ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
47# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
49# endif 61# endif
50# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
52# endif 72# endif
53# endif 73# endif
54 74
55# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 110# else
91# define EV_USE_PORT 0 111# define EV_USE_PORT 0
92# endif 112# endif
93# endif 113# endif
94 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
95#endif 123#endif
96 124
97#include <math.h> 125#include <math.h>
98#include <stdlib.h> 126#include <stdlib.h>
99#include <fcntl.h> 127#include <fcntl.h>
106#include <sys/types.h> 134#include <sys/types.h>
107#include <time.h> 135#include <time.h>
108 136
109#include <signal.h> 137#include <signal.h>
110 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
111#ifndef _WIN32 145#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 146# include <sys/time.h>
114# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
115#else 149#else
116# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 151# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
128 162
129#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
131#endif 165#endif
132 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
133#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
135#endif 173#endif
136 174
137#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
152 190
153#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 192# define EV_USE_PORT 0
155#endif 193#endif
156 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
157/**/ 215/**/
158 216
159#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
164#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
167#endif 225#endif
168 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
169#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 243# include <winsock.h>
171#endif 244#endif
172 245
173/**/ 246/**/
174 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 261
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 262#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 264# define noinline __attribute__ ((noinline))
189#else 265#else
190# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
191# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
192#endif 271#endif
193 272
194#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
196 282
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 285
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
202 288
203typedef struct ev_watcher *W; 289typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
206 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
208 298
209#ifdef _WIN32 299#ifdef _WIN32
210# include "ev_win32.c" 300# include "ev_win32.c"
211#endif 301#endif
212 302
213/*****************************************************************************/ 303/*****************************************************************************/
214 304
215static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
216 306
307void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 309{
219 syserr_cb = cb; 310 syserr_cb = cb;
220} 311}
221 312
222static void 313static void noinline
223syserr (const char *msg) 314syserr (const char *msg)
224{ 315{
225 if (!msg) 316 if (!msg)
226 msg = "(libev) system error"; 317 msg = "(libev) system error";
227 318
234 } 325 }
235} 326}
236 327
237static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
238 329
330void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 332{
241 alloc = cb; 333 alloc = cb;
242} 334}
243 335
244static void * 336inline_speed void *
245ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
246{ 338{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 340
249 if (!ptr && size) 341 if (!ptr && size)
273typedef struct 365typedef struct
274{ 366{
275 W w; 367 W w;
276 int events; 368 int events;
277} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
278 377
279#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
280 379
281 struct ev_loop 380 struct ev_loop
282 { 381 {
316 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 417#endif
319} 418}
320 419
321inline ev_tstamp 420ev_tstamp inline_size
322get_clock (void) 421get_clock (void)
323{ 422{
324#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
326 { 425 {
339{ 438{
340 return ev_rt_now; 439 return ev_rt_now;
341} 440}
342#endif 441#endif
343 442
344#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
345 497
346#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
348 { \ 500 { \
349 int newcnt = cur; \ 501 int ocur_ = (cur); \
350 do \ 502 (base) = (type *)array_realloc \
351 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 505 }
360 506
507#if 0
361#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 510 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 514 }
515#endif
368 516
369#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 519
372/*****************************************************************************/ 520/*****************************************************************************/
373 521
374static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
375anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
376{ 552{
377 while (count--) 553 while (count--)
378 { 554 {
379 base->head = 0; 555 base->head = 0;
382 558
383 ++base; 559 ++base;
384 } 560 }
385} 561}
386 562
387void 563void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
415{ 565{
416 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 567 ev_io *w;
418 568
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 570 {
421 int ev = w->events & revents; 571 int ev = w->events & revents;
422 572
423 if (ev) 573 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
426} 576}
427 577
428void 578void
429ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 580{
581 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
432} 583}
433 584
434/*****************************************************************************/ 585void inline_size
435
436inline void
437fd_reify (EV_P) 586fd_reify (EV_P)
438{ 587{
439 int i; 588 int i;
440 589
441 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
442 { 591 {
443 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 594 ev_io *w;
446 595
447 int events = 0; 596 unsigned char events = 0;
448 597
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 599 events |= (unsigned char)w->events;
451 600
452#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
453 if (events) 602 if (events)
454 { 603 {
455 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
456 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 611 }
459#endif 612#endif
460 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
461 anfd->reify = 0; 618 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
465 } 624 }
466 625
467 fdchangecnt = 0; 626 fdchangecnt = 0;
468} 627}
469 628
470static void 629void inline_size
471fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
472{ 631{
473 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
477 634
635 if (expect_true (!reify))
636 {
478 ++fdchangecnt; 637 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
481} 641}
482 642
483static void 643void inline_speed
484fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
485{ 645{
486 struct ev_io *w; 646 ev_io *w;
487 647
488 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
489 { 649 {
490 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 652 }
493} 653}
494 654
495inline int 655int inline_size
496fd_valid (int fd) 656fd_valid (int fd)
497{ 657{
498#ifdef _WIN32 658#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 659 return _get_osfhandle (fd) != -1;
500#else 660#else
501 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
502#endif 662#endif
503} 663}
504 664
505/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
506static void 666static void noinline
507fd_ebadf (EV_P) 667fd_ebadf (EV_P)
508{ 668{
509 int fd; 669 int fd;
510 670
511 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
515} 675}
516 676
517/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 678static void noinline
519fd_enomem (EV_P) 679fd_enomem (EV_P)
520{ 680{
521 int fd; 681 int fd;
522 682
523 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
527 return; 687 return;
528 } 688 }
529} 689}
530 690
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 692static void noinline
533fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
534{ 694{
535 int fd; 695 int fd;
536 696
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 698 if (anfds [fd].events)
540 { 699 {
541 anfds [fd].events = 0; 700 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 702 }
544} 703}
545 704
546/*****************************************************************************/ 705/*****************************************************************************/
547 706
548static void 707void inline_speed
549upheap (WT *heap, int k) 708upheap (WT *heap, int k)
550{ 709{
551 WT w = heap [k]; 710 WT w = heap [k];
552 711
553 while (k && heap [k >> 1]->at > w->at) 712 while (k)
554 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
555 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
557 k >>= 1; 721 k = p;
558 } 722 }
559 723
560 heap [k] = w; 724 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
562
563} 726}
564 727
565static void 728void inline_speed
566downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
567{ 730{
568 WT w = heap [k]; 731 WT w = heap [k];
569 732
570 while (k < (N >> 1)) 733 for (;;)
571 { 734 {
572 int j = k << 1; 735 int c = (k << 1) + 1;
573 736
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 738 break;
579 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
580 heap [k] = heap [j]; 746 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
582 k = j; 749 k = c;
583 } 750 }
584 751
585 heap [k] = w; 752 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
587} 754}
588 755
589inline void 756void inline_size
590adjustheap (WT *heap, int N, int k) 757adjustheap (WT *heap, int N, int k)
591{ 758{
592 upheap (heap, k); 759 upheap (heap, k);
593 downheap (heap, N, k); 760 downheap (heap, N, k);
594} 761}
604static ANSIG *signals; 771static ANSIG *signals;
605static int signalmax; 772static int signalmax;
606 773
607static int sigpipe [2]; 774static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 776static ev_io sigev;
610 777
611static void 778void inline_size
612signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
613{ 780{
614 while (count--) 781 while (count--)
615 { 782 {
616 base->head = 0; 783 base->head = 0;
636 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 804 errno = old_errno;
638 } 805 }
639} 806}
640 807
641void 808void noinline
642ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
643{ 810{
644 WL w; 811 WL w;
645 812
646#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 826}
660 827
661static void 828static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
663{ 830{
664 int signum; 831 int signum;
665 832
666 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 834 gotsig = 0;
669 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
672} 839}
673 840
674static void 841void inline_speed
675fd_intern (int fd) 842fd_intern (int fd)
676{ 843{
677#ifdef _WIN32 844#ifdef _WIN32
678 int arg = 1; 845 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 848 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 849 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 850#endif
684} 851}
685 852
686static void 853static void noinline
687siginit (EV_P) 854siginit (EV_P)
688{ 855{
689 fd_intern (sigpipe [0]); 856 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 857 fd_intern (sigpipe [1]);
691 858
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 862}
696 863
697/*****************************************************************************/ 864/*****************************************************************************/
698 865
699static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
700 867
701#ifndef _WIN32 868#ifndef _WIN32
702 869
703static struct ev_signal childev; 870static ev_signal childev;
871
872#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0
874#endif
875
876void inline_speed
877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
878{
879 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
881
882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 {
884 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1)))
886 {
887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
888 w->rpid = pid;
889 w->rstatus = status;
890 ev_feed_event (EV_A_ (W)w, EV_CHILD);
891 }
892 }
893}
704 894
705#ifndef WCONTINUED 895#ifndef WCONTINUED
706# define WCONTINUED 0 896# define WCONTINUED 0
707#endif 897#endif
708 898
709static void 899static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 900childcb (EV_P_ ev_signal *sw, int revents)
726{ 901{
727 int pid, status; 902 int pid, status;
728 903
904 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 905 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 906 if (!WCONTINUED
907 || errno != EINVAL
908 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
909 return;
910
731 /* make sure we are called again until all childs have been reaped */ 911 /* make sure we are called again until all childs have been reaped */
912 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 913 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 914
734 child_reap (EV_A_ sw, pid, pid, status); 915 child_reap (EV_A_ sw, pid, pid, status);
916 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 917 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 918}
738 919
739#endif 920#endif
740 921
741/*****************************************************************************/ 922/*****************************************************************************/
767{ 948{
768 return EV_VERSION_MINOR; 949 return EV_VERSION_MINOR;
769} 950}
770 951
771/* return true if we are running with elevated privileges and should ignore env variables */ 952/* return true if we are running with elevated privileges and should ignore env variables */
772static int 953int inline_size
773enable_secure (void) 954enable_secure (void)
774{ 955{
775#ifdef _WIN32 956#ifdef _WIN32
776 return 0; 957 return 0;
777#else 958#else
811 992
812 return flags; 993 return flags;
813} 994}
814 995
815unsigned int 996unsigned int
997ev_embeddable_backends (void)
998{
999 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1000
1001 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1002 /* please fix it and tell me how to detect the fix */
1003 flags &= ~EVBACKEND_EPOLL;
1004
1005 return flags;
1006}
1007
1008unsigned int
816ev_backend (EV_P) 1009ev_backend (EV_P)
817{ 1010{
818 return backend; 1011 return backend;
819} 1012}
820 1013
821static void 1014unsigned int
1015ev_loop_count (EV_P)
1016{
1017 return loop_count;
1018}
1019
1020void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1022{
1023 io_blocktime = interval;
1024}
1025
1026void
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1028{
1029 timeout_blocktime = interval;
1030}
1031
1032static void noinline
822loop_init (EV_P_ unsigned int flags) 1033loop_init (EV_P_ unsigned int flags)
823{ 1034{
824 if (!backend) 1035 if (!backend)
825 { 1036 {
826#if EV_USE_MONOTONIC 1037#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 1045 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1046 mn_now = get_clock ();
836 now_floor = mn_now; 1047 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1048 rtmn_diff = ev_rt_now - mn_now;
838 1049
1050 io_blocktime = 0.;
1051 timeout_blocktime = 0.;
1052
1053 /* pid check not overridable via env */
1054#ifndef _WIN32
1055 if (flags & EVFLAG_FORKCHECK)
1056 curpid = getpid ();
1057#endif
1058
839 if (!(flags & EVFLAG_NOENV) 1059 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1060 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1061 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1062 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1063
844 if (!(flags & 0x0000ffffUL)) 1064 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 1065 flags |= ev_recommended_backends ();
846 1066
847 backend = 0; 1067 backend = 0;
1068 backend_fd = -1;
1069#if EV_USE_INOTIFY
1070 fs_fd = -2;
1071#endif
1072
848#if EV_USE_PORT 1073#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1074 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1075#endif
851#if EV_USE_KQUEUE 1076#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1077 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 1089 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1090 ev_set_priority (&sigev, EV_MAXPRI);
866 } 1091 }
867} 1092}
868 1093
869static void 1094static void noinline
870loop_destroy (EV_P) 1095loop_destroy (EV_P)
871{ 1096{
872 int i; 1097 int i;
1098
1099#if EV_USE_INOTIFY
1100 if (fs_fd >= 0)
1101 close (fs_fd);
1102#endif
1103
1104 if (backend_fd >= 0)
1105 close (backend_fd);
873 1106
874#if EV_USE_PORT 1107#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1108 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1109#endif
877#if EV_USE_KQUEUE 1110#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1119#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1120 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1121#endif
889 1122
890 for (i = NUMPRI; i--; ) 1123 for (i = NUMPRI; i--; )
1124 {
891 array_free (pending, [i]); 1125 array_free (pending, [i]);
1126#if EV_IDLE_ENABLE
1127 array_free (idle, [i]);
1128#endif
1129 }
1130
1131 ev_free (anfds); anfdmax = 0;
892 1132
893 /* have to use the microsoft-never-gets-it-right macro */ 1133 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1134 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1135 array_free (timer, EMPTY);
896#if EV_PERIODICS 1136#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1137 array_free (periodic, EMPTY);
898#endif 1138#endif
1139#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1140 array_free (fork, EMPTY);
1141#endif
900 array_free (prepare, EMPTY0); 1142 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1143 array_free (check, EMPTY);
902 1144
903 backend = 0; 1145 backend = 0;
904} 1146}
905 1147
906static void 1148void inline_size infy_fork (EV_P);
1149
1150void inline_size
907loop_fork (EV_P) 1151loop_fork (EV_P)
908{ 1152{
909#if EV_USE_PORT 1153#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1154 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1155#endif
912#if EV_USE_KQUEUE 1156#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1157 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1158#endif
915#if EV_USE_EPOLL 1159#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1160 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1161#endif
1162#if EV_USE_INOTIFY
1163 infy_fork (EV_A);
917#endif 1164#endif
918 1165
919 if (ev_is_active (&sigev)) 1166 if (ev_is_active (&sigev))
920 { 1167 {
921 /* default loop */ 1168 /* default loop */
927 1174
928 while (pipe (sigpipe)) 1175 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe"); 1176 syserr ("(libev) error creating pipe");
930 1177
931 siginit (EV_A); 1178 siginit (EV_A);
1179 sigcb (EV_A_ &sigev, EV_READ);
932 } 1180 }
933 1181
934 postfork = 0; 1182 postfork = 0;
935} 1183}
936 1184
958} 1206}
959 1207
960void 1208void
961ev_loop_fork (EV_P) 1209ev_loop_fork (EV_P)
962{ 1210{
963 postfork = 1; 1211 postfork = 1; /* must be in line with ev_default_fork */
964} 1212}
965 1213
966#endif 1214#endif
967 1215
968#if EV_MULTIPLICITY 1216#if EV_MULTIPLICITY
1032#if EV_MULTIPLICITY 1280#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1281 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1282#endif
1035 1283
1036 if (backend) 1284 if (backend)
1037 postfork = 1; 1285 postfork = 1; /* must be in line with ev_loop_fork */
1038} 1286}
1039 1287
1040/*****************************************************************************/ 1288/*****************************************************************************/
1041 1289
1042static int 1290void
1043any_pending (EV_P) 1291ev_invoke (EV_P_ void *w, int revents)
1044{ 1292{
1045 int pri; 1293 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1294}
1053 1295
1054inline void 1296void inline_speed
1055call_pending (EV_P) 1297call_pending (EV_P)
1056{ 1298{
1057 int pri; 1299 int pri;
1058 1300
1059 for (pri = NUMPRI; pri--; ) 1301 for (pri = NUMPRI; pri--; )
1061 { 1303 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1304 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1305
1064 if (expect_true (p->w)) 1306 if (expect_true (p->w))
1065 { 1307 {
1308 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1309
1066 p->w->pending = 0; 1310 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1311 EV_CB_INVOKE (p->w, p->events);
1068 } 1312 }
1069 } 1313 }
1070} 1314}
1071 1315
1072inline void 1316void inline_size
1073timers_reify (EV_P) 1317timers_reify (EV_P)
1074{ 1318{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1320 {
1077 struct ev_timer *w = timers [0]; 1321 ev_timer *w = (ev_timer *)timers [0];
1078 1322
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1324
1081 /* first reschedule or stop timer */ 1325 /* first reschedule or stop timer */
1082 if (w->repeat) 1326 if (w->repeat)
1083 { 1327 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1328 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1329
1086 ((WT)w)->at += w->repeat; 1330 ((WT)w)->at += w->repeat;
1087 if (((WT)w)->at < mn_now) 1331 if (((WT)w)->at < mn_now)
1088 ((WT)w)->at = mn_now; 1332 ((WT)w)->at = mn_now;
1089 1333
1090 downheap ((WT *)timers, timercnt, 0); 1334 downheap (timers, timercnt, 0);
1091 } 1335 }
1092 else 1336 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1338
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1340 }
1097} 1341}
1098 1342
1099#if EV_PERIODICS 1343#if EV_PERIODIC_ENABLE
1100inline void 1344void inline_size
1101periodics_reify (EV_P) 1345periodics_reify (EV_P)
1102{ 1346{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1348 {
1105 struct ev_periodic *w = periodics [0]; 1349 ev_periodic *w = (ev_periodic *)periodics [0];
1106 1350
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1352
1109 /* first reschedule or stop timer */ 1353 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1354 if (w->reschedule_cb)
1111 { 1355 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1358 downheap (periodics, periodiccnt, 0);
1115 } 1359 }
1116 else if (w->interval) 1360 else if (w->interval)
1117 { 1361 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1365 downheap (periodics, periodiccnt, 0);
1121 } 1366 }
1122 else 1367 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1369
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1371 }
1127} 1372}
1128 1373
1129static void 1374static void noinline
1130periodics_reschedule (EV_P) 1375periodics_reschedule (EV_P)
1131{ 1376{
1132 int i; 1377 int i;
1133 1378
1134 /* adjust periodics after time jump */ 1379 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1380 for (i = 0; i < periodiccnt; ++i)
1136 { 1381 {
1137 struct ev_periodic *w = periodics [i]; 1382 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1383
1139 if (w->reschedule_cb) 1384 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1386 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1388 }
1144 1389
1145 /* now rebuild the heap */ 1390 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1391 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1392 downheap (periodics, periodiccnt, i);
1148} 1393}
1149#endif 1394#endif
1150 1395
1151inline int 1396#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1397void inline_size
1398idle_reify (EV_P)
1153{ 1399{
1400 if (expect_false (idleall))
1401 {
1402 int pri;
1403
1404 for (pri = NUMPRI; pri--; )
1405 {
1406 if (pendingcnt [pri])
1407 break;
1408
1409 if (idlecnt [pri])
1410 {
1411 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1412 break;
1413 }
1414 }
1415 }
1416}
1417#endif
1418
1419void inline_speed
1420time_update (EV_P_ ev_tstamp max_block)
1421{
1422 int i;
1423
1424#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic))
1426 {
1427 ev_tstamp odiff = rtmn_diff;
1428
1154 mn_now = get_clock (); 1429 mn_now = get_clock ();
1155 1430
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1432 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1433 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1434 {
1158 ev_rt_now = rtmn_diff + mn_now; 1435 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1436 return;
1160 } 1437 }
1161 else 1438
1162 {
1163 now_floor = mn_now; 1439 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1440 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1441
1169inline void 1442 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1443 * on the choice of "4": one iteration isn't enough,
1171{ 1444 * in case we get preempted during the calls to
1172 int i; 1445 * ev_time and get_clock. a second call is almost guaranteed
1173 1446 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1447 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1448 * in the unlikely event of having been preempted here.
1176 { 1449 */
1177 if (time_update_monotonic (EV_A)) 1450 for (i = 4; --i; )
1178 { 1451 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1452 rtmn_diff = ev_rt_now - mn_now;
1184 1453
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1455 return; /* all is well */
1187 1456
1188 ev_rt_now = ev_time (); 1457 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1458 mn_now = get_clock ();
1190 now_floor = mn_now; 1459 now_floor = mn_now;
1191 } 1460 }
1192 1461
1193# if EV_PERIODICS 1462# if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A);
1464# endif
1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1467 }
1468 else
1469#endif
1470 {
1471 ev_rt_now = ev_time ();
1472
1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1474 {
1475#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1476 periodics_reschedule (EV_A);
1195# endif 1477#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1479 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1481 }
1215 1482
1216 mn_now = ev_rt_now; 1483 mn_now = ev_rt_now;
1232static int loop_done; 1499static int loop_done;
1233 1500
1234void 1501void
1235ev_loop (EV_P_ int flags) 1502ev_loop (EV_P_ int flags)
1236{ 1503{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1504 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1505 ? EVUNLOOP_ONE
1506 : EVUNLOOP_CANCEL;
1239 1507
1240 while (activecnt) 1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1509
1510 do
1241 { 1511 {
1512#ifndef _WIN32
1513 if (expect_false (curpid)) /* penalise the forking check even more */
1514 if (expect_false (getpid () != curpid))
1515 {
1516 curpid = getpid ();
1517 postfork = 1;
1518 }
1519#endif
1520
1521#if EV_FORK_ENABLE
1522 /* we might have forked, so queue fork handlers */
1523 if (expect_false (postfork))
1524 if (forkcnt)
1525 {
1526 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1527 call_pending (EV_A);
1528 }
1529#endif
1530
1242 /* queue check watchers (and execute them) */ 1531 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1532 if (expect_false (preparecnt))
1244 { 1533 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1534 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1535 call_pending (EV_A);
1247 } 1536 }
1248 1537
1538 if (expect_false (!activecnt))
1539 break;
1540
1249 /* we might have forked, so reify kernel state if necessary */ 1541 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1542 if (expect_false (postfork))
1251 loop_fork (EV_A); 1543 loop_fork (EV_A);
1252 1544
1253 /* update fd-related kernel structures */ 1545 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1546 fd_reify (EV_A);
1255 1547
1256 /* calculate blocking time */ 1548 /* calculate blocking time */
1549 {
1550 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.;
1257 1552
1258 /* we only need this for !monotonic clock or timers, but as we basically 1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1554 {
1266 ev_rt_now = ev_time (); 1555 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1556 time_update (EV_A_ 1e100);
1268 }
1269 1557
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1558 waittime = MAX_BLOCKTIME;
1275 1559
1276 if (timercnt) 1560 if (timercnt)
1277 { 1561 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1563 if (waittime > to) waittime = to;
1280 } 1564 }
1281 1565
1282#if EV_PERIODICS 1566#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1567 if (periodiccnt)
1284 { 1568 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1570 if (waittime > to) waittime = to;
1287 } 1571 }
1288#endif 1572#endif
1289 1573
1290 if (expect_false (block < 0.)) block = 0.; 1574 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime;
1576
1577 sleeptime = waittime - backend_fudge;
1578
1579 if (expect_true (sleeptime > io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 {
1584 ev_sleep (sleeptime);
1585 waittime -= sleeptime;
1586 }
1291 } 1587 }
1292 1588
1589 ++loop_count;
1293 backend_poll (EV_A_ block); 1590 backend_poll (EV_A_ waittime);
1294 1591
1295 /* update ev_rt_now, do magic */ 1592 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1593 time_update (EV_A_ waittime + sleeptime);
1594 }
1297 1595
1298 /* queue pending timers and reschedule them */ 1596 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1597 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1598#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1599 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1600#endif
1303 1601
1602#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1603 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1604 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1605#endif
1307 1606
1308 /* queue check watchers, to be executed first */ 1607 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1608 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1610
1312 call_pending (EV_A); 1611 call_pending (EV_A);
1313 1612
1314 if (expect_false (loop_done))
1315 break;
1316 } 1613 }
1614 while (expect_true (activecnt && !loop_done));
1317 1615
1318 if (loop_done != 2) 1616 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1617 loop_done = EVUNLOOP_CANCEL;
1320} 1618}
1321 1619
1322void 1620void
1323ev_unloop (EV_P_ int how) 1621ev_unloop (EV_P_ int how)
1324{ 1622{
1325 loop_done = how; 1623 loop_done = how;
1326} 1624}
1327 1625
1328/*****************************************************************************/ 1626/*****************************************************************************/
1329 1627
1330inline void 1628void inline_size
1331wlist_add (WL *head, WL elem) 1629wlist_add (WL *head, WL elem)
1332{ 1630{
1333 elem->next = *head; 1631 elem->next = *head;
1334 *head = elem; 1632 *head = elem;
1335} 1633}
1336 1634
1337inline void 1635void inline_size
1338wlist_del (WL *head, WL elem) 1636wlist_del (WL *head, WL elem)
1339{ 1637{
1340 while (*head) 1638 while (*head)
1341 { 1639 {
1342 if (*head == elem) 1640 if (*head == elem)
1347 1645
1348 head = &(*head)->next; 1646 head = &(*head)->next;
1349 } 1647 }
1350} 1648}
1351 1649
1352inline void 1650void inline_speed
1353ev_clear_pending (EV_P_ W w) 1651clear_pending (EV_P_ W w)
1354{ 1652{
1355 if (w->pending) 1653 if (w->pending)
1356 { 1654 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1655 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1656 w->pending = 0;
1359 } 1657 }
1360} 1658}
1361 1659
1362inline void 1660int
1661ev_clear_pending (EV_P_ void *w)
1662{
1663 W w_ = (W)w;
1664 int pending = w_->pending;
1665
1666 if (expect_true (pending))
1667 {
1668 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1669 w_->pending = 0;
1670 p->w = 0;
1671 return p->events;
1672 }
1673 else
1674 return 0;
1675}
1676
1677void inline_size
1678pri_adjust (EV_P_ W w)
1679{
1680 int pri = w->priority;
1681 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1682 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1683 w->priority = pri;
1684}
1685
1686void inline_speed
1363ev_start (EV_P_ W w, int active) 1687ev_start (EV_P_ W w, int active)
1364{ 1688{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1689 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1690 w->active = active;
1369 ev_ref (EV_A); 1691 ev_ref (EV_A);
1370} 1692}
1371 1693
1372inline void 1694void inline_size
1373ev_stop (EV_P_ W w) 1695ev_stop (EV_P_ W w)
1374{ 1696{
1375 ev_unref (EV_A); 1697 ev_unref (EV_A);
1376 w->active = 0; 1698 w->active = 0;
1377} 1699}
1378 1700
1379/*****************************************************************************/ 1701/*****************************************************************************/
1380 1702
1381void 1703void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1704ev_io_start (EV_P_ ev_io *w)
1383{ 1705{
1384 int fd = w->fd; 1706 int fd = w->fd;
1385 1707
1386 if (expect_false (ev_is_active (w))) 1708 if (expect_false (ev_is_active (w)))
1387 return; 1709 return;
1388 1710
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1711 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1712
1391 ev_start (EV_A_ (W)w, 1); 1713 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1715 wlist_add (&anfds[fd].head, (WL)w);
1394 1716
1395 fd_change (EV_A_ fd); 1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1718 w->events &= ~EV_IOFDSET;
1396} 1719}
1397 1720
1398void 1721void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1722ev_io_stop (EV_P_ ev_io *w)
1400{ 1723{
1401 ev_clear_pending (EV_A_ (W)w); 1724 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1725 if (expect_false (!ev_is_active (w)))
1403 return; 1726 return;
1404 1727
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1729
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1730 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1409 1732
1410 fd_change (EV_A_ w->fd); 1733 fd_change (EV_A_ w->fd, 1);
1411} 1734}
1412 1735
1413void 1736void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1737ev_timer_start (EV_P_ ev_timer *w)
1415{ 1738{
1416 if (expect_false (ev_is_active (w))) 1739 if (expect_false (ev_is_active (w)))
1417 return; 1740 return;
1418 1741
1419 ((WT)w)->at += mn_now; 1742 ((WT)w)->at += mn_now;
1420 1743
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1745
1423 ev_start (EV_A_ (W)w, ++timercnt); 1746 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1748 timers [timercnt - 1] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1749 upheap (timers, timercnt - 1);
1427 1750
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1429} 1752}
1430 1753
1431void 1754void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1755ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1756{
1434 ev_clear_pending (EV_A_ (W)w); 1757 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1758 if (expect_false (!ev_is_active (w)))
1436 return; 1759 return;
1437 1760
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1439 1762
1763 {
1764 int active = ((W)w)->active;
1765
1440 if (expect_true (((W)w)->active < timercnt--)) 1766 if (expect_true (--active < --timercnt))
1441 { 1767 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1768 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1769 adjustheap (timers, timercnt, active);
1444 } 1770 }
1771 }
1445 1772
1446 ((WT)w)->at -= mn_now; 1773 ((WT)w)->at -= mn_now;
1447 1774
1448 ev_stop (EV_A_ (W)w); 1775 ev_stop (EV_A_ (W)w);
1449} 1776}
1450 1777
1451void 1778void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1779ev_timer_again (EV_P_ ev_timer *w)
1453{ 1780{
1454 if (ev_is_active (w)) 1781 if (ev_is_active (w))
1455 { 1782 {
1456 if (w->repeat) 1783 if (w->repeat)
1457 { 1784 {
1458 ((WT)w)->at = mn_now + w->repeat; 1785 ((WT)w)->at = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1786 adjustheap (timers, timercnt, ((W)w)->active - 1);
1460 } 1787 }
1461 else 1788 else
1462 ev_timer_stop (EV_A_ w); 1789 ev_timer_stop (EV_A_ w);
1463 } 1790 }
1464 else if (w->repeat) 1791 else if (w->repeat)
1466 w->at = w->repeat; 1793 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1794 ev_timer_start (EV_A_ w);
1468 } 1795 }
1469} 1796}
1470 1797
1471#if EV_PERIODICS 1798#if EV_PERIODIC_ENABLE
1472void 1799void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1800ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1801{
1475 if (expect_false (ev_is_active (w))) 1802 if (expect_false (ev_is_active (w)))
1476 return; 1803 return;
1477 1804
1478 if (w->reschedule_cb) 1805 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1807 else if (w->interval)
1481 { 1808 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1810 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1812 }
1813 else
1814 ((WT)w)->at = w->offset;
1486 1815
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1816 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1818 periodics [periodiccnt - 1] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1819 upheap (periodics, periodiccnt - 1);
1491 1820
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1822}
1494 1823
1495void 1824void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1825ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1826{
1498 ev_clear_pending (EV_A_ (W)w); 1827 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1828 if (expect_false (!ev_is_active (w)))
1500 return; 1829 return;
1501 1830
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1503 1832
1833 {
1834 int active = ((W)w)->active;
1835
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1836 if (expect_true (--active < --periodiccnt))
1505 { 1837 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1838 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1839 adjustheap (periodics, periodiccnt, active);
1508 } 1840 }
1841 }
1509 1842
1510 ev_stop (EV_A_ (W)w); 1843 ev_stop (EV_A_ (W)w);
1511} 1844}
1512 1845
1513void 1846void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1847ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1848{
1516 /* TODO: use adjustheap and recalculation */ 1849 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1850 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1851 ev_periodic_start (EV_A_ w);
1519} 1852}
1520#endif 1853#endif
1521 1854
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1855#ifndef SA_RESTART
1589# define SA_RESTART 0 1856# define SA_RESTART 0
1590#endif 1857#endif
1591 1858
1592void 1859void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1860ev_signal_start (EV_P_ ev_signal *w)
1594{ 1861{
1595#if EV_MULTIPLICITY 1862#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1863 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1864#endif
1598 if (expect_false (ev_is_active (w))) 1865 if (expect_false (ev_is_active (w)))
1599 return; 1866 return;
1600 1867
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 1869
1870 {
1871#ifndef _WIN32
1872 sigset_t full, prev;
1873 sigfillset (&full);
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1878
1879#ifndef _WIN32
1880 sigprocmask (SIG_SETMASK, &prev, 0);
1881#endif
1882 }
1883
1603 ev_start (EV_A_ (W)w, 1); 1884 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1885 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 1886
1607 if (!((WL)w)->next) 1887 if (!((WL)w)->next)
1608 { 1888 {
1609#if _WIN32 1889#if _WIN32
1610 signal (w->signum, sighandler); 1890 signal (w->signum, sighandler);
1616 sigaction (w->signum, &sa, 0); 1896 sigaction (w->signum, &sa, 0);
1617#endif 1897#endif
1618 } 1898 }
1619} 1899}
1620 1900
1621void 1901void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1902ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1903{
1624 ev_clear_pending (EV_A_ (W)w); 1904 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1905 if (expect_false (!ev_is_active (w)))
1626 return; 1906 return;
1627 1907
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1908 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1909 ev_stop (EV_A_ (W)w);
1630 1910
1631 if (!signals [w->signum - 1].head) 1911 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1912 signal (w->signum, SIG_DFL);
1633} 1913}
1634 1914
1635void 1915void
1636ev_child_start (EV_P_ struct ev_child *w) 1916ev_child_start (EV_P_ ev_child *w)
1637{ 1917{
1638#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1919 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1920#endif
1641 if (expect_false (ev_is_active (w))) 1921 if (expect_false (ev_is_active (w)))
1642 return; 1922 return;
1643 1923
1644 ev_start (EV_A_ (W)w, 1); 1924 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1926}
1647 1927
1648void 1928void
1649ev_child_stop (EV_P_ struct ev_child *w) 1929ev_child_stop (EV_P_ ev_child *w)
1650{ 1930{
1651 ev_clear_pending (EV_A_ (W)w); 1931 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1932 if (expect_false (!ev_is_active (w)))
1653 return; 1933 return;
1654 1934
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1936 ev_stop (EV_A_ (W)w);
1657} 1937}
1658 1938
1939#if EV_STAT_ENABLE
1940
1941# ifdef _WIN32
1942# undef lstat
1943# define lstat(a,b) _stati64 (a,b)
1944# endif
1945
1946#define DEF_STAT_INTERVAL 5.0074891
1947#define MIN_STAT_INTERVAL 0.1074891
1948
1949static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1950
1951#if EV_USE_INOTIFY
1952# define EV_INOTIFY_BUFSIZE 8192
1953
1954static void noinline
1955infy_add (EV_P_ ev_stat *w)
1956{
1957 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1958
1959 if (w->wd < 0)
1960 {
1961 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1962
1963 /* monitor some parent directory for speedup hints */
1964 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1965 {
1966 char path [4096];
1967 strcpy (path, w->path);
1968
1969 do
1970 {
1971 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1972 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1973
1974 char *pend = strrchr (path, '/');
1975
1976 if (!pend)
1977 break; /* whoops, no '/', complain to your admin */
1978
1979 *pend = 0;
1980 w->wd = inotify_add_watch (fs_fd, path, mask);
1981 }
1982 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1983 }
1984 }
1985 else
1986 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1987
1988 if (w->wd >= 0)
1989 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1990}
1991
1992static void noinline
1993infy_del (EV_P_ ev_stat *w)
1994{
1995 int slot;
1996 int wd = w->wd;
1997
1998 if (wd < 0)
1999 return;
2000
2001 w->wd = -2;
2002 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2003 wlist_del (&fs_hash [slot].head, (WL)w);
2004
2005 /* remove this watcher, if others are watching it, they will rearm */
2006 inotify_rm_watch (fs_fd, wd);
2007}
2008
2009static void noinline
2010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2011{
2012 if (slot < 0)
2013 /* overflow, need to check for all hahs slots */
2014 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2015 infy_wd (EV_A_ slot, wd, ev);
2016 else
2017 {
2018 WL w_;
2019
2020 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2021 {
2022 ev_stat *w = (ev_stat *)w_;
2023 w_ = w_->next; /* lets us remove this watcher and all before it */
2024
2025 if (w->wd == wd || wd == -1)
2026 {
2027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2028 {
2029 w->wd = -1;
2030 infy_add (EV_A_ w); /* re-add, no matter what */
2031 }
2032
2033 stat_timer_cb (EV_A_ &w->timer, 0);
2034 }
2035 }
2036 }
2037}
2038
2039static void
2040infy_cb (EV_P_ ev_io *w, int revents)
2041{
2042 char buf [EV_INOTIFY_BUFSIZE];
2043 struct inotify_event *ev = (struct inotify_event *)buf;
2044 int ofs;
2045 int len = read (fs_fd, buf, sizeof (buf));
2046
2047 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2048 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2049}
2050
2051void inline_size
2052infy_init (EV_P)
2053{
2054 if (fs_fd != -2)
2055 return;
2056
2057 fs_fd = inotify_init ();
2058
2059 if (fs_fd >= 0)
2060 {
2061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2062 ev_set_priority (&fs_w, EV_MAXPRI);
2063 ev_io_start (EV_A_ &fs_w);
2064 }
2065}
2066
2067void inline_size
2068infy_fork (EV_P)
2069{
2070 int slot;
2071
2072 if (fs_fd < 0)
2073 return;
2074
2075 close (fs_fd);
2076 fs_fd = inotify_init ();
2077
2078 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2079 {
2080 WL w_ = fs_hash [slot].head;
2081 fs_hash [slot].head = 0;
2082
2083 while (w_)
2084 {
2085 ev_stat *w = (ev_stat *)w_;
2086 w_ = w_->next; /* lets us add this watcher */
2087
2088 w->wd = -1;
2089
2090 if (fs_fd >= 0)
2091 infy_add (EV_A_ w); /* re-add, no matter what */
2092 else
2093 ev_timer_start (EV_A_ &w->timer);
2094 }
2095
2096 }
2097}
2098
2099#endif
2100
2101void
2102ev_stat_stat (EV_P_ ev_stat *w)
2103{
2104 if (lstat (w->path, &w->attr) < 0)
2105 w->attr.st_nlink = 0;
2106 else if (!w->attr.st_nlink)
2107 w->attr.st_nlink = 1;
2108}
2109
2110static void noinline
2111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2112{
2113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2114
2115 /* we copy this here each the time so that */
2116 /* prev has the old value when the callback gets invoked */
2117 w->prev = w->attr;
2118 ev_stat_stat (EV_A_ w);
2119
2120 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2121 if (
2122 w->prev.st_dev != w->attr.st_dev
2123 || w->prev.st_ino != w->attr.st_ino
2124 || w->prev.st_mode != w->attr.st_mode
2125 || w->prev.st_nlink != w->attr.st_nlink
2126 || w->prev.st_uid != w->attr.st_uid
2127 || w->prev.st_gid != w->attr.st_gid
2128 || w->prev.st_rdev != w->attr.st_rdev
2129 || w->prev.st_size != w->attr.st_size
2130 || w->prev.st_atime != w->attr.st_atime
2131 || w->prev.st_mtime != w->attr.st_mtime
2132 || w->prev.st_ctime != w->attr.st_ctime
2133 ) {
2134 #if EV_USE_INOTIFY
2135 infy_del (EV_A_ w);
2136 infy_add (EV_A_ w);
2137 ev_stat_stat (EV_A_ w); /* avoid race... */
2138 #endif
2139
2140 ev_feed_event (EV_A_ w, EV_STAT);
2141 }
2142}
2143
2144void
2145ev_stat_start (EV_P_ ev_stat *w)
2146{
2147 if (expect_false (ev_is_active (w)))
2148 return;
2149
2150 /* since we use memcmp, we need to clear any padding data etc. */
2151 memset (&w->prev, 0, sizeof (ev_statdata));
2152 memset (&w->attr, 0, sizeof (ev_statdata));
2153
2154 ev_stat_stat (EV_A_ w);
2155
2156 if (w->interval < MIN_STAT_INTERVAL)
2157 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2158
2159 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2160 ev_set_priority (&w->timer, ev_priority (w));
2161
2162#if EV_USE_INOTIFY
2163 infy_init (EV_A);
2164
2165 if (fs_fd >= 0)
2166 infy_add (EV_A_ w);
2167 else
2168#endif
2169 ev_timer_start (EV_A_ &w->timer);
2170
2171 ev_start (EV_A_ (W)w, 1);
2172}
2173
2174void
2175ev_stat_stop (EV_P_ ev_stat *w)
2176{
2177 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w)))
2179 return;
2180
2181#if EV_USE_INOTIFY
2182 infy_del (EV_A_ w);
2183#endif
2184 ev_timer_stop (EV_A_ &w->timer);
2185
2186 ev_stop (EV_A_ (W)w);
2187}
2188#endif
2189
2190#if EV_IDLE_ENABLE
2191void
2192ev_idle_start (EV_P_ ev_idle *w)
2193{
2194 if (expect_false (ev_is_active (w)))
2195 return;
2196
2197 pri_adjust (EV_A_ (W)w);
2198
2199 {
2200 int active = ++idlecnt [ABSPRI (w)];
2201
2202 ++idleall;
2203 ev_start (EV_A_ (W)w, active);
2204
2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2206 idles [ABSPRI (w)][active - 1] = w;
2207 }
2208}
2209
2210void
2211ev_idle_stop (EV_P_ ev_idle *w)
2212{
2213 clear_pending (EV_A_ (W)w);
2214 if (expect_false (!ev_is_active (w)))
2215 return;
2216
2217 {
2218 int active = ((W)w)->active;
2219
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2221 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2222
2223 ev_stop (EV_A_ (W)w);
2224 --idleall;
2225 }
2226}
2227#endif
2228
2229void
2230ev_prepare_start (EV_P_ ev_prepare *w)
2231{
2232 if (expect_false (ev_is_active (w)))
2233 return;
2234
2235 ev_start (EV_A_ (W)w, ++preparecnt);
2236 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2237 prepares [preparecnt - 1] = w;
2238}
2239
2240void
2241ev_prepare_stop (EV_P_ ev_prepare *w)
2242{
2243 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w)))
2245 return;
2246
2247 {
2248 int active = ((W)w)->active;
2249 prepares [active - 1] = prepares [--preparecnt];
2250 ((W)prepares [active - 1])->active = active;
2251 }
2252
2253 ev_stop (EV_A_ (W)w);
2254}
2255
2256void
2257ev_check_start (EV_P_ ev_check *w)
2258{
2259 if (expect_false (ev_is_active (w)))
2260 return;
2261
2262 ev_start (EV_A_ (W)w, ++checkcnt);
2263 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2264 checks [checkcnt - 1] = w;
2265}
2266
2267void
2268ev_check_stop (EV_P_ ev_check *w)
2269{
2270 clear_pending (EV_A_ (W)w);
2271 if (expect_false (!ev_is_active (w)))
2272 return;
2273
2274 {
2275 int active = ((W)w)->active;
2276 checks [active - 1] = checks [--checkcnt];
2277 ((W)checks [active - 1])->active = active;
2278 }
2279
2280 ev_stop (EV_A_ (W)w);
2281}
2282
2283#if EV_EMBED_ENABLE
2284void noinline
2285ev_embed_sweep (EV_P_ ev_embed *w)
2286{
2287 ev_loop (w->other, EVLOOP_NONBLOCK);
2288}
2289
2290static void
2291embed_io_cb (EV_P_ ev_io *io, int revents)
2292{
2293 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2294
2295 if (ev_cb (w))
2296 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2297 else
2298 ev_loop (w->other, EVLOOP_NONBLOCK);
2299}
2300
2301static void
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305
2306 {
2307 struct ev_loop *loop = w->other;
2308
2309 while (fdchangecnt)
2310 {
2311 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2313 }
2314 }
2315}
2316
2317#if 0
2318static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2320{
2321 ev_idle_stop (EV_A_ idle);
2322}
2323#endif
2324
2325void
2326ev_embed_start (EV_P_ ev_embed *w)
2327{
2328 if (expect_false (ev_is_active (w)))
2329 return;
2330
2331 {
2332 struct ev_loop *loop = w->other;
2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2335 }
2336
2337 ev_set_priority (&w->io, ev_priority (w));
2338 ev_io_start (EV_A_ &w->io);
2339
2340 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare);
2343
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345
2346 ev_start (EV_A_ (W)w, 1);
2347}
2348
2349void
2350ev_embed_stop (EV_P_ ev_embed *w)
2351{
2352 clear_pending (EV_A_ (W)w);
2353 if (expect_false (!ev_is_active (w)))
2354 return;
2355
2356 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare);
2358
2359 ev_stop (EV_A_ (W)w);
2360}
2361#endif
2362
2363#if EV_FORK_ENABLE
2364void
2365ev_fork_start (EV_P_ ev_fork *w)
2366{
2367 if (expect_false (ev_is_active (w)))
2368 return;
2369
2370 ev_start (EV_A_ (W)w, ++forkcnt);
2371 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2372 forks [forkcnt - 1] = w;
2373}
2374
2375void
2376ev_fork_stop (EV_P_ ev_fork *w)
2377{
2378 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w)))
2380 return;
2381
2382 {
2383 int active = ((W)w)->active;
2384 forks [active - 1] = forks [--forkcnt];
2385 ((W)forks [active - 1])->active = active;
2386 }
2387
2388 ev_stop (EV_A_ (W)w);
2389}
2390#endif
2391
1659/*****************************************************************************/ 2392/*****************************************************************************/
1660 2393
1661struct ev_once 2394struct ev_once
1662{ 2395{
1663 struct ev_io io; 2396 ev_io io;
1664 struct ev_timer to; 2397 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2398 void (*cb)(int revents, void *arg);
1666 void *arg; 2399 void *arg;
1667}; 2400};
1668 2401
1669static void 2402static void
1678 2411
1679 cb (revents, arg); 2412 cb (revents, arg);
1680} 2413}
1681 2414
1682static void 2415static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2416once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2417{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2418 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2419}
1687 2420
1688static void 2421static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2422once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2423{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2424 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2425}
1693 2426
1694void 2427void
1718 ev_timer_set (&once->to, timeout, 0.); 2451 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 2452 ev_timer_start (EV_A_ &once->to);
1720 } 2453 }
1721} 2454}
1722 2455
2456#if EV_MULTIPLICITY
2457 #include "ev_wrap.h"
2458#endif
2459
1723#ifdef __cplusplus 2460#ifdef __cplusplus
1724} 2461}
1725#endif 2462#endif
1726 2463

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines