ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
174 220
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 224
186#if __GNUC__ >= 3 225#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
188# define inline static inline 233# define inline_speed static inline
234# endif
189#else 235#else
190# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
191# define inline static 238# define inline_size static
239# define noinline
192#endif 240#endif
193 241
194#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
196 244
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 247
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
202 250
203typedef struct ev_watcher *W; 251typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
206 254
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 256
209#ifdef _WIN32 257#ifdef _WIN32
210# include "ev_win32.c" 258# include "ev_win32.c"
212 260
213/*****************************************************************************/ 261/*****************************************************************************/
214 262
215static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
216 264
265void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 267{
219 syserr_cb = cb; 268 syserr_cb = cb;
220} 269}
221 270
222static void 271static void noinline
223syserr (const char *msg) 272syserr (const char *msg)
224{ 273{
225 if (!msg) 274 if (!msg)
226 msg = "(libev) system error"; 275 msg = "(libev) system error";
227 276
234 } 283 }
235} 284}
236 285
237static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, long size);
238 287
288void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 290{
241 alloc = cb; 291 alloc = cb;
242} 292}
243 293
244static void * 294inline_speed void *
245ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, long size)
246{ 296{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 298
249 if (!ptr && size) 299 if (!ptr && size)
273typedef struct 323typedef struct
274{ 324{
275 W w; 325 W w;
276 int events; 326 int events;
277} ANPENDING; 327} ANPENDING;
328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
278 335
279#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
280 337
281 struct ev_loop 338 struct ev_loop
282 { 339 {
316 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 375#endif
319} 376}
320 377
321inline ev_tstamp 378ev_tstamp inline_size
322get_clock (void) 379get_clock (void)
323{ 380{
324#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
326 { 383 {
369#define array_free(stem, idx) \ 426#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 428
372/*****************************************************************************/ 429/*****************************************************************************/
373 430
374static void 431void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 432ev_feed_event (EV_P_ void *w, int revents)
389{ 433{
390 W w_ = (W)w; 434 W w_ = (W)w;
391 435
392 if (expect_false (w_->pending)) 436 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 446}
403 447
404static void 448void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 449queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 450{
407 int i; 451 int i;
408 452
409 for (i = 0; i < eventcnt; ++i) 453 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 454 ev_feed_event (EV_A_ events [i], type);
411} 455}
412 456
413inline void 457/*****************************************************************************/
458
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
414fd_event (EV_P_ int fd, int revents) 473fd_event (EV_P_ int fd, int revents)
415{ 474{
416 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 476 ev_io *w;
418 477
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 479 {
421 int ev = w->events & revents; 480 int ev = w->events & revents;
422 481
423 if (ev) 482 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 488ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 489{
431 fd_event (EV_A_ fd, revents); 490 fd_event (EV_A_ fd, revents);
432} 491}
433 492
434/*****************************************************************************/ 493void inline_size
435
436inline void
437fd_reify (EV_P) 494fd_reify (EV_P)
438{ 495{
439 int i; 496 int i;
440 497
441 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
442 { 499 {
443 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 502 ev_io *w;
446 503
447 int events = 0; 504 int events = 0;
448 505
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 507 events |= w->events;
451 508
452#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
453 if (events) 510 if (events)
454 { 511 {
465 } 522 }
466 523
467 fdchangecnt = 0; 524 fdchangecnt = 0;
468} 525}
469 526
470static void 527void inline_size
471fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
472{ 529{
473 if (expect_false (anfds [fd].reify)) 530 if (expect_false (anfds [fd].reify))
474 return; 531 return;
475 532
478 ++fdchangecnt; 535 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
481} 538}
482 539
483static void 540void inline_speed
484fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
485{ 542{
486 struct ev_io *w; 543 ev_io *w;
487 544
488 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
489 { 546 {
490 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 549 }
493} 550}
494 551
495inline int 552int inline_size
496fd_valid (int fd) 553fd_valid (int fd)
497{ 554{
498#ifdef _WIN32 555#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 556 return _get_osfhandle (fd) != -1;
500#else 557#else
501 return fcntl (fd, F_GETFD) != -1; 558 return fcntl (fd, F_GETFD) != -1;
502#endif 559#endif
503} 560}
504 561
505/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
506static void 563static void noinline
507fd_ebadf (EV_P) 564fd_ebadf (EV_P)
508{ 565{
509 int fd; 566 int fd;
510 567
511 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
515} 572}
516 573
517/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 575static void noinline
519fd_enomem (EV_P) 576fd_enomem (EV_P)
520{ 577{
521 int fd; 578 int fd;
522 579
523 for (fd = anfdmax; fd--; ) 580 for (fd = anfdmax; fd--; )
527 return; 584 return;
528 } 585 }
529} 586}
530 587
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 588/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 589static void noinline
533fd_rearm_all (EV_P) 590fd_rearm_all (EV_P)
534{ 591{
535 int fd; 592 int fd;
536 593
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 594 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 595 if (anfds [fd].events)
540 { 596 {
541 anfds [fd].events = 0; 597 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 598 fd_change (EV_A_ fd);
543 } 599 }
544} 600}
545 601
546/*****************************************************************************/ 602/*****************************************************************************/
547 603
548static void 604void inline_speed
549upheap (WT *heap, int k) 605upheap (WT *heap, int k)
550{ 606{
551 WT w = heap [k]; 607 WT w = heap [k];
552 608
553 while (k && heap [k >> 1]->at > w->at) 609 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 616 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 617 ((W)heap [k])->active = k + 1;
562 618
563} 619}
564 620
565static void 621void inline_speed
566downheap (WT *heap, int N, int k) 622downheap (WT *heap, int N, int k)
567{ 623{
568 WT w = heap [k]; 624 WT w = heap [k];
569 625
570 while (k < (N >> 1)) 626 while (k < (N >> 1))
584 640
585 heap [k] = w; 641 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 642 ((W)heap [k])->active = k + 1;
587} 643}
588 644
589inline void 645void inline_size
590adjustheap (WT *heap, int N, int k) 646adjustheap (WT *heap, int N, int k)
591{ 647{
592 upheap (heap, k); 648 upheap (heap, k);
593 downheap (heap, N, k); 649 downheap (heap, N, k);
594} 650}
604static ANSIG *signals; 660static ANSIG *signals;
605static int signalmax; 661static int signalmax;
606 662
607static int sigpipe [2]; 663static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 664static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 665static ev_io sigev;
610 666
611static void 667void inline_size
612signals_init (ANSIG *base, int count) 668signals_init (ANSIG *base, int count)
613{ 669{
614 while (count--) 670 while (count--)
615 { 671 {
616 base->head = 0; 672 base->head = 0;
636 write (sigpipe [1], &signum, 1); 692 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 693 errno = old_errno;
638 } 694 }
639} 695}
640 696
641void 697void noinline
642ev_feed_signal_event (EV_P_ int signum) 698ev_feed_signal_event (EV_P_ int signum)
643{ 699{
644 WL w; 700 WL w;
645 701
646#if EV_MULTIPLICITY 702#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 713 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 715}
660 716
661static void 717static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 718sigcb (EV_P_ ev_io *iow, int revents)
663{ 719{
664 int signum; 720 int signum;
665 721
666 read (sigpipe [0], &revents, 1); 722 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 723 gotsig = 0;
669 for (signum = signalmax; signum--; ) 725 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 726 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 727 ev_feed_signal_event (EV_A_ signum + 1);
672} 728}
673 729
674static void 730void inline_size
675fd_intern (int fd) 731fd_intern (int fd)
676{ 732{
677#ifdef _WIN32 733#ifdef _WIN32
678 int arg = 1; 734 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 737 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 738 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 739#endif
684} 740}
685 741
686static void 742static void noinline
687siginit (EV_P) 743siginit (EV_P)
688{ 744{
689 fd_intern (sigpipe [0]); 745 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 746 fd_intern (sigpipe [1]);
691 747
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 750 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 751}
696 752
697/*****************************************************************************/ 753/*****************************************************************************/
698 754
699static struct ev_child *childs [PID_HASHSIZE]; 755static ev_child *childs [EV_PID_HASHSIZE];
700 756
701#ifndef _WIN32 757#ifndef _WIN32
702 758
703static struct ev_signal childev; 759static ev_signal childev;
704 760
705#ifndef WCONTINUED 761void inline_speed
706# define WCONTINUED 0
707#endif
708
709static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 763{
712 struct ev_child *w; 764 ev_child *w;
713 765
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 767 if (w->pid == pid || !w->pid)
716 { 768 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 770 w->rpid = pid;
719 w->rstatus = status; 771 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 772 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 773 }
722} 774}
723 775
776#ifndef WCONTINUED
777# define WCONTINUED 0
778#endif
779
724static void 780static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 781childcb (EV_P_ ev_signal *sw, int revents)
726{ 782{
727 int pid, status; 783 int pid, status;
728 784
785 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 786 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 787 if (!WCONTINUED
788 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return;
791
731 /* make sure we are called again until all childs have been reaped */ 792 /* make sure we are called again until all childs have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 795
734 child_reap (EV_A_ sw, pid, pid, status); 796 child_reap (EV_A_ sw, pid, pid, status);
797 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 799}
738 800
739#endif 801#endif
740 802
741/*****************************************************************************/ 803/*****************************************************************************/
767{ 829{
768 return EV_VERSION_MINOR; 830 return EV_VERSION_MINOR;
769} 831}
770 832
771/* return true if we are running with elevated privileges and should ignore env variables */ 833/* return true if we are running with elevated privileges and should ignore env variables */
772static int 834int inline_size
773enable_secure (void) 835enable_secure (void)
774{ 836{
775#ifdef _WIN32 837#ifdef _WIN32
776 return 0; 838 return 0;
777#else 839#else
811 873
812 return flags; 874 return flags;
813} 875}
814 876
815unsigned int 877unsigned int
878ev_embeddable_backends (void)
879{
880 return EVBACKEND_EPOLL
881 | EVBACKEND_KQUEUE
882 | EVBACKEND_PORT;
883}
884
885unsigned int
816ev_backend (EV_P) 886ev_backend (EV_P)
817{ 887{
818 return backend; 888 return backend;
819} 889}
820 890
821static void 891static void noinline
822loop_init (EV_P_ unsigned int flags) 892loop_init (EV_P_ unsigned int flags)
823{ 893{
824 if (!backend) 894 if (!backend)
825 { 895 {
826#if EV_USE_MONOTONIC 896#if EV_USE_MONOTONIC
843 913
844 if (!(flags & 0x0000ffffUL)) 914 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 915 flags |= ev_recommended_backends ();
846 916
847 backend = 0; 917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922
848#if EV_USE_PORT 923#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 925#endif
851#if EV_USE_KQUEUE 926#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 939 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 940 ev_set_priority (&sigev, EV_MAXPRI);
866 } 941 }
867} 942}
868 943
869static void 944static void noinline
870loop_destroy (EV_P) 945loop_destroy (EV_P)
871{ 946{
872 int i; 947 int i;
948
949#if EV_USE_INOTIFY
950 if (fs_fd >= 0)
951 close (fs_fd);
952#endif
953
954 if (backend_fd >= 0)
955 close (backend_fd);
873 956
874#if EV_USE_PORT 957#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 958 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 959#endif
877#if EV_USE_KQUEUE 960#if EV_USE_KQUEUE
891 array_free (pending, [i]); 974 array_free (pending, [i]);
892 975
893 /* have to use the microsoft-never-gets-it-right macro */ 976 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 977 array_free (fdchange, EMPTY0);
895 array_free (timer, EMPTY0); 978 array_free (timer, EMPTY0);
896#if EV_PERIODICS 979#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 980 array_free (periodic, EMPTY0);
898#endif 981#endif
899 array_free (idle, EMPTY0); 982 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 983 array_free (prepare, EMPTY0);
901 array_free (check, EMPTY0); 984 array_free (check, EMPTY0);
902 985
903 backend = 0; 986 backend = 0;
904} 987}
905 988
906static void 989void inline_size infy_fork (EV_P);
990
991void inline_size
907loop_fork (EV_P) 992loop_fork (EV_P)
908{ 993{
909#if EV_USE_PORT 994#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 995 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 996#endif
912#if EV_USE_KQUEUE 997#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 998 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 999#endif
915#if EV_USE_EPOLL 1000#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1001 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1002#endif
1003#if EV_USE_INOTIFY
1004 infy_fork (EV_A);
917#endif 1005#endif
918 1006
919 if (ev_is_active (&sigev)) 1007 if (ev_is_active (&sigev))
920 { 1008 {
921 /* default loop */ 1009 /* default loop */
1037 postfork = 1; 1125 postfork = 1;
1038} 1126}
1039 1127
1040/*****************************************************************************/ 1128/*****************************************************************************/
1041 1129
1042static int 1130int inline_size
1043any_pending (EV_P) 1131any_pending (EV_P)
1044{ 1132{
1045 int pri; 1133 int pri;
1046 1134
1047 for (pri = NUMPRI; pri--; ) 1135 for (pri = NUMPRI; pri--; )
1049 return 1; 1137 return 1;
1050 1138
1051 return 0; 1139 return 0;
1052} 1140}
1053 1141
1054inline void 1142void inline_speed
1055call_pending (EV_P) 1143call_pending (EV_P)
1056{ 1144{
1057 int pri; 1145 int pri;
1058 1146
1059 for (pri = NUMPRI; pri--; ) 1147 for (pri = NUMPRI; pri--; )
1061 { 1149 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1150 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1151
1064 if (expect_true (p->w)) 1152 if (expect_true (p->w))
1065 { 1153 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1155
1066 p->w->pending = 0; 1156 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1157 EV_CB_INVOKE (p->w, p->events);
1068 } 1158 }
1069 } 1159 }
1070} 1160}
1071 1161
1072inline void 1162void inline_size
1073timers_reify (EV_P) 1163timers_reify (EV_P)
1074{ 1164{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1165 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1166 {
1077 struct ev_timer *w = timers [0]; 1167 ev_timer *w = timers [0];
1078 1168
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1170
1081 /* first reschedule or stop timer */ 1171 /* first reschedule or stop timer */
1082 if (w->repeat) 1172 if (w->repeat)
1083 { 1173 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1094 1184
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1186 }
1097} 1187}
1098 1188
1099#if EV_PERIODICS 1189#if EV_PERIODIC_ENABLE
1100inline void 1190void inline_size
1101periodics_reify (EV_P) 1191periodics_reify (EV_P)
1102{ 1192{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1194 {
1105 struct ev_periodic *w = periodics [0]; 1195 ev_periodic *w = periodics [0];
1106 1196
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1198
1109 /* first reschedule or stop timer */ 1199 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1200 if (w->reschedule_cb)
1111 { 1201 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1124 1214
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1216 }
1127} 1217}
1128 1218
1129static void 1219static void noinline
1130periodics_reschedule (EV_P) 1220periodics_reschedule (EV_P)
1131{ 1221{
1132 int i; 1222 int i;
1133 1223
1134 /* adjust periodics after time jump */ 1224 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1225 for (i = 0; i < periodiccnt; ++i)
1136 { 1226 {
1137 struct ev_periodic *w = periodics [i]; 1227 ev_periodic *w = periodics [i];
1138 1228
1139 if (w->reschedule_cb) 1229 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1231 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1146 for (i = periodiccnt >> 1; i--; ) 1236 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1237 downheap ((WT *)periodics, periodiccnt, i);
1148} 1238}
1149#endif 1239#endif
1150 1240
1151inline int 1241int inline_size
1152time_update_monotonic (EV_P) 1242time_update_monotonic (EV_P)
1153{ 1243{
1154 mn_now = get_clock (); 1244 mn_now = get_clock ();
1155 1245
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1164 ev_rt_now = ev_time (); 1254 ev_rt_now = ev_time ();
1165 return 1; 1255 return 1;
1166 } 1256 }
1167} 1257}
1168 1258
1169inline void 1259void inline_size
1170time_update (EV_P) 1260time_update (EV_P)
1171{ 1261{
1172 int i; 1262 int i;
1173 1263
1174#if EV_USE_MONOTONIC 1264#if EV_USE_MONOTONIC
1176 { 1266 {
1177 if (time_update_monotonic (EV_A)) 1267 if (time_update_monotonic (EV_A))
1178 { 1268 {
1179 ev_tstamp odiff = rtmn_diff; 1269 ev_tstamp odiff = rtmn_diff;
1180 1270
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1182 { 1280 {
1183 rtmn_diff = ev_rt_now - mn_now; 1281 rtmn_diff = ev_rt_now - mn_now;
1184 1282
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1284 return; /* all is well */
1188 ev_rt_now = ev_time (); 1286 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1287 mn_now = get_clock ();
1190 now_floor = mn_now; 1288 now_floor = mn_now;
1191 } 1289 }
1192 1290
1193# if EV_PERIODICS 1291# if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1292 periodics_reschedule (EV_A);
1195# endif 1293# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1294 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1296 }
1202 { 1300 {
1203 ev_rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
1204 1302
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 { 1304 {
1207#if EV_PERIODICS 1305#if EV_PERIODIC_ENABLE
1208 periodics_reschedule (EV_A); 1306 periodics_reschedule (EV_A);
1209#endif 1307#endif
1210 1308
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1309 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1310 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1311 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1312 }
1215 1313
1216 mn_now = ev_rt_now; 1314 mn_now = ev_rt_now;
1232static int loop_done; 1330static int loop_done;
1233 1331
1234void 1332void
1235ev_loop (EV_P_ int flags) 1333ev_loop (EV_P_ int flags)
1236{ 1334{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1239 1338
1240 while (activecnt) 1339 while (activecnt)
1241 { 1340 {
1341#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork))
1344 if (forkcnt)
1345 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A);
1348 }
1349#endif
1350
1242 /* queue check watchers (and execute them) */ 1351 /* queue check watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1352 if (expect_false (preparecnt))
1244 { 1353 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1355 call_pending (EV_A);
1252 1361
1253 /* update fd-related kernel structures */ 1362 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1363 fd_reify (EV_A);
1255 1364
1256 /* calculate blocking time */ 1365 /* calculate blocking time */
1366 {
1367 ev_tstamp block;
1257 1368
1258 /* we only need this for !monotonic clock or timers, but as we basically 1369 if (flags & EVLOOP_NONBLOCK || idlecnt)
1259 always have timers, we just calculate it always */ 1370 block = 0.; /* do not block at all */
1371 else
1372 {
1373 /* update time to cancel out callback processing overhead */
1260#if EV_USE_MONOTONIC 1374#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic)) 1375 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A); 1376 time_update_monotonic (EV_A);
1263 else 1377 else
1264#endif 1378#endif
1265 { 1379 {
1266 ev_rt_now = ev_time (); 1380 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1268 } 1382 }
1269 1383
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1384 block = MAX_BLOCKTIME;
1275 1385
1276 if (timercnt) 1386 if (timercnt)
1277 { 1387 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1389 if (block > to) block = to;
1280 } 1390 }
1281 1391
1282#if EV_PERIODICS 1392#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1393 if (periodiccnt)
1284 { 1394 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1396 if (block > to) block = to;
1287 } 1397 }
1288#endif 1398#endif
1289 1399
1290 if (expect_false (block < 0.)) block = 0.; 1400 if (expect_false (block < 0.)) block = 0.;
1291 } 1401 }
1292 1402
1293 backend_poll (EV_A_ block); 1403 backend_poll (EV_A_ block);
1404 }
1294 1405
1295 /* update ev_rt_now, do magic */ 1406 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1407 time_update (EV_A);
1297 1408
1298 /* queue pending timers and reschedule them */ 1409 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1410 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1411#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1412 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1413#endif
1303 1414
1304 /* queue idle watchers unless io or timers are pending */ 1415 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1416 if (idlecnt && !any_pending (EV_A))
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1307 1418
1308 /* queue check watchers, to be executed first */ 1419 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1420 if (expect_false (checkcnt))
1313 1424
1314 if (expect_false (loop_done)) 1425 if (expect_false (loop_done))
1315 break; 1426 break;
1316 } 1427 }
1317 1428
1318 if (loop_done != 2) 1429 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1430 loop_done = EVUNLOOP_CANCEL;
1320} 1431}
1321 1432
1322void 1433void
1323ev_unloop (EV_P_ int how) 1434ev_unloop (EV_P_ int how)
1324{ 1435{
1325 loop_done = how; 1436 loop_done = how;
1326} 1437}
1327 1438
1328/*****************************************************************************/ 1439/*****************************************************************************/
1329 1440
1330inline void 1441void inline_size
1331wlist_add (WL *head, WL elem) 1442wlist_add (WL *head, WL elem)
1332{ 1443{
1333 elem->next = *head; 1444 elem->next = *head;
1334 *head = elem; 1445 *head = elem;
1335} 1446}
1336 1447
1337inline void 1448void inline_size
1338wlist_del (WL *head, WL elem) 1449wlist_del (WL *head, WL elem)
1339{ 1450{
1340 while (*head) 1451 while (*head)
1341 { 1452 {
1342 if (*head == elem) 1453 if (*head == elem)
1347 1458
1348 head = &(*head)->next; 1459 head = &(*head)->next;
1349 } 1460 }
1350} 1461}
1351 1462
1352inline void 1463void inline_speed
1353ev_clear_pending (EV_P_ W w) 1464ev_clear_pending (EV_P_ W w)
1354{ 1465{
1355 if (w->pending) 1466 if (w->pending)
1356 { 1467 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1468 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1469 w->pending = 0;
1359 } 1470 }
1360} 1471}
1361 1472
1362inline void 1473void inline_speed
1363ev_start (EV_P_ W w, int active) 1474ev_start (EV_P_ W w, int active)
1364{ 1475{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367 1478
1368 w->active = active; 1479 w->active = active;
1369 ev_ref (EV_A); 1480 ev_ref (EV_A);
1370} 1481}
1371 1482
1372inline void 1483void inline_size
1373ev_stop (EV_P_ W w) 1484ev_stop (EV_P_ W w)
1374{ 1485{
1375 ev_unref (EV_A); 1486 ev_unref (EV_A);
1376 w->active = 0; 1487 w->active = 0;
1377} 1488}
1378 1489
1379/*****************************************************************************/ 1490/*****************************************************************************/
1380 1491
1381void 1492void
1382ev_io_start (EV_P_ struct ev_io *w) 1493ev_io_start (EV_P_ ev_io *w)
1383{ 1494{
1384 int fd = w->fd; 1495 int fd = w->fd;
1385 1496
1386 if (expect_false (ev_is_active (w))) 1497 if (expect_false (ev_is_active (w)))
1387 return; 1498 return;
1394 1505
1395 fd_change (EV_A_ fd); 1506 fd_change (EV_A_ fd);
1396} 1507}
1397 1508
1398void 1509void
1399ev_io_stop (EV_P_ struct ev_io *w) 1510ev_io_stop (EV_P_ ev_io *w)
1400{ 1511{
1401 ev_clear_pending (EV_A_ (W)w); 1512 ev_clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1513 if (expect_false (!ev_is_active (w)))
1403 return; 1514 return;
1404 1515
1409 1520
1410 fd_change (EV_A_ w->fd); 1521 fd_change (EV_A_ w->fd);
1411} 1522}
1412 1523
1413void 1524void
1414ev_timer_start (EV_P_ struct ev_timer *w) 1525ev_timer_start (EV_P_ ev_timer *w)
1415{ 1526{
1416 if (expect_false (ev_is_active (w))) 1527 if (expect_false (ev_is_active (w)))
1417 return; 1528 return;
1418 1529
1419 ((WT)w)->at += mn_now; 1530 ((WT)w)->at += mn_now;
1420 1531
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1533
1423 ev_start (EV_A_ (W)w, ++timercnt); 1534 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1536 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1537 upheap ((WT *)timers, timercnt - 1);
1427 1538
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1540}
1430 1541
1431void 1542void
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1543ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1544{
1434 ev_clear_pending (EV_A_ (W)w); 1545 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1546 if (expect_false (!ev_is_active (w)))
1436 return; 1547 return;
1437 1548
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1439 1550
1551 {
1552 int active = ((W)w)->active;
1553
1440 if (expect_true (((W)w)->active < timercnt--)) 1554 if (expect_true (--active < --timercnt))
1441 { 1555 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1556 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1557 adjustheap ((WT *)timers, timercnt, active);
1444 } 1558 }
1559 }
1445 1560
1446 ((WT)w)->at -= mn_now; 1561 ((WT)w)->at -= mn_now;
1447 1562
1448 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1449} 1564}
1450 1565
1451void 1566void
1452ev_timer_again (EV_P_ struct ev_timer *w) 1567ev_timer_again (EV_P_ ev_timer *w)
1453{ 1568{
1454 if (ev_is_active (w)) 1569 if (ev_is_active (w))
1455 { 1570 {
1456 if (w->repeat) 1571 if (w->repeat)
1457 { 1572 {
1466 w->at = w->repeat; 1581 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1582 ev_timer_start (EV_A_ w);
1468 } 1583 }
1469} 1584}
1470 1585
1471#if EV_PERIODICS 1586#if EV_PERIODIC_ENABLE
1472void 1587void
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1588ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1589{
1475 if (expect_false (ev_is_active (w))) 1590 if (expect_false (ev_is_active (w)))
1476 return; 1591 return;
1477 1592
1478 if (w->reschedule_cb) 1593 if (w->reschedule_cb)
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1598 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1485 } 1600 }
1486 1601
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1602 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1604 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1605 upheap ((WT *)periodics, periodiccnt - 1);
1491 1606
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1608}
1494 1609
1495void 1610void
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1611ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1612{
1498 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1614 if (expect_false (!ev_is_active (w)))
1500 return; 1615 return;
1501 1616
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1503 1618
1619 {
1620 int active = ((W)w)->active;
1621
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1622 if (expect_true (--active < --periodiccnt))
1505 { 1623 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1624 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1625 adjustheap ((WT *)periodics, periodiccnt, active);
1508 } 1626 }
1627 }
1509 1628
1510 ev_stop (EV_A_ (W)w); 1629 ev_stop (EV_A_ (W)w);
1511} 1630}
1512 1631
1513void 1632void
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1633ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1634{
1516 /* TODO: use adjustheap and recalculation */ 1635 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1636 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1637 ev_periodic_start (EV_A_ w);
1519} 1638}
1520#endif 1639#endif
1521 1640
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1641#ifndef SA_RESTART
1589# define SA_RESTART 0 1642# define SA_RESTART 0
1590#endif 1643#endif
1591 1644
1592void 1645void
1593ev_signal_start (EV_P_ struct ev_signal *w) 1646ev_signal_start (EV_P_ ev_signal *w)
1594{ 1647{
1595#if EV_MULTIPLICITY 1648#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1650#endif
1598 if (expect_false (ev_is_active (w))) 1651 if (expect_false (ev_is_active (w)))
1617#endif 1670#endif
1618 } 1671 }
1619} 1672}
1620 1673
1621void 1674void
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1675ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1676{
1624 ev_clear_pending (EV_A_ (W)w); 1677 ev_clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1678 if (expect_false (!ev_is_active (w)))
1626 return; 1679 return;
1627 1680
1631 if (!signals [w->signum - 1].head) 1684 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1685 signal (w->signum, SIG_DFL);
1633} 1686}
1634 1687
1635void 1688void
1636ev_child_start (EV_P_ struct ev_child *w) 1689ev_child_start (EV_P_ ev_child *w)
1637{ 1690{
1638#if EV_MULTIPLICITY 1691#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1693#endif
1641 if (expect_false (ev_is_active (w))) 1694 if (expect_false (ev_is_active (w)))
1642 return; 1695 return;
1643 1696
1644 ev_start (EV_A_ (W)w, 1); 1697 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1699}
1647 1700
1648void 1701void
1649ev_child_stop (EV_P_ struct ev_child *w) 1702ev_child_stop (EV_P_ ev_child *w)
1650{ 1703{
1651 ev_clear_pending (EV_A_ (W)w); 1704 ev_clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1705 if (expect_false (!ev_is_active (w)))
1653 return; 1706 return;
1654 1707
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1709 ev_stop (EV_A_ (W)w);
1657} 1710}
1658 1711
1712#if EV_STAT_ENABLE
1713
1714# ifdef _WIN32
1715# undef lstat
1716# define lstat(a,b) _stati64 (a,b)
1717# endif
1718
1719#define DEF_STAT_INTERVAL 5.0074891
1720#define MIN_STAT_INTERVAL 0.1074891
1721
1722static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1723
1724#if EV_USE_INOTIFY
1725# define EV_INOTIFY_BUFSIZE 8192
1726
1727static void noinline
1728infy_add (EV_P_ ev_stat *w)
1729{
1730 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1731
1732 if (w->wd < 0)
1733 {
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735
1736 /* monitor some parent directory for speedup hints */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 {
1739 char path [4096];
1740 strcpy (path, w->path);
1741
1742 do
1743 {
1744 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1745 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1746
1747 char *pend = strrchr (path, '/');
1748
1749 if (!pend)
1750 break; /* whoops, no '/', complain to your admin */
1751
1752 *pend = 0;
1753 w->wd = inotify_add_watch (fs_fd, path, mask);
1754 }
1755 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1756 }
1757 }
1758 else
1759 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1760
1761 if (w->wd >= 0)
1762 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1763}
1764
1765static void noinline
1766infy_del (EV_P_ ev_stat *w)
1767{
1768 int slot;
1769 int wd = w->wd;
1770
1771 if (wd < 0)
1772 return;
1773
1774 w->wd = -2;
1775 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1776 wlist_del (&fs_hash [slot].head, (WL)w);
1777
1778 /* remove this watcher, if others are watching it, they will rearm */
1779 inotify_rm_watch (fs_fd, wd);
1780}
1781
1782static void noinline
1783infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1784{
1785 if (slot < 0)
1786 /* overflow, need to check for all hahs slots */
1787 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1788 infy_wd (EV_A_ slot, wd, ev);
1789 else
1790 {
1791 WL w_;
1792
1793 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1794 {
1795 ev_stat *w = (ev_stat *)w_;
1796 w_ = w_->next; /* lets us remove this watcher and all before it */
1797
1798 if (w->wd == wd || wd == -1)
1799 {
1800 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1801 {
1802 w->wd = -1;
1803 infy_add (EV_A_ w); /* re-add, no matter what */
1804 }
1805
1806 stat_timer_cb (EV_A_ &w->timer, 0);
1807 }
1808 }
1809 }
1810}
1811
1812static void
1813infy_cb (EV_P_ ev_io *w, int revents)
1814{
1815 char buf [EV_INOTIFY_BUFSIZE];
1816 struct inotify_event *ev = (struct inotify_event *)buf;
1817 int ofs;
1818 int len = read (fs_fd, buf, sizeof (buf));
1819
1820 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1822}
1823
1824void inline_size
1825infy_init (EV_P)
1826{
1827 if (fs_fd != -2)
1828 return;
1829
1830 fs_fd = inotify_init ();
1831
1832 if (fs_fd >= 0)
1833 {
1834 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1835 ev_set_priority (&fs_w, EV_MAXPRI);
1836 ev_io_start (EV_A_ &fs_w);
1837 }
1838}
1839
1840void inline_size
1841infy_fork (EV_P)
1842{
1843 int slot;
1844
1845 if (fs_fd < 0)
1846 return;
1847
1848 close (fs_fd);
1849 fs_fd = inotify_init ();
1850
1851 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1852 {
1853 WL w_ = fs_hash [slot].head;
1854 fs_hash [slot].head = 0;
1855
1856 while (w_)
1857 {
1858 ev_stat *w = (ev_stat *)w_;
1859 w_ = w_->next; /* lets us add this watcher */
1860
1861 w->wd = -1;
1862
1863 if (fs_fd >= 0)
1864 infy_add (EV_A_ w); /* re-add, no matter what */
1865 else
1866 ev_timer_start (EV_A_ &w->timer);
1867 }
1868
1869 }
1870}
1871
1872#endif
1873
1874void
1875ev_stat_stat (EV_P_ ev_stat *w)
1876{
1877 if (lstat (w->path, &w->attr) < 0)
1878 w->attr.st_nlink = 0;
1879 else if (!w->attr.st_nlink)
1880 w->attr.st_nlink = 1;
1881}
1882
1883static void noinline
1884stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1885{
1886 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1887
1888 /* we copy this here each the time so that */
1889 /* prev has the old value when the callback gets invoked */
1890 w->prev = w->attr;
1891 ev_stat_stat (EV_A_ w);
1892
1893 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1894 if (
1895 w->prev.st_dev != w->attr.st_dev
1896 || w->prev.st_ino != w->attr.st_ino
1897 || w->prev.st_mode != w->attr.st_mode
1898 || w->prev.st_nlink != w->attr.st_nlink
1899 || w->prev.st_uid != w->attr.st_uid
1900 || w->prev.st_gid != w->attr.st_gid
1901 || w->prev.st_rdev != w->attr.st_rdev
1902 || w->prev.st_size != w->attr.st_size
1903 || w->prev.st_atime != w->attr.st_atime
1904 || w->prev.st_mtime != w->attr.st_mtime
1905 || w->prev.st_ctime != w->attr.st_ctime
1906 ) {
1907 #if EV_USE_INOTIFY
1908 infy_del (EV_A_ w);
1909 infy_add (EV_A_ w);
1910 ev_stat_stat (EV_A_ w); /* avoid race... */
1911 #endif
1912
1913 ev_feed_event (EV_A_ w, EV_STAT);
1914 }
1915}
1916
1917void
1918ev_stat_start (EV_P_ ev_stat *w)
1919{
1920 if (expect_false (ev_is_active (w)))
1921 return;
1922
1923 /* since we use memcmp, we need to clear any padding data etc. */
1924 memset (&w->prev, 0, sizeof (ev_statdata));
1925 memset (&w->attr, 0, sizeof (ev_statdata));
1926
1927 ev_stat_stat (EV_A_ w);
1928
1929 if (w->interval < MIN_STAT_INTERVAL)
1930 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1931
1932 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1933 ev_set_priority (&w->timer, ev_priority (w));
1934
1935#if EV_USE_INOTIFY
1936 infy_init (EV_A);
1937
1938 if (fs_fd >= 0)
1939 infy_add (EV_A_ w);
1940 else
1941#endif
1942 ev_timer_start (EV_A_ &w->timer);
1943
1944 ev_start (EV_A_ (W)w, 1);
1945}
1946
1947void
1948ev_stat_stop (EV_P_ ev_stat *w)
1949{
1950 ev_clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w)))
1952 return;
1953
1954#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w);
1956#endif
1957 ev_timer_stop (EV_A_ &w->timer);
1958
1959 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962
1963void
1964ev_idle_start (EV_P_ ev_idle *w)
1965{
1966 if (expect_false (ev_is_active (w)))
1967 return;
1968
1969 ev_start (EV_A_ (W)w, ++idlecnt);
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1971 idles [idlecnt - 1] = w;
1972}
1973
1974void
1975ev_idle_stop (EV_P_ ev_idle *w)
1976{
1977 ev_clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w)))
1979 return;
1980
1981 {
1982 int active = ((W)w)->active;
1983 idles [active - 1] = idles [--idlecnt];
1984 ((W)idles [active - 1])->active = active;
1985 }
1986
1987 ev_stop (EV_A_ (W)w);
1988}
1989
1990void
1991ev_prepare_start (EV_P_ ev_prepare *w)
1992{
1993 if (expect_false (ev_is_active (w)))
1994 return;
1995
1996 ev_start (EV_A_ (W)w, ++preparecnt);
1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1998 prepares [preparecnt - 1] = w;
1999}
2000
2001void
2002ev_prepare_stop (EV_P_ ev_prepare *w)
2003{
2004 ev_clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w)))
2006 return;
2007
2008 {
2009 int active = ((W)w)->active;
2010 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active;
2012 }
2013
2014 ev_stop (EV_A_ (W)w);
2015}
2016
2017void
2018ev_check_start (EV_P_ ev_check *w)
2019{
2020 if (expect_false (ev_is_active (w)))
2021 return;
2022
2023 ev_start (EV_A_ (W)w, ++checkcnt);
2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2025 checks [checkcnt - 1] = w;
2026}
2027
2028void
2029ev_check_stop (EV_P_ ev_check *w)
2030{
2031 ev_clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w)))
2033 return;
2034
2035 {
2036 int active = ((W)w)->active;
2037 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active;
2039 }
2040
2041 ev_stop (EV_A_ (W)w);
2042}
2043
2044#if EV_EMBED_ENABLE
2045void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w)
2047{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK);
2049}
2050
2051static void
2052embed_cb (EV_P_ ev_io *io, int revents)
2053{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055
2056 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else
2059 ev_embed_sweep (loop, w);
2060}
2061
2062void
2063ev_embed_start (EV_P_ ev_embed *w)
2064{
2065 if (expect_false (ev_is_active (w)))
2066 return;
2067
2068 {
2069 struct ev_loop *loop = w->loop;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2072 }
2073
2074 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io);
2076
2077 ev_start (EV_A_ (W)w, 1);
2078}
2079
2080void
2081ev_embed_stop (EV_P_ ev_embed *w)
2082{
2083 ev_clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w)))
2085 return;
2086
2087 ev_io_stop (EV_A_ &w->io);
2088
2089 ev_stop (EV_A_ (W)w);
2090}
2091#endif
2092
2093#if EV_FORK_ENABLE
2094void
2095ev_fork_start (EV_P_ ev_fork *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w;
2103}
2104
2105void
2106ev_fork_stop (EV_P_ ev_fork *w)
2107{
2108 ev_clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120#endif
2121
1659/*****************************************************************************/ 2122/*****************************************************************************/
1660 2123
1661struct ev_once 2124struct ev_once
1662{ 2125{
1663 struct ev_io io; 2126 ev_io io;
1664 struct ev_timer to; 2127 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2128 void (*cb)(int revents, void *arg);
1666 void *arg; 2129 void *arg;
1667}; 2130};
1668 2131
1669static void 2132static void
1678 2141
1679 cb (revents, arg); 2142 cb (revents, arg);
1680} 2143}
1681 2144
1682static void 2145static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2146once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2147{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2148 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2149}
1687 2150
1688static void 2151static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2152once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2153{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2154 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2155}
1693 2156
1694void 2157void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines