ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.267 by root, Mon Oct 27 11:08:29 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
159# include <io.h>
116# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 161# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
120# endif 164# endif
121#endif 165#endif
122 166
123/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
124 168
125#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
126# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
127#endif 175#endif
128 176
129#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
131#endif 187#endif
132 188
133#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
135#endif 191#endif
141# define EV_USE_POLL 1 197# define EV_USE_POLL 1
142# endif 198# endif
143#endif 199#endif
144 200
145#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
146# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
147#endif 207#endif
148 208
149#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
151#endif 211#endif
152 212
153#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 214# define EV_USE_PORT 0
155#endif 215#endif
156 216
157/**/ 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 268
159#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
162#endif 272#endif
164#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
167#endif 277#endif
168 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
169#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 301# include <winsock.h>
171#endif 302#endif
172 303
304#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
309# endif
310int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus
312}
313# endif
314#endif
315
173/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 333
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 337
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 338#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 340# define noinline __attribute__ ((noinline))
189#else 341#else
190# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
191# define inline static 343# define noinline
344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
345# define inline
346# endif
192#endif 347#endif
193 348
194#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 350#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline
352
353#if EV_MINIMAL
354# define inline_speed static noinline
355#else
356# define inline_speed static inline
357#endif
196 358
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 361
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 362#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 363#define EMPTY2(a,b) /* used to suppress some warnings */
202 364
203typedef struct ev_watcher *W; 365typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
206 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
208 377
209#ifdef _WIN32 378#ifdef _WIN32
210# include "ev_win32.c" 379# include "ev_win32.c"
211#endif 380#endif
212 381
213/*****************************************************************************/ 382/*****************************************************************************/
214 383
215static void (*syserr_cb)(const char *msg); 384static void (*syserr_cb)(const char *msg);
216 385
386void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 387ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 388{
219 syserr_cb = cb; 389 syserr_cb = cb;
220} 390}
221 391
222static void 392static void noinline
223syserr (const char *msg) 393syserr (const char *msg)
224{ 394{
225 if (!msg) 395 if (!msg)
226 msg = "(libev) system error"; 396 msg = "(libev) system error";
227 397
232 perror (msg); 402 perror (msg);
233 abort (); 403 abort ();
234 } 404 }
235} 405}
236 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
237static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 423
424void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 426{
241 alloc = cb; 427 alloc = cb;
242} 428}
243 429
244static void * 430inline_speed void *
245ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
246{ 432{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
248 434
249 if (!ptr && size) 435 if (!ptr && size)
250 { 436 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 438 abort ();
263typedef struct 449typedef struct
264{ 450{
265 WL head; 451 WL head;
266 unsigned char events; 452 unsigned char events;
267 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
268#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 457 SOCKET handle;
270#endif 458#endif
271} ANFD; 459} ANFD;
272 460
273typedef struct 461typedef struct
274{ 462{
275 W w; 463 W w;
276 int events; 464 int events;
277} ANPENDING; 465} ANPENDING;
466
467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
469typedef struct
470{
471 WL head;
472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
491#endif
278 492
279#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
280 494
281 struct ev_loop 495 struct ev_loop
282 { 496 {
316 gettimeofday (&tv, 0); 530 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 531 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 532#endif
319} 533}
320 534
321inline ev_tstamp 535ev_tstamp inline_size
322get_clock (void) 536get_clock (void)
323{ 537{
324#if EV_USE_MONOTONIC 538#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 539 if (expect_true (have_monotonic))
326 { 540 {
339{ 553{
340 return ev_rt_now; 554 return ev_rt_now;
341} 555}
342#endif 556#endif
343 557
344#define array_roundsize(type,n) (((n) | 4) & ~3) 558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
590int inline_size
591array_nextsize (int elem, int cur, int cnt)
592{
593 int ncur = cur + 1;
594
595 do
596 ncur <<= 1;
597 while (cnt > ncur);
598
599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
601 {
602 ncur *= elem;
603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
604 ncur = ncur - sizeof (void *) * 4;
605 ncur /= elem;
606 }
607
608 return ncur;
609}
610
611static noinline void *
612array_realloc (int elem, void *base, int *cur, int cnt)
613{
614 *cur = array_nextsize (elem, *cur, cnt);
615 return ev_realloc (base, elem * *cur);
616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 620
346#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 622 if (expect_false ((cnt) > (cur))) \
348 { \ 623 { \
349 int newcnt = cur; \ 624 int ocur_ = (cur); \
350 do \ 625 (base) = (type *)array_realloc \
351 { \ 626 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 627 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 628 }
360 629
630#if 0
361#define array_slim(type,stem) \ 631#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 632 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 633 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 634 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 635 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 637 }
638#endif
368 639
369#define array_free(stem, idx) \ 640#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 642
372/*****************************************************************************/ 643/*****************************************************************************/
373 644
374static void 645void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 646ev_feed_event (EV_P_ void *w, int revents)
389{ 647{
390 W w_ = (W)w; 648 W w_ = (W)w;
649 int pri = ABSPRI (w_);
391 650
392 if (expect_false (w_->pending)) 651 if (expect_false (w_->pending))
652 pendings [pri][w_->pending - 1].events |= revents;
653 else
393 { 654 {
655 w_->pending = ++pendingcnt [pri];
656 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
657 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 658 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 659 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 660}
403 661
404static void 662void inline_speed
405queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 664{
407 int i; 665 int i;
408 666
409 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
411} 669}
412 670
413inline void 671/*****************************************************************************/
672
673void inline_speed
414fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
415{ 675{
416 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 677 ev_io *w;
418 678
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 680 {
421 int ev = w->events & revents; 681 int ev = w->events & revents;
422 682
423 if (ev) 683 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 684 ev_feed_event (EV_A_ (W)w, ev);
426} 686}
427 687
428void 688void
429ev_feed_fd_event (EV_P_ int fd, int revents) 689ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 690{
691 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 692 fd_event (EV_A_ fd, revents);
432} 693}
433 694
434/*****************************************************************************/ 695void inline_size
435
436inline void
437fd_reify (EV_P) 696fd_reify (EV_P)
438{ 697{
439 int i; 698 int i;
440 699
441 for (i = 0; i < fdchangecnt; ++i) 700 for (i = 0; i < fdchangecnt; ++i)
442 { 701 {
443 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 704 ev_io *w;
446 705
447 int events = 0; 706 unsigned char events = 0;
448 707
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 709 events |= (unsigned char)w->events;
451 710
452#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
453 if (events) 712 if (events)
454 { 713 {
455 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
456 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 721 }
459#endif 722#endif
460 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
461 anfd->reify = 0; 728 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
465 } 734 }
466 735
467 fdchangecnt = 0; 736 fdchangecnt = 0;
468} 737}
469 738
470static void 739void inline_size
471fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
472{ 741{
473 if (expect_false (anfds [fd].reify)) 742 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
477 744
745 if (expect_true (!reify))
746 {
478 ++fdchangecnt; 747 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
481} 751}
482 752
483static void 753void inline_speed
484fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
485{ 755{
486 struct ev_io *w; 756 ev_io *w;
487 757
488 while ((w = (struct ev_io *)anfds [fd].head)) 758 while ((w = (ev_io *)anfds [fd].head))
489 { 759 {
490 ev_io_stop (EV_A_ w); 760 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 762 }
493} 763}
494 764
495inline int 765int inline_size
496fd_valid (int fd) 766fd_valid (int fd)
497{ 767{
498#ifdef _WIN32 768#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 769 return _get_osfhandle (fd) != -1;
500#else 770#else
501 return fcntl (fd, F_GETFD) != -1; 771 return fcntl (fd, F_GETFD) != -1;
502#endif 772#endif
503} 773}
504 774
505/* called on EBADF to verify fds */ 775/* called on EBADF to verify fds */
506static void 776static void noinline
507fd_ebadf (EV_P) 777fd_ebadf (EV_P)
508{ 778{
509 int fd; 779 int fd;
510 780
511 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 782 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
515} 785}
516 786
517/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 788static void noinline
519fd_enomem (EV_P) 789fd_enomem (EV_P)
520{ 790{
521 int fd; 791 int fd;
522 792
523 for (fd = anfdmax; fd--; ) 793 for (fd = anfdmax; fd--; )
527 return; 797 return;
528 } 798 }
529} 799}
530 800
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 801/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 802static void noinline
533fd_rearm_all (EV_P) 803fd_rearm_all (EV_P)
534{ 804{
535 int fd; 805 int fd;
536 806
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 808 if (anfds [fd].events)
540 { 809 {
541 anfds [fd].events = 0; 810 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 811 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 812 }
544} 813}
545 814
546/*****************************************************************************/ 815/*****************************************************************************/
547 816
548static void 817/*
549upheap (WT *heap, int k) 818 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 820 * the branching factor of the d-tree.
821 */
552 822
553 while (k && heap [k >> 1]->at > w->at) 823/*
554 { 824 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 826 * which is more cache-efficient.
557 k >>= 1; 827 * the difference is about 5% with 50000+ watchers.
558 } 828 */
829#if EV_USE_4HEAP
559 830
560 heap [k] = w; 831#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
562 835
563} 836/* away from the root */
564 837void inline_speed
565static void
566downheap (WT *heap, int N, int k) 838downheap (ANHE *heap, int N, int k)
567{ 839{
568 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
569 842
570 while (k < (N >> 1)) 843 for (;;)
571 { 844 {
572 int j = k << 1; 845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 848
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 851 {
576 852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
578 break; 865 break;
579 866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
876 heap [k] = he;
877 ev_active (ANHE_w (he)) = k;
878}
879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
887void inline_speed
888downheap (ANHE *heap, int N, int k)
889{
890 ANHE he = heap [k];
891
892 for (;;)
893 {
894 int c = k << 1;
895
896 if (c > N + HEAP0 - 1)
897 break;
898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
580 heap [k] = heap [j]; 905 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 906 ev_active (ANHE_w (heap [k])) = k;
907
582 k = j; 908 k = c;
583 } 909 }
584 910
585 heap [k] = w; 911 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 912 ev_active (ANHE_w (he)) = k;
587} 913}
914#endif
588 915
589inline void 916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
929 heap [k] = heap [p];
930 ev_active (ANHE_w (heap [k])) = k;
931 k = p;
932 }
933
934 heap [k] = he;
935 ev_active (ANHE_w (he)) = k;
936}
937
938void inline_size
590adjustheap (WT *heap, int N, int k) 939adjustheap (ANHE *heap, int N, int k)
591{ 940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
592 upheap (heap, k); 942 upheap (heap, k);
943 else
593 downheap (heap, N, k); 944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
594} 957}
595 958
596/*****************************************************************************/ 959/*****************************************************************************/
597 960
598typedef struct 961typedef struct
599{ 962{
600 WL head; 963 WL head;
601 sig_atomic_t volatile gotsig; 964 EV_ATOMIC_T gotsig;
602} ANSIG; 965} ANSIG;
603 966
604static ANSIG *signals; 967static ANSIG *signals;
605static int signalmax; 968static int signalmax;
606 969
607static int sigpipe [2]; 970static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 971
611static void 972/*****************************************************************************/
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618 973
619 ++base; 974void inline_speed
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 975fd_intern (int fd)
676{ 976{
677#ifdef _WIN32 977#ifdef _WIN32
678 int arg = 1; 978 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else 980#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 981 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 982 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 983#endif
684} 984}
685 985
986static void noinline
987evpipe_init (EV_P)
988{
989 if (!ev_is_active (&pipeev))
990 {
991#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0)
993 {
994 evpipe [0] = -1;
995 fd_intern (evfd);
996 ev_io_set (&pipeev, evfd, EV_READ);
997 }
998 else
999#endif
1000 {
1001 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe");
1003
1004 fd_intern (evpipe [0]);
1005 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ);
1007 }
1008
1009 ev_io_start (EV_A_ &pipeev);
1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 {
1019 int old_errno = errno; /* save errno because write might clobber it */
1020
1021 *flag = 1;
1022
1023#if EV_USE_EVENTFD
1024 if (evfd >= 0)
1025 {
1026 uint64_t counter = 1;
1027 write (evfd, &counter, sizeof (uint64_t));
1028 }
1029 else
1030#endif
1031 write (evpipe [1], &old_errno, 1);
1032
1033 errno = old_errno;
1034 }
1035}
1036
686static void 1037static void
687siginit (EV_P) 1038pipecb (EV_P_ ev_io *iow, int revents)
688{ 1039{
689 fd_intern (sigpipe [0]); 1040#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 {
1049 char dummy;
1050 read (evpipe [0], &dummy, 1);
1051 }
691 1052
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1053 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1054 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1055 int signum;
1056 gotsig = 0;
1057
1058 for (signum = signalmax; signum--; )
1059 if (signals [signum].gotsig)
1060 ev_feed_signal_event (EV_A_ signum + 1);
1061 }
1062
1063#if EV_ASYNC_ENABLE
1064 if (gotasync)
1065 {
1066 int i;
1067 gotasync = 0;
1068
1069 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent)
1071 {
1072 asyncs [i]->sent = 0;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 }
1075 }
1076#endif
695} 1077}
696 1078
697/*****************************************************************************/ 1079/*****************************************************************************/
698 1080
699static struct ev_child *childs [PID_HASHSIZE]; 1081static void
1082ev_sighandler (int signum)
1083{
1084#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct;
1086#endif
1087
1088#if _WIN32
1089 signal (signum, ev_sighandler);
1090#endif
1091
1092 signals [signum - 1].gotsig = 1;
1093 evpipe_write (EV_A_ &gotsig);
1094}
1095
1096void noinline
1097ev_feed_signal_event (EV_P_ int signum)
1098{
1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
1105 --signum;
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return;
1109
1110 signals [signum].gotsig = 0;
1111
1112 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114}
1115
1116/*****************************************************************************/
1117
1118static WL childs [EV_PID_HASHSIZE];
700 1119
701#ifndef _WIN32 1120#ifndef _WIN32
702 1121
703static struct ev_signal childev; 1122static ev_signal childev;
1123
1124#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0
1126#endif
1127
1128void inline_speed
1129child_reap (EV_P_ int chain, int pid, int status)
1130{
1131 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133
1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 {
1136 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1)))
1138 {
1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1140 w->rpid = pid;
1141 w->rstatus = status;
1142 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1143 }
1144 }
1145}
704 1146
705#ifndef WCONTINUED 1147#ifndef WCONTINUED
706# define WCONTINUED 0 1148# define WCONTINUED 0
707#endif 1149#endif
708 1150
709static void 1151static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1152childcb (EV_P_ ev_signal *sw, int revents)
726{ 1153{
727 int pid, status; 1154 int pid, status;
728 1155
1156 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1157 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1158 if (!WCONTINUED
1159 || errno != EINVAL
1160 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1161 return;
1162
731 /* make sure we are called again until all childs have been reaped */ 1163 /* make sure we are called again until all children have been reaped */
1164 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1166
734 child_reap (EV_A_ sw, pid, pid, status); 1167 child_reap (EV_A_ pid, pid, status);
1168 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1170}
738 1171
739#endif 1172#endif
740 1173
741/*****************************************************************************/ 1174/*****************************************************************************/
767{ 1200{
768 return EV_VERSION_MINOR; 1201 return EV_VERSION_MINOR;
769} 1202}
770 1203
771/* return true if we are running with elevated privileges and should ignore env variables */ 1204/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1205int inline_size
773enable_secure (void) 1206enable_secure (void)
774{ 1207{
775#ifdef _WIN32 1208#ifdef _WIN32
776 return 0; 1209 return 0;
777#else 1210#else
795} 1228}
796 1229
797unsigned int 1230unsigned int
798ev_recommended_backends (void) 1231ev_recommended_backends (void)
799{ 1232{
800 unsigned int flags = ev_recommended_backends (); 1233 unsigned int flags = ev_supported_backends ();
801 1234
802#ifndef __NetBSD__ 1235#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 1236 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 1237 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 1238 flags &= ~EVBACKEND_KQUEUE;
811 1244
812 return flags; 1245 return flags;
813} 1246}
814 1247
815unsigned int 1248unsigned int
1249ev_embeddable_backends (void)
1250{
1251 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1252
1253 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1254 /* please fix it and tell me how to detect the fix */
1255 flags &= ~EVBACKEND_EPOLL;
1256
1257 return flags;
1258}
1259
1260unsigned int
816ev_backend (EV_P) 1261ev_backend (EV_P)
817{ 1262{
818 return backend; 1263 return backend;
819} 1264}
820 1265
821static void 1266unsigned int
1267ev_loop_count (EV_P)
1268{
1269 return loop_count;
1270}
1271
1272void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1274{
1275 io_blocktime = interval;
1276}
1277
1278void
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1280{
1281 timeout_blocktime = interval;
1282}
1283
1284static void noinline
822loop_init (EV_P_ unsigned int flags) 1285loop_init (EV_P_ unsigned int flags)
823{ 1286{
824 if (!backend) 1287 if (!backend)
825 { 1288 {
826#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 1293 have_monotonic = 1;
831 } 1294 }
832#endif 1295#endif
833 1296
834 ev_rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1298 mn_now = get_clock ();
836 now_floor = mn_now; 1299 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1300 rtmn_diff = ev_rt_now - mn_now;
1301
1302 io_blocktime = 0.;
1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif
1310
1311 /* pid check not overridable via env */
1312#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK)
1314 curpid = getpid ();
1315#endif
838 1316
839 if (!(flags & EVFLAG_NOENV) 1317 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1318 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1319 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1321
844 if (!(flags & 0x0000ffffUL)) 1322 if (!(flags & 0x0000ffffU))
845 flags |= ev_recommended_backends (); 1323 flags |= ev_recommended_backends ();
846 1324
847 backend = 0;
848#if EV_USE_PORT 1325#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1327#endif
851#if EV_USE_KQUEUE 1328#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 1336#endif
860#if EV_USE_SELECT 1337#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 1339#endif
863 1340
864 ev_init (&sigev, sigcb); 1341 ev_init (&pipeev, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1342 ev_set_priority (&pipeev, EV_MAXPRI);
866 } 1343 }
867} 1344}
868 1345
869static void 1346static void noinline
870loop_destroy (EV_P) 1347loop_destroy (EV_P)
871{ 1348{
872 int i; 1349 int i;
1350
1351 if (ev_is_active (&pipeev))
1352 {
1353 ev_ref (EV_A); /* signal watcher */
1354 ev_io_stop (EV_A_ &pipeev);
1355
1356#if EV_USE_EVENTFD
1357 if (evfd >= 0)
1358 close (evfd);
1359#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
1367
1368#if EV_USE_INOTIFY
1369 if (fs_fd >= 0)
1370 close (fs_fd);
1371#endif
1372
1373 if (backend_fd >= 0)
1374 close (backend_fd);
873 1375
874#if EV_USE_PORT 1376#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1378#endif
877#if EV_USE_KQUEUE 1379#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1388#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1389 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1390#endif
889 1391
890 for (i = NUMPRI; i--; ) 1392 for (i = NUMPRI; i--; )
1393 {
891 array_free (pending, [i]); 1394 array_free (pending, [i]);
1395#if EV_IDLE_ENABLE
1396 array_free (idle, [i]);
1397#endif
1398 }
1399
1400 ev_free (anfds); anfdmax = 0;
892 1401
893 /* have to use the microsoft-never-gets-it-right macro */ 1402 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1403 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1404 array_free (timer, EMPTY);
896#if EV_PERIODICS 1405#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1406 array_free (periodic, EMPTY);
898#endif 1407#endif
1408#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1409 array_free (fork, EMPTY);
1410#endif
900 array_free (prepare, EMPTY0); 1411 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1412 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY);
1415#endif
902 1416
903 backend = 0; 1417 backend = 0;
904} 1418}
905 1419
906static void 1420#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P);
1422#endif
1423
1424void inline_size
907loop_fork (EV_P) 1425loop_fork (EV_P)
908{ 1426{
909#if EV_USE_PORT 1427#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1429#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1431 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1432#endif
915#if EV_USE_EPOLL 1433#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1434 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 1435#endif
1436#if EV_USE_INOTIFY
1437 infy_fork (EV_A);
1438#endif
918 1439
919 if (ev_is_active (&sigev)) 1440 if (ev_is_active (&pipeev))
920 { 1441 {
921 /* default loop */ 1442 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
922 1448
923 ev_ref (EV_A); 1449 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 1450 ev_io_stop (EV_A_ &pipeev);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456
1457 if (evpipe [0] >= 0)
1458 {
925 close (sigpipe [0]); 1459 close (evpipe [0]);
926 close (sigpipe [1]); 1460 close (evpipe [1]);
1461 }
927 1462
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A); 1463 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ);
932 } 1466 }
933 1467
934 postfork = 0; 1468 postfork = 0;
935} 1469}
936 1470
937#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1472
938struct ev_loop * 1473struct ev_loop *
939ev_loop_new (unsigned int flags) 1474ev_loop_new (unsigned int flags)
940{ 1475{
941 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
942 1477
958} 1493}
959 1494
960void 1495void
961ev_loop_fork (EV_P) 1496ev_loop_fork (EV_P)
962{ 1497{
963 postfork = 1; 1498 postfork = 1; /* must be in line with ev_default_fork */
964} 1499}
965 1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
966#endif 1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
967 1601
968#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
969struct ev_loop * 1603struct ev_loop *
970ev_default_loop_init (unsigned int flags) 1604ev_default_loop_init (unsigned int flags)
971#else 1605#else
972int 1606int
973ev_default_loop (unsigned int flags) 1607ev_default_loop (unsigned int flags)
974#endif 1608#endif
975{ 1609{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 1610 if (!ev_default_loop_ptr)
981 { 1611 {
982#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
984#else 1614#else
987 1617
988 loop_init (EV_A_ flags); 1618 loop_init (EV_A_ flags);
989 1619
990 if (ev_backend (EV_A)) 1620 if (ev_backend (EV_A))
991 { 1621 {
992 siginit (EV_A);
993
994#ifndef _WIN32 1622#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 1623 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 1624 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 1625 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1626 ev_unref (EV_A); /* child watcher should not keep loop alive */
1010{ 1638{
1011#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1012 struct ev_loop *loop = ev_default_loop_ptr; 1640 struct ev_loop *loop = ev_default_loop_ptr;
1013#endif 1641#endif
1014 1642
1643 ev_default_loop_ptr = 0;
1644
1015#ifndef _WIN32 1645#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1018#endif 1648#endif
1019 1649
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1027} 1651}
1028 1652
1029void 1653void
1030ev_default_fork (void) 1654ev_default_fork (void)
1032#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1658#endif
1035 1659
1036 if (backend) 1660 if (backend)
1037 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1038} 1662}
1039 1663
1040/*****************************************************************************/ 1664/*****************************************************************************/
1041 1665
1042static int 1666void
1043any_pending (EV_P) 1667ev_invoke (EV_P_ void *w, int revents)
1044{ 1668{
1045 int pri; 1669 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1670}
1053 1671
1054inline void 1672void inline_speed
1055call_pending (EV_P) 1673call_pending (EV_P)
1056{ 1674{
1057 int pri; 1675 int pri;
1058 1676
1059 for (pri = NUMPRI; pri--; ) 1677 for (pri = NUMPRI; pri--; )
1061 { 1679 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1681
1064 if (expect_true (p->w)) 1682 if (expect_true (p->w))
1065 { 1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1685
1066 p->w->pending = 0; 1686 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1068 } 1689 }
1069 } 1690 }
1070} 1691}
1071 1692
1072inline void 1693#if EV_IDLE_ENABLE
1694void inline_size
1695idle_reify (EV_P)
1696{
1697 if (expect_false (idleall))
1698 {
1699 int pri;
1700
1701 for (pri = NUMPRI; pri--; )
1702 {
1703 if (pendingcnt [pri])
1704 break;
1705
1706 if (idlecnt [pri])
1707 {
1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1709 break;
1710 }
1711 }
1712 }
1713}
1714#endif
1715
1716void inline_size
1073timers_reify (EV_P) 1717timers_reify (EV_P)
1074{ 1718{
1719 EV_FREQUENT_CHECK;
1720
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1076 { 1722 {
1077 struct ev_timer *w = timers [0]; 1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1078 1724
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1726
1081 /* first reschedule or stop timer */ 1727 /* first reschedule or stop timer */
1082 if (w->repeat) 1728 if (w->repeat)
1083 { 1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1735
1086 ((WT)w)->at += w->repeat; 1736 ANHE_at_cache (timers [HEAP0]);
1087 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now;
1089
1090 downheap ((WT *)timers, timercnt, 0); 1737 downheap (timers, timercnt, HEAP0);
1091 } 1738 }
1092 else 1739 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1741
1742 EV_FREQUENT_CHECK;
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1744 }
1097} 1745}
1098 1746
1099#if EV_PERIODICS 1747#if EV_PERIODIC_ENABLE
1100inline void 1748void inline_size
1101periodics_reify (EV_P) 1749periodics_reify (EV_P)
1102{ 1750{
1751 EV_FREQUENT_CHECK;
1752
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1104 { 1754 {
1105 struct ev_periodic *w = periodics [0]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1106 1756
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1758
1109 /* first reschedule or stop timer */ 1759 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1760 if (w->reschedule_cb)
1111 { 1761 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1114 downheap ((WT *)periodics, periodiccnt, 0); 1767 downheap (periodics, periodiccnt, HEAP0);
1115 } 1768 }
1116 else if (w->interval) 1769 else if (w->interval)
1117 { 1770 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1120 downheap ((WT *)periodics, periodiccnt, 0); 1786 downheap (periodics, periodiccnt, HEAP0);
1121 } 1787 }
1122 else 1788 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1790
1791 EV_FREQUENT_CHECK;
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1793 }
1127} 1794}
1128 1795
1129static void 1796static void noinline
1130periodics_reschedule (EV_P) 1797periodics_reschedule (EV_P)
1131{ 1798{
1132 int i; 1799 int i;
1133 1800
1134 /* adjust periodics after time jump */ 1801 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1136 { 1803 {
1137 struct ev_periodic *w = periodics [i]; 1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1138 1805
1139 if (w->reschedule_cb) 1806 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1808 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1815}
1816#endif
1817
1818void inline_speed
1819time_update (EV_P_ ev_tstamp max_block)
1820{
1821 int i;
1822
1823#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic))
1143 } 1825 {
1826 ev_tstamp odiff = rtmn_diff;
1144 1827
1145 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i);
1148}
1149#endif
1150
1151inline int
1152time_update_monotonic (EV_P)
1153{
1154 mn_now = get_clock (); 1828 mn_now = get_clock ();
1155 1829
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1831 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1833 {
1158 ev_rt_now = rtmn_diff + mn_now; 1834 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1835 return;
1160 } 1836 }
1161 else 1837
1162 {
1163 now_floor = mn_now; 1838 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1839 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1840
1169inline void 1841 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1842 * on the choice of "4": one iteration isn't enough,
1171{ 1843 * in case we get preempted during the calls to
1172 int i; 1844 * ev_time and get_clock. a second call is almost guaranteed
1173 1845 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1846 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1847 * in the unlikely event of having been preempted here.
1176 { 1848 */
1177 if (time_update_monotonic (EV_A)) 1849 for (i = 4; --i; )
1178 { 1850 {
1179 ev_tstamp odiff = rtmn_diff; 1851 rtmn_diff = ev_rt_now - mn_now;
1180 1852
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1854 return; /* all is well */
1855
1856 ev_rt_now = ev_time ();
1857 mn_now = get_clock ();
1858 now_floor = mn_now;
1859 }
1860
1861# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A);
1863# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 }
1867 else
1868#endif
1869 {
1870 ev_rt_now = ev_time ();
1871
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 {
1874#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A);
1876#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1182 { 1879 {
1183 rtmn_diff = ev_rt_now - mn_now; 1880 ANHE *he = timers + i + HEAP0;
1184 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1882 ANHE_at_cache (*he);
1186 return; /* all is well */
1187
1188 ev_rt_now = ev_time ();
1189 mn_now = get_clock ();
1190 now_floor = mn_now;
1191 } 1883 }
1192
1193# if EV_PERIODICS
1194 periodics_reschedule (EV_A);
1195# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1884 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 1885
1216 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1217 } 1887 }
1218} 1888}
1219 1889
1227ev_unref (EV_P) 1897ev_unref (EV_P)
1228{ 1898{
1229 --activecnt; 1899 --activecnt;
1230} 1900}
1231 1901
1902void
1903ev_now_update (EV_P)
1904{
1905 time_update (EV_A_ 1e100);
1906}
1907
1232static int loop_done; 1908static int loop_done;
1233 1909
1234void 1910void
1235ev_loop (EV_P_ int flags) 1911ev_loop (EV_P_ int flags)
1236{ 1912{
1237 double block; 1913 loop_done = EVUNLOOP_CANCEL;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1239 1914
1240 while (activecnt) 1915 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1916
1917 do
1241 { 1918 {
1919#if EV_VERIFY >= 2
1920 ev_loop_verify (EV_A);
1921#endif
1922
1923#ifndef _WIN32
1924 if (expect_false (curpid)) /* penalise the forking check even more */
1925 if (expect_false (getpid () != curpid))
1926 {
1927 curpid = getpid ();
1928 postfork = 1;
1929 }
1930#endif
1931
1932#if EV_FORK_ENABLE
1933 /* we might have forked, so queue fork handlers */
1934 if (expect_false (postfork))
1935 if (forkcnt)
1936 {
1937 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1938 call_pending (EV_A);
1939 }
1940#endif
1941
1242 /* queue check watchers (and execute them) */ 1942 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1943 if (expect_false (preparecnt))
1244 { 1944 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1945 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1946 call_pending (EV_A);
1247 } 1947 }
1248 1948
1949 if (expect_false (!activecnt))
1950 break;
1951
1249 /* we might have forked, so reify kernel state if necessary */ 1952 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1953 if (expect_false (postfork))
1251 loop_fork (EV_A); 1954 loop_fork (EV_A);
1252 1955
1253 /* update fd-related kernel structures */ 1956 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1957 fd_reify (EV_A);
1255 1958
1256 /* calculate blocking time */ 1959 /* calculate blocking time */
1960 {
1961 ev_tstamp waittime = 0.;
1962 ev_tstamp sleeptime = 0.;
1257 1963
1258 /* we only need this for !monotonic clock or timers, but as we basically 1964 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1965 {
1266 ev_rt_now = ev_time (); 1966 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1967 time_update (EV_A_ 1e100);
1268 }
1269 1968
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1969 waittime = MAX_BLOCKTIME;
1275 1970
1276 if (timercnt) 1971 if (timercnt)
1277 { 1972 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1279 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1280 } 1975 }
1281 1976
1282#if EV_PERIODICS 1977#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1978 if (periodiccnt)
1284 { 1979 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1980 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1981 if (waittime > to) waittime = to;
1287 } 1982 }
1288#endif 1983#endif
1289 1984
1290 if (expect_false (block < 0.)) block = 0.; 1985 if (expect_false (waittime < timeout_blocktime))
1986 waittime = timeout_blocktime;
1987
1988 sleeptime = waittime - backend_fudge;
1989
1990 if (expect_true (sleeptime > io_blocktime))
1991 sleeptime = io_blocktime;
1992
1993 if (sleeptime)
1994 {
1995 ev_sleep (sleeptime);
1996 waittime -= sleeptime;
1997 }
1291 } 1998 }
1292 1999
2000 ++loop_count;
1293 backend_poll (EV_A_ block); 2001 backend_poll (EV_A_ waittime);
1294 2002
1295 /* update ev_rt_now, do magic */ 2003 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 2004 time_update (EV_A_ waittime + sleeptime);
2005 }
1297 2006
1298 /* queue pending timers and reschedule them */ 2007 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 2008 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 2009#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 2010 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 2011#endif
1303 2012
2013#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 2014 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 2015 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2016#endif
1307 2017
1308 /* queue check watchers, to be executed first */ 2018 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 2019 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2020 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 2021
1312 call_pending (EV_A); 2022 call_pending (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 2023 }
2024 while (expect_true (
2025 activecnt
2026 && !loop_done
2027 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2028 ));
1317 2029
1318 if (loop_done != 2) 2030 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 2031 loop_done = EVUNLOOP_CANCEL;
1320} 2032}
1321 2033
1322void 2034void
1323ev_unloop (EV_P_ int how) 2035ev_unloop (EV_P_ int how)
1324{ 2036{
1325 loop_done = how; 2037 loop_done = how;
1326} 2038}
1327 2039
1328/*****************************************************************************/ 2040/*****************************************************************************/
1329 2041
1330inline void 2042void inline_size
1331wlist_add (WL *head, WL elem) 2043wlist_add (WL *head, WL elem)
1332{ 2044{
1333 elem->next = *head; 2045 elem->next = *head;
1334 *head = elem; 2046 *head = elem;
1335} 2047}
1336 2048
1337inline void 2049void inline_size
1338wlist_del (WL *head, WL elem) 2050wlist_del (WL *head, WL elem)
1339{ 2051{
1340 while (*head) 2052 while (*head)
1341 { 2053 {
1342 if (*head == elem) 2054 if (*head == elem)
1347 2059
1348 head = &(*head)->next; 2060 head = &(*head)->next;
1349 } 2061 }
1350} 2062}
1351 2063
1352inline void 2064void inline_speed
1353ev_clear_pending (EV_P_ W w) 2065clear_pending (EV_P_ W w)
1354{ 2066{
1355 if (w->pending) 2067 if (w->pending)
1356 { 2068 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 2070 w->pending = 0;
1359 } 2071 }
1360} 2072}
1361 2073
1362inline void 2074int
2075ev_clear_pending (EV_P_ void *w)
2076{
2077 W w_ = (W)w;
2078 int pending = w_->pending;
2079
2080 if (expect_true (pending))
2081 {
2082 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2083 w_->pending = 0;
2084 p->w = 0;
2085 return p->events;
2086 }
2087 else
2088 return 0;
2089}
2090
2091void inline_size
2092pri_adjust (EV_P_ W w)
2093{
2094 int pri = w->priority;
2095 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2096 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2097 w->priority = pri;
2098}
2099
2100void inline_speed
1363ev_start (EV_P_ W w, int active) 2101ev_start (EV_P_ W w, int active)
1364{ 2102{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2103 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 2104 w->active = active;
1369 ev_ref (EV_A); 2105 ev_ref (EV_A);
1370} 2106}
1371 2107
1372inline void 2108void inline_size
1373ev_stop (EV_P_ W w) 2109ev_stop (EV_P_ W w)
1374{ 2110{
1375 ev_unref (EV_A); 2111 ev_unref (EV_A);
1376 w->active = 0; 2112 w->active = 0;
1377} 2113}
1378 2114
1379/*****************************************************************************/ 2115/*****************************************************************************/
1380 2116
1381void 2117void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 2118ev_io_start (EV_P_ ev_io *w)
1383{ 2119{
1384 int fd = w->fd; 2120 int fd = w->fd;
1385 2121
1386 if (expect_false (ev_is_active (w))) 2122 if (expect_false (ev_is_active (w)))
1387 return; 2123 return;
1388 2124
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 2125 assert (("ev_io_start called with negative fd", fd >= 0));
2126 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2127
2128 EV_FREQUENT_CHECK;
1390 2129
1391 ev_start (EV_A_ (W)w, 1); 2130 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2131 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2132 wlist_add (&anfds[fd].head, (WL)w);
1394 2133
1395 fd_change (EV_A_ fd); 2134 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1396} 2135 w->events &= ~EV_IOFDSET;
1397 2136
1398void 2137 EV_FREQUENT_CHECK;
2138}
2139
2140void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 2141ev_io_stop (EV_P_ ev_io *w)
1400{ 2142{
1401 ev_clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
1403 return; 2145 return;
1404 2146
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2147 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 2148
2149 EV_FREQUENT_CHECK;
2150
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2151 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 2152 ev_stop (EV_A_ (W)w);
1409 2153
1410 fd_change (EV_A_ w->fd); 2154 fd_change (EV_A_ w->fd, 1);
1411}
1412 2155
1413void 2156 EV_FREQUENT_CHECK;
2157}
2158
2159void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 2160ev_timer_start (EV_P_ ev_timer *w)
1415{ 2161{
1416 if (expect_false (ev_is_active (w))) 2162 if (expect_false (ev_is_active (w)))
1417 return; 2163 return;
1418 2164
1419 ((WT)w)->at += mn_now; 2165 ev_at (w) += mn_now;
1420 2166
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2167 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 2168
2169 EV_FREQUENT_CHECK;
2170
2171 ++timercnt;
1423 ev_start (EV_A_ (W)w, ++timercnt); 2172 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2173 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 2174 ANHE_w (timers [ev_active (w)]) = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 2175 ANHE_at_cache (timers [ev_active (w)]);
2176 upheap (timers, ev_active (w));
1427 2177
2178 EV_FREQUENT_CHECK;
2179
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2180 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1429} 2181}
1430 2182
1431void 2183void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 2184ev_timer_stop (EV_P_ ev_timer *w)
1433{ 2185{
1434 ev_clear_pending (EV_A_ (W)w); 2186 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 2187 if (expect_false (!ev_is_active (w)))
1436 return; 2188 return;
1437 2189
2190 EV_FREQUENT_CHECK;
2191
2192 {
2193 int active = ev_active (w);
2194
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2195 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1439 2196
2197 --timercnt;
2198
1440 if (expect_true (((W)w)->active < timercnt--)) 2199 if (expect_true (active < timercnt + HEAP0))
1441 { 2200 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 2201 timers [active] = timers [timercnt + HEAP0];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2202 adjustheap (timers, timercnt, active);
1444 } 2203 }
2204 }
1445 2205
1446 ((WT)w)->at -= mn_now; 2206 EV_FREQUENT_CHECK;
2207
2208 ev_at (w) -= mn_now;
1447 2209
1448 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1449} 2211}
1450 2212
1451void 2213void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 2214ev_timer_again (EV_P_ ev_timer *w)
1453{ 2215{
2216 EV_FREQUENT_CHECK;
2217
1454 if (ev_is_active (w)) 2218 if (ev_is_active (w))
1455 { 2219 {
1456 if (w->repeat) 2220 if (w->repeat)
1457 { 2221 {
1458 ((WT)w)->at = mn_now + w->repeat; 2222 ev_at (w) = mn_now + w->repeat;
2223 ANHE_at_cache (timers [ev_active (w)]);
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2224 adjustheap (timers, timercnt, ev_active (w));
1460 } 2225 }
1461 else 2226 else
1462 ev_timer_stop (EV_A_ w); 2227 ev_timer_stop (EV_A_ w);
1463 } 2228 }
1464 else if (w->repeat) 2229 else if (w->repeat)
1465 { 2230 {
1466 w->at = w->repeat; 2231 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 2232 ev_timer_start (EV_A_ w);
1468 } 2233 }
1469}
1470 2234
2235 EV_FREQUENT_CHECK;
2236}
2237
1471#if EV_PERIODICS 2238#if EV_PERIODIC_ENABLE
1472void 2239void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 2240ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 2241{
1475 if (expect_false (ev_is_active (w))) 2242 if (expect_false (ev_is_active (w)))
1476 return; 2243 return;
1477 2244
1478 if (w->reschedule_cb) 2245 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2246 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 2247 else if (w->interval)
1481 { 2248 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2249 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 2250 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2251 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 2252 }
2253 else
2254 ev_at (w) = w->offset;
1486 2255
2256 EV_FREQUENT_CHECK;
2257
2258 ++periodiccnt;
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 2259 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2260 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 2261 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 2262 ANHE_at_cache (periodics [ev_active (w)]);
2263 upheap (periodics, ev_active (w));
1491 2264
2265 EV_FREQUENT_CHECK;
2266
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2267 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1493} 2268}
1494 2269
1495void 2270void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 2271ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 2272{
1498 ev_clear_pending (EV_A_ (W)w); 2273 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2274 if (expect_false (!ev_is_active (w)))
1500 return; 2275 return;
1501 2276
2277 EV_FREQUENT_CHECK;
2278
2279 {
2280 int active = ev_active (w);
2281
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2282 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1503 2283
2284 --periodiccnt;
2285
1504 if (expect_true (((W)w)->active < periodiccnt--)) 2286 if (expect_true (active < periodiccnt + HEAP0))
1505 { 2287 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2288 periodics [active] = periodics [periodiccnt + HEAP0];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2289 adjustheap (periodics, periodiccnt, active);
1508 } 2290 }
2291 }
2292
2293 EV_FREQUENT_CHECK;
1509 2294
1510 ev_stop (EV_A_ (W)w); 2295 ev_stop (EV_A_ (W)w);
1511} 2296}
1512 2297
1513void 2298void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 2299ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 2300{
1516 /* TODO: use adjustheap and recalculation */ 2301 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 2302 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 2303 ev_periodic_start (EV_A_ w);
1519} 2304}
1520#endif 2305#endif
1521 2306
1522void 2307#ifndef SA_RESTART
1523ev_idle_start (EV_P_ struct ev_idle *w) 2308# define SA_RESTART 0
2309#endif
2310
2311void noinline
2312ev_signal_start (EV_P_ ev_signal *w)
1524{ 2313{
2314#if EV_MULTIPLICITY
2315 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif
1525 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1526 return; 2318 return;
1527 2319
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART
1589# define SA_RESTART 0
1590#endif
1591
1592void
1593ev_signal_start (EV_P_ struct ev_signal *w)
1594{
1595#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif
1598 if (expect_false (ev_is_active (w)))
1599 return;
1600
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2320 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 2321
2322 evpipe_init (EV_A);
2323
2324 EV_FREQUENT_CHECK;
2325
2326 {
2327#ifndef _WIN32
2328 sigset_t full, prev;
2329 sigfillset (&full);
2330 sigprocmask (SIG_SETMASK, &full, &prev);
2331#endif
2332
2333 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2334
2335#ifndef _WIN32
2336 sigprocmask (SIG_SETMASK, &prev, 0);
2337#endif
2338 }
2339
1603 ev_start (EV_A_ (W)w, 1); 2340 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2341 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 2342
1607 if (!((WL)w)->next) 2343 if (!((WL)w)->next)
1608 { 2344 {
1609#if _WIN32 2345#if _WIN32
1610 signal (w->signum, sighandler); 2346 signal (w->signum, ev_sighandler);
1611#else 2347#else
1612 struct sigaction sa; 2348 struct sigaction sa;
1613 sa.sa_handler = sighandler; 2349 sa.sa_handler = ev_sighandler;
1614 sigfillset (&sa.sa_mask); 2350 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2351 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0); 2352 sigaction (w->signum, &sa, 0);
1617#endif 2353#endif
1618 } 2354 }
1619}
1620 2355
1621void 2356 EV_FREQUENT_CHECK;
2357}
2358
2359void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 2360ev_signal_stop (EV_P_ ev_signal *w)
1623{ 2361{
1624 ev_clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
1626 return; 2364 return;
1627 2365
2366 EV_FREQUENT_CHECK;
2367
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2368 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2369 ev_stop (EV_A_ (W)w);
1630 2370
1631 if (!signals [w->signum - 1].head) 2371 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 2372 signal (w->signum, SIG_DFL);
1633}
1634 2373
2374 EV_FREQUENT_CHECK;
2375}
2376
1635void 2377void
1636ev_child_start (EV_P_ struct ev_child *w) 2378ev_child_start (EV_P_ ev_child *w)
1637{ 2379{
1638#if EV_MULTIPLICITY 2380#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2381 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 2382#endif
1641 if (expect_false (ev_is_active (w))) 2383 if (expect_false (ev_is_active (w)))
1642 return; 2384 return;
1643 2385
2386 EV_FREQUENT_CHECK;
2387
1644 ev_start (EV_A_ (W)w, 1); 2388 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2389 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646}
1647 2390
2391 EV_FREQUENT_CHECK;
2392}
2393
1648void 2394void
1649ev_child_stop (EV_P_ struct ev_child *w) 2395ev_child_stop (EV_P_ ev_child *w)
1650{ 2396{
1651 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1653 return; 2399 return;
1654 2400
2401 EV_FREQUENT_CHECK;
2402
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2403 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
2405
2406 EV_FREQUENT_CHECK;
1657} 2407}
2408
2409#if EV_STAT_ENABLE
2410
2411# ifdef _WIN32
2412# undef lstat
2413# define lstat(a,b) _stati64 (a,b)
2414# endif
2415
2416#define DEF_STAT_INTERVAL 5.0074891
2417#define MIN_STAT_INTERVAL 0.1074891
2418
2419static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2420
2421#if EV_USE_INOTIFY
2422# define EV_INOTIFY_BUFSIZE 8192
2423
2424static void noinline
2425infy_add (EV_P_ ev_stat *w)
2426{
2427 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2428
2429 if (w->wd < 0)
2430 {
2431 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2432
2433 /* monitor some parent directory for speedup hints */
2434 /* note that exceeding the hardcoded limit is not a correctness issue, */
2435 /* but an efficiency issue only */
2436 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2437 {
2438 char path [4096];
2439 strcpy (path, w->path);
2440
2441 do
2442 {
2443 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2444 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2445
2446 char *pend = strrchr (path, '/');
2447
2448 if (!pend)
2449 break; /* whoops, no '/', complain to your admin */
2450
2451 *pend = 0;
2452 w->wd = inotify_add_watch (fs_fd, path, mask);
2453 }
2454 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2455 }
2456 }
2457 else
2458 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2459
2460 if (w->wd >= 0)
2461 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2462}
2463
2464static void noinline
2465infy_del (EV_P_ ev_stat *w)
2466{
2467 int slot;
2468 int wd = w->wd;
2469
2470 if (wd < 0)
2471 return;
2472
2473 w->wd = -2;
2474 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2475 wlist_del (&fs_hash [slot].head, (WL)w);
2476
2477 /* remove this watcher, if others are watching it, they will rearm */
2478 inotify_rm_watch (fs_fd, wd);
2479}
2480
2481static void noinline
2482infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2483{
2484 if (slot < 0)
2485 /* overflow, need to check for all hash slots */
2486 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2487 infy_wd (EV_A_ slot, wd, ev);
2488 else
2489 {
2490 WL w_;
2491
2492 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2493 {
2494 ev_stat *w = (ev_stat *)w_;
2495 w_ = w_->next; /* lets us remove this watcher and all before it */
2496
2497 if (w->wd == wd || wd == -1)
2498 {
2499 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2500 {
2501 w->wd = -1;
2502 infy_add (EV_A_ w); /* re-add, no matter what */
2503 }
2504
2505 stat_timer_cb (EV_A_ &w->timer, 0);
2506 }
2507 }
2508 }
2509}
2510
2511static void
2512infy_cb (EV_P_ ev_io *w, int revents)
2513{
2514 char buf [EV_INOTIFY_BUFSIZE];
2515 struct inotify_event *ev = (struct inotify_event *)buf;
2516 int ofs;
2517 int len = read (fs_fd, buf, sizeof (buf));
2518
2519 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2520 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2521}
2522
2523void inline_size
2524infy_init (EV_P)
2525{
2526 if (fs_fd != -2)
2527 return;
2528
2529 /* kernels < 2.6.25 are borked
2530 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2531 */
2532 {
2533 struct utsname buf;
2534 int major, minor, micro;
2535
2536 fs_fd = -1;
2537
2538 if (uname (&buf))
2539 return;
2540
2541 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2542 return;
2543
2544 if (major < 2
2545 || (major == 2 && minor < 6)
2546 || (major == 2 && minor == 6 && micro < 25))
2547 return;
2548 }
2549
2550 fs_fd = inotify_init ();
2551
2552 if (fs_fd >= 0)
2553 {
2554 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2555 ev_set_priority (&fs_w, EV_MAXPRI);
2556 ev_io_start (EV_A_ &fs_w);
2557 }
2558}
2559
2560void inline_size
2561infy_fork (EV_P)
2562{
2563 int slot;
2564
2565 if (fs_fd < 0)
2566 return;
2567
2568 close (fs_fd);
2569 fs_fd = inotify_init ();
2570
2571 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2572 {
2573 WL w_ = fs_hash [slot].head;
2574 fs_hash [slot].head = 0;
2575
2576 while (w_)
2577 {
2578 ev_stat *w = (ev_stat *)w_;
2579 w_ = w_->next; /* lets us add this watcher */
2580
2581 w->wd = -1;
2582
2583 if (fs_fd >= 0)
2584 infy_add (EV_A_ w); /* re-add, no matter what */
2585 else
2586 ev_timer_start (EV_A_ &w->timer);
2587 }
2588 }
2589}
2590
2591#endif
2592
2593#ifdef _WIN32
2594# define EV_LSTAT(p,b) _stati64 (p, b)
2595#else
2596# define EV_LSTAT(p,b) lstat (p, b)
2597#endif
2598
2599void
2600ev_stat_stat (EV_P_ ev_stat *w)
2601{
2602 if (lstat (w->path, &w->attr) < 0)
2603 w->attr.st_nlink = 0;
2604 else if (!w->attr.st_nlink)
2605 w->attr.st_nlink = 1;
2606}
2607
2608static void noinline
2609stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2610{
2611 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2612
2613 /* we copy this here each the time so that */
2614 /* prev has the old value when the callback gets invoked */
2615 w->prev = w->attr;
2616 ev_stat_stat (EV_A_ w);
2617
2618 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2619 if (
2620 w->prev.st_dev != w->attr.st_dev
2621 || w->prev.st_ino != w->attr.st_ino
2622 || w->prev.st_mode != w->attr.st_mode
2623 || w->prev.st_nlink != w->attr.st_nlink
2624 || w->prev.st_uid != w->attr.st_uid
2625 || w->prev.st_gid != w->attr.st_gid
2626 || w->prev.st_rdev != w->attr.st_rdev
2627 || w->prev.st_size != w->attr.st_size
2628 || w->prev.st_atime != w->attr.st_atime
2629 || w->prev.st_mtime != w->attr.st_mtime
2630 || w->prev.st_ctime != w->attr.st_ctime
2631 ) {
2632 #if EV_USE_INOTIFY
2633 if (fs_fd >= 0)
2634 {
2635 infy_del (EV_A_ w);
2636 infy_add (EV_A_ w);
2637 ev_stat_stat (EV_A_ w); /* avoid race... */
2638 }
2639 #endif
2640
2641 ev_feed_event (EV_A_ w, EV_STAT);
2642 }
2643}
2644
2645void
2646ev_stat_start (EV_P_ ev_stat *w)
2647{
2648 if (expect_false (ev_is_active (w)))
2649 return;
2650
2651 /* since we use memcmp, we need to clear any padding data etc. */
2652 memset (&w->prev, 0, sizeof (ev_statdata));
2653 memset (&w->attr, 0, sizeof (ev_statdata));
2654
2655 ev_stat_stat (EV_A_ w);
2656
2657 if (w->interval < MIN_STAT_INTERVAL)
2658 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2659
2660 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2661 ev_set_priority (&w->timer, ev_priority (w));
2662
2663#if EV_USE_INOTIFY
2664 infy_init (EV_A);
2665
2666 if (fs_fd >= 0)
2667 infy_add (EV_A_ w);
2668 else
2669#endif
2670 ev_timer_start (EV_A_ &w->timer);
2671
2672 ev_start (EV_A_ (W)w, 1);
2673
2674 EV_FREQUENT_CHECK;
2675}
2676
2677void
2678ev_stat_stop (EV_P_ ev_stat *w)
2679{
2680 clear_pending (EV_A_ (W)w);
2681 if (expect_false (!ev_is_active (w)))
2682 return;
2683
2684 EV_FREQUENT_CHECK;
2685
2686#if EV_USE_INOTIFY
2687 infy_del (EV_A_ w);
2688#endif
2689 ev_timer_stop (EV_A_ &w->timer);
2690
2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2694}
2695#endif
2696
2697#if EV_IDLE_ENABLE
2698void
2699ev_idle_start (EV_P_ ev_idle *w)
2700{
2701 if (expect_false (ev_is_active (w)))
2702 return;
2703
2704 pri_adjust (EV_A_ (W)w);
2705
2706 EV_FREQUENT_CHECK;
2707
2708 {
2709 int active = ++idlecnt [ABSPRI (w)];
2710
2711 ++idleall;
2712 ev_start (EV_A_ (W)w, active);
2713
2714 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2715 idles [ABSPRI (w)][active - 1] = w;
2716 }
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721void
2722ev_idle_stop (EV_P_ ev_idle *w)
2723{
2724 clear_pending (EV_A_ (W)w);
2725 if (expect_false (!ev_is_active (w)))
2726 return;
2727
2728 EV_FREQUENT_CHECK;
2729
2730 {
2731 int active = ev_active (w);
2732
2733 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2734 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2735
2736 ev_stop (EV_A_ (W)w);
2737 --idleall;
2738 }
2739
2740 EV_FREQUENT_CHECK;
2741}
2742#endif
2743
2744void
2745ev_prepare_start (EV_P_ ev_prepare *w)
2746{
2747 if (expect_false (ev_is_active (w)))
2748 return;
2749
2750 EV_FREQUENT_CHECK;
2751
2752 ev_start (EV_A_ (W)w, ++preparecnt);
2753 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2754 prepares [preparecnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2757}
2758
2759void
2760ev_prepare_stop (EV_P_ ev_prepare *w)
2761{
2762 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w)))
2764 return;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
2771 prepares [active - 1] = prepares [--preparecnt];
2772 ev_active (prepares [active - 1]) = active;
2773 }
2774
2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2778}
2779
2780void
2781ev_check_start (EV_P_ ev_check *w)
2782{
2783 if (expect_false (ev_is_active (w)))
2784 return;
2785
2786 EV_FREQUENT_CHECK;
2787
2788 ev_start (EV_A_ (W)w, ++checkcnt);
2789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2790 checks [checkcnt - 1] = w;
2791
2792 EV_FREQUENT_CHECK;
2793}
2794
2795void
2796ev_check_stop (EV_P_ ev_check *w)
2797{
2798 clear_pending (EV_A_ (W)w);
2799 if (expect_false (!ev_is_active (w)))
2800 return;
2801
2802 EV_FREQUENT_CHECK;
2803
2804 {
2805 int active = ev_active (w);
2806
2807 checks [active - 1] = checks [--checkcnt];
2808 ev_active (checks [active - 1]) = active;
2809 }
2810
2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
2814}
2815
2816#if EV_EMBED_ENABLE
2817void noinline
2818ev_embed_sweep (EV_P_ ev_embed *w)
2819{
2820 ev_loop (w->other, EVLOOP_NONBLOCK);
2821}
2822
2823static void
2824embed_io_cb (EV_P_ ev_io *io, int revents)
2825{
2826 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2827
2828 if (ev_cb (w))
2829 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2830 else
2831 ev_loop (w->other, EVLOOP_NONBLOCK);
2832}
2833
2834static void
2835embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2836{
2837 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2838
2839 {
2840 struct ev_loop *loop = w->other;
2841
2842 while (fdchangecnt)
2843 {
2844 fd_reify (EV_A);
2845 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2846 }
2847 }
2848}
2849
2850static void
2851embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2852{
2853 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2854
2855 {
2856 struct ev_loop *loop = w->other;
2857
2858 ev_loop_fork (EV_A);
2859 }
2860}
2861
2862#if 0
2863static void
2864embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2865{
2866 ev_idle_stop (EV_A_ idle);
2867}
2868#endif
2869
2870void
2871ev_embed_start (EV_P_ ev_embed *w)
2872{
2873 if (expect_false (ev_is_active (w)))
2874 return;
2875
2876 {
2877 struct ev_loop *loop = w->other;
2878 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2879 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2880 }
2881
2882 EV_FREQUENT_CHECK;
2883
2884 ev_set_priority (&w->io, ev_priority (w));
2885 ev_io_start (EV_A_ &w->io);
2886
2887 ev_prepare_init (&w->prepare, embed_prepare_cb);
2888 ev_set_priority (&w->prepare, EV_MINPRI);
2889 ev_prepare_start (EV_A_ &w->prepare);
2890
2891 ev_fork_init (&w->fork, embed_fork_cb);
2892 ev_fork_start (EV_A_ &w->fork);
2893
2894 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2895
2896 ev_start (EV_A_ (W)w, 1);
2897
2898 EV_FREQUENT_CHECK;
2899}
2900
2901void
2902ev_embed_stop (EV_P_ ev_embed *w)
2903{
2904 clear_pending (EV_A_ (W)w);
2905 if (expect_false (!ev_is_active (w)))
2906 return;
2907
2908 EV_FREQUENT_CHECK;
2909
2910 ev_io_stop (EV_A_ &w->io);
2911 ev_prepare_stop (EV_A_ &w->prepare);
2912 ev_fork_stop (EV_A_ &w->fork);
2913
2914 EV_FREQUENT_CHECK;
2915}
2916#endif
2917
2918#if EV_FORK_ENABLE
2919void
2920ev_fork_start (EV_P_ ev_fork *w)
2921{
2922 if (expect_false (ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 ev_start (EV_A_ (W)w, ++forkcnt);
2928 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2929 forks [forkcnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2932}
2933
2934void
2935ev_fork_stop (EV_P_ ev_fork *w)
2936{
2937 clear_pending (EV_A_ (W)w);
2938 if (expect_false (!ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
2943 {
2944 int active = ev_active (w);
2945
2946 forks [active - 1] = forks [--forkcnt];
2947 ev_active (forks [active - 1]) = active;
2948 }
2949
2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2953}
2954#endif
2955
2956#if EV_ASYNC_ENABLE
2957void
2958ev_async_start (EV_P_ ev_async *w)
2959{
2960 if (expect_false (ev_is_active (w)))
2961 return;
2962
2963 evpipe_init (EV_A);
2964
2965 EV_FREQUENT_CHECK;
2966
2967 ev_start (EV_A_ (W)w, ++asynccnt);
2968 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2969 asyncs [asynccnt - 1] = w;
2970
2971 EV_FREQUENT_CHECK;
2972}
2973
2974void
2975ev_async_stop (EV_P_ ev_async *w)
2976{
2977 clear_pending (EV_A_ (W)w);
2978 if (expect_false (!ev_is_active (w)))
2979 return;
2980
2981 EV_FREQUENT_CHECK;
2982
2983 {
2984 int active = ev_active (w);
2985
2986 asyncs [active - 1] = asyncs [--asynccnt];
2987 ev_active (asyncs [active - 1]) = active;
2988 }
2989
2990 ev_stop (EV_A_ (W)w);
2991
2992 EV_FREQUENT_CHECK;
2993}
2994
2995void
2996ev_async_send (EV_P_ ev_async *w)
2997{
2998 w->sent = 1;
2999 evpipe_write (EV_A_ &gotasync);
3000}
3001#endif
1658 3002
1659/*****************************************************************************/ 3003/*****************************************************************************/
1660 3004
1661struct ev_once 3005struct ev_once
1662{ 3006{
1663 struct ev_io io; 3007 ev_io io;
1664 struct ev_timer to; 3008 ev_timer to;
1665 void (*cb)(int revents, void *arg); 3009 void (*cb)(int revents, void *arg);
1666 void *arg; 3010 void *arg;
1667}; 3011};
1668 3012
1669static void 3013static void
1670once_cb (EV_P_ struct ev_once *once, int revents) 3014once_cb (EV_P_ struct ev_once *once, int revents)
1671{ 3015{
1672 void (*cb)(int revents, void *arg) = once->cb; 3016 void (*cb)(int revents, void *arg) = once->cb;
1673 void *arg = once->arg; 3017 void *arg = once->arg;
1674 3018
1675 ev_io_stop (EV_A_ &once->io); 3019 ev_io_stop (EV_A_ &once->io);
1676 ev_timer_stop (EV_A_ &once->to); 3020 ev_timer_stop (EV_A_ &once->to);
1677 ev_free (once); 3021 ev_free (once);
1678 3022
1679 cb (revents, arg); 3023 cb (revents, arg);
1680} 3024}
1681 3025
1682static void 3026static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 3027once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 3028{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3029 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3030
3031 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1686} 3032}
1687 3033
1688static void 3034static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 3035once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 3036{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3037 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3038
3039 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1692} 3040}
1693 3041
1694void 3042void
1695ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3043ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1696{ 3044{
1718 ev_timer_set (&once->to, timeout, 0.); 3066 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 3067 ev_timer_start (EV_A_ &once->to);
1720 } 3068 }
1721} 3069}
1722 3070
3071#if EV_MULTIPLICITY
3072 #include "ev_wrap.h"
3073#endif
3074
1723#ifdef __cplusplus 3075#ifdef __cplusplus
1724} 3076}
1725#endif 3077#endif
1726 3078

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines