); 2099 ev_ref (EV_A);
1370} 2100}
1371 2101
1372inline void 2102void inline_size
1373ev_stop (EV_P_ W w) 2103ev_stop (EV_P_ W w)
1374{ 2104{
1375 ev_unref (EV_A); 2105 ev_unref (EV_A);
1376 w->active = 0; 2106 w->active = 0;
1377} 2107}
1378 2108
1379/*****************************************************************************/ 2109/*****************************************************************************/
1380 2110
1381void 2111void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 2112ev_io_start (EV_P_ ev_io *w)
1383{ 2113{
1384 int fd = w->fd; 2114 int fd = w->fd;
1385 2115
1386 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1387 return; 2117 return;
1388 2118
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1390 2120
2121 EV_FREQUENT_CHECK;
2122
1391 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1394 2126
1395 fd_change (EV_A_ fd); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1396} 2128 w->events &= ~EV_IOFDSET;
1397 2129
1398void 2130 EV_FREQUENT_CHECK;
2131}
2132
2133void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1400{ 2135{
1401 ev_clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1403 return; 2138 return;
1404 2139
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 2141
2142 EV_FREQUENT_CHECK;
2143
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1409 2146
1410 fd_change (EV_A_ w->fd); 2147 fd_change (EV_A_ w->fd, 1);
1411}
1412 2148
1413void 2149 EV_FREQUENT_CHECK;
2150}
2151
2152void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1415{ 2154{
1416 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1417 return; 2156 return;
1418 2157
1419 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1420 2159
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1427 2170
2171 EV_FREQUENT_CHECK;
2172
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 2174}
1430 2175
1431void 2176void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1433{ 2178{
1434 ev_clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1436 return; 2181 return;
1437 2182
2183 EV_FREQUENT_CHECK;
2184
2185 {
2186 int active = ev_active (w);
2187
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 2189
2190 --timercnt;
2191
1440 if (expect_true (((W)w)->active < timercnt--)) 2192 if (expect_true (active < timercnt + HEAP0))
1441 { 2193 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2195 adjustheap (timers, timercnt, active);
1444 } 2196 }
2197 }
1445 2198
1446 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1447 2202
1448 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1449} 2204}
1450 2205
1451void 2206void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1453{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1454 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1455 { 2212 {
1456 if (w->repeat) 2213 if (w->repeat)
1457 { 2214 {
1458 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1460 } 2218 }
1461 else 2219 else
1462 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1463 } 2221 }
1464 else if (w->repeat) 2222 else if (w->repeat)
1465 { 2223 {
1466 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1468 } 2226 }
1469}
1470 2227
2228 EV_FREQUENT_CHECK;
2229}
2230
1471#if EV_PERIODICS 2231#if EV_PERIODIC_ENABLE
1472void 2232void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 2234{
1475 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1476 return; 2236 return;
1477 2237
1478 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 2240 else if (w->interval)
1481 { 2241 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 2245 }
2246 else
2247 ev_at (w) = w->offset;
1486 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1491 2257
2258 EV_FREQUENT_CHECK;
2259
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 2261}
1494 2262
1495void 2263void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 2265{
1498 ev_clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1500 return; 2268 return;
1501 2269
2270 EV_FREQUENT_CHECK;
2271
2272 {
2273 int active = ev_active (w);
2274
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 2276
2277 --periodiccnt;
2278
1504 if (expect_true (((W)w)->active < periodiccnt--)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1505 { 2280 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2282 adjustheap (periodics, periodiccnt, active);
1508 } 2283 }
2284 }
2285
2286 EV_FREQUENT_CHECK;
1509 2287
1510 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1511} 2289}
1512 2290
1513void 2291void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 2292ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 2293{
1516 /* TODO: use adjustheap and recalculation */ 2294 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 2295 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 2296 ev_periodic_start (EV_A_ w);
1519} 2297}
1520#endif 2298#endif
1521 2299
1522void 2300#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 2301# define SA_RESTART 0
2302#endif
2303
2304void noinline
2305ev_signal_start (EV_P_ ev_signal *w)
1524{ 2306{
2307#if EV_MULTIPLICITY
2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2309#endif
1525 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1526 return; 2311 return;
1527 2312
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART
1589# define SA_RESTART 0
1590#endif
1591
1592void
1593ev_signal_start (EV_P_ struct ev_signal *w)
1594{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w)))
1599 return;
1600
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2318
2319 {
2320#ifndef _WIN32
2321 sigset_t full, prev;
2322 sigfillset (&full);
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2327
2328#ifndef _WIN32
2329 sigprocmask (SIG_SETMASK, &prev, 0);
2330#endif
2331 }
2332
1603 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 2335
1607 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1608 { 2337 {
1609#if _WIN32 2338#if _WIN32
1610 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1611#else 2340#else
1612 struct sigaction sa; 2341 struct sigaction sa;
1613 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1614 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1617#endif 2346#endif
1618 } 2347 }
1619}
1620 2348
1621void 2349 EV_FREQUENT_CHECK;
2350}
2351
2352void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1623{ 2354{
1624 ev_clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1626 return; 2357 return;
1627 2358
2359 EV_FREQUENT_CHECK;
2360
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1630 2363
1631 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
1633}
1634 2366
2367 EV_FREQUENT_CHECK;
2368}
2369
1635void 2370void
1636ev_child_start (EV_P_ struct ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1637{ 2372{
1638#if EV_MULTIPLICITY 2373#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 2375#endif
1641 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1642 return; 2377 return;
1643 2378
2379 EV_FREQUENT_CHECK;
2380
1644 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646}
1647 2383
2384 EV_FREQUENT_CHECK;
2385}
2386
1648void 2387void
1649ev_child_stop (EV_P_ struct ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1650{ 2389{
1651 ev_clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1653 return; 2392 return;
1654 2393
2394 EV_FREQUENT_CHECK;
2395
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1657} 2400}
2401
2402#if EV_STAT_ENABLE
2403
2404# ifdef _WIN32
2405# undef lstat
2406# define lstat(a,b) _stati64 (a,b)
2407# endif
2408
2409#define DEF_STAT_INTERVAL 5.0074891
2410#define MIN_STAT_INTERVAL 0.1074891
2411
2412static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413
2414#if EV_USE_INOTIFY
2415# define EV_INOTIFY_BUFSIZE 8192
2416
2417static void noinline
2418infy_add (EV_P_ ev_stat *w)
2419{
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2421
2422 if (w->wd < 0)
2423 {
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2425
2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 {
2431 char path [4096];
2432 strcpy (path, w->path);
2433
2434 do
2435 {
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438
2439 char *pend = strrchr (path, '/');
2440
2441 if (!pend)
2442 break; /* whoops, no '/', complain to your admin */
2443
2444 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 }
2449 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452
2453 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2455}
2456
2457static void noinline
2458infy_del (EV_P_ ev_stat *w)
2459{
2460 int slot;
2461 int wd = w->wd;
2462
2463 if (wd < 0)
2464 return;
2465
2466 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w);
2469
2470 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd);
2472}
2473
2474static void noinline
2475infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476{
2477 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2480 infy_wd (EV_A_ slot, wd, ev);
2481 else
2482 {
2483 WL w_;
2484
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2486 {
2487 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */
2489
2490 if (w->wd == wd || wd == -1)
2491 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 {
2494 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */
2496 }
2497
2498 stat_timer_cb (EV_A_ &w->timer, 0);
2499 }
2500 }
2501 }
2502}
2503
2504static void
2505infy_cb (EV_P_ ev_io *w, int revents)
2506{
2507 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf));
2511
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2514}
2515
2516void inline_size
2517infy_init (EV_P)
2518{
2519 if (fs_fd != -2)
2520 return;
2521
2522 fs_fd = inotify_init ();
2523
2524 if (fs_fd >= 0)
2525 {
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w);
2529 }
2530}
2531
2532void inline_size
2533infy_fork (EV_P)
2534{
2535 int slot;
2536
2537 if (fs_fd < 0)
2538 return;
2539
2540 close (fs_fd);
2541 fs_fd = inotify_init ();
2542
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2544 {
2545 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0;
2547
2548 while (w_)
2549 {
2550 ev_stat *w = (ev_stat *)w_;
2551 w_ = w_->next; /* lets us add this watcher */
2552
2553 w->wd = -1;
2554
2555 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else
2558 ev_timer_start (EV_A_ &w->timer);
2559 }
2560
2561 }
2562}
2563
2564#endif
2565
2566void
2567ev_stat_stat (EV_P_ ev_stat *w)
2568{
2569 if (lstat (w->path, &w->attr) < 0)
2570 w->attr.st_nlink = 0;
2571 else if (!w->attr.st_nlink)
2572 w->attr.st_nlink = 1;
2573}
2574
2575static void noinline
2576stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577{
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579
2580 /* we copy this here each the time so that */
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w);
2584
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if (
2587 w->prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime
2598 ) {
2599 #if EV_USE_INOTIFY
2600 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */
2603 #endif
2604
2605 ev_feed_event (EV_A_ w, EV_STAT);
2606 }
2607}
2608
2609void
2610ev_stat_start (EV_P_ ev_stat *w)
2611{
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w);
2620
2621 if (w->interval < MIN_STAT_INTERVAL)
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2625 ev_set_priority (&w->timer, ev_priority (w));
2626
2627#if EV_USE_INOTIFY
2628 infy_init (EV_A);
2629
2630 if (fs_fd >= 0)
2631 infy_add (EV_A_ w);
2632 else
2633#endif
2634 ev_timer_start (EV_A_ &w->timer);
2635
2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2639}
2640
2641void
2642ev_stat_stop (EV_P_ ev_stat *w)
2643{
2644 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w)))
2646 return;
2647
2648 EV_FREQUENT_CHECK;
2649
2650#if EV_USE_INOTIFY
2651 infy_del (EV_A_ w);
2652#endif
2653 ev_timer_stop (EV_A_ &w->timer);
2654
2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2658}
2659#endif
2660
2661#if EV_IDLE_ENABLE
2662void
2663ev_idle_start (EV_P_ ev_idle *w)
2664{
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ++idlecnt [ABSPRI (w)];
2674
2675 ++idleall;
2676 ev_start (EV_A_ (W)w, active);
2677
2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2679 idles [ABSPRI (w)][active - 1] = w;
2680 }
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_idle_stop (EV_P_ ev_idle *w)
2687{
2688 clear_pending (EV_A_ (W)w);
2689 if (expect_false (!ev_is_active (w)))
2690 return;
2691
2692 EV_FREQUENT_CHECK;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2699
2700 ev_stop (EV_A_ (W)w);
2701 --idleall;
2702 }
2703
2704 EV_FREQUENT_CHECK;
2705}
2706#endif
2707
2708void
2709ev_prepare_start (EV_P_ ev_prepare *w)
2710{
2711 if (expect_false (ev_is_active (w)))
2712 return;
2713
2714 EV_FREQUENT_CHECK;
2715
2716 ev_start (EV_A_ (W)w, ++preparecnt);
2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2721}
2722
2723void
2724ev_prepare_stop (EV_P_ ev_prepare *w)
2725{
2726 clear_pending (EV_A_ (W)w);
2727 if (expect_false (!ev_is_active (w)))
2728 return;
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ev_active (w);
2734
2735 prepares [active - 1] = prepares [--preparecnt];
2736 ev_active (prepares [active - 1]) = active;
2737 }
2738
2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2742}
2743
2744void
2745ev_check_start (EV_P_ ev_check *w)
2746{
2747 if (expect_false (ev_is_active (w)))
2748 return;
2749
2750 EV_FREQUENT_CHECK;
2751
2752 ev_start (EV_A_ (W)w, ++checkcnt);
2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2757}
2758
2759void
2760ev_check_stop (EV_P_ ev_check *w)
2761{
2762 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w)))
2764 return;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
2771 checks [active - 1] = checks [--checkcnt];
2772 ev_active (checks [active - 1]) = active;
2773 }
2774
2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2778}
2779
2780#if EV_EMBED_ENABLE
2781void noinline
2782ev_embed_sweep (EV_P_ ev_embed *w)
2783{
2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2785}
2786
2787static void
2788embed_io_cb (EV_P_ ev_io *io, int revents)
2789{
2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2791
2792 if (ev_cb (w))
2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2794 else
2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2796}
2797
2798static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2821
2822void
2823ev_embed_start (EV_P_ ev_embed *w)
2824{
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 {
2829 struct ev_loop *loop = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 }
2833
2834 EV_FREQUENT_CHECK;
2835
2836 ev_set_priority (&w->io, ev_priority (w));
2837 ev_io_start (EV_A_ &w->io);
2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_embed_stop (EV_P_ ev_embed *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2861
2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2865}
2866#endif
2867
2868#if EV_FORK_ENABLE
2869void
2870ev_fork_start (EV_P_ ev_fork *w)
2871{
2872 if (expect_false (ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_start (EV_A_ (W)w, ++forkcnt);
2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2882}
2883
2884void
2885ev_fork_stop (EV_P_ ev_fork *w)
2886{
2887 clear_pending (EV_A_ (W)w);
2888 if (expect_false (!ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
2892
2893 {
2894 int active = ev_active (w);
2895
2896 forks [active - 1] = forks [--forkcnt];
2897 ev_active (forks [active - 1]) = active;
2898 }
2899
2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2950}
2951#endif
1658 2952
1659/*****************************************************************************/ 2953/*****************************************************************************/
1660 2954
1661struct ev_once 2955struct ev_once
1662{ 2956{
1663 struct ev_io io; 2957 ev_io io;
1664 struct ev_timer to; 2958 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2959 void (*cb)(int revents, void *arg);
1666 void *arg; 2960 void *arg;
1667}; 2961};
1668 2962
1669static void 2963static void
1678 2972
1679 cb (revents, arg); 2973 cb (revents, arg);
1680} 2974}
1681 2975
1682static void 2976static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2977once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2978{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2980}
1687 2981
1688static void 2982static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2983once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2984{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2986}
1693 2987
1694void 2988void
1718 ev_timer_set (&once->to, timeout, 0.); 3012 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 3013 ev_timer_start (EV_A_ &once->to);
1720 } 3014 }
1721} 3015}
1722 3016
3017#if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019#endif
3020
1723#ifdef __cplusplus 3021#ifdef __cplusplus
1724} 3022}
1725#endif 3023#endif
1726 3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines