ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
107#include <time.h> 111#include <time.h>
108 112
109#include <signal.h> 113#include <signal.h>
110 114
111#ifndef _WIN32 115#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 116# include <sys/time.h>
114# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
115#else 119#else
116# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 121# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
183# include "ev.h" 187# include "ev.h"
184#endif 188#endif
185 189
186#if __GNUC__ >= 3 190#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
188# define inline static inline 198# define inline_speed static inline
199# endif
189#else 200#else
190# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
191# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
192#endif 205#endif
193 206
194#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
196 209
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
199 212
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
202 215
203typedef struct ev_watcher *W; 216typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
206 219
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 221
209#ifdef _WIN32 222#ifdef _WIN32
210# include "ev_win32.c" 223# include "ev_win32.c"
212 225
213/*****************************************************************************/ 226/*****************************************************************************/
214 227
215static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
216 229
230void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 232{
219 syserr_cb = cb; 233 syserr_cb = cb;
220} 234}
221 235
222static void 236static void noinline
223syserr (const char *msg) 237syserr (const char *msg)
224{ 238{
225 if (!msg) 239 if (!msg)
226 msg = "(libev) system error"; 240 msg = "(libev) system error";
227 241
234 } 248 }
235} 249}
236 250
237static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
238 252
253void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 255{
241 alloc = cb; 256 alloc = cb;
242} 257}
243 258
244static void * 259static void *
316 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 333#endif
319} 334}
320 335
321inline ev_tstamp 336ev_tstamp inline_size
322get_clock (void) 337get_clock (void)
323{ 338{
324#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
326 { 341 {
369#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 386
372/*****************************************************************************/ 387/*****************************************************************************/
373 388
374static void 389void noinline
375anfds_init (ANFD *base, int count)
376{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385}
386
387void
388ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
389{ 391{
390 W w_ = (W)w; 392 W w_ = (W)w;
391 393
392 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 404}
403 405
404static void 406void inline_size
405queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 408{
407 int i; 409 int i;
408 410
409 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
411} 413}
412 414
413inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
414fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
415{ 432{
416 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 434 ev_io *w;
418 435
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 437 {
421 int ev = w->events & revents; 438 int ev = w->events & revents;
422 439
423 if (ev) 440 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
429ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 447{
431 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
432} 449}
433 450
434/*****************************************************************************/ 451void inline_size
435
436inline void
437fd_reify (EV_P) 452fd_reify (EV_P)
438{ 453{
439 int i; 454 int i;
440 455
441 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
442 { 457 {
443 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 460 ev_io *w;
446 461
447 int events = 0; 462 int events = 0;
448 463
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 465 events |= w->events;
451 466
452#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
453 if (events) 468 if (events)
454 { 469 {
465 } 480 }
466 481
467 fdchangecnt = 0; 482 fdchangecnt = 0;
468} 483}
469 484
470static void 485void inline_size
471fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
472{ 487{
473 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
474 return; 489 return;
475 490
478 ++fdchangecnt; 493 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
481} 496}
482 497
483static void 498void inline_speed
484fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
485{ 500{
486 struct ev_io *w; 501 ev_io *w;
487 502
488 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
489 { 504 {
490 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 507 }
493} 508}
494 509
495inline int 510int inline_size
496fd_valid (int fd) 511fd_valid (int fd)
497{ 512{
498#ifdef _WIN32 513#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
500#else 515#else
501 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
502#endif 517#endif
503} 518}
504 519
505/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
506static void 521static void noinline
507fd_ebadf (EV_P) 522fd_ebadf (EV_P)
508{ 523{
509 int fd; 524 int fd;
510 525
511 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
515} 530}
516 531
517/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 533static void noinline
519fd_enomem (EV_P) 534fd_enomem (EV_P)
520{ 535{
521 int fd; 536 int fd;
522 537
523 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
527 return; 542 return;
528 } 543 }
529} 544}
530 545
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 547static void noinline
533fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
534{ 549{
535 int fd; 550 int fd;
536 551
537 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
543 } 558 }
544} 559}
545 560
546/*****************************************************************************/ 561/*****************************************************************************/
547 562
548static void 563void inline_speed
549upheap (WT *heap, int k) 564upheap (WT *heap, int k)
550{ 565{
551 WT w = heap [k]; 566 WT w = heap [k];
552 567
553 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 575 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
562 577
563} 578}
564 579
565static void 580void inline_speed
566downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
567{ 582{
568 WT w = heap [k]; 583 WT w = heap [k];
569 584
570 while (k < (N >> 1)) 585 while (k < (N >> 1))
584 599
585 heap [k] = w; 600 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
587} 602}
588 603
589inline void 604void inline_size
590adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
591{ 606{
592 upheap (heap, k); 607 upheap (heap, k);
593 downheap (heap, N, k); 608 downheap (heap, N, k);
594} 609}
604static ANSIG *signals; 619static ANSIG *signals;
605static int signalmax; 620static int signalmax;
606 621
607static int sigpipe [2]; 622static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 624static ev_io sigev;
610 625
611static void 626void inline_size
612signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
613{ 628{
614 while (count--) 629 while (count--)
615 { 630 {
616 base->head = 0; 631 base->head = 0;
636 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 652 errno = old_errno;
638 } 653 }
639} 654}
640 655
641void 656void noinline
642ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
643{ 658{
644 WL w; 659 WL w;
645 660
646#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 674}
660 675
661static void 676static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
663{ 678{
664 int signum; 679 int signum;
665 680
666 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 682 gotsig = 0;
669 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
672} 687}
673 688
674static void 689void inline_size
675fd_intern (int fd) 690fd_intern (int fd)
676{ 691{
677#ifdef _WIN32 692#ifdef _WIN32
678 int arg = 1; 693 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 698#endif
684} 699}
685 700
686static void 701static void noinline
687siginit (EV_P) 702siginit (EV_P)
688{ 703{
689 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
691 706
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 710}
696 711
697/*****************************************************************************/ 712/*****************************************************************************/
698 713
699static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
700 715
701#ifndef _WIN32 716#ifndef _WIN32
702 717
703static struct ev_signal childev; 718static ev_signal childev;
704 719
705#ifndef WCONTINUED 720#ifndef WCONTINUED
706# define WCONTINUED 0 721# define WCONTINUED 0
707#endif 722#endif
708 723
709static void 724void inline_speed
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
711{ 726{
712 struct ev_child *w; 727 ev_child *w;
713 728
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
716 { 731 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid; 733 w->rpid = pid;
719 w->rstatus = status; 734 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 } 736 }
722} 737}
723 738
724static void 739static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
726{ 741{
727 int pid, status; 742 int pid, status;
728 743
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 745 {
768{ 783{
769 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
770} 785}
771 786
772/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
773static int 788int inline_size
774enable_secure (void) 789enable_secure (void)
775{ 790{
776#ifdef _WIN32 791#ifdef _WIN32
777 return 0; 792 return 0;
778#else 793#else
812 827
813 return flags; 828 return flags;
814} 829}
815 830
816unsigned int 831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
817ev_backend (EV_P) 840ev_backend (EV_P)
818{ 841{
819 return backend; 842 return backend;
820} 843}
821 844
892 array_free (pending, [i]); 915 array_free (pending, [i]);
893 916
894 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 918 array_free (fdchange, EMPTY0);
896 array_free (timer, EMPTY0); 919 array_free (timer, EMPTY0);
897#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 921 array_free (periodic, EMPTY0);
899#endif 922#endif
900 array_free (idle, EMPTY0); 923 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0); 924 array_free (prepare, EMPTY0);
902 array_free (check, EMPTY0); 925 array_free (check, EMPTY0);
1038 postfork = 1; 1061 postfork = 1;
1039} 1062}
1040 1063
1041/*****************************************************************************/ 1064/*****************************************************************************/
1042 1065
1043static int 1066int inline_size
1044any_pending (EV_P) 1067any_pending (EV_P)
1045{ 1068{
1046 int pri; 1069 int pri;
1047 1070
1048 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
1050 return 1; 1073 return 1;
1051 1074
1052 return 0; 1075 return 0;
1053} 1076}
1054 1077
1055inline void 1078void inline_speed
1056call_pending (EV_P) 1079call_pending (EV_P)
1057{ 1080{
1058 int pri; 1081 int pri;
1059 1082
1060 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
1062 { 1085 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1087
1065 if (expect_true (p->w)) 1088 if (expect_true (p->w))
1066 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
1067 p->w->pending = 0; 1092 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
1069 } 1094 }
1070 } 1095 }
1071} 1096}
1072 1097
1073inline void 1098void inline_size
1074timers_reify (EV_P) 1099timers_reify (EV_P)
1075{ 1100{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1102 {
1078 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
1079 1104
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1081 1106
1082 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
1083 if (w->repeat) 1108 if (w->repeat)
1095 1120
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1122 }
1098} 1123}
1099 1124
1100#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1101inline void 1126void inline_size
1102periodics_reify (EV_P) 1127periodics_reify (EV_P)
1103{ 1128{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1130 {
1106 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1107 1132
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1109 1134
1110 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1125 1150
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1152 }
1128} 1153}
1129 1154
1130static void 1155static void noinline
1131periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1132{ 1157{
1133 int i; 1158 int i;
1134 1159
1135 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1137 { 1162 {
1138 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1139 1164
1140 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1167 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1147 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1149} 1174}
1150#endif 1175#endif
1151 1176
1152inline int 1177int inline_size
1153time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1154{ 1179{
1155 mn_now = get_clock (); 1180 mn_now = get_clock ();
1156 1181
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1165 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1166 return 1; 1191 return 1;
1167 } 1192 }
1168} 1193}
1169 1194
1170inline void 1195void inline_size
1171time_update (EV_P) 1196time_update (EV_P)
1172{ 1197{
1173 int i; 1198 int i;
1174 1199
1175#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1177 { 1202 {
1178 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1179 { 1204 {
1180 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1181 1206
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1183 { 1216 {
1184 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1185 1218
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1220 return; /* all is well */
1189 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1223 mn_now = get_clock ();
1191 now_floor = mn_now; 1224 now_floor = mn_now;
1192 } 1225 }
1193 1226
1194# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1196# endif 1229# endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 } 1232 }
1203 { 1236 {
1204 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1205 1238
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 { 1240 {
1208#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1209 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1210#endif 1243#endif
1211 1244
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1213 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1233static int loop_done; 1266static int loop_done;
1234 1267
1235void 1268void
1236ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1237{ 1270{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1240 1274
1241 while (activecnt) 1275 while (activecnt)
1242 { 1276 {
1243 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1253 1287
1254 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1289 fd_reify (EV_A);
1256 1290
1257 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1258 1294
1259 /* we only need this for !monotonic clock or timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1260 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1261#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1264 else 1303 else
1265#endif 1304#endif
1266 { 1305 {
1267 ev_rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1268 mn_now = ev_rt_now; 1307 mn_now = ev_rt_now;
1269 } 1308 }
1270 1309
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1276 1311
1277 if (timercnt) 1312 if (timercnt)
1278 { 1313 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1315 if (block > to) block = to;
1281 } 1316 }
1282 1317
1283#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1319 if (periodiccnt)
1285 { 1320 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1322 if (block > to) block = to;
1288 } 1323 }
1289#endif 1324#endif
1290 1325
1291 if (expect_false (block < 0.)) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1292 } 1327 }
1293 1328
1294 backend_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1295 1331
1296 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1333 time_update (EV_A);
1298 1334
1299 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1339#endif
1304 1340
1305 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1308 1344
1309 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1346 if (expect_false (checkcnt))
1314 1350
1315 if (expect_false (loop_done)) 1351 if (expect_false (loop_done))
1316 break; 1352 break;
1317 } 1353 }
1318 1354
1319 if (loop_done != 2) 1355 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1356 loop_done = EVUNLOOP_CANCEL;
1321} 1357}
1322 1358
1323void 1359void
1324ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1325{ 1361{
1326 loop_done = how; 1362 loop_done = how;
1327} 1363}
1328 1364
1329/*****************************************************************************/ 1365/*****************************************************************************/
1330 1366
1331inline void 1367void inline_size
1332wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1333{ 1369{
1334 elem->next = *head; 1370 elem->next = *head;
1335 *head = elem; 1371 *head = elem;
1336} 1372}
1337 1373
1338inline void 1374void inline_size
1339wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1340{ 1376{
1341 while (*head) 1377 while (*head)
1342 { 1378 {
1343 if (*head == elem) 1379 if (*head == elem)
1348 1384
1349 head = &(*head)->next; 1385 head = &(*head)->next;
1350 } 1386 }
1351} 1387}
1352 1388
1353inline void 1389void inline_speed
1354ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1355{ 1391{
1356 if (w->pending) 1392 if (w->pending)
1357 { 1393 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1395 w->pending = 0;
1360 } 1396 }
1361} 1397}
1362 1398
1363inline void 1399void inline_speed
1364ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1365{ 1401{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368 1404
1369 w->active = active; 1405 w->active = active;
1370 ev_ref (EV_A); 1406 ev_ref (EV_A);
1371} 1407}
1372 1408
1373inline void 1409void inline_size
1374ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1375{ 1411{
1376 ev_unref (EV_A); 1412 ev_unref (EV_A);
1377 w->active = 0; 1413 w->active = 0;
1378} 1414}
1379 1415
1380/*****************************************************************************/ 1416/*****************************************************************************/
1381 1417
1382void 1418void
1383ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1384{ 1420{
1385 int fd = w->fd; 1421 int fd = w->fd;
1386 1422
1387 if (expect_false (ev_is_active (w))) 1423 if (expect_false (ev_is_active (w)))
1388 return; 1424 return;
1395 1431
1396 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1397} 1433}
1398 1434
1399void 1435void
1400ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1401{ 1437{
1402 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1439 if (expect_false (!ev_is_active (w)))
1404 return; 1440 return;
1405 1441
1410 1446
1411 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1412} 1448}
1413 1449
1414void 1450void
1415ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1416{ 1452{
1417 if (expect_false (ev_is_active (w))) 1453 if (expect_false (ev_is_active (w)))
1418 return; 1454 return;
1419 1455
1420 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1421 1457
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1459
1424 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1427 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1428 1464
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1430} 1466}
1431 1467
1432void 1468void
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1470{
1435 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1472 if (expect_false (!ev_is_active (w)))
1437 return; 1473 return;
1438 1474
1448 1484
1449 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1450} 1486}
1451 1487
1452void 1488void
1453ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1454{ 1490{
1455 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1456 { 1492 {
1457 if (w->repeat) 1493 if (w->repeat)
1458 { 1494 {
1467 w->at = w->repeat; 1503 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1469 } 1505 }
1470} 1506}
1471 1507
1472#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1473void 1509void
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1511{
1476 if (expect_false (ev_is_active (w))) 1512 if (expect_false (ev_is_active (w)))
1477 return; 1513 return;
1478 1514
1479 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1486 } 1522 }
1487 1523
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1492 1528
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1494} 1530}
1495 1531
1496void 1532void
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1534{
1499 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1536 if (expect_false (!ev_is_active (w)))
1501 return; 1537 return;
1502 1538
1510 1546
1511 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1512} 1548}
1513 1549
1514void 1550void
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1552{
1517 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1520} 1556}
1521#endif 1557#endif
1522 1558
1523void 1559void
1524ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1525{ 1561{
1526 if (expect_false (ev_is_active (w))) 1562 if (expect_false (ev_is_active (w)))
1527 return; 1563 return;
1528 1564
1529 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1532} 1568}
1533 1569
1534void 1570void
1535ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1536{ 1572{
1537 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w))) 1574 if (expect_false (!ev_is_active (w)))
1539 return; 1575 return;
1540 1576
1577 {
1578 int active = ((W)w)->active;
1541 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1542 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1543} 1584}
1544 1585
1545void 1586void
1546ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1547{ 1588{
1548 if (expect_false (ev_is_active (w))) 1589 if (expect_false (ev_is_active (w)))
1549 return; 1590 return;
1550 1591
1551 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1554} 1595}
1555 1596
1556void 1597void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1558{ 1599{
1559 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w))) 1601 if (expect_false (!ev_is_active (w)))
1561 return; 1602 return;
1562 1603
1604 {
1605 int active = ((W)w)->active;
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1564 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1565} 1611}
1566 1612
1567void 1613void
1568ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1569{ 1615{
1570 if (expect_false (ev_is_active (w))) 1616 if (expect_false (ev_is_active (w)))
1571 return; 1617 return;
1572 1618
1573 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1576} 1622}
1577 1623
1578void 1624void
1579ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1580{ 1626{
1581 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w))) 1628 if (expect_false (!ev_is_active (w)))
1583 return; 1629 return;
1584 1630
1631 {
1632 int active = ((W)w)->active;
1585 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1586 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1587} 1638}
1588 1639
1589#ifndef SA_RESTART 1640#ifndef SA_RESTART
1590# define SA_RESTART 0 1641# define SA_RESTART 0
1591#endif 1642#endif
1592 1643
1593void 1644void
1594ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1595{ 1646{
1596#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1649#endif
1599 if (expect_false (ev_is_active (w))) 1650 if (expect_false (ev_is_active (w)))
1618#endif 1669#endif
1619 } 1670 }
1620} 1671}
1621 1672
1622void 1673void
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1675{
1625 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1677 if (expect_false (!ev_is_active (w)))
1627 return; 1678 return;
1628 1679
1632 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1634} 1685}
1635 1686
1636void 1687void
1637ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1638{ 1689{
1639#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1692#endif
1642 if (expect_false (ev_is_active (w))) 1693 if (expect_false (ev_is_active (w)))
1645 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1647} 1698}
1648 1699
1649void 1700void
1650ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1651{ 1702{
1652 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1654 return; 1705 return;
1655 1706
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1658} 1709}
1659 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1660/*****************************************************************************/ 1821/*****************************************************************************/
1661 1822
1662struct ev_once 1823struct ev_once
1663{ 1824{
1664 struct ev_io io; 1825 ev_io io;
1665 struct ev_timer to; 1826 ev_timer to;
1666 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1667 void *arg; 1828 void *arg;
1668}; 1829};
1669 1830
1670static void 1831static void
1679 1840
1680 cb (revents, arg); 1841 cb (revents, arg);
1681} 1842}
1682 1843
1683static void 1844static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 1846{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 1848}
1688 1849
1689static void 1850static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 1852{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 1854}
1694 1855
1695void 1856void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines