ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 231
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 235
186#if __GNUC__ >= 3 236#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 238# define noinline __attribute__ ((noinline))
189#else 239#else
190# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
191# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
192#endif 245#endif
193 246
194#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
196 256
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 259
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
202 262
203typedef struct ev_watcher *W; 263typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
206 266
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 268
209#ifdef _WIN32 269#ifdef _WIN32
210# include "ev_win32.c" 270# include "ev_win32.c"
212 272
213/*****************************************************************************/ 273/*****************************************************************************/
214 274
215static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
216 276
277void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 279{
219 syserr_cb = cb; 280 syserr_cb = cb;
220} 281}
221 282
222static void 283static void noinline
223syserr (const char *msg) 284syserr (const char *msg)
224{ 285{
225 if (!msg) 286 if (!msg)
226 msg = "(libev) system error"; 287 msg = "(libev) system error";
227 288
234 } 295 }
235} 296}
236 297
237static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
238 299
300void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 302{
241 alloc = cb; 303 alloc = cb;
242} 304}
243 305
244static void * 306inline_speed void *
245ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
246{ 308{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 310
249 if (!ptr && size) 311 if (!ptr && size)
273typedef struct 335typedef struct
274{ 336{
275 W w; 337 W w;
276 int events; 338 int events;
277} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
278 347
279#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
280 349
281 struct ev_loop 350 struct ev_loop
282 { 351 {
316 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 387#endif
319} 388}
320 389
321inline ev_tstamp 390ev_tstamp inline_size
322get_clock (void) 391get_clock (void)
323{ 392{
324#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
326 { 395 {
339{ 408{
340 return ev_rt_now; 409 return ev_rt_now;
341} 410}
342#endif 411#endif
343 412
344#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
345 440
346#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
348 { \ 443 { \
349 int newcnt = cur; \ 444 int ocur_ = (cur); \
350 do \ 445 (base) = (type *)array_realloc \
351 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 448 }
360 449
450#if 0
361#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 453 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 457 }
458#endif
368 459
369#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 462
372/*****************************************************************************/ 463/*****************************************************************************/
373 464
374static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_size
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
375anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
376{ 495{
377 while (count--) 496 while (count--)
378 { 497 {
379 base->head = 0; 498 base->head = 0;
382 501
383 ++base; 502 ++base;
384 } 503 }
385} 504}
386 505
387void 506void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
415{ 508{
416 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 510 ev_io *w;
418 511
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 513 {
421 int ev = w->events & revents; 514 int ev = w->events & revents;
422 515
423 if (ev) 516 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
426} 519}
427 520
428void 521void
429ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 523{
524 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
432} 526}
433 527
434/*****************************************************************************/ 528void inline_size
435
436inline void
437fd_reify (EV_P) 529fd_reify (EV_P)
438{ 530{
439 int i; 531 int i;
440 532
441 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
442 { 534 {
443 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 537 ev_io *w;
446 538
447 int events = 0; 539 int events = 0;
448 540
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 542 events |= w->events;
451 543
452#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
453 if (events) 545 if (events)
454 { 546 {
465 } 557 }
466 558
467 fdchangecnt = 0; 559 fdchangecnt = 0;
468} 560}
469 561
470static void 562void inline_size
471fd_change (EV_P_ int fd) 563fd_change (EV_P_ int fd)
472{ 564{
473 if (expect_false (anfds [fd].reify)) 565 if (expect_false (anfds [fd].reify))
474 return; 566 return;
475 567
478 ++fdchangecnt; 570 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 572 fdchanges [fdchangecnt - 1] = fd;
481} 573}
482 574
483static void 575void inline_speed
484fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
485{ 577{
486 struct ev_io *w; 578 ev_io *w;
487 579
488 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
489 { 581 {
490 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 584 }
493} 585}
494 586
495inline int 587int inline_size
496fd_valid (int fd) 588fd_valid (int fd)
497{ 589{
498#ifdef _WIN32 590#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 591 return _get_osfhandle (fd) != -1;
500#else 592#else
501 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
502#endif 594#endif
503} 595}
504 596
505/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
506static void 598static void noinline
507fd_ebadf (EV_P) 599fd_ebadf (EV_P)
508{ 600{
509 int fd; 601 int fd;
510 602
511 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
515} 607}
516 608
517/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 610static void noinline
519fd_enomem (EV_P) 611fd_enomem (EV_P)
520{ 612{
521 int fd; 613 int fd;
522 614
523 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
527 return; 619 return;
528 } 620 }
529} 621}
530 622
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 624static void noinline
533fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
534{ 626{
535 int fd; 627 int fd;
536 628
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 630 if (anfds [fd].events)
540 { 631 {
541 anfds [fd].events = 0; 632 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd);
543 } 634 }
544} 635}
545 636
546/*****************************************************************************/ 637/*****************************************************************************/
547 638
548static void 639void inline_speed
549upheap (WT *heap, int k) 640upheap (WT *heap, int k)
550{ 641{
551 WT w = heap [k]; 642 WT w = heap [k];
552 643
553 while (k && heap [k >> 1]->at > w->at) 644 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 651 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
562 653
563} 654}
564 655
565static void 656void inline_speed
566downheap (WT *heap, int N, int k) 657downheap (WT *heap, int N, int k)
567{ 658{
568 WT w = heap [k]; 659 WT w = heap [k];
569 660
570 while (k < (N >> 1)) 661 while (k < (N >> 1))
584 675
585 heap [k] = w; 676 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 677 ((W)heap [k])->active = k + 1;
587} 678}
588 679
589inline void 680void inline_size
590adjustheap (WT *heap, int N, int k) 681adjustheap (WT *heap, int N, int k)
591{ 682{
592 upheap (heap, k); 683 upheap (heap, k);
593 downheap (heap, N, k); 684 downheap (heap, N, k);
594} 685}
604static ANSIG *signals; 695static ANSIG *signals;
605static int signalmax; 696static int signalmax;
606 697
607static int sigpipe [2]; 698static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 699static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 700static ev_io sigev;
610 701
611static void 702void inline_size
612signals_init (ANSIG *base, int count) 703signals_init (ANSIG *base, int count)
613{ 704{
614 while (count--) 705 while (count--)
615 { 706 {
616 base->head = 0; 707 base->head = 0;
636 write (sigpipe [1], &signum, 1); 727 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 728 errno = old_errno;
638 } 729 }
639} 730}
640 731
641void 732void noinline
642ev_feed_signal_event (EV_P_ int signum) 733ev_feed_signal_event (EV_P_ int signum)
643{ 734{
644 WL w; 735 WL w;
645 736
646#if EV_MULTIPLICITY 737#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 748 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 750}
660 751
661static void 752static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 753sigcb (EV_P_ ev_io *iow, int revents)
663{ 754{
664 int signum; 755 int signum;
665 756
666 read (sigpipe [0], &revents, 1); 757 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 758 gotsig = 0;
669 for (signum = signalmax; signum--; ) 760 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 761 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 762 ev_feed_signal_event (EV_A_ signum + 1);
672} 763}
673 764
674static void 765void inline_speed
675fd_intern (int fd) 766fd_intern (int fd)
676{ 767{
677#ifdef _WIN32 768#ifdef _WIN32
678 int arg = 1; 769 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 772 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 773 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 774#endif
684} 775}
685 776
686static void 777static void noinline
687siginit (EV_P) 778siginit (EV_P)
688{ 779{
689 fd_intern (sigpipe [0]); 780 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 781 fd_intern (sigpipe [1]);
691 782
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 785 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 786}
696 787
697/*****************************************************************************/ 788/*****************************************************************************/
698 789
699static struct ev_child *childs [PID_HASHSIZE]; 790static ev_child *childs [EV_PID_HASHSIZE];
700 791
701#ifndef _WIN32 792#ifndef _WIN32
702 793
703static struct ev_signal childev; 794static ev_signal childev;
795
796void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{
799 ev_child *w;
800
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
802 if (w->pid == pid || !w->pid)
803 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid;
806 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 }
809}
704 810
705#ifndef WCONTINUED 811#ifndef WCONTINUED
706# define WCONTINUED 0 812# define WCONTINUED 0
707#endif 813#endif
708 814
709static void 815static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 816childcb (EV_P_ ev_signal *sw, int revents)
726{ 817{
727 int pid, status; 818 int pid, status;
728 819
820 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 821 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 822 if (!WCONTINUED
823 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return;
826
731 /* make sure we are called again until all childs have been reaped */ 827 /* make sure we are called again until all childs have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 830
734 child_reap (EV_A_ sw, pid, pid, status); 831 child_reap (EV_A_ sw, pid, pid, status);
832 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 834}
738 835
739#endif 836#endif
740 837
741/*****************************************************************************/ 838/*****************************************************************************/
767{ 864{
768 return EV_VERSION_MINOR; 865 return EV_VERSION_MINOR;
769} 866}
770 867
771/* return true if we are running with elevated privileges and should ignore env variables */ 868/* return true if we are running with elevated privileges and should ignore env variables */
772static int 869int inline_size
773enable_secure (void) 870enable_secure (void)
774{ 871{
775#ifdef _WIN32 872#ifdef _WIN32
776 return 0; 873 return 0;
777#else 874#else
811 908
812 return flags; 909 return flags;
813} 910}
814 911
815unsigned int 912unsigned int
913ev_embeddable_backends (void)
914{
915 return EVBACKEND_EPOLL
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918}
919
920unsigned int
816ev_backend (EV_P) 921ev_backend (EV_P)
817{ 922{
818 return backend; 923 return backend;
819} 924}
820 925
821static void 926unsigned int
927ev_loop_count (EV_P)
928{
929 return loop_count;
930}
931
932static void noinline
822loop_init (EV_P_ unsigned int flags) 933loop_init (EV_P_ unsigned int flags)
823{ 934{
824 if (!backend) 935 if (!backend)
825 { 936 {
826#if EV_USE_MONOTONIC 937#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 945 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 946 mn_now = get_clock ();
836 now_floor = mn_now; 947 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 948 rtmn_diff = ev_rt_now - mn_now;
838 949
950 /* pid check not overridable via env */
951#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid ();
954#endif
955
839 if (!(flags & EVFLAG_NOENV) 956 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 957 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 958 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 959 flags = atoi (getenv ("LIBEV_FLAGS"));
843 960
844 if (!(flags & 0x0000ffffUL)) 961 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 962 flags |= ev_recommended_backends ();
846 963
847 backend = 0; 964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969
848#if EV_USE_PORT 970#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 972#endif
851#if EV_USE_KQUEUE 973#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 986 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 987 ev_set_priority (&sigev, EV_MAXPRI);
866 } 988 }
867} 989}
868 990
869static void 991static void noinline
870loop_destroy (EV_P) 992loop_destroy (EV_P)
871{ 993{
872 int i; 994 int i;
995
996#if EV_USE_INOTIFY
997 if (fs_fd >= 0)
998 close (fs_fd);
999#endif
1000
1001 if (backend_fd >= 0)
1002 close (backend_fd);
873 1003
874#if EV_USE_PORT 1004#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1006#endif
877#if EV_USE_KQUEUE 1007#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1016#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1017 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1018#endif
889 1019
890 for (i = NUMPRI; i--; ) 1020 for (i = NUMPRI; i--; )
1021 {
891 array_free (pending, [i]); 1022 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE
1024 array_free (idle, [i]);
1025#endif
1026 }
892 1027
893 /* have to use the microsoft-never-gets-it-right macro */ 1028 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1029 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1030 array_free (timer, EMPTY);
896#if EV_PERIODICS 1031#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1032 array_free (periodic, EMPTY);
898#endif 1033#endif
899 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 1034 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1035 array_free (check, EMPTY);
902 1036
903 backend = 0; 1037 backend = 0;
904} 1038}
905 1039
906static void 1040void inline_size infy_fork (EV_P);
1041
1042void inline_size
907loop_fork (EV_P) 1043loop_fork (EV_P)
908{ 1044{
909#if EV_USE_PORT 1045#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1047#endif
912#if EV_USE_KQUEUE 1048#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1049 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1050#endif
915#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1052 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1053#endif
1054#if EV_USE_INOTIFY
1055 infy_fork (EV_A);
917#endif 1056#endif
918 1057
919 if (ev_is_active (&sigev)) 1058 if (ev_is_active (&sigev))
920 { 1059 {
921 /* default loop */ 1060 /* default loop */
1037 postfork = 1; 1176 postfork = 1;
1038} 1177}
1039 1178
1040/*****************************************************************************/ 1179/*****************************************************************************/
1041 1180
1042static int 1181void
1043any_pending (EV_P) 1182ev_invoke (EV_P_ void *w, int revents)
1044{ 1183{
1045 int pri; 1184 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1185}
1053 1186
1054inline void 1187void inline_speed
1055call_pending (EV_P) 1188call_pending (EV_P)
1056{ 1189{
1057 int pri; 1190 int pri;
1058 1191
1059 for (pri = NUMPRI; pri--; ) 1192 for (pri = NUMPRI; pri--; )
1061 { 1194 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1196
1064 if (expect_true (p->w)) 1197 if (expect_true (p->w))
1065 { 1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1066 p->w->pending = 0; 1201 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1202 EV_CB_INVOKE (p->w, p->events);
1068 } 1203 }
1069 } 1204 }
1070} 1205}
1071 1206
1072inline void 1207void inline_size
1073timers_reify (EV_P) 1208timers_reify (EV_P)
1074{ 1209{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1211 {
1077 struct ev_timer *w = timers [0]; 1212 ev_timer *w = timers [0];
1078 1213
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1215
1081 /* first reschedule or stop timer */ 1216 /* first reschedule or stop timer */
1082 if (w->repeat) 1217 if (w->repeat)
1083 { 1218 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1094 1229
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1231 }
1097} 1232}
1098 1233
1099#if EV_PERIODICS 1234#if EV_PERIODIC_ENABLE
1100inline void 1235void inline_size
1101periodics_reify (EV_P) 1236periodics_reify (EV_P)
1102{ 1237{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1239 {
1105 struct ev_periodic *w = periodics [0]; 1240 ev_periodic *w = periodics [0];
1106 1241
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1243
1109 /* first reschedule or stop timer */ 1244 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1245 if (w->reschedule_cb)
1111 { 1246 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1249 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 1250 }
1116 else if (w->interval) 1251 else if (w->interval)
1117 { 1252 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1121 } 1256 }
1122 else 1257 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1259
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1261 }
1127} 1262}
1128 1263
1129static void 1264static void noinline
1130periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1131{ 1266{
1132 int i; 1267 int i;
1133 1268
1134 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1136 { 1271 {
1137 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1138 1273
1139 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1276 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1278 }
1144 1279
1145 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1148} 1283}
1149#endif 1284#endif
1150 1285
1151inline int 1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309int inline_size
1152time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1153{ 1311{
1154 mn_now = get_clock (); 1312 mn_now = get_clock ();
1155 1313
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1164 ev_rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
1165 return 1; 1323 return 1;
1166 } 1324 }
1167} 1325}
1168 1326
1169inline void 1327void inline_size
1170time_update (EV_P) 1328time_update (EV_P)
1171{ 1329{
1172 int i; 1330 int i;
1173 1331
1174#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
1176 { 1334 {
1177 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
1178 { 1336 {
1179 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1180 1338
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1182 { 1348 {
1183 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1184 1350
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1352 return; /* all is well */
1188 ev_rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1355 mn_now = get_clock ();
1190 now_floor = mn_now; 1356 now_floor = mn_now;
1191 } 1357 }
1192 1358
1193# if EV_PERIODICS 1359# if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1195# endif 1361# endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 } 1364 }
1202 { 1368 {
1203 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1204 1370
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 { 1372 {
1207#if EV_PERIODICS 1373#if EV_PERIODIC_ENABLE
1208 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1209#endif 1375#endif
1210 1376
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1380 }
1215 1381
1216 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1232static int loop_done; 1398static int loop_done;
1233 1399
1234void 1400void
1235ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1236{ 1402{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1239 1406
1240 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1241 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1242 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1244 { 1432 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1434 call_pending (EV_A);
1247 } 1435 }
1248 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1249 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1251 loop_fork (EV_A); 1442 loop_fork (EV_A);
1252 1443
1253 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1445 fd_reify (EV_A);
1255 1446
1256 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1257 1450
1258 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1259 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1453 else
1454 {
1455 /* update time to cancel out callback processing overhead */
1260#if EV_USE_MONOTONIC 1456#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic)) 1457 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A); 1458 time_update_monotonic (EV_A);
1263 else 1459 else
1264#endif 1460#endif
1265 { 1461 {
1266 ev_rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
1267 mn_now = ev_rt_now; 1463 mn_now = ev_rt_now;
1268 } 1464 }
1269 1465
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1466 block = MAX_BLOCKTIME;
1275 1467
1276 if (timercnt) 1468 if (timercnt)
1277 { 1469 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1471 if (block > to) block = to;
1280 } 1472 }
1281 1473
1282#if EV_PERIODICS 1474#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1475 if (periodiccnt)
1284 { 1476 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1478 if (block > to) block = to;
1287 } 1479 }
1288#endif 1480#endif
1289 1481
1290 if (expect_false (block < 0.)) block = 0.; 1482 if (expect_false (block < 0.)) block = 0.;
1291 } 1483 }
1292 1484
1485 ++loop_count;
1293 backend_poll (EV_A_ block); 1486 backend_poll (EV_A_ block);
1487 }
1294 1488
1295 /* update ev_rt_now, do magic */ 1489 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1490 time_update (EV_A);
1297 1491
1298 /* queue pending timers and reschedule them */ 1492 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1493 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1494#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1495 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1496#endif
1303 1497
1498#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1499 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1500 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1501#endif
1307 1502
1308 /* queue check watchers, to be executed first */ 1503 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1504 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1506
1312 call_pending (EV_A); 1507 call_pending (EV_A);
1313 1508
1314 if (expect_false (loop_done))
1315 break;
1316 } 1509 }
1510 while (expect_true (activecnt && !loop_done));
1317 1511
1318 if (loop_done != 2) 1512 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1513 loop_done = EVUNLOOP_CANCEL;
1320} 1514}
1321 1515
1322void 1516void
1323ev_unloop (EV_P_ int how) 1517ev_unloop (EV_P_ int how)
1324{ 1518{
1325 loop_done = how; 1519 loop_done = how;
1326} 1520}
1327 1521
1328/*****************************************************************************/ 1522/*****************************************************************************/
1329 1523
1330inline void 1524void inline_size
1331wlist_add (WL *head, WL elem) 1525wlist_add (WL *head, WL elem)
1332{ 1526{
1333 elem->next = *head; 1527 elem->next = *head;
1334 *head = elem; 1528 *head = elem;
1335} 1529}
1336 1530
1337inline void 1531void inline_size
1338wlist_del (WL *head, WL elem) 1532wlist_del (WL *head, WL elem)
1339{ 1533{
1340 while (*head) 1534 while (*head)
1341 { 1535 {
1342 if (*head == elem) 1536 if (*head == elem)
1347 1541
1348 head = &(*head)->next; 1542 head = &(*head)->next;
1349 } 1543 }
1350} 1544}
1351 1545
1352inline void 1546void inline_speed
1353ev_clear_pending (EV_P_ W w) 1547clear_pending (EV_P_ W w)
1354{ 1548{
1355 if (w->pending) 1549 if (w->pending)
1356 { 1550 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1551 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1552 w->pending = 0;
1359 } 1553 }
1360} 1554}
1361 1555
1362inline void 1556int
1557ev_clear_pending (EV_P_ void *w)
1558{
1559 W w_ = (W)w;
1560 int pending = w_->pending;
1561
1562 if (expect_true (pending))
1563 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1565 w_->pending = 0;
1566 p->w = 0;
1567 return p->events;
1568 }
1569 else
1570 return 0;
1571}
1572
1573void inline_size
1574pri_adjust (EV_P_ W w)
1575{
1576 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri;
1580}
1581
1582void inline_speed
1363ev_start (EV_P_ W w, int active) 1583ev_start (EV_P_ W w, int active)
1364{ 1584{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1585 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1586 w->active = active;
1369 ev_ref (EV_A); 1587 ev_ref (EV_A);
1370} 1588}
1371 1589
1372inline void 1590void inline_size
1373ev_stop (EV_P_ W w) 1591ev_stop (EV_P_ W w)
1374{ 1592{
1375 ev_unref (EV_A); 1593 ev_unref (EV_A);
1376 w->active = 0; 1594 w->active = 0;
1377} 1595}
1378 1596
1379/*****************************************************************************/ 1597/*****************************************************************************/
1380 1598
1381void 1599void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1600ev_io_start (EV_P_ ev_io *w)
1383{ 1601{
1384 int fd = w->fd; 1602 int fd = w->fd;
1385 1603
1386 if (expect_false (ev_is_active (w))) 1604 if (expect_false (ev_is_active (w)))
1387 return; 1605 return;
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1611 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1394 1612
1395 fd_change (EV_A_ fd); 1613 fd_change (EV_A_ fd);
1396} 1614}
1397 1615
1398void 1616void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1400{ 1618{
1401 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1403 return; 1621 return;
1404 1622
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1624
1408 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1409 1627
1410 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd);
1411} 1629}
1412 1630
1413void 1631void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1415{ 1633{
1416 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1417 return; 1635 return;
1418 1636
1419 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1420 1638
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1640
1423 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1644 upheap ((WT *)timers, timercnt - 1);
1427 1645
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647}
1648
1649void noinline
1650ev_timer_stop (EV_P_ ev_timer *w)
1651{
1652 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1429}
1430 1657
1431void 1658 {
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1659 int active = ((W)w)->active;
1433{
1434 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w)))
1436 return;
1437 1660
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1439
1440 if (expect_true (((W)w)->active < timercnt--)) 1661 if (expect_true (--active < --timercnt))
1441 { 1662 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap ((WT *)timers, timercnt, active);
1444 } 1665 }
1666 }
1445 1667
1446 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1447 1669
1448 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1449} 1671}
1450 1672
1451void 1673void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1453{ 1675{
1454 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1455 { 1677 {
1456 if (w->repeat) 1678 if (w->repeat)
1457 { 1679 {
1466 w->at = w->repeat; 1688 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1468 } 1690 }
1469} 1691}
1470 1692
1471#if EV_PERIODICS 1693#if EV_PERIODIC_ENABLE
1472void 1694void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1696{
1475 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1476 return; 1698 return;
1477 1699
1478 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1702 else if (w->interval)
1481 { 1703 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1486 1710
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap ((WT *)periodics, periodiccnt - 1);
1491 1715
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717}
1718
1719void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w)
1721{
1722 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w)))
1724 return;
1725
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1493}
1494 1727
1495void 1728 {
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1729 int active = ((W)w)->active;
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501 1730
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1503
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1731 if (expect_true (--active < --periodiccnt))
1505 { 1732 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap ((WT *)periodics, periodiccnt, active);
1508 } 1735 }
1736 }
1509 1737
1510 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1511} 1739}
1512 1740
1513void 1741void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1743{
1516 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1519} 1747}
1520#endif 1748#endif
1521 1749
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1750#ifndef SA_RESTART
1589# define SA_RESTART 0 1751# define SA_RESTART 0
1590#endif 1752#endif
1591 1753
1592void 1754void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1594{ 1756{
1595#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1759#endif
1598 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1616 sigaction (w->signum, &sa, 0); 1778 sigaction (w->signum, &sa, 0);
1617#endif 1779#endif
1618 } 1780 }
1619} 1781}
1620 1782
1621void 1783void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1784ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1785{
1624 ev_clear_pending (EV_A_ (W)w); 1786 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1787 if (expect_false (!ev_is_active (w)))
1626 return; 1788 return;
1627 1789
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1791 ev_stop (EV_A_ (W)w);
1631 if (!signals [w->signum - 1].head) 1793 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1794 signal (w->signum, SIG_DFL);
1633} 1795}
1634 1796
1635void 1797void
1636ev_child_start (EV_P_ struct ev_child *w) 1798ev_child_start (EV_P_ ev_child *w)
1637{ 1799{
1638#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1802#endif
1641 if (expect_false (ev_is_active (w))) 1803 if (expect_false (ev_is_active (w)))
1642 return; 1804 return;
1643 1805
1644 ev_start (EV_A_ (W)w, 1); 1806 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1808}
1647 1809
1648void 1810void
1649ev_child_stop (EV_P_ struct ev_child *w) 1811ev_child_stop (EV_P_ ev_child *w)
1650{ 1812{
1651 ev_clear_pending (EV_A_ (W)w); 1813 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1814 if (expect_false (!ev_is_active (w)))
1653 return; 1815 return;
1654 1816
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1657} 1819}
1658 1820
1821#if EV_STAT_ENABLE
1822
1823# ifdef _WIN32
1824# undef lstat
1825# define lstat(a,b) _stati64 (a,b)
1826# endif
1827
1828#define DEF_STAT_INTERVAL 5.0074891
1829#define MIN_STAT_INTERVAL 0.1074891
1830
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832
1833#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192
1835
1836static void noinline
1837infy_add (EV_P_ ev_stat *w)
1838{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840
1841 if (w->wd < 0)
1842 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844
1845 /* monitor some parent directory for speedup hints */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 {
1848 char path [4096];
1849 strcpy (path, w->path);
1850
1851 do
1852 {
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855
1856 char *pend = strrchr (path, '/');
1857
1858 if (!pend)
1859 break; /* whoops, no '/', complain to your admin */
1860
1861 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 }
1866 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1872}
1873
1874static void noinline
1875infy_del (EV_P_ ev_stat *w)
1876{
1877 int slot;
1878 int wd = w->wd;
1879
1880 if (wd < 0)
1881 return;
1882
1883 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w);
1886
1887 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd);
1889}
1890
1891static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{
1894 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev);
1898 else
1899 {
1900 WL w_;
1901
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1903 {
1904 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */
1906
1907 if (w->wd == wd || wd == -1)
1908 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 {
1911 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 }
1914
1915 stat_timer_cb (EV_A_ &w->timer, 0);
1916 }
1917 }
1918 }
1919}
1920
1921static void
1922infy_cb (EV_P_ ev_io *w, int revents)
1923{
1924 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf));
1928
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931}
1932
1933void inline_size
1934infy_init (EV_P)
1935{
1936 if (fs_fd != -2)
1937 return;
1938
1939 fs_fd = inotify_init ();
1940
1941 if (fs_fd >= 0)
1942 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w);
1946 }
1947}
1948
1949void inline_size
1950infy_fork (EV_P)
1951{
1952 int slot;
1953
1954 if (fs_fd < 0)
1955 return;
1956
1957 close (fs_fd);
1958 fs_fd = inotify_init ();
1959
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 {
1962 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0;
1964
1965 while (w_)
1966 {
1967 ev_stat *w = (ev_stat *)w_;
1968 w_ = w_->next; /* lets us add this watcher */
1969
1970 w->wd = -1;
1971
1972 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else
1975 ev_timer_start (EV_A_ &w->timer);
1976 }
1977
1978 }
1979}
1980
1981#endif
1982
1983void
1984ev_stat_stat (EV_P_ ev_stat *w)
1985{
1986 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1;
1990}
1991
1992static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996
1997 /* we copy this here each the time so that */
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w);
2001
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if (
2004 w->prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime
2015 ) {
2016 #if EV_USE_INOTIFY
2017 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */
2020 #endif
2021
2022 ev_feed_event (EV_A_ w, EV_STAT);
2023 }
2024}
2025
2026void
2027ev_stat_start (EV_P_ ev_stat *w)
2028{
2029 if (expect_false (ev_is_active (w)))
2030 return;
2031
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w);
2037
2038 if (w->interval < MIN_STAT_INTERVAL)
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2042 ev_set_priority (&w->timer, ev_priority (w));
2043
2044#if EV_USE_INOTIFY
2045 infy_init (EV_A);
2046
2047 if (fs_fd >= 0)
2048 infy_add (EV_A_ w);
2049 else
2050#endif
2051 ev_timer_start (EV_A_ &w->timer);
2052
2053 ev_start (EV_A_ (W)w, 1);
2054}
2055
2056void
2057ev_stat_stop (EV_P_ ev_stat *w)
2058{
2059 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w)))
2061 return;
2062
2063#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w);
2065#endif
2066 ev_timer_stop (EV_A_ &w->timer);
2067
2068 ev_stop (EV_A_ (W)w);
2069}
2070#endif
2071
2072#if EV_IDLE_ENABLE
2073void
2074ev_idle_start (EV_P_ ev_idle *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 pri_adjust (EV_A_ (W)w);
2080
2081 {
2082 int active = ++idlecnt [ABSPRI (w)];
2083
2084 ++idleall;
2085 ev_start (EV_A_ (W)w, active);
2086
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w;
2089 }
2090}
2091
2092void
2093ev_idle_stop (EV_P_ ev_idle *w)
2094{
2095 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w)))
2097 return;
2098
2099 {
2100 int active = ((W)w)->active;
2101
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2104
2105 ev_stop (EV_A_ (W)w);
2106 --idleall;
2107 }
2108}
2109#endif
2110
2111void
2112ev_prepare_start (EV_P_ ev_prepare *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w;
2120}
2121
2122void
2123ev_prepare_stop (EV_P_ ev_prepare *w)
2124{
2125 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137
2138void
2139ev_check_start (EV_P_ ev_check *w)
2140{
2141 if (expect_false (ev_is_active (w)))
2142 return;
2143
2144 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w;
2147}
2148
2149void
2150ev_check_stop (EV_P_ ev_check *w)
2151{
2152 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w)))
2154 return;
2155
2156 {
2157 int active = ((W)w)->active;
2158 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active;
2160 }
2161
2162 ev_stop (EV_A_ (W)w);
2163}
2164
2165#if EV_EMBED_ENABLE
2166void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w)
2168{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK);
2170}
2171
2172static void
2173embed_cb (EV_P_ ev_io *io, int revents)
2174{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176
2177 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else
2180 ev_embed_sweep (loop, w);
2181}
2182
2183void
2184ev_embed_start (EV_P_ ev_embed *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 {
2190 struct ev_loop *loop = w->loop;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2193 }
2194
2195 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io);
2197
2198 ev_start (EV_A_ (W)w, 1);
2199}
2200
2201void
2202ev_embed_stop (EV_P_ ev_embed *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 ev_io_stop (EV_A_ &w->io);
2209
2210 ev_stop (EV_A_ (W)w);
2211}
2212#endif
2213
2214#if EV_FORK_ENABLE
2215void
2216ev_fork_start (EV_P_ ev_fork *w)
2217{
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w;
2224}
2225
2226void
2227ev_fork_stop (EV_P_ ev_fork *w)
2228{
2229 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w)))
2231 return;
2232
2233 {
2234 int active = ((W)w)->active;
2235 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active;
2237 }
2238
2239 ev_stop (EV_A_ (W)w);
2240}
2241#endif
2242
1659/*****************************************************************************/ 2243/*****************************************************************************/
1660 2244
1661struct ev_once 2245struct ev_once
1662{ 2246{
1663 struct ev_io io; 2247 ev_io io;
1664 struct ev_timer to; 2248 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2249 void (*cb)(int revents, void *arg);
1666 void *arg; 2250 void *arg;
1667}; 2251};
1668 2252
1669static void 2253static void
1678 2262
1679 cb (revents, arg); 2263 cb (revents, arg);
1680} 2264}
1681 2265
1682static void 2266static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2267once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2268{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2270}
1687 2271
1688static void 2272static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2273once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2274{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2276}
1693 2277
1694void 2278void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines