ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.184 by root, Wed Dec 12 05:30:52 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 230
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 234
186#if __GNUC__ >= 3 235#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 237# define noinline __attribute__ ((noinline))
189#else 238#else
190# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
191# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
192#endif 244#endif
193 245
194#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
196 255
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 258
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
202 261
203typedef struct ev_watcher *W; 262typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
206 265
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 267
209#ifdef _WIN32 268#ifdef _WIN32
210# include "ev_win32.c" 269# include "ev_win32.c"
212 271
213/*****************************************************************************/ 272/*****************************************************************************/
214 273
215static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
216 275
276void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 278{
219 syserr_cb = cb; 279 syserr_cb = cb;
220} 280}
221 281
222static void 282static void noinline
223syserr (const char *msg) 283syserr (const char *msg)
224{ 284{
225 if (!msg) 285 if (!msg)
226 msg = "(libev) system error"; 286 msg = "(libev) system error";
227 287
234 } 294 }
235} 295}
236 296
237static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
238 298
299void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 301{
241 alloc = cb; 302 alloc = cb;
242} 303}
243 304
244static void * 305inline_speed void *
245ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
246{ 307{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 309
249 if (!ptr && size) 310 if (!ptr && size)
273typedef struct 334typedef struct
274{ 335{
275 W w; 336 W w;
276 int events; 337 int events;
277} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
278 346
279#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
280 348
281 struct ev_loop 349 struct ev_loop
282 { 350 {
316 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 386#endif
319} 387}
320 388
321inline ev_tstamp 389ev_tstamp inline_size
322get_clock (void) 390get_clock (void)
323{ 391{
324#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
326 { 394 {
339{ 407{
340 return ev_rt_now; 408 return ev_rt_now;
341} 409}
342#endif 410#endif
343 411
344#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
345 439
346#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
348 { \ 442 { \
349 int newcnt = cur; \ 443 int ocur_ = (cur); \
350 do \ 444 (base) = (type *)array_realloc \
351 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 447 }
360 448
449#if 0
361#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 452 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 456 }
457#endif
368 458
369#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 461
372/*****************************************************************************/ 462/*****************************************************************************/
373 463
374static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
375anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
376{ 494{
377 while (count--) 495 while (count--)
378 { 496 {
379 base->head = 0; 497 base->head = 0;
382 500
383 ++base; 501 ++base;
384 } 502 }
385} 503}
386 504
387void 505void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
415{ 507{
416 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 509 ev_io *w;
418 510
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 512 {
421 int ev = w->events & revents; 513 int ev = w->events & revents;
422 514
423 if (ev) 515 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
426} 518}
427 519
428void 520void
429ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 522{
523 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
432} 525}
433 526
434/*****************************************************************************/ 527void inline_size
435
436inline void
437fd_reify (EV_P) 528fd_reify (EV_P)
438{ 529{
439 int i; 530 int i;
440 531
441 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
442 { 533 {
443 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 536 ev_io *w;
446 537
447 int events = 0; 538 unsigned char events = 0;
448 539
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 541 events |= (unsigned char)w->events;
451 542
452#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
453 if (events) 544 if (events)
454 { 545 {
455 unsigned long argp; 546 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd); 547 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 549 }
459#endif 550#endif
460 551
552 {
553 unsigned char o_events = anfd->events;
554 unsigned char o_reify = anfd->reify;
555
461 anfd->reify = 0; 556 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 557 anfd->events = events;
558
559 if (o_events != events || o_reify & EV_IOFDSET)
560 backend_modify (EV_A_ fd, o_events, events);
561 }
465 } 562 }
466 563
467 fdchangecnt = 0; 564 fdchangecnt = 0;
468} 565}
469 566
470static void 567void inline_size
471fd_change (EV_P_ int fd) 568fd_change (EV_P_ int fd, int flags)
472{ 569{
473 if (expect_false (anfds [fd].reify)) 570 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 571 anfds [fd].reify |= flags;
477 572
573 if (expect_true (!reify))
574 {
478 ++fdchangecnt; 575 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 576 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 577 fdchanges [fdchangecnt - 1] = fd;
578 }
481} 579}
482 580
483static void 581void inline_speed
484fd_kill (EV_P_ int fd) 582fd_kill (EV_P_ int fd)
485{ 583{
486 struct ev_io *w; 584 ev_io *w;
487 585
488 while ((w = (struct ev_io *)anfds [fd].head)) 586 while ((w = (ev_io *)anfds [fd].head))
489 { 587 {
490 ev_io_stop (EV_A_ w); 588 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 589 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 590 }
493} 591}
494 592
495inline int 593int inline_size
496fd_valid (int fd) 594fd_valid (int fd)
497{ 595{
498#ifdef _WIN32 596#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 597 return _get_osfhandle (fd) != -1;
500#else 598#else
501 return fcntl (fd, F_GETFD) != -1; 599 return fcntl (fd, F_GETFD) != -1;
502#endif 600#endif
503} 601}
504 602
505/* called on EBADF to verify fds */ 603/* called on EBADF to verify fds */
506static void 604static void noinline
507fd_ebadf (EV_P) 605fd_ebadf (EV_P)
508{ 606{
509 int fd; 607 int fd;
510 608
511 for (fd = 0; fd < anfdmax; ++fd) 609 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 611 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 612 fd_kill (EV_A_ fd);
515} 613}
516 614
517/* called on ENOMEM in select/poll to kill some fds and retry */ 615/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 616static void noinline
519fd_enomem (EV_P) 617fd_enomem (EV_P)
520{ 618{
521 int fd; 619 int fd;
522 620
523 for (fd = anfdmax; fd--; ) 621 for (fd = anfdmax; fd--; )
527 return; 625 return;
528 } 626 }
529} 627}
530 628
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 629/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 630static void noinline
533fd_rearm_all (EV_P) 631fd_rearm_all (EV_P)
534{ 632{
535 int fd; 633 int fd;
536 634
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 635 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 636 if (anfds [fd].events)
540 { 637 {
541 anfds [fd].events = 0; 638 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 639 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 640 }
544} 641}
545 642
546/*****************************************************************************/ 643/*****************************************************************************/
547 644
548static void 645void inline_speed
549upheap (WT *heap, int k) 646upheap (WT *heap, int k)
550{ 647{
551 WT w = heap [k]; 648 WT w = heap [k];
552 649
553 while (k && heap [k >> 1]->at > w->at) 650 while (k)
554 { 651 {
652 int p = (k - 1) >> 1;
653
654 if (heap [p]->at <= w->at)
655 break;
656
555 heap [k] = heap [k >> 1]; 657 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 658 ((W)heap [k])->active = k + 1;
557 k >>= 1; 659 k = p;
558 } 660 }
559 661
560 heap [k] = w; 662 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 663 ((W)heap [k])->active = k + 1;
562
563} 664}
564 665
565static void 666void inline_speed
566downheap (WT *heap, int N, int k) 667downheap (WT *heap, int N, int k)
567{ 668{
568 WT w = heap [k]; 669 WT w = heap [k];
569 670
570 while (k < (N >> 1)) 671 for (;;)
571 { 672 {
572 int j = k << 1; 673 int c = (k << 1) + 1;
573 674
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 675 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 676 break;
579 677
678 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
679 ? 1 : 0;
680
681 if (w->at <= heap [c]->at)
682 break;
683
580 heap [k] = heap [j]; 684 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
686
582 k = j; 687 k = c;
583 } 688 }
584 689
585 heap [k] = w; 690 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 691 ((W)heap [k])->active = k + 1;
587} 692}
588 693
589inline void 694void inline_size
590adjustheap (WT *heap, int N, int k) 695adjustheap (WT *heap, int N, int k)
591{ 696{
592 upheap (heap, k); 697 upheap (heap, k);
593 downheap (heap, N, k); 698 downheap (heap, N, k);
594} 699}
604static ANSIG *signals; 709static ANSIG *signals;
605static int signalmax; 710static int signalmax;
606 711
607static int sigpipe [2]; 712static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 713static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 714static ev_io sigev;
610 715
611static void 716void inline_size
612signals_init (ANSIG *base, int count) 717signals_init (ANSIG *base, int count)
613{ 718{
614 while (count--) 719 while (count--)
615 { 720 {
616 base->head = 0; 721 base->head = 0;
636 write (sigpipe [1], &signum, 1); 741 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 742 errno = old_errno;
638 } 743 }
639} 744}
640 745
641void 746void noinline
642ev_feed_signal_event (EV_P_ int signum) 747ev_feed_signal_event (EV_P_ int signum)
643{ 748{
644 WL w; 749 WL w;
645 750
646#if EV_MULTIPLICITY 751#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 762 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 763 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 764}
660 765
661static void 766static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 767sigcb (EV_P_ ev_io *iow, int revents)
663{ 768{
664 int signum; 769 int signum;
665 770
666 read (sigpipe [0], &revents, 1); 771 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 772 gotsig = 0;
669 for (signum = signalmax; signum--; ) 774 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 775 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 776 ev_feed_signal_event (EV_A_ signum + 1);
672} 777}
673 778
674static void 779void inline_speed
675fd_intern (int fd) 780fd_intern (int fd)
676{ 781{
677#ifdef _WIN32 782#ifdef _WIN32
678 int arg = 1; 783 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 784 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 786 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 787 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 788#endif
684} 789}
685 790
686static void 791static void noinline
687siginit (EV_P) 792siginit (EV_P)
688{ 793{
689 fd_intern (sigpipe [0]); 794 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 795 fd_intern (sigpipe [1]);
691 796
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 799 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 800}
696 801
697/*****************************************************************************/ 802/*****************************************************************************/
698 803
699static struct ev_child *childs [PID_HASHSIZE]; 804static WL childs [EV_PID_HASHSIZE];
700 805
701#ifndef _WIN32 806#ifndef _WIN32
702 807
703static struct ev_signal childev; 808static ev_signal childev;
809
810void inline_speed
811child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
812{
813 ev_child *w;
814
815 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
816 if (w->pid == pid || !w->pid)
817 {
818 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
819 w->rpid = pid;
820 w->rstatus = status;
821 ev_feed_event (EV_A_ (W)w, EV_CHILD);
822 }
823}
704 824
705#ifndef WCONTINUED 825#ifndef WCONTINUED
706# define WCONTINUED 0 826# define WCONTINUED 0
707#endif 827#endif
708 828
709static void 829static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 830childcb (EV_P_ ev_signal *sw, int revents)
726{ 831{
727 int pid, status; 832 int pid, status;
728 833
834 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 835 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 836 if (!WCONTINUED
837 || errno != EINVAL
838 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
839 return;
840
731 /* make sure we are called again until all childs have been reaped */ 841 /* make sure we are called again until all childs have been reaped */
842 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 843 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 844
734 child_reap (EV_A_ sw, pid, pid, status); 845 child_reap (EV_A_ sw, pid, pid, status);
846 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 847 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 848}
738 849
739#endif 850#endif
740 851
741/*****************************************************************************/ 852/*****************************************************************************/
767{ 878{
768 return EV_VERSION_MINOR; 879 return EV_VERSION_MINOR;
769} 880}
770 881
771/* return true if we are running with elevated privileges and should ignore env variables */ 882/* return true if we are running with elevated privileges and should ignore env variables */
772static int 883int inline_size
773enable_secure (void) 884enable_secure (void)
774{ 885{
775#ifdef _WIN32 886#ifdef _WIN32
776 return 0; 887 return 0;
777#else 888#else
811 922
812 return flags; 923 return flags;
813} 924}
814 925
815unsigned int 926unsigned int
927ev_embeddable_backends (void)
928{
929 return EVBACKEND_EPOLL
930 | EVBACKEND_KQUEUE
931 | EVBACKEND_PORT;
932}
933
934unsigned int
816ev_backend (EV_P) 935ev_backend (EV_P)
817{ 936{
818 return backend; 937 return backend;
819} 938}
820 939
821static void 940unsigned int
941ev_loop_count (EV_P)
942{
943 return loop_count;
944}
945
946static void noinline
822loop_init (EV_P_ unsigned int flags) 947loop_init (EV_P_ unsigned int flags)
823{ 948{
824 if (!backend) 949 if (!backend)
825 { 950 {
826#if EV_USE_MONOTONIC 951#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 959 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 960 mn_now = get_clock ();
836 now_floor = mn_now; 961 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 962 rtmn_diff = ev_rt_now - mn_now;
838 963
964 /* pid check not overridable via env */
965#ifndef _WIN32
966 if (flags & EVFLAG_FORKCHECK)
967 curpid = getpid ();
968#endif
969
839 if (!(flags & EVFLAG_NOENV) 970 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 971 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 972 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 973 flags = atoi (getenv ("LIBEV_FLAGS"));
843 974
844 if (!(flags & 0x0000ffffUL)) 975 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 976 flags |= ev_recommended_backends ();
846 977
847 backend = 0; 978 backend = 0;
979 backend_fd = -1;
980#if EV_USE_INOTIFY
981 fs_fd = -2;
982#endif
983
848#if EV_USE_PORT 984#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 985 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 986#endif
851#if EV_USE_KQUEUE 987#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 988 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1000 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1001 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1002 }
867} 1003}
868 1004
869static void 1005static void noinline
870loop_destroy (EV_P) 1006loop_destroy (EV_P)
871{ 1007{
872 int i; 1008 int i;
1009
1010#if EV_USE_INOTIFY
1011 if (fs_fd >= 0)
1012 close (fs_fd);
1013#endif
1014
1015 if (backend_fd >= 0)
1016 close (backend_fd);
873 1017
874#if EV_USE_PORT 1018#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1019 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1020#endif
877#if EV_USE_KQUEUE 1021#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1030#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1031 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1032#endif
889 1033
890 for (i = NUMPRI; i--; ) 1034 for (i = NUMPRI; i--; )
1035 {
891 array_free (pending, [i]); 1036 array_free (pending, [i]);
1037#if EV_IDLE_ENABLE
1038 array_free (idle, [i]);
1039#endif
1040 }
892 1041
893 /* have to use the microsoft-never-gets-it-right macro */ 1042 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1043 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1044 array_free (timer, EMPTY);
896#if EV_PERIODICS 1045#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1046 array_free (periodic, EMPTY);
898#endif 1047#endif
899 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 1048 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1049 array_free (check, EMPTY);
902 1050
903 backend = 0; 1051 backend = 0;
904} 1052}
905 1053
906static void 1054void inline_size infy_fork (EV_P);
1055
1056void inline_size
907loop_fork (EV_P) 1057loop_fork (EV_P)
908{ 1058{
909#if EV_USE_PORT 1059#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1060 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1061#endif
912#if EV_USE_KQUEUE 1062#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1063 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1064#endif
915#if EV_USE_EPOLL 1065#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1066 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1067#endif
1068#if EV_USE_INOTIFY
1069 infy_fork (EV_A);
917#endif 1070#endif
918 1071
919 if (ev_is_active (&sigev)) 1072 if (ev_is_active (&sigev))
920 { 1073 {
921 /* default loop */ 1074 /* default loop */
1037 postfork = 1; 1190 postfork = 1;
1038} 1191}
1039 1192
1040/*****************************************************************************/ 1193/*****************************************************************************/
1041 1194
1042static int 1195void
1043any_pending (EV_P) 1196ev_invoke (EV_P_ void *w, int revents)
1044{ 1197{
1045 int pri; 1198 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1199}
1053 1200
1054inline void 1201void inline_speed
1055call_pending (EV_P) 1202call_pending (EV_P)
1056{ 1203{
1057 int pri; 1204 int pri;
1058 1205
1059 for (pri = NUMPRI; pri--; ) 1206 for (pri = NUMPRI; pri--; )
1061 { 1208 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1209 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1210
1064 if (expect_true (p->w)) 1211 if (expect_true (p->w))
1065 { 1212 {
1213 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1214
1066 p->w->pending = 0; 1215 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1216 EV_CB_INVOKE (p->w, p->events);
1068 } 1217 }
1069 } 1218 }
1070} 1219}
1071 1220
1072inline void 1221void inline_size
1073timers_reify (EV_P) 1222timers_reify (EV_P)
1074{ 1223{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1224 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1225 {
1077 struct ev_timer *w = timers [0]; 1226 ev_timer *w = (ev_timer *)timers [0];
1078 1227
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1228 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1229
1081 /* first reschedule or stop timer */ 1230 /* first reschedule or stop timer */
1082 if (w->repeat) 1231 if (w->repeat)
1083 { 1232 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1233 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1234
1086 ((WT)w)->at += w->repeat; 1235 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1236 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1237 ((WT)w)->at = mn_now;
1089 1238
1090 downheap ((WT *)timers, timercnt, 0); 1239 downheap (timers, timercnt, 0);
1091 } 1240 }
1092 else 1241 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1242 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1243
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1244 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1245 }
1097} 1246}
1098 1247
1099#if EV_PERIODICS 1248#if EV_PERIODIC_ENABLE
1100inline void 1249void inline_size
1101periodics_reify (EV_P) 1250periodics_reify (EV_P)
1102{ 1251{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1252 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1253 {
1105 struct ev_periodic *w = periodics [0]; 1254 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1255
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1256 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1257
1109 /* first reschedule or stop timer */ 1258 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1259 if (w->reschedule_cb)
1111 { 1260 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1261 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1115 } 1264 }
1116 else if (w->interval) 1265 else if (w->interval)
1117 { 1266 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1267 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1268 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1269 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1270 downheap (periodics, periodiccnt, 0);
1121 } 1271 }
1122 else 1272 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1273 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1274
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1275 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1276 }
1127} 1277}
1128 1278
1129static void 1279static void noinline
1130periodics_reschedule (EV_P) 1280periodics_reschedule (EV_P)
1131{ 1281{
1132 int i; 1282 int i;
1133 1283
1134 /* adjust periodics after time jump */ 1284 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1285 for (i = 0; i < periodiccnt; ++i)
1136 { 1286 {
1137 struct ev_periodic *w = periodics [i]; 1287 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1288
1139 if (w->reschedule_cb) 1289 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1290 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1291 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1292 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1293 }
1144 1294
1145 /* now rebuild the heap */ 1295 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1296 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1297 downheap (periodics, periodiccnt, i);
1148} 1298}
1149#endif 1299#endif
1150 1300
1151inline int 1301#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1302void inline_size
1303idle_reify (EV_P)
1153{ 1304{
1305 if (expect_false (idleall))
1306 {
1307 int pri;
1308
1309 for (pri = NUMPRI; pri--; )
1310 {
1311 if (pendingcnt [pri])
1312 break;
1313
1314 if (idlecnt [pri])
1315 {
1316 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1317 break;
1318 }
1319 }
1320 }
1321}
1322#endif
1323
1324void inline_speed
1325time_update (EV_P_ ev_tstamp max_block)
1326{
1327 int i;
1328
1329#if EV_USE_MONOTONIC
1330 if (expect_true (have_monotonic))
1331 {
1332 ev_tstamp odiff = rtmn_diff;
1333
1154 mn_now = get_clock (); 1334 mn_now = get_clock ();
1155 1335
1336 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1337 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1338 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1339 {
1158 ev_rt_now = rtmn_diff + mn_now; 1340 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1341 return;
1160 } 1342 }
1161 else 1343
1162 {
1163 now_floor = mn_now; 1344 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1345 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1346
1169inline void 1347 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1348 * on the choice of "4": one iteration isn't enough,
1171{ 1349 * in case we get preempted during the calls to
1172 int i; 1350 * ev_time and get_clock. a second call is almost guaranteed
1173 1351 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1352 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1353 * in the unlikely event of having been preempted here.
1176 { 1354 */
1177 if (time_update_monotonic (EV_A)) 1355 for (i = 4; --i; )
1178 { 1356 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1357 rtmn_diff = ev_rt_now - mn_now;
1184 1358
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1359 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1360 return; /* all is well */
1187 1361
1188 ev_rt_now = ev_time (); 1362 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1363 mn_now = get_clock ();
1190 now_floor = mn_now; 1364 now_floor = mn_now;
1191 } 1365 }
1192 1366
1193# if EV_PERIODICS 1367# if EV_PERIODIC_ENABLE
1368 periodics_reschedule (EV_A);
1369# endif
1370 /* no timer adjustment, as the monotonic clock doesn't jump */
1371 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1372 }
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377
1378 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1379 {
1380#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1381 periodics_reschedule (EV_A);
1195# endif 1382#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1383 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1384 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1385 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1386 }
1215 1387
1216 mn_now = ev_rt_now; 1388 mn_now = ev_rt_now;
1232static int loop_done; 1404static int loop_done;
1233 1405
1234void 1406void
1235ev_loop (EV_P_ int flags) 1407ev_loop (EV_P_ int flags)
1236{ 1408{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1409 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1410 ? EVUNLOOP_ONE
1411 : EVUNLOOP_CANCEL;
1239 1412
1240 while (activecnt) 1413 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1414
1415 do
1241 { 1416 {
1417#ifndef _WIN32
1418 if (expect_false (curpid)) /* penalise the forking check even more */
1419 if (expect_false (getpid () != curpid))
1420 {
1421 curpid = getpid ();
1422 postfork = 1;
1423 }
1424#endif
1425
1426#if EV_FORK_ENABLE
1427 /* we might have forked, so queue fork handlers */
1428 if (expect_false (postfork))
1429 if (forkcnt)
1430 {
1431 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1432 call_pending (EV_A);
1433 }
1434#endif
1435
1242 /* queue check watchers (and execute them) */ 1436 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1437 if (expect_false (preparecnt))
1244 { 1438 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1439 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1440 call_pending (EV_A);
1247 } 1441 }
1248 1442
1443 if (expect_false (!activecnt))
1444 break;
1445
1249 /* we might have forked, so reify kernel state if necessary */ 1446 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1447 if (expect_false (postfork))
1251 loop_fork (EV_A); 1448 loop_fork (EV_A);
1252 1449
1253 /* update fd-related kernel structures */ 1450 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1451 fd_reify (EV_A);
1255 1452
1256 /* calculate blocking time */ 1453 /* calculate blocking time */
1454 {
1455 ev_tstamp block;
1257 1456
1258 /* we only need this for !monotonic clock or timers, but as we basically 1457 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1259 always have timers, we just calculate it always */ 1458 block = 0.; /* do not block at all */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else 1459 else
1264#endif
1265 { 1460 {
1266 ev_rt_now = ev_time (); 1461 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1462 time_update (EV_A_ 1e100);
1268 }
1269 1463
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1464 block = MAX_BLOCKTIME;
1275 1465
1276 if (timercnt) 1466 if (timercnt)
1277 { 1467 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1468 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1469 if (block > to) block = to;
1280 } 1470 }
1281 1471
1282#if EV_PERIODICS 1472#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1473 if (periodiccnt)
1284 { 1474 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1475 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1476 if (block > to) block = to;
1287 } 1477 }
1288#endif 1478#endif
1289 1479
1290 if (expect_false (block < 0.)) block = 0.; 1480 if (expect_false (block < 0.)) block = 0.;
1291 } 1481 }
1292 1482
1483 ++loop_count;
1293 backend_poll (EV_A_ block); 1484 backend_poll (EV_A_ block);
1294 1485
1295 /* update ev_rt_now, do magic */ 1486 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1487 time_update (EV_A_ block);
1488 }
1297 1489
1298 /* queue pending timers and reschedule them */ 1490 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1491 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1492#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1493 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1494#endif
1303 1495
1496#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1497 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1498 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1499#endif
1307 1500
1308 /* queue check watchers, to be executed first */ 1501 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1502 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1503 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1504
1312 call_pending (EV_A); 1505 call_pending (EV_A);
1313 1506
1314 if (expect_false (loop_done))
1315 break;
1316 } 1507 }
1508 while (expect_true (activecnt && !loop_done));
1317 1509
1318 if (loop_done != 2) 1510 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1511 loop_done = EVUNLOOP_CANCEL;
1320} 1512}
1321 1513
1322void 1514void
1323ev_unloop (EV_P_ int how) 1515ev_unloop (EV_P_ int how)
1324{ 1516{
1325 loop_done = how; 1517 loop_done = how;
1326} 1518}
1327 1519
1328/*****************************************************************************/ 1520/*****************************************************************************/
1329 1521
1330inline void 1522void inline_size
1331wlist_add (WL *head, WL elem) 1523wlist_add (WL *head, WL elem)
1332{ 1524{
1333 elem->next = *head; 1525 elem->next = *head;
1334 *head = elem; 1526 *head = elem;
1335} 1527}
1336 1528
1337inline void 1529void inline_size
1338wlist_del (WL *head, WL elem) 1530wlist_del (WL *head, WL elem)
1339{ 1531{
1340 while (*head) 1532 while (*head)
1341 { 1533 {
1342 if (*head == elem) 1534 if (*head == elem)
1347 1539
1348 head = &(*head)->next; 1540 head = &(*head)->next;
1349 } 1541 }
1350} 1542}
1351 1543
1352inline void 1544void inline_speed
1353ev_clear_pending (EV_P_ W w) 1545clear_pending (EV_P_ W w)
1354{ 1546{
1355 if (w->pending) 1547 if (w->pending)
1356 { 1548 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1549 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1550 w->pending = 0;
1359 } 1551 }
1360} 1552}
1361 1553
1362inline void 1554int
1555ev_clear_pending (EV_P_ void *w)
1556{
1557 W w_ = (W)w;
1558 int pending = w_->pending;
1559
1560 if (expect_true (pending))
1561 {
1562 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1563 w_->pending = 0;
1564 p->w = 0;
1565 return p->events;
1566 }
1567 else
1568 return 0;
1569}
1570
1571void inline_size
1572pri_adjust (EV_P_ W w)
1573{
1574 int pri = w->priority;
1575 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1576 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1577 w->priority = pri;
1578}
1579
1580void inline_speed
1363ev_start (EV_P_ W w, int active) 1581ev_start (EV_P_ W w, int active)
1364{ 1582{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1583 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1584 w->active = active;
1369 ev_ref (EV_A); 1585 ev_ref (EV_A);
1370} 1586}
1371 1587
1372inline void 1588void inline_size
1373ev_stop (EV_P_ W w) 1589ev_stop (EV_P_ W w)
1374{ 1590{
1375 ev_unref (EV_A); 1591 ev_unref (EV_A);
1376 w->active = 0; 1592 w->active = 0;
1377} 1593}
1378 1594
1379/*****************************************************************************/ 1595/*****************************************************************************/
1380 1596
1381void 1597void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1598ev_io_start (EV_P_ ev_io *w)
1383{ 1599{
1384 int fd = w->fd; 1600 int fd = w->fd;
1385 1601
1386 if (expect_false (ev_is_active (w))) 1602 if (expect_false (ev_is_active (w)))
1387 return; 1603 return;
1388 1604
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1605 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1606
1391 ev_start (EV_A_ (W)w, 1); 1607 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1608 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1609 wlist_add (&anfds[fd].head, (WL)w);
1394 1610
1395 fd_change (EV_A_ fd); 1611 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1612 w->events &= ~EV_IOFDSET;
1396} 1613}
1397 1614
1398void 1615void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1400{ 1617{
1401 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1619 if (expect_false (!ev_is_active (w)))
1403 return; 1620 return;
1404 1621
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1623
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1409 1626
1410 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd, 1);
1411} 1628}
1412 1629
1413void 1630void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1415{ 1632{
1416 if (expect_false (ev_is_active (w))) 1633 if (expect_false (ev_is_active (w)))
1417 return; 1634 return;
1418 1635
1419 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1420 1637
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1639
1423 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1641 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1643 upheap (timers, timercnt - 1);
1427 1644
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1646}
1430 1647
1431void 1648void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1649ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1650{
1434 ev_clear_pending (EV_A_ (W)w); 1651 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1652 if (expect_false (!ev_is_active (w)))
1436 return; 1653 return;
1437 1654
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1656
1657 {
1658 int active = ((W)w)->active;
1659
1440 if (expect_true (((W)w)->active < timercnt--)) 1660 if (expect_true (--active < --timercnt))
1441 { 1661 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1663 adjustheap (timers, timercnt, active);
1444 } 1664 }
1665 }
1445 1666
1446 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1447 1668
1448 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1449} 1670}
1450 1671
1451void 1672void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1453{ 1674{
1454 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1455 { 1676 {
1456 if (w->repeat) 1677 if (w->repeat)
1457 { 1678 {
1458 ((WT)w)->at = mn_now + w->repeat; 1679 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1680 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1681 }
1461 else 1682 else
1462 ev_timer_stop (EV_A_ w); 1683 ev_timer_stop (EV_A_ w);
1463 } 1684 }
1464 else if (w->repeat) 1685 else if (w->repeat)
1466 w->at = w->repeat; 1687 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1468 } 1689 }
1469} 1690}
1470 1691
1471#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1472void 1693void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1695{
1475 if (expect_false (ev_is_active (w))) 1696 if (expect_false (ev_is_active (w)))
1476 return; 1697 return;
1477 1698
1478 if (w->reschedule_cb) 1699 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1701 else if (w->interval)
1481 { 1702 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1486 1709
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap (periodics, periodiccnt - 1);
1491 1714
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1716}
1494 1717
1495void 1718void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1719ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1720{
1498 ev_clear_pending (EV_A_ (W)w); 1721 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1722 if (expect_false (!ev_is_active (w)))
1500 return; 1723 return;
1501 1724
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1726
1727 {
1728 int active = ((W)w)->active;
1729
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1730 if (expect_true (--active < --periodiccnt))
1505 { 1731 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1733 adjustheap (periodics, periodiccnt, active);
1508 } 1734 }
1735 }
1509 1736
1510 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1511} 1738}
1512 1739
1513void 1740void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1742{
1516 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1519} 1746}
1520#endif 1747#endif
1521 1748
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1749#ifndef SA_RESTART
1589# define SA_RESTART 0 1750# define SA_RESTART 0
1590#endif 1751#endif
1591 1752
1592void 1753void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1594{ 1755{
1595#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1758#endif
1598 if (expect_false (ev_is_active (w))) 1759 if (expect_false (ev_is_active (w)))
1599 return; 1760 return;
1600 1761
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1763
1764 {
1765#ifndef _WIN32
1766 sigset_t full, prev;
1767 sigfillset (&full);
1768 sigprocmask (SIG_SETMASK, &full, &prev);
1769#endif
1770
1771 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1772
1773#ifndef _WIN32
1774 sigprocmask (SIG_SETMASK, &prev, 0);
1775#endif
1776 }
1777
1603 ev_start (EV_A_ (W)w, 1); 1778 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1780
1607 if (!((WL)w)->next) 1781 if (!((WL)w)->next)
1608 { 1782 {
1609#if _WIN32 1783#if _WIN32
1610 signal (w->signum, sighandler); 1784 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1790 sigaction (w->signum, &sa, 0);
1617#endif 1791#endif
1618 } 1792 }
1619} 1793}
1620 1794
1621void 1795void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1796ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1797{
1624 ev_clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1626 return; 1800 return;
1627 1801
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1802 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1803 ev_stop (EV_A_ (W)w);
1630 1804
1631 if (!signals [w->signum - 1].head) 1805 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1806 signal (w->signum, SIG_DFL);
1633} 1807}
1634 1808
1635void 1809void
1636ev_child_start (EV_P_ struct ev_child *w) 1810ev_child_start (EV_P_ ev_child *w)
1637{ 1811{
1638#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1813 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1814#endif
1641 if (expect_false (ev_is_active (w))) 1815 if (expect_false (ev_is_active (w)))
1642 return; 1816 return;
1643 1817
1644 ev_start (EV_A_ (W)w, 1); 1818 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1819 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1820}
1647 1821
1648void 1822void
1649ev_child_stop (EV_P_ struct ev_child *w) 1823ev_child_stop (EV_P_ ev_child *w)
1650{ 1824{
1651 ev_clear_pending (EV_A_ (W)w); 1825 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1826 if (expect_false (!ev_is_active (w)))
1653 return; 1827 return;
1654 1828
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1829 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1657} 1831}
1658 1832
1833#if EV_STAT_ENABLE
1834
1835# ifdef _WIN32
1836# undef lstat
1837# define lstat(a,b) _stati64 (a,b)
1838# endif
1839
1840#define DEF_STAT_INTERVAL 5.0074891
1841#define MIN_STAT_INTERVAL 0.1074891
1842
1843static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1844
1845#if EV_USE_INOTIFY
1846# define EV_INOTIFY_BUFSIZE 8192
1847
1848static void noinline
1849infy_add (EV_P_ ev_stat *w)
1850{
1851 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1852
1853 if (w->wd < 0)
1854 {
1855 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1856
1857 /* monitor some parent directory for speedup hints */
1858 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1859 {
1860 char path [4096];
1861 strcpy (path, w->path);
1862
1863 do
1864 {
1865 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1866 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1867
1868 char *pend = strrchr (path, '/');
1869
1870 if (!pend)
1871 break; /* whoops, no '/', complain to your admin */
1872
1873 *pend = 0;
1874 w->wd = inotify_add_watch (fs_fd, path, mask);
1875 }
1876 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1877 }
1878 }
1879 else
1880 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1881
1882 if (w->wd >= 0)
1883 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1884}
1885
1886static void noinline
1887infy_del (EV_P_ ev_stat *w)
1888{
1889 int slot;
1890 int wd = w->wd;
1891
1892 if (wd < 0)
1893 return;
1894
1895 w->wd = -2;
1896 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1897 wlist_del (&fs_hash [slot].head, (WL)w);
1898
1899 /* remove this watcher, if others are watching it, they will rearm */
1900 inotify_rm_watch (fs_fd, wd);
1901}
1902
1903static void noinline
1904infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1905{
1906 if (slot < 0)
1907 /* overflow, need to check for all hahs slots */
1908 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1909 infy_wd (EV_A_ slot, wd, ev);
1910 else
1911 {
1912 WL w_;
1913
1914 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1915 {
1916 ev_stat *w = (ev_stat *)w_;
1917 w_ = w_->next; /* lets us remove this watcher and all before it */
1918
1919 if (w->wd == wd || wd == -1)
1920 {
1921 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1922 {
1923 w->wd = -1;
1924 infy_add (EV_A_ w); /* re-add, no matter what */
1925 }
1926
1927 stat_timer_cb (EV_A_ &w->timer, 0);
1928 }
1929 }
1930 }
1931}
1932
1933static void
1934infy_cb (EV_P_ ev_io *w, int revents)
1935{
1936 char buf [EV_INOTIFY_BUFSIZE];
1937 struct inotify_event *ev = (struct inotify_event *)buf;
1938 int ofs;
1939 int len = read (fs_fd, buf, sizeof (buf));
1940
1941 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1942 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1943}
1944
1945void inline_size
1946infy_init (EV_P)
1947{
1948 if (fs_fd != -2)
1949 return;
1950
1951 fs_fd = inotify_init ();
1952
1953 if (fs_fd >= 0)
1954 {
1955 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1956 ev_set_priority (&fs_w, EV_MAXPRI);
1957 ev_io_start (EV_A_ &fs_w);
1958 }
1959}
1960
1961void inline_size
1962infy_fork (EV_P)
1963{
1964 int slot;
1965
1966 if (fs_fd < 0)
1967 return;
1968
1969 close (fs_fd);
1970 fs_fd = inotify_init ();
1971
1972 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1973 {
1974 WL w_ = fs_hash [slot].head;
1975 fs_hash [slot].head = 0;
1976
1977 while (w_)
1978 {
1979 ev_stat *w = (ev_stat *)w_;
1980 w_ = w_->next; /* lets us add this watcher */
1981
1982 w->wd = -1;
1983
1984 if (fs_fd >= 0)
1985 infy_add (EV_A_ w); /* re-add, no matter what */
1986 else
1987 ev_timer_start (EV_A_ &w->timer);
1988 }
1989
1990 }
1991}
1992
1993#endif
1994
1995void
1996ev_stat_stat (EV_P_ ev_stat *w)
1997{
1998 if (lstat (w->path, &w->attr) < 0)
1999 w->attr.st_nlink = 0;
2000 else if (!w->attr.st_nlink)
2001 w->attr.st_nlink = 1;
2002}
2003
2004static void noinline
2005stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2006{
2007 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2008
2009 /* we copy this here each the time so that */
2010 /* prev has the old value when the callback gets invoked */
2011 w->prev = w->attr;
2012 ev_stat_stat (EV_A_ w);
2013
2014 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2015 if (
2016 w->prev.st_dev != w->attr.st_dev
2017 || w->prev.st_ino != w->attr.st_ino
2018 || w->prev.st_mode != w->attr.st_mode
2019 || w->prev.st_nlink != w->attr.st_nlink
2020 || w->prev.st_uid != w->attr.st_uid
2021 || w->prev.st_gid != w->attr.st_gid
2022 || w->prev.st_rdev != w->attr.st_rdev
2023 || w->prev.st_size != w->attr.st_size
2024 || w->prev.st_atime != w->attr.st_atime
2025 || w->prev.st_mtime != w->attr.st_mtime
2026 || w->prev.st_ctime != w->attr.st_ctime
2027 ) {
2028 #if EV_USE_INOTIFY
2029 infy_del (EV_A_ w);
2030 infy_add (EV_A_ w);
2031 ev_stat_stat (EV_A_ w); /* avoid race... */
2032 #endif
2033
2034 ev_feed_event (EV_A_ w, EV_STAT);
2035 }
2036}
2037
2038void
2039ev_stat_start (EV_P_ ev_stat *w)
2040{
2041 if (expect_false (ev_is_active (w)))
2042 return;
2043
2044 /* since we use memcmp, we need to clear any padding data etc. */
2045 memset (&w->prev, 0, sizeof (ev_statdata));
2046 memset (&w->attr, 0, sizeof (ev_statdata));
2047
2048 ev_stat_stat (EV_A_ w);
2049
2050 if (w->interval < MIN_STAT_INTERVAL)
2051 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2052
2053 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2054 ev_set_priority (&w->timer, ev_priority (w));
2055
2056#if EV_USE_INOTIFY
2057 infy_init (EV_A);
2058
2059 if (fs_fd >= 0)
2060 infy_add (EV_A_ w);
2061 else
2062#endif
2063 ev_timer_start (EV_A_ &w->timer);
2064
2065 ev_start (EV_A_ (W)w, 1);
2066}
2067
2068void
2069ev_stat_stop (EV_P_ ev_stat *w)
2070{
2071 clear_pending (EV_A_ (W)w);
2072 if (expect_false (!ev_is_active (w)))
2073 return;
2074
2075#if EV_USE_INOTIFY
2076 infy_del (EV_A_ w);
2077#endif
2078 ev_timer_stop (EV_A_ &w->timer);
2079
2080 ev_stop (EV_A_ (W)w);
2081}
2082#endif
2083
2084#if EV_IDLE_ENABLE
2085void
2086ev_idle_start (EV_P_ ev_idle *w)
2087{
2088 if (expect_false (ev_is_active (w)))
2089 return;
2090
2091 pri_adjust (EV_A_ (W)w);
2092
2093 {
2094 int active = ++idlecnt [ABSPRI (w)];
2095
2096 ++idleall;
2097 ev_start (EV_A_ (W)w, active);
2098
2099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2100 idles [ABSPRI (w)][active - 1] = w;
2101 }
2102}
2103
2104void
2105ev_idle_stop (EV_P_ ev_idle *w)
2106{
2107 clear_pending (EV_A_ (W)w);
2108 if (expect_false (!ev_is_active (w)))
2109 return;
2110
2111 {
2112 int active = ((W)w)->active;
2113
2114 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2115 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2116
2117 ev_stop (EV_A_ (W)w);
2118 --idleall;
2119 }
2120}
2121#endif
2122
2123void
2124ev_prepare_start (EV_P_ ev_prepare *w)
2125{
2126 if (expect_false (ev_is_active (w)))
2127 return;
2128
2129 ev_start (EV_A_ (W)w, ++preparecnt);
2130 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2131 prepares [preparecnt - 1] = w;
2132}
2133
2134void
2135ev_prepare_stop (EV_P_ ev_prepare *w)
2136{
2137 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w)))
2139 return;
2140
2141 {
2142 int active = ((W)w)->active;
2143 prepares [active - 1] = prepares [--preparecnt];
2144 ((W)prepares [active - 1])->active = active;
2145 }
2146
2147 ev_stop (EV_A_ (W)w);
2148}
2149
2150void
2151ev_check_start (EV_P_ ev_check *w)
2152{
2153 if (expect_false (ev_is_active (w)))
2154 return;
2155
2156 ev_start (EV_A_ (W)w, ++checkcnt);
2157 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2158 checks [checkcnt - 1] = w;
2159}
2160
2161void
2162ev_check_stop (EV_P_ ev_check *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168 {
2169 int active = ((W)w)->active;
2170 checks [active - 1] = checks [--checkcnt];
2171 ((W)checks [active - 1])->active = active;
2172 }
2173
2174 ev_stop (EV_A_ (W)w);
2175}
2176
2177#if EV_EMBED_ENABLE
2178void noinline
2179ev_embed_sweep (EV_P_ ev_embed *w)
2180{
2181 ev_loop (w->loop, EVLOOP_NONBLOCK);
2182}
2183
2184static void
2185embed_cb (EV_P_ ev_io *io, int revents)
2186{
2187 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2188
2189 if (ev_cb (w))
2190 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2191 else
2192 ev_embed_sweep (loop, w);
2193}
2194
2195void
2196ev_embed_start (EV_P_ ev_embed *w)
2197{
2198 if (expect_false (ev_is_active (w)))
2199 return;
2200
2201 {
2202 struct ev_loop *loop = w->loop;
2203 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2204 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2205 }
2206
2207 ev_set_priority (&w->io, ev_priority (w));
2208 ev_io_start (EV_A_ &w->io);
2209
2210 ev_start (EV_A_ (W)w, 1);
2211}
2212
2213void
2214ev_embed_stop (EV_P_ ev_embed *w)
2215{
2216 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w)))
2218 return;
2219
2220 ev_io_stop (EV_A_ &w->io);
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
2226#if EV_FORK_ENABLE
2227void
2228ev_fork_start (EV_P_ ev_fork *w)
2229{
2230 if (expect_false (ev_is_active (w)))
2231 return;
2232
2233 ev_start (EV_A_ (W)w, ++forkcnt);
2234 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2235 forks [forkcnt - 1] = w;
2236}
2237
2238void
2239ev_fork_stop (EV_P_ ev_fork *w)
2240{
2241 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w)))
2243 return;
2244
2245 {
2246 int active = ((W)w)->active;
2247 forks [active - 1] = forks [--forkcnt];
2248 ((W)forks [active - 1])->active = active;
2249 }
2250
2251 ev_stop (EV_A_ (W)w);
2252}
2253#endif
2254
1659/*****************************************************************************/ 2255/*****************************************************************************/
1660 2256
1661struct ev_once 2257struct ev_once
1662{ 2258{
1663 struct ev_io io; 2259 ev_io io;
1664 struct ev_timer to; 2260 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2261 void (*cb)(int revents, void *arg);
1666 void *arg; 2262 void *arg;
1667}; 2263};
1668 2264
1669static void 2265static void
1678 2274
1679 cb (revents, arg); 2275 cb (revents, arg);
1680} 2276}
1681 2277
1682static void 2278static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2279once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2280{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2282}
1687 2283
1688static void 2284static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2285once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2286{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2287 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2288}
1693 2289
1694void 2290void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines