ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 230
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 234
186#if __GNUC__ >= 3 235#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 237# define noinline __attribute__ ((noinline))
189#else 238#else
190# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
191# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
192#endif 244#endif
193 245
194#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
196 255
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 258
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
202 261
203typedef struct ev_watcher *W; 262typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
206 265
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 267
209#ifdef _WIN32 268#ifdef _WIN32
210# include "ev_win32.c" 269# include "ev_win32.c"
212 271
213/*****************************************************************************/ 272/*****************************************************************************/
214 273
215static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
216 275
276void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 278{
219 syserr_cb = cb; 279 syserr_cb = cb;
220} 280}
221 281
222static void 282static void noinline
223syserr (const char *msg) 283syserr (const char *msg)
224{ 284{
225 if (!msg) 285 if (!msg)
226 msg = "(libev) system error"; 286 msg = "(libev) system error";
227 287
234 } 294 }
235} 295}
236 296
237static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
238 298
299void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 301{
241 alloc = cb; 302 alloc = cb;
242} 303}
243 304
244static void * 305inline_speed void *
245ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
246{ 307{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 309
249 if (!ptr && size) 310 if (!ptr && size)
273typedef struct 334typedef struct
274{ 335{
275 W w; 336 W w;
276 int events; 337 int events;
277} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
278 346
279#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
280 348
281 struct ev_loop 349 struct ev_loop
282 { 350 {
316 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 386#endif
319} 387}
320 388
321inline ev_tstamp 389ev_tstamp inline_size
322get_clock (void) 390get_clock (void)
323{ 391{
324#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
326 { 394 {
339{ 407{
340 return ev_rt_now; 408 return ev_rt_now;
341} 409}
342#endif 410#endif
343 411
344#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
345 439
346#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
348 { \ 442 { \
349 int newcnt = cur; \ 443 int ocur_ = (cur); \
350 do \ 444 (base) = (type *)array_realloc \
351 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 447 }
360 448
449#if 0
361#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 452 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 456 }
457#endif
368 458
369#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 461
372/*****************************************************************************/ 462/*****************************************************************************/
373 463
374static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
375anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
376{ 494{
377 while (count--) 495 while (count--)
378 { 496 {
379 base->head = 0; 497 base->head = 0;
382 500
383 ++base; 501 ++base;
384 } 502 }
385} 503}
386 504
387void 505void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
415{ 507{
416 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 509 ev_io *w;
418 510
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 512 {
421 int ev = w->events & revents; 513 int ev = w->events & revents;
422 514
423 if (ev) 515 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
426} 518}
427 519
428void 520void
429ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 522{
523 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
432} 525}
433 526
434/*****************************************************************************/ 527void inline_size
435
436inline void
437fd_reify (EV_P) 528fd_reify (EV_P)
438{ 529{
439 int i; 530 int i;
440 531
441 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
442 { 533 {
443 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 536 ev_io *w;
446 537
447 int events = 0; 538 int events = 0;
448 539
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 541 events |= w->events;
451 542
452#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
453 if (events) 544 if (events)
454 { 545 {
465 } 556 }
466 557
467 fdchangecnt = 0; 558 fdchangecnt = 0;
468} 559}
469 560
470static void 561void inline_size
471fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
472{ 563{
473 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
474 return; 565 return;
475 566
478 ++fdchangecnt; 569 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
481} 572}
482 573
483static void 574void inline_speed
484fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
485{ 576{
486 struct ev_io *w; 577 ev_io *w;
487 578
488 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
489 { 580 {
490 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 583 }
493} 584}
494 585
495inline int 586int inline_size
496fd_valid (int fd) 587fd_valid (int fd)
497{ 588{
498#ifdef _WIN32 589#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
500#else 591#else
501 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
502#endif 593#endif
503} 594}
504 595
505/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
506static void 597static void noinline
507fd_ebadf (EV_P) 598fd_ebadf (EV_P)
508{ 599{
509 int fd; 600 int fd;
510 601
511 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
515} 606}
516 607
517/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 609static void noinline
519fd_enomem (EV_P) 610fd_enomem (EV_P)
520{ 611{
521 int fd; 612 int fd;
522 613
523 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
527 return; 618 return;
528 } 619 }
529} 620}
530 621
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 623static void noinline
533fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
534{ 625{
535 int fd; 626 int fd;
536 627
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 629 if (anfds [fd].events)
540 { 630 {
541 anfds [fd].events = 0; 631 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
543 } 633 }
544} 634}
545 635
546/*****************************************************************************/ 636/*****************************************************************************/
547 637
548static void 638void inline_speed
549upheap (WT *heap, int k) 639upheap (WT *heap, int k)
550{ 640{
551 WT w = heap [k]; 641 WT w = heap [k];
552 642
553 while (k && heap [k >> 1]->at > w->at) 643 while (k)
554 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
555 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
557 k >>= 1; 652 k = p;
558 } 653 }
559 654
560 heap [k] = w; 655 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
562 657
563} 658}
564 659
565static void 660void inline_speed
566downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
567{ 662{
568 WT w = heap [k]; 663 WT w = heap [k];
569 664
570 while (k < (N >> 1)) 665 for (;;)
571 { 666 {
572 int j = k << 1; 667 int c = (k << 1) + 1;
573 668
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 670 break;
579 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
580 heap [k] = heap [j]; 678 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
582 k = j; 681 k = c;
583 } 682 }
584 683
585 heap [k] = w; 684 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
587} 686}
588 687
589inline void 688void inline_size
590adjustheap (WT *heap, int N, int k) 689adjustheap (WT *heap, int N, int k)
591{ 690{
592 upheap (heap, k); 691 upheap (heap, k);
593 downheap (heap, N, k); 692 downheap (heap, N, k);
594} 693}
604static ANSIG *signals; 703static ANSIG *signals;
605static int signalmax; 704static int signalmax;
606 705
607static int sigpipe [2]; 706static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 707static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 708static ev_io sigev;
610 709
611static void 710void inline_size
612signals_init (ANSIG *base, int count) 711signals_init (ANSIG *base, int count)
613{ 712{
614 while (count--) 713 while (count--)
615 { 714 {
616 base->head = 0; 715 base->head = 0;
636 write (sigpipe [1], &signum, 1); 735 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 736 errno = old_errno;
638 } 737 }
639} 738}
640 739
641void 740void noinline
642ev_feed_signal_event (EV_P_ int signum) 741ev_feed_signal_event (EV_P_ int signum)
643{ 742{
644 WL w; 743 WL w;
645 744
646#if EV_MULTIPLICITY 745#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 756 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 758}
660 759
661static void 760static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 761sigcb (EV_P_ ev_io *iow, int revents)
663{ 762{
664 int signum; 763 int signum;
665 764
666 read (sigpipe [0], &revents, 1); 765 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 766 gotsig = 0;
669 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
672} 771}
673 772
674static void 773void inline_speed
675fd_intern (int fd) 774fd_intern (int fd)
676{ 775{
677#ifdef _WIN32 776#ifdef _WIN32
678 int arg = 1; 777 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 780 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 781 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 782#endif
684} 783}
685 784
686static void 785static void noinline
687siginit (EV_P) 786siginit (EV_P)
688{ 787{
689 fd_intern (sigpipe [0]); 788 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 789 fd_intern (sigpipe [1]);
691 790
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 794}
696 795
697/*****************************************************************************/ 796/*****************************************************************************/
698 797
699static struct ev_child *childs [PID_HASHSIZE]; 798static ev_child *childs [EV_PID_HASHSIZE];
700 799
701#ifndef _WIN32 800#ifndef _WIN32
702 801
703static struct ev_signal childev; 802static ev_signal childev;
803
804void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
806{
807 ev_child *w;
808
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
810 if (w->pid == pid || !w->pid)
811 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
813 w->rpid = pid;
814 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 }
817}
704 818
705#ifndef WCONTINUED 819#ifndef WCONTINUED
706# define WCONTINUED 0 820# define WCONTINUED 0
707#endif 821#endif
708 822
709static void 823static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 824childcb (EV_P_ ev_signal *sw, int revents)
726{ 825{
727 int pid, status; 826 int pid, status;
728 827
828 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 829 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 830 if (!WCONTINUED
831 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return;
834
731 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 836 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 838
735 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 842}
739 843
740#endif 844#endif
741 845
742/*****************************************************************************/ 846/*****************************************************************************/
768{ 872{
769 return EV_VERSION_MINOR; 873 return EV_VERSION_MINOR;
770} 874}
771 875
772/* return true if we are running with elevated privileges and should ignore env variables */ 876/* return true if we are running with elevated privileges and should ignore env variables */
773static int 877int inline_size
774enable_secure (void) 878enable_secure (void)
775{ 879{
776#ifdef _WIN32 880#ifdef _WIN32
777 return 0; 881 return 0;
778#else 882#else
812 916
813 return flags; 917 return flags;
814} 918}
815 919
816unsigned int 920unsigned int
921ev_embeddable_backends (void)
922{
923 return EVBACKEND_EPOLL
924 | EVBACKEND_KQUEUE
925 | EVBACKEND_PORT;
926}
927
928unsigned int
817ev_backend (EV_P) 929ev_backend (EV_P)
818{ 930{
819 return backend; 931 return backend;
820} 932}
821 933
822static void 934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
823loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
824{ 942{
825 if (!backend) 943 if (!backend)
826 { 944 {
827#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
835 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 954 mn_now = get_clock ();
837 now_floor = mn_now; 955 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
839 957
958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
840 if (!(flags & EVFLAG_NOENV) 964 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 965 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 966 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
844 968
845 if (!(flags & 0x0000ffffUL)) 969 if (!(flags & 0x0000ffffUL))
846 flags |= ev_recommended_backends (); 970 flags |= ev_recommended_backends ();
847 971
848 backend = 0; 972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977
849#if EV_USE_PORT 978#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 980#endif
852#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
865 ev_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
866 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
867 } 996 }
868} 997}
869 998
870static void 999static void noinline
871loop_destroy (EV_P) 1000loop_destroy (EV_P)
872{ 1001{
873 int i; 1002 int i;
1003
1004#if EV_USE_INOTIFY
1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
874 1011
875#if EV_USE_PORT 1012#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1014#endif
878#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1024#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1026#endif
890 1027
891 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
892 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
893 1035
894 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
897#if EV_PERIODICS 1039#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
899#endif 1041#endif
900 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
903 1044
904 backend = 0; 1045 backend = 0;
905} 1046}
906 1047
907static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
908loop_fork (EV_P) 1051loop_fork (EV_P)
909{ 1052{
910#if EV_USE_PORT 1053#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1055#endif
913#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1058#endif
916#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1061#endif
1062#if EV_USE_INOTIFY
1063 infy_fork (EV_A);
918#endif 1064#endif
919 1065
920 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
921 { 1067 {
922 /* default loop */ 1068 /* default loop */
1038 postfork = 1; 1184 postfork = 1;
1039} 1185}
1040 1186
1041/*****************************************************************************/ 1187/*****************************************************************************/
1042 1188
1043static int 1189void
1044any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1045{ 1191{
1046 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1193}
1054 1194
1055inline void 1195void inline_speed
1056call_pending (EV_P) 1196call_pending (EV_P)
1057{ 1197{
1058 int pri; 1198 int pri;
1059 1199
1060 for (pri = NUMPRI; pri--; ) 1200 for (pri = NUMPRI; pri--; )
1062 { 1202 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1204
1065 if (expect_true (p->w)) 1205 if (expect_true (p->w))
1066 { 1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
1067 p->w->pending = 0; 1209 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
1069 } 1211 }
1070 } 1212 }
1071} 1213}
1072 1214
1073inline void 1215void inline_size
1074timers_reify (EV_P) 1216timers_reify (EV_P)
1075{ 1217{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1219 {
1078 struct ev_timer *w = timers [0]; 1220 ev_timer *w = timers [0];
1079 1221
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1223
1082 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1083 if (w->repeat) 1225 if (w->repeat)
1084 { 1226 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1095 1237
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1239 }
1098} 1240}
1099 1241
1100#if EV_PERIODICS 1242#if EV_PERIODIC_ENABLE
1101inline void 1243void inline_size
1102periodics_reify (EV_P) 1244periodics_reify (EV_P)
1103{ 1245{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1247 {
1106 struct ev_periodic *w = periodics [0]; 1248 ev_periodic *w = periodics [0];
1107 1249
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1251
1110 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1112 { 1254 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1116 } 1258 }
1117 else if (w->interval) 1259 else if (w->interval)
1118 { 1260 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1122 } 1265 }
1123 else 1266 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1268
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1270 }
1128} 1271}
1129 1272
1130static void 1273static void noinline
1131periodics_reschedule (EV_P) 1274periodics_reschedule (EV_P)
1132{ 1275{
1133 int i; 1276 int i;
1134 1277
1135 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1137 { 1280 {
1138 struct ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1139 1282
1140 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1285 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1287 }
1145 1288
1146 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1149} 1292}
1150#endif 1293#endif
1151 1294
1152inline int 1295#if EV_IDLE_ENABLE
1153time_update_monotonic (EV_P) 1296void inline_size
1297idle_reify (EV_P)
1154{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1155 mn_now = get_clock (); 1328 mn_now = get_clock ();
1156 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1333 {
1159 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1335 return;
1161 } 1336 }
1162 else 1337
1163 {
1164 now_floor = mn_now; 1338 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1340
1170inline void 1341 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1172{ 1343 * in case we get preempted during the calls to
1173 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1174 1345 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1177 { 1348 */
1178 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1179 { 1350 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1185 1352
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1354 return; /* all is well */
1188 1355
1189 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1357 mn_now = get_clock ();
1191 now_floor = mn_now; 1358 now_floor = mn_now;
1192 } 1359 }
1193 1360
1194# if EV_PERIODICS 1361# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A);
1363# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 }
1367 else
1368#endif
1369 {
1370 ev_rt_now = ev_time ();
1371
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 {
1374#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1196# endif 1376#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 } 1380 }
1216 1381
1217 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1233static int loop_done; 1398static int loop_done;
1234 1399
1235void 1400void
1236ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1237{ 1402{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1240 1406
1241 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1242 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1243 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1245 { 1432 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1434 call_pending (EV_A);
1248 } 1435 }
1249 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1250 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1252 loop_fork (EV_A); 1442 loop_fork (EV_A);
1253 1443
1254 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1445 fd_reify (EV_A);
1256 1446
1257 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1258 1450
1259 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1260 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else 1453 else
1265#endif
1266 { 1454 {
1267 ev_rt_now = ev_time (); 1455 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1456 time_update (EV_A_ 1e100);
1269 }
1270 1457
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1276 1459
1277 if (timercnt) 1460 if (timercnt)
1278 { 1461 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1463 if (block > to) block = to;
1281 } 1464 }
1282 1465
1283#if EV_PERIODICS 1466#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1467 if (periodiccnt)
1285 { 1468 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1470 if (block > to) block = to;
1288 } 1471 }
1289#endif 1472#endif
1290 1473
1291 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1292 } 1475 }
1293 1476
1477 ++loop_count;
1294 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1295 1479
1296 /* update ev_rt_now, do magic */ 1480 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1481 time_update (EV_A_ block);
1482 }
1298 1483
1299 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1486#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1488#endif
1304 1489
1490#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1491 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1308 1494
1309 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1498
1313 call_pending (EV_A); 1499 call_pending (EV_A);
1314 1500
1315 if (expect_false (loop_done))
1316 break;
1317 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1318 1503
1319 if (loop_done != 2) 1504 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1505 loop_done = EVUNLOOP_CANCEL;
1321} 1506}
1322 1507
1323void 1508void
1324ev_unloop (EV_P_ int how) 1509ev_unloop (EV_P_ int how)
1325{ 1510{
1326 loop_done = how; 1511 loop_done = how;
1327} 1512}
1328 1513
1329/*****************************************************************************/ 1514/*****************************************************************************/
1330 1515
1331inline void 1516void inline_size
1332wlist_add (WL *head, WL elem) 1517wlist_add (WL *head, WL elem)
1333{ 1518{
1334 elem->next = *head; 1519 elem->next = *head;
1335 *head = elem; 1520 *head = elem;
1336} 1521}
1337 1522
1338inline void 1523void inline_size
1339wlist_del (WL *head, WL elem) 1524wlist_del (WL *head, WL elem)
1340{ 1525{
1341 while (*head) 1526 while (*head)
1342 { 1527 {
1343 if (*head == elem) 1528 if (*head == elem)
1348 1533
1349 head = &(*head)->next; 1534 head = &(*head)->next;
1350 } 1535 }
1351} 1536}
1352 1537
1353inline void 1538void inline_speed
1354ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1355{ 1540{
1356 if (w->pending) 1541 if (w->pending)
1357 { 1542 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1544 w->pending = 0;
1360 } 1545 }
1361} 1546}
1362 1547
1363inline void 1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1574void inline_speed
1364ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1365{ 1576{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1578 w->active = active;
1370 ev_ref (EV_A); 1579 ev_ref (EV_A);
1371} 1580}
1372 1581
1373inline void 1582void inline_size
1374ev_stop (EV_P_ W w) 1583ev_stop (EV_P_ W w)
1375{ 1584{
1376 ev_unref (EV_A); 1585 ev_unref (EV_A);
1377 w->active = 0; 1586 w->active = 0;
1378} 1587}
1379 1588
1380/*****************************************************************************/ 1589/*****************************************************************************/
1381 1590
1382void 1591void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1384{ 1593{
1385 int fd = w->fd; 1594 int fd = w->fd;
1386 1595
1387 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1388 return; 1597 return;
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1395 1604
1396 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1397} 1606}
1398 1607
1399void 1608void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1401{ 1610{
1402 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1404 return; 1613 return;
1405 1614
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1616
1409 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1410 1619
1411 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1412} 1621}
1413 1622
1414void 1623void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1416{ 1625{
1417 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1418 return; 1627 return;
1419 1628
1420 ((WT)w)->at += mn_now; 1629 ((WT)w)->at += mn_now;
1421 1630
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1632
1424 ev_start (EV_A_ (W)w, ++timercnt); 1633 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1635 timers [timercnt - 1] = w;
1427 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1428 1637
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1639}
1640
1641void noinline
1642ev_timer_stop (EV_P_ ev_timer *w)
1643{
1644 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w)))
1646 return;
1647
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1430}
1431 1649
1432void 1650 {
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1651 int active = ((W)w)->active;
1434{
1435 ev_clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w)))
1437 return;
1438 1652
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1440
1441 if (expect_true (((W)w)->active < timercnt--)) 1653 if (expect_true (--active < --timercnt))
1442 { 1654 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1655 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1656 adjustheap ((WT *)timers, timercnt, active);
1445 } 1657 }
1658 }
1446 1659
1447 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1448 1661
1449 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1450} 1663}
1451 1664
1452void 1665void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1454{ 1667{
1455 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1456 { 1669 {
1457 if (w->repeat) 1670 if (w->repeat)
1458 { 1671 {
1467 w->at = w->repeat; 1680 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1469 } 1682 }
1470} 1683}
1471 1684
1472#if EV_PERIODICS 1685#if EV_PERIODIC_ENABLE
1473void 1686void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1688{
1476 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1477 return; 1690 return;
1478 1691
1479 if (w->reschedule_cb) 1692 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1694 else if (w->interval)
1482 { 1695 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1487 1702
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1492 1707
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1709}
1710
1711void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w)
1713{
1714 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w)))
1716 return;
1717
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1494}
1495 1719
1496void 1720 {
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1721 int active = ((W)w)->active;
1498{
1499 ev_clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w)))
1501 return;
1502 1722
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1504
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1723 if (expect_true (--active < --periodiccnt))
1506 { 1724 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1725 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1726 adjustheap ((WT *)periodics, periodiccnt, active);
1509 } 1727 }
1728 }
1510 1729
1511 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1512} 1731}
1513 1732
1514void 1733void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1735{
1517 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1520} 1739}
1521#endif 1740#endif
1522 1741
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 1742#ifndef SA_RESTART
1590# define SA_RESTART 0 1743# define SA_RESTART 0
1591#endif 1744#endif
1592 1745
1593void 1746void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1595{ 1748{
1596#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1751#endif
1599 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1600 return; 1753 return;
1601 1754
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1604 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 1773
1608 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1609 { 1775 {
1610#if _WIN32 1776#if _WIN32
1617 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1618#endif 1784#endif
1619 } 1785 }
1620} 1786}
1621 1787
1622void 1788void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1790{
1625 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1792 if (expect_false (!ev_is_active (w)))
1627 return; 1793 return;
1628 1794
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1632 if (!signals [w->signum - 1].head) 1798 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1799 signal (w->signum, SIG_DFL);
1634} 1800}
1635 1801
1636void 1802void
1637ev_child_start (EV_P_ struct ev_child *w) 1803ev_child_start (EV_P_ ev_child *w)
1638{ 1804{
1639#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1806 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1807#endif
1642 if (expect_false (ev_is_active (w))) 1808 if (expect_false (ev_is_active (w)))
1643 return; 1809 return;
1644 1810
1645 ev_start (EV_A_ (W)w, 1); 1811 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1813}
1648 1814
1649void 1815void
1650ev_child_stop (EV_P_ struct ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1651{ 1817{
1652 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1654 return; 1820 return;
1655 1821
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1658} 1824}
1659 1825
1826#if EV_STAT_ENABLE
1827
1828# ifdef _WIN32
1829# undef lstat
1830# define lstat(a,b) _stati64 (a,b)
1831# endif
1832
1833#define DEF_STAT_INTERVAL 5.0074891
1834#define MIN_STAT_INTERVAL 0.1074891
1835
1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1837
1838#if EV_USE_INOTIFY
1839# define EV_INOTIFY_BUFSIZE 8192
1840
1841static void noinline
1842infy_add (EV_P_ ev_stat *w)
1843{
1844 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1845
1846 if (w->wd < 0)
1847 {
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1849
1850 /* monitor some parent directory for speedup hints */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 {
1853 char path [4096];
1854 strcpy (path, w->path);
1855
1856 do
1857 {
1858 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1859 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1860
1861 char *pend = strrchr (path, '/');
1862
1863 if (!pend)
1864 break; /* whoops, no '/', complain to your admin */
1865
1866 *pend = 0;
1867 w->wd = inotify_add_watch (fs_fd, path, mask);
1868 }
1869 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1870 }
1871 }
1872 else
1873 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1874
1875 if (w->wd >= 0)
1876 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1877}
1878
1879static void noinline
1880infy_del (EV_P_ ev_stat *w)
1881{
1882 int slot;
1883 int wd = w->wd;
1884
1885 if (wd < 0)
1886 return;
1887
1888 w->wd = -2;
1889 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1890 wlist_del (&fs_hash [slot].head, (WL)w);
1891
1892 /* remove this watcher, if others are watching it, they will rearm */
1893 inotify_rm_watch (fs_fd, wd);
1894}
1895
1896static void noinline
1897infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1898{
1899 if (slot < 0)
1900 /* overflow, need to check for all hahs slots */
1901 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1902 infy_wd (EV_A_ slot, wd, ev);
1903 else
1904 {
1905 WL w_;
1906
1907 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1908 {
1909 ev_stat *w = (ev_stat *)w_;
1910 w_ = w_->next; /* lets us remove this watcher and all before it */
1911
1912 if (w->wd == wd || wd == -1)
1913 {
1914 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1915 {
1916 w->wd = -1;
1917 infy_add (EV_A_ w); /* re-add, no matter what */
1918 }
1919
1920 stat_timer_cb (EV_A_ &w->timer, 0);
1921 }
1922 }
1923 }
1924}
1925
1926static void
1927infy_cb (EV_P_ ev_io *w, int revents)
1928{
1929 char buf [EV_INOTIFY_BUFSIZE];
1930 struct inotify_event *ev = (struct inotify_event *)buf;
1931 int ofs;
1932 int len = read (fs_fd, buf, sizeof (buf));
1933
1934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1936}
1937
1938void inline_size
1939infy_init (EV_P)
1940{
1941 if (fs_fd != -2)
1942 return;
1943
1944 fs_fd = inotify_init ();
1945
1946 if (fs_fd >= 0)
1947 {
1948 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1949 ev_set_priority (&fs_w, EV_MAXPRI);
1950 ev_io_start (EV_A_ &fs_w);
1951 }
1952}
1953
1954void inline_size
1955infy_fork (EV_P)
1956{
1957 int slot;
1958
1959 if (fs_fd < 0)
1960 return;
1961
1962 close (fs_fd);
1963 fs_fd = inotify_init ();
1964
1965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1966 {
1967 WL w_ = fs_hash [slot].head;
1968 fs_hash [slot].head = 0;
1969
1970 while (w_)
1971 {
1972 ev_stat *w = (ev_stat *)w_;
1973 w_ = w_->next; /* lets us add this watcher */
1974
1975 w->wd = -1;
1976
1977 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else
1980 ev_timer_start (EV_A_ &w->timer);
1981 }
1982
1983 }
1984}
1985
1986#endif
1987
1988void
1989ev_stat_stat (EV_P_ ev_stat *w)
1990{
1991 if (lstat (w->path, &w->attr) < 0)
1992 w->attr.st_nlink = 0;
1993 else if (!w->attr.st_nlink)
1994 w->attr.st_nlink = 1;
1995}
1996
1997static void noinline
1998stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1999{
2000 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2001
2002 /* we copy this here each the time so that */
2003 /* prev has the old value when the callback gets invoked */
2004 w->prev = w->attr;
2005 ev_stat_stat (EV_A_ w);
2006
2007 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2008 if (
2009 w->prev.st_dev != w->attr.st_dev
2010 || w->prev.st_ino != w->attr.st_ino
2011 || w->prev.st_mode != w->attr.st_mode
2012 || w->prev.st_nlink != w->attr.st_nlink
2013 || w->prev.st_uid != w->attr.st_uid
2014 || w->prev.st_gid != w->attr.st_gid
2015 || w->prev.st_rdev != w->attr.st_rdev
2016 || w->prev.st_size != w->attr.st_size
2017 || w->prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime
2020 ) {
2021 #if EV_USE_INOTIFY
2022 infy_del (EV_A_ w);
2023 infy_add (EV_A_ w);
2024 ev_stat_stat (EV_A_ w); /* avoid race... */
2025 #endif
2026
2027 ev_feed_event (EV_A_ w, EV_STAT);
2028 }
2029}
2030
2031void
2032ev_stat_start (EV_P_ ev_stat *w)
2033{
2034 if (expect_false (ev_is_active (w)))
2035 return;
2036
2037 /* since we use memcmp, we need to clear any padding data etc. */
2038 memset (&w->prev, 0, sizeof (ev_statdata));
2039 memset (&w->attr, 0, sizeof (ev_statdata));
2040
2041 ev_stat_stat (EV_A_ w);
2042
2043 if (w->interval < MIN_STAT_INTERVAL)
2044 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2045
2046 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2047 ev_set_priority (&w->timer, ev_priority (w));
2048
2049#if EV_USE_INOTIFY
2050 infy_init (EV_A);
2051
2052 if (fs_fd >= 0)
2053 infy_add (EV_A_ w);
2054 else
2055#endif
2056 ev_timer_start (EV_A_ &w->timer);
2057
2058 ev_start (EV_A_ (W)w, 1);
2059}
2060
2061void
2062ev_stat_stop (EV_P_ ev_stat *w)
2063{
2064 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w)))
2066 return;
2067
2068#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w);
2070#endif
2071 ev_timer_stop (EV_A_ &w->timer);
2072
2073 ev_stop (EV_A_ (W)w);
2074}
2075#endif
2076
2077#if EV_IDLE_ENABLE
2078void
2079ev_idle_start (EV_P_ ev_idle *w)
2080{
2081 if (expect_false (ev_is_active (w)))
2082 return;
2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
2090 ev_start (EV_A_ (W)w, active);
2091
2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
2095}
2096
2097void
2098ev_idle_stop (EV_P_ ev_idle *w)
2099{
2100 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w)))
2102 return;
2103
2104 {
2105 int active = ((W)w)->active;
2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
2112 }
2113}
2114#endif
2115
2116void
2117ev_prepare_start (EV_P_ ev_prepare *w)
2118{
2119 if (expect_false (ev_is_active (w)))
2120 return;
2121
2122 ev_start (EV_A_ (W)w, ++preparecnt);
2123 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2124 prepares [preparecnt - 1] = w;
2125}
2126
2127void
2128ev_prepare_stop (EV_P_ ev_prepare *w)
2129{
2130 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w)))
2132 return;
2133
2134 {
2135 int active = ((W)w)->active;
2136 prepares [active - 1] = prepares [--preparecnt];
2137 ((W)prepares [active - 1])->active = active;
2138 }
2139
2140 ev_stop (EV_A_ (W)w);
2141}
2142
2143void
2144ev_check_start (EV_P_ ev_check *w)
2145{
2146 if (expect_false (ev_is_active (w)))
2147 return;
2148
2149 ev_start (EV_A_ (W)w, ++checkcnt);
2150 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2151 checks [checkcnt - 1] = w;
2152}
2153
2154void
2155ev_check_stop (EV_P_ ev_check *w)
2156{
2157 clear_pending (EV_A_ (W)w);
2158 if (expect_false (!ev_is_active (w)))
2159 return;
2160
2161 {
2162 int active = ((W)w)->active;
2163 checks [active - 1] = checks [--checkcnt];
2164 ((W)checks [active - 1])->active = active;
2165 }
2166
2167 ev_stop (EV_A_ (W)w);
2168}
2169
2170#if EV_EMBED_ENABLE
2171void noinline
2172ev_embed_sweep (EV_P_ ev_embed *w)
2173{
2174 ev_loop (w->loop, EVLOOP_NONBLOCK);
2175}
2176
2177static void
2178embed_cb (EV_P_ ev_io *io, int revents)
2179{
2180 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2181
2182 if (ev_cb (w))
2183 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2184 else
2185 ev_embed_sweep (loop, w);
2186}
2187
2188void
2189ev_embed_start (EV_P_ ev_embed *w)
2190{
2191 if (expect_false (ev_is_active (w)))
2192 return;
2193
2194 {
2195 struct ev_loop *loop = w->loop;
2196 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2197 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2198 }
2199
2200 ev_set_priority (&w->io, ev_priority (w));
2201 ev_io_start (EV_A_ &w->io);
2202
2203 ev_start (EV_A_ (W)w, 1);
2204}
2205
2206void
2207ev_embed_stop (EV_P_ ev_embed *w)
2208{
2209 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w)))
2211 return;
2212
2213 ev_io_stop (EV_A_ &w->io);
2214
2215 ev_stop (EV_A_ (W)w);
2216}
2217#endif
2218
2219#if EV_FORK_ENABLE
2220void
2221ev_fork_start (EV_P_ ev_fork *w)
2222{
2223 if (expect_false (ev_is_active (w)))
2224 return;
2225
2226 ev_start (EV_A_ (W)w, ++forkcnt);
2227 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2228 forks [forkcnt - 1] = w;
2229}
2230
2231void
2232ev_fork_stop (EV_P_ ev_fork *w)
2233{
2234 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w)))
2236 return;
2237
2238 {
2239 int active = ((W)w)->active;
2240 forks [active - 1] = forks [--forkcnt];
2241 ((W)forks [active - 1])->active = active;
2242 }
2243
2244 ev_stop (EV_A_ (W)w);
2245}
2246#endif
2247
1660/*****************************************************************************/ 2248/*****************************************************************************/
1661 2249
1662struct ev_once 2250struct ev_once
1663{ 2251{
1664 struct ev_io io; 2252 ev_io io;
1665 struct ev_timer to; 2253 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2254 void (*cb)(int revents, void *arg);
1667 void *arg; 2255 void *arg;
1668}; 2256};
1669 2257
1670static void 2258static void
1679 2267
1680 cb (revents, arg); 2268 cb (revents, arg);
1681} 2269}
1682 2270
1683static void 2271static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2272once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2273{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2275}
1688 2276
1689static void 2277static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2278once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2279{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2280 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2281}
1694 2282
1695void 2283void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines