ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.355 by root, Fri Oct 22 10:09:12 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
45# endif 68# endif
46# else 69# else
47# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
49# endif 72# endif
50# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
52# endif 75# endif
53# endif 76# endif
54 77
78# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
61# endif 85# endif
62 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
69# endif 103# endif
70 104
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
74# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
77# endif 112# endif
78 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
85# endif 121# endif
86 122
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
90# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
93# endif 130# endif
94 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
95#endif 159#endif
96 160
97#include <math.h> 161#include <math.h>
98#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
99#include <fcntl.h> 164#include <fcntl.h>
100#include <stddef.h> 165#include <stddef.h>
101 166
102#include <stdio.h> 167#include <stdio.h>
103 168
104#include <assert.h> 169#include <assert.h>
105#include <errno.h> 170#include <errno.h>
106#include <sys/types.h> 171#include <sys/types.h>
107#include <time.h> 172#include <time.h>
173#include <limits.h>
108 174
109#include <signal.h> 175#include <signal.h>
110 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
111#ifndef _WIN32 185#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 186# include <sys/time.h>
114# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
115#else 189#else
190# include <io.h>
116# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 192# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
120# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
121#endif 242# endif
122 243#endif
123/**/
124 244
125#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
126# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
127#endif 251#endif
128 252
129#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
131#endif 263#endif
132 264
133#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 267#endif
136 268
137#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
138# ifdef _WIN32 270# ifdef _WIN32
139# define EV_USE_POLL 0 271# define EV_USE_POLL 0
140# else 272# else
141# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 274# endif
143#endif 275#endif
144 276
145#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
146# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
147#endif 283#endif
148 284
149#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
151#endif 287#endif
152 288
153#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 290# define EV_USE_PORT 0
155#endif 291#endif
156 292
157/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
158 364
159#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
162#endif 368#endif
164#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
167#endif 373#endif
168 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
169#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 398# include <winsock.h>
171#endif 399#endif
172 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
173/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 456
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 459
180#ifdef EV_H 460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
181# include EV_H 461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
182#else
183# include "ev.h"
184#endif
185 462
186#if __GNUC__ >= 3 463#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 465# define noinline __attribute__ ((noinline))
189#else 466#else
190# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
191# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
192#endif 472#endif
193 473
194#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
196 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
199 491
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
202 494
203typedef struct ev_watcher *W; 495typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
206 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
208 521
209#ifdef _WIN32 522#ifdef _WIN32
210# include "ev_win32.c" 523# include "ev_win32.c"
211#endif 524#endif
212 525
213/*****************************************************************************/ 526/*****************************************************************************/
214 527
528static unsigned int noinline
529ev_linux_version (void)
530{
531#ifdef __linux
532 struct utsname buf;
533 unsigned int v;
534 int i;
535 char *p = buf.release;
536
537 if (uname (&buf))
538 return 0;
539
540 for (i = 3+1; --i; )
541 {
542 unsigned int c = 0;
543
544 for (;;)
545 {
546 if (*p >= '0' && *p <= '9')
547 c = c * 10 + *p++ - '0';
548 else
549 {
550 p += *p == '.';
551 break;
552 }
553 }
554
555 v = (v << 8) | c;
556 }
557
558 return v;
559#else
560 return 0;
561#endif
562}
563
564/*****************************************************************************/
565
566#if EV_AVOID_STDIO
567static void noinline
568ev_printerr (const char *msg)
569{
570 write (STDERR_FILENO, msg, strlen (msg));
571}
572#endif
573
215static void (*syserr_cb)(const char *msg); 574static void (*syserr_cb)(const char *msg);
216 575
576void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 577ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 578{
219 syserr_cb = cb; 579 syserr_cb = cb;
220} 580}
221 581
222static void 582static void noinline
223syserr (const char *msg) 583ev_syserr (const char *msg)
224{ 584{
225 if (!msg) 585 if (!msg)
226 msg = "(libev) system error"; 586 msg = "(libev) system error";
227 587
228 if (syserr_cb) 588 if (syserr_cb)
229 syserr_cb (msg); 589 syserr_cb (msg);
230 else 590 else
231 { 591 {
592#if EV_AVOID_STDIO
593 const char *err = strerror (errno);
594
595 ev_printerr (msg);
596 ev_printerr (": ");
597 ev_printerr (err);
598 ev_printerr ("\n");
599#else
232 perror (msg); 600 perror (msg);
601#endif
233 abort (); 602 abort ();
234 } 603 }
235} 604}
236 605
606static void *
607ev_realloc_emul (void *ptr, long size)
608{
609#if __GLIBC__
610 return realloc (ptr, size);
611#else
612 /* some systems, notably openbsd and darwin, fail to properly
613 * implement realloc (x, 0) (as required by both ansi c-89 and
614 * the single unix specification, so work around them here.
615 */
616
617 if (size)
618 return realloc (ptr, size);
619
620 free (ptr);
621 return 0;
622#endif
623}
624
237static void *(*alloc)(void *ptr, long size); 625static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 626
627void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 628ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 629{
241 alloc = cb; 630 alloc = cb;
242} 631}
243 632
244static void * 633inline_speed void *
245ev_realloc (void *ptr, long size) 634ev_realloc (void *ptr, long size)
246{ 635{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 636 ptr = alloc (ptr, size);
248 637
249 if (!ptr && size) 638 if (!ptr && size)
250 { 639 {
640#if EV_AVOID_STDIO
641 ev_printerr ("libev: memory allocation failed, aborting.\n");
642#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 643 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
644#endif
252 abort (); 645 abort ();
253 } 646 }
254 647
255 return ptr; 648 return ptr;
256} 649}
258#define ev_malloc(size) ev_realloc (0, (size)) 651#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 652#define ev_free(ptr) ev_realloc ((ptr), 0)
260 653
261/*****************************************************************************/ 654/*****************************************************************************/
262 655
656/* set in reify when reification needed */
657#define EV_ANFD_REIFY 1
658
659/* file descriptor info structure */
263typedef struct 660typedef struct
264{ 661{
265 WL head; 662 WL head;
266 unsigned char events; 663 unsigned char events; /* the events watched for */
664 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
665 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 666 unsigned char unused;
667#if EV_USE_EPOLL
668 unsigned int egen; /* generation counter to counter epoll bugs */
669#endif
268#if EV_SELECT_IS_WINSOCKET 670#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 671 SOCKET handle;
270#endif 672#endif
271} ANFD; 673} ANFD;
272 674
675/* stores the pending event set for a given watcher */
273typedef struct 676typedef struct
274{ 677{
275 W w; 678 W w;
276 int events; 679 int events; /* the pending event set for the given watcher */
277} ANPENDING; 680} ANPENDING;
681
682#if EV_USE_INOTIFY
683/* hash table entry per inotify-id */
684typedef struct
685{
686 WL head;
687} ANFS;
688#endif
689
690/* Heap Entry */
691#if EV_HEAP_CACHE_AT
692 /* a heap element */
693 typedef struct {
694 ev_tstamp at;
695 WT w;
696 } ANHE;
697
698 #define ANHE_w(he) (he).w /* access watcher, read-write */
699 #define ANHE_at(he) (he).at /* access cached at, read-only */
700 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
701#else
702 /* a heap element */
703 typedef WT ANHE;
704
705 #define ANHE_w(he) (he)
706 #define ANHE_at(he) (he)->at
707 #define ANHE_at_cache(he)
708#endif
278 709
279#if EV_MULTIPLICITY 710#if EV_MULTIPLICITY
280 711
281 struct ev_loop 712 struct ev_loop
282 { 713 {
300 731
301 static int ev_default_loop_ptr; 732 static int ev_default_loop_ptr;
302 733
303#endif 734#endif
304 735
736#if EV_FEATURE_API
737# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
738# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
739# define EV_INVOKE_PENDING invoke_cb (EV_A)
740#else
741# define EV_RELEASE_CB (void)0
742# define EV_ACQUIRE_CB (void)0
743# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
744#endif
745
746#define EVBREAK_RECURSE 0x80
747
305/*****************************************************************************/ 748/*****************************************************************************/
306 749
750#ifndef EV_HAVE_EV_TIME
307ev_tstamp 751ev_tstamp
308ev_time (void) 752ev_time (void)
309{ 753{
310#if EV_USE_REALTIME 754#if EV_USE_REALTIME
755 if (expect_true (have_realtime))
756 {
311 struct timespec ts; 757 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 758 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 759 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 760 }
761#endif
762
315 struct timeval tv; 763 struct timeval tv;
316 gettimeofday (&tv, 0); 764 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 765 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 766}
767#endif
320 768
321inline ev_tstamp 769inline_size ev_tstamp
322get_clock (void) 770get_clock (void)
323{ 771{
324#if EV_USE_MONOTONIC 772#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 773 if (expect_true (have_monotonic))
326 { 774 {
339{ 787{
340 return ev_rt_now; 788 return ev_rt_now;
341} 789}
342#endif 790#endif
343 791
344#define array_roundsize(type,n) (((n) | 4) & ~3) 792void
793ev_sleep (ev_tstamp delay)
794{
795 if (delay > 0.)
796 {
797#if EV_USE_NANOSLEEP
798 struct timespec ts;
799
800 EV_TS_SET (ts, delay);
801 nanosleep (&ts, 0);
802#elif defined(_WIN32)
803 Sleep ((unsigned long)(delay * 1e3));
804#else
805 struct timeval tv;
806
807 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
808 /* something not guaranteed by newer posix versions, but guaranteed */
809 /* by older ones */
810 EV_TV_SET (tv, delay);
811 select (0, 0, 0, 0, &tv);
812#endif
813 }
814}
815
816/*****************************************************************************/
817
818#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
819
820/* find a suitable new size for the given array, */
821/* hopefully by rounding to a nice-to-malloc size */
822inline_size int
823array_nextsize (int elem, int cur, int cnt)
824{
825 int ncur = cur + 1;
826
827 do
828 ncur <<= 1;
829 while (cnt > ncur);
830
831 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
832 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
833 {
834 ncur *= elem;
835 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
836 ncur = ncur - sizeof (void *) * 4;
837 ncur /= elem;
838 }
839
840 return ncur;
841}
842
843static noinline void *
844array_realloc (int elem, void *base, int *cur, int cnt)
845{
846 *cur = array_nextsize (elem, *cur, cnt);
847 return ev_realloc (base, elem * *cur);
848}
849
850#define array_init_zero(base,count) \
851 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 852
346#define array_needsize(type,base,cur,cnt,init) \ 853#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 854 if (expect_false ((cnt) > (cur))) \
348 { \ 855 { \
349 int newcnt = cur; \ 856 int ocur_ = (cur); \
350 do \ 857 (base) = (type *)array_realloc \
351 { \ 858 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 859 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 860 }
360 861
862#if 0
361#define array_slim(type,stem) \ 863#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 864 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 865 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 866 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 867 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 868 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 869 }
870#endif
368 871
369#define array_free(stem, idx) \ 872#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 873 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 874
372/*****************************************************************************/ 875/*****************************************************************************/
373 876
374static void 877/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 878static void noinline
879pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 880{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 881}
386 882
387void 883void noinline
388ev_feed_event (EV_P_ void *w, int revents) 884ev_feed_event (EV_P_ void *w, int revents)
389{ 885{
390 W w_ = (W)w; 886 W w_ = (W)w;
887 int pri = ABSPRI (w_);
391 888
392 if (expect_false (w_->pending)) 889 if (expect_false (w_->pending))
890 pendings [pri][w_->pending - 1].events |= revents;
891 else
393 { 892 {
893 w_->pending = ++pendingcnt [pri];
894 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
895 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 896 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 897 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 898}
403 899
404static void 900inline_speed void
901feed_reverse (EV_P_ W w)
902{
903 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
904 rfeeds [rfeedcnt++] = w;
905}
906
907inline_size void
908feed_reverse_done (EV_P_ int revents)
909{
910 do
911 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
912 while (rfeedcnt);
913}
914
915inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 916queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 917{
407 int i; 918 int i;
408 919
409 for (i = 0; i < eventcnt; ++i) 920 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 921 ev_feed_event (EV_A_ events [i], type);
411} 922}
412 923
924/*****************************************************************************/
925
413inline void 926inline_speed void
414fd_event (EV_P_ int fd, int revents) 927fd_event_nocheck (EV_P_ int fd, int revents)
415{ 928{
416 ANFD *anfd = anfds + fd; 929 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 930 ev_io *w;
418 931
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 932 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 933 {
421 int ev = w->events & revents; 934 int ev = w->events & revents;
422 935
423 if (ev) 936 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 937 ev_feed_event (EV_A_ (W)w, ev);
425 } 938 }
426} 939}
427 940
941/* do not submit kernel events for fds that have reify set */
942/* because that means they changed while we were polling for new events */
943inline_speed void
944fd_event (EV_P_ int fd, int revents)
945{
946 ANFD *anfd = anfds + fd;
947
948 if (expect_true (!anfd->reify))
949 fd_event_nocheck (EV_A_ fd, revents);
950}
951
428void 952void
429ev_feed_fd_event (EV_P_ int fd, int revents) 953ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 954{
955 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 956 fd_event_nocheck (EV_A_ fd, revents);
432} 957}
433 958
434/*****************************************************************************/ 959/* make sure the external fd watch events are in-sync */
435 960/* with the kernel/libev internal state */
436inline void 961inline_size void
437fd_reify (EV_P) 962fd_reify (EV_P)
438{ 963{
439 int i; 964 int i;
440 965
441 for (i = 0; i < fdchangecnt; ++i) 966 for (i = 0; i < fdchangecnt; ++i)
442 { 967 {
443 int fd = fdchanges [i]; 968 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 969 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 970 ev_io *w;
446 971
447 int events = 0; 972 unsigned char o_events = anfd->events;
973 unsigned char o_reify = anfd->reify;
448 974
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 975 anfd->reify = 0;
450 events |= w->events;
451 976
452#if EV_SELECT_IS_WINSOCKET 977#if EV_SELECT_IS_WINSOCKET
453 if (events) 978 if (o_reify & EV__IOFDSET)
454 { 979 {
455 unsigned long argp; 980 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 981 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 982 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 983 }
459#endif 984#endif
460 985
461 anfd->reify = 0; 986 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
987 {
988 anfd->events = 0;
462 989
990 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
991 anfd->events |= (unsigned char)w->events;
992
993 if (o_events != anfd->events)
994 o_reify = EV__IOFDSET; /* actually |= */
995 }
996
997 if (o_reify & EV__IOFDSET)
463 backend_modify (EV_A_ fd, anfd->events, events); 998 backend_modify (EV_A_ fd, o_events, anfd->events);
464 anfd->events = events;
465 } 999 }
466 1000
467 fdchangecnt = 0; 1001 fdchangecnt = 0;
468} 1002}
469 1003
470static void 1004/* something about the given fd changed */
1005inline_size void
471fd_change (EV_P_ int fd) 1006fd_change (EV_P_ int fd, int flags)
472{ 1007{
473 if (expect_false (anfds [fd].reify)) 1008 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 1009 anfds [fd].reify |= flags;
477 1010
1011 if (expect_true (!reify))
1012 {
478 ++fdchangecnt; 1013 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1014 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 1015 fdchanges [fdchangecnt - 1] = fd;
1016 }
481} 1017}
482 1018
483static void 1019/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1020inline_speed void
484fd_kill (EV_P_ int fd) 1021fd_kill (EV_P_ int fd)
485{ 1022{
486 struct ev_io *w; 1023 ev_io *w;
487 1024
488 while ((w = (struct ev_io *)anfds [fd].head)) 1025 while ((w = (ev_io *)anfds [fd].head))
489 { 1026 {
490 ev_io_stop (EV_A_ w); 1027 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1028 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 1029 }
493} 1030}
494 1031
1032/* check whether the given fd is actually valid, for error recovery */
495inline int 1033inline_size int
496fd_valid (int fd) 1034fd_valid (int fd)
497{ 1035{
498#ifdef _WIN32 1036#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1037 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1038#else
501 return fcntl (fd, F_GETFD) != -1; 1039 return fcntl (fd, F_GETFD) != -1;
502#endif 1040#endif
503} 1041}
504 1042
505/* called on EBADF to verify fds */ 1043/* called on EBADF to verify fds */
506static void 1044static void noinline
507fd_ebadf (EV_P) 1045fd_ebadf (EV_P)
508{ 1046{
509 int fd; 1047 int fd;
510 1048
511 for (fd = 0; fd < anfdmax; ++fd) 1049 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1050 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1051 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1052 fd_kill (EV_A_ fd);
515} 1053}
516 1054
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1055/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1056static void noinline
519fd_enomem (EV_P) 1057fd_enomem (EV_P)
520{ 1058{
521 int fd; 1059 int fd;
522 1060
523 for (fd = anfdmax; fd--; ) 1061 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1062 if (anfds [fd].events)
525 { 1063 {
526 fd_kill (EV_A_ fd); 1064 fd_kill (EV_A_ fd);
527 return; 1065 break;
528 } 1066 }
529} 1067}
530 1068
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1069/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1070static void noinline
533fd_rearm_all (EV_P) 1071fd_rearm_all (EV_P)
534{ 1072{
535 int fd; 1073 int fd;
536 1074
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1075 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1076 if (anfds [fd].events)
540 { 1077 {
541 anfds [fd].events = 0; 1078 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1079 anfds [fd].emask = 0;
1080 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1081 }
544} 1082}
545 1083
546/*****************************************************************************/ 1084/* used to prepare libev internal fd's */
547 1085/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1086inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1087fd_intern (int fd)
676{ 1088{
677#ifdef _WIN32 1089#ifdef _WIN32
678 int arg = 1; 1090 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1091 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1092#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1093 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1094 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1095#endif
684} 1096}
685 1097
1098/*****************************************************************************/
1099
1100/*
1101 * the heap functions want a real array index. array index 0 is guaranteed to not
1102 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1103 * the branching factor of the d-tree.
1104 */
1105
1106/*
1107 * at the moment we allow libev the luxury of two heaps,
1108 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1109 * which is more cache-efficient.
1110 * the difference is about 5% with 50000+ watchers.
1111 */
1112#if EV_USE_4HEAP
1113
1114#define DHEAP 4
1115#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1116#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1117#define UPHEAP_DONE(p,k) ((p) == (k))
1118
1119/* away from the root */
1120inline_speed void
1121downheap (ANHE *heap, int N, int k)
1122{
1123 ANHE he = heap [k];
1124 ANHE *E = heap + N + HEAP0;
1125
1126 for (;;)
1127 {
1128 ev_tstamp minat;
1129 ANHE *minpos;
1130 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1131
1132 /* find minimum child */
1133 if (expect_true (pos + DHEAP - 1 < E))
1134 {
1135 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1136 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1137 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1138 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1139 }
1140 else if (pos < E)
1141 {
1142 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else
1148 break;
1149
1150 if (ANHE_at (he) <= minat)
1151 break;
1152
1153 heap [k] = *minpos;
1154 ev_active (ANHE_w (*minpos)) = k;
1155
1156 k = minpos - heap;
1157 }
1158
1159 heap [k] = he;
1160 ev_active (ANHE_w (he)) = k;
1161}
1162
1163#else /* 4HEAP */
1164
1165#define HEAP0 1
1166#define HPARENT(k) ((k) >> 1)
1167#define UPHEAP_DONE(p,k) (!(p))
1168
1169/* away from the root */
1170inline_speed void
1171downheap (ANHE *heap, int N, int k)
1172{
1173 ANHE he = heap [k];
1174
1175 for (;;)
1176 {
1177 int c = k << 1;
1178
1179 if (c >= N + HEAP0)
1180 break;
1181
1182 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1183 ? 1 : 0;
1184
1185 if (ANHE_at (he) <= ANHE_at (heap [c]))
1186 break;
1187
1188 heap [k] = heap [c];
1189 ev_active (ANHE_w (heap [k])) = k;
1190
1191 k = c;
1192 }
1193
1194 heap [k] = he;
1195 ev_active (ANHE_w (he)) = k;
1196}
1197#endif
1198
1199/* towards the root */
1200inline_speed void
1201upheap (ANHE *heap, int k)
1202{
1203 ANHE he = heap [k];
1204
1205 for (;;)
1206 {
1207 int p = HPARENT (k);
1208
1209 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1210 break;
1211
1212 heap [k] = heap [p];
1213 ev_active (ANHE_w (heap [k])) = k;
1214 k = p;
1215 }
1216
1217 heap [k] = he;
1218 ev_active (ANHE_w (he)) = k;
1219}
1220
1221/* move an element suitably so it is in a correct place */
1222inline_size void
1223adjustheap (ANHE *heap, int N, int k)
1224{
1225 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1226 upheap (heap, k);
1227 else
1228 downheap (heap, N, k);
1229}
1230
1231/* rebuild the heap: this function is used only once and executed rarely */
1232inline_size void
1233reheap (ANHE *heap, int N)
1234{
1235 int i;
1236
1237 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1238 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1239 for (i = 0; i < N; ++i)
1240 upheap (heap, i + HEAP0);
1241}
1242
1243/*****************************************************************************/
1244
1245/* associate signal watchers to a signal signal */
1246typedef struct
1247{
1248 EV_ATOMIC_T pending;
1249#if EV_MULTIPLICITY
1250 EV_P;
1251#endif
1252 WL head;
1253} ANSIG;
1254
1255static ANSIG signals [EV_NSIG - 1];
1256
1257/*****************************************************************************/
1258
1259#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1260
1261static void noinline
1262evpipe_init (EV_P)
1263{
1264 if (!ev_is_active (&pipe_w))
1265 {
1266# if EV_USE_EVENTFD
1267 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1268 if (evfd < 0 && errno == EINVAL)
1269 evfd = eventfd (0, 0);
1270
1271 if (evfd >= 0)
1272 {
1273 evpipe [0] = -1;
1274 fd_intern (evfd); /* doing it twice doesn't hurt */
1275 ev_io_set (&pipe_w, evfd, EV_READ);
1276 }
1277 else
1278# endif
1279 {
1280 while (pipe (evpipe))
1281 ev_syserr ("(libev) error creating signal/async pipe");
1282
1283 fd_intern (evpipe [0]);
1284 fd_intern (evpipe [1]);
1285 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1286 }
1287
1288 ev_io_start (EV_A_ &pipe_w);
1289 ev_unref (EV_A); /* watcher should not keep loop alive */
1290 }
1291}
1292
1293inline_size void
1294evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1295{
1296 if (!*flag)
1297 {
1298 int old_errno = errno; /* save errno because write might clobber it */
1299 char dummy;
1300
1301 *flag = 1;
1302
1303#if EV_USE_EVENTFD
1304 if (evfd >= 0)
1305 {
1306 uint64_t counter = 1;
1307 write (evfd, &counter, sizeof (uint64_t));
1308 }
1309 else
1310#endif
1311 /* win32 people keep sending patches that change this write() to send() */
1312 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1313 /* so when you think this write should be a send instead, please find out */
1314 /* where your send() is from - it's definitely not the microsoft send, and */
1315 /* tell me. thank you. */
1316 write (evpipe [1], &dummy, 1);
1317
1318 errno = old_errno;
1319 }
1320}
1321
1322/* called whenever the libev signal pipe */
1323/* got some events (signal, async) */
686static void 1324static void
687siginit (EV_P) 1325pipecb (EV_P_ ev_io *iow, int revents)
688{ 1326{
689 fd_intern (sigpipe [0]); 1327 int i;
690 fd_intern (sigpipe [1]);
691 1328
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1329#if EV_USE_EVENTFD
693 ev_io_start (EV_A_ &sigev); 1330 if (evfd >= 0)
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1331 {
1332 uint64_t counter;
1333 read (evfd, &counter, sizeof (uint64_t));
1334 }
1335 else
1336#endif
1337 {
1338 char dummy;
1339 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1340 read (evpipe [0], &dummy, 1);
1341 }
1342
1343 if (sig_pending)
1344 {
1345 sig_pending = 0;
1346
1347 for (i = EV_NSIG - 1; i--; )
1348 if (expect_false (signals [i].pending))
1349 ev_feed_signal_event (EV_A_ i + 1);
1350 }
1351
1352#if EV_ASYNC_ENABLE
1353 if (async_pending)
1354 {
1355 async_pending = 0;
1356
1357 for (i = asynccnt; i--; )
1358 if (asyncs [i]->sent)
1359 {
1360 asyncs [i]->sent = 0;
1361 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1362 }
1363 }
1364#endif
695} 1365}
696 1366
697/*****************************************************************************/ 1367/*****************************************************************************/
698 1368
699static struct ev_child *childs [PID_HASHSIZE]; 1369static void
1370ev_sighandler (int signum)
1371{
1372#if EV_MULTIPLICITY
1373 EV_P = signals [signum - 1].loop;
1374#endif
700 1375
701#ifndef _WIN32 1376#ifdef _WIN32
1377 signal (signum, ev_sighandler);
1378#endif
702 1379
1380 signals [signum - 1].pending = 1;
1381 evpipe_write (EV_A_ &sig_pending);
1382}
1383
1384void noinline
1385ev_feed_signal_event (EV_P_ int signum)
1386{
1387 WL w;
1388
1389 if (expect_false (signum <= 0 || signum > EV_NSIG))
1390 return;
1391
1392 --signum;
1393
1394#if EV_MULTIPLICITY
1395 /* it is permissible to try to feed a signal to the wrong loop */
1396 /* or, likely more useful, feeding a signal nobody is waiting for */
1397
1398 if (expect_false (signals [signum].loop != EV_A))
1399 return;
1400#endif
1401
1402 signals [signum].pending = 0;
1403
1404 for (w = signals [signum].head; w; w = w->next)
1405 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1406}
1407
1408#if EV_USE_SIGNALFD
1409static void
1410sigfdcb (EV_P_ ev_io *iow, int revents)
1411{
1412 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1413
1414 for (;;)
1415 {
1416 ssize_t res = read (sigfd, si, sizeof (si));
1417
1418 /* not ISO-C, as res might be -1, but works with SuS */
1419 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1420 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1421
1422 if (res < (ssize_t)sizeof (si))
1423 break;
1424 }
1425}
1426#endif
1427
1428#endif
1429
1430/*****************************************************************************/
1431
1432#if EV_CHILD_ENABLE
1433static WL childs [EV_PID_HASHSIZE];
1434
703static struct ev_signal childev; 1435static ev_signal childev;
1436
1437#ifndef WIFCONTINUED
1438# define WIFCONTINUED(status) 0
1439#endif
1440
1441/* handle a single child status event */
1442inline_speed void
1443child_reap (EV_P_ int chain, int pid, int status)
1444{
1445 ev_child *w;
1446 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1447
1448 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1449 {
1450 if ((w->pid == pid || !w->pid)
1451 && (!traced || (w->flags & 1)))
1452 {
1453 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1454 w->rpid = pid;
1455 w->rstatus = status;
1456 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1457 }
1458 }
1459}
704 1460
705#ifndef WCONTINUED 1461#ifndef WCONTINUED
706# define WCONTINUED 0 1462# define WCONTINUED 0
707#endif 1463#endif
708 1464
1465/* called on sigchld etc., calls waitpid */
709static void 1466static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1467childcb (EV_P_ ev_signal *sw, int revents)
726{ 1468{
727 int pid, status; 1469 int pid, status;
728 1470
1471 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1472 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1473 if (!WCONTINUED
1474 || errno != EINVAL
1475 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1476 return;
1477
731 /* make sure we are called again until all childs have been reaped */ 1478 /* make sure we are called again until all children have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 1479 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1480 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 1481
735 child_reap (EV_A_ sw, pid, pid, status); 1482 child_reap (EV_A_ pid, pid, status);
1483 if ((EV_PID_HASHSIZE) > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1484 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 1485}
739 1486
740#endif 1487#endif
741 1488
742/*****************************************************************************/ 1489/*****************************************************************************/
768{ 1515{
769 return EV_VERSION_MINOR; 1516 return EV_VERSION_MINOR;
770} 1517}
771 1518
772/* return true if we are running with elevated privileges and should ignore env variables */ 1519/* return true if we are running with elevated privileges and should ignore env variables */
773static int 1520int inline_size
774enable_secure (void) 1521enable_secure (void)
775{ 1522{
776#ifdef _WIN32 1523#ifdef _WIN32
777 return 0; 1524 return 0;
778#else 1525#else
804 /* kqueue is borked on everything but netbsd apparently */ 1551 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */ 1552 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE; 1553 flags &= ~EVBACKEND_KQUEUE;
807#endif 1554#endif
808#ifdef __APPLE__ 1555#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation 1556 /* only select works correctly on that "unix-certified" platform */
1557 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1558 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1559#endif
1560#ifdef __FreeBSD__
1561 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1562#endif
1563
1564 return flags;
1565}
1566
1567unsigned int
1568ev_embeddable_backends (void)
1569{
1570 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1571
1572 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1573 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
810 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_EPOLL;
811#endif
812 1575
813 return flags; 1576 return flags;
814} 1577}
815 1578
816unsigned int 1579unsigned int
817ev_backend (EV_P) 1580ev_backend (EV_P)
818{ 1581{
819 return backend; 1582 return backend;
820} 1583}
821 1584
822static void 1585#if EV_FEATURE_API
1586unsigned int
1587ev_iteration (EV_P)
1588{
1589 return loop_count;
1590}
1591
1592unsigned int
1593ev_depth (EV_P)
1594{
1595 return loop_depth;
1596}
1597
1598void
1599ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1600{
1601 io_blocktime = interval;
1602}
1603
1604void
1605ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1606{
1607 timeout_blocktime = interval;
1608}
1609
1610void
1611ev_set_userdata (EV_P_ void *data)
1612{
1613 userdata = data;
1614}
1615
1616void *
1617ev_userdata (EV_P)
1618{
1619 return userdata;
1620}
1621
1622void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1623{
1624 invoke_cb = invoke_pending_cb;
1625}
1626
1627void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1628{
1629 release_cb = release;
1630 acquire_cb = acquire;
1631}
1632#endif
1633
1634/* initialise a loop structure, must be zero-initialised */
1635static void noinline
823loop_init (EV_P_ unsigned int flags) 1636loop_init (EV_P_ unsigned int flags)
824{ 1637{
825 if (!backend) 1638 if (!backend)
826 { 1639 {
1640#if EV_USE_REALTIME
1641 if (!have_realtime)
1642 {
1643 struct timespec ts;
1644
1645 if (!clock_gettime (CLOCK_REALTIME, &ts))
1646 have_realtime = 1;
1647 }
1648#endif
1649
827#if EV_USE_MONOTONIC 1650#if EV_USE_MONOTONIC
1651 if (!have_monotonic)
828 { 1652 {
829 struct timespec ts; 1653 struct timespec ts;
1654
830 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1655 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
831 have_monotonic = 1; 1656 have_monotonic = 1;
832 } 1657 }
833#endif 1658#endif
834 1659
835 ev_rt_now = ev_time (); 1660 /* pid check not overridable via env */
836 mn_now = get_clock (); 1661#ifndef _WIN32
837 now_floor = mn_now; 1662 if (flags & EVFLAG_FORKCHECK)
838 rtmn_diff = ev_rt_now - mn_now; 1663 curpid = getpid ();
1664#endif
839 1665
840 if (!(flags & EVFLAG_NOENV) 1666 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 1667 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 1668 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 1669 flags = atoi (getenv ("LIBEV_FLAGS"));
844 1670
1671 ev_rt_now = ev_time ();
1672 mn_now = get_clock ();
1673 now_floor = mn_now;
1674 rtmn_diff = ev_rt_now - mn_now;
1675#if EV_FEATURE_API
1676 invoke_cb = ev_invoke_pending;
1677#endif
1678
1679 io_blocktime = 0.;
1680 timeout_blocktime = 0.;
1681 backend = 0;
1682 backend_fd = -1;
1683 sig_pending = 0;
1684#if EV_ASYNC_ENABLE
1685 async_pending = 0;
1686#endif
1687#if EV_USE_INOTIFY
1688 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1689#endif
1690#if EV_USE_SIGNALFD
1691 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1692#endif
1693
845 if (!(flags & 0x0000ffffUL)) 1694 if (!(flags & 0x0000ffffU))
846 flags |= ev_recommended_backends (); 1695 flags |= ev_recommended_backends ();
847 1696
848 backend = 0;
849#if EV_USE_PORT 1697#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1698 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 1699#endif
852#if EV_USE_KQUEUE 1700#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1701 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
860#endif 1708#endif
861#if EV_USE_SELECT 1709#if EV_USE_SELECT
862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1710 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
863#endif 1711#endif
864 1712
1713 ev_prepare_init (&pending_w, pendingcb);
1714
1715#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
865 ev_init (&sigev, sigcb); 1716 ev_init (&pipe_w, pipecb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1717 ev_set_priority (&pipe_w, EV_MAXPRI);
1718#endif
867 } 1719 }
868} 1720}
869 1721
870static void 1722/* free up a loop structure */
1723static void noinline
871loop_destroy (EV_P) 1724loop_destroy (EV_P)
872{ 1725{
873 int i; 1726 int i;
1727
1728 if (ev_is_active (&pipe_w))
1729 {
1730 /*ev_ref (EV_A);*/
1731 /*ev_io_stop (EV_A_ &pipe_w);*/
1732
1733#if EV_USE_EVENTFD
1734 if (evfd >= 0)
1735 close (evfd);
1736#endif
1737
1738 if (evpipe [0] >= 0)
1739 {
1740 EV_WIN32_CLOSE_FD (evpipe [0]);
1741 EV_WIN32_CLOSE_FD (evpipe [1]);
1742 }
1743 }
1744
1745#if EV_USE_SIGNALFD
1746 if (ev_is_active (&sigfd_w))
1747 close (sigfd);
1748#endif
1749
1750#if EV_USE_INOTIFY
1751 if (fs_fd >= 0)
1752 close (fs_fd);
1753#endif
1754
1755 if (backend_fd >= 0)
1756 close (backend_fd);
874 1757
875#if EV_USE_PORT 1758#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1759 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1760#endif
878#if EV_USE_KQUEUE 1761#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1770#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1771 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1772#endif
890 1773
891 for (i = NUMPRI; i--; ) 1774 for (i = NUMPRI; i--; )
1775 {
892 array_free (pending, [i]); 1776 array_free (pending, [i]);
1777#if EV_IDLE_ENABLE
1778 array_free (idle, [i]);
1779#endif
1780 }
1781
1782 ev_free (anfds); anfds = 0; anfdmax = 0;
893 1783
894 /* have to use the microsoft-never-gets-it-right macro */ 1784 /* have to use the microsoft-never-gets-it-right macro */
1785 array_free (rfeed, EMPTY);
895 array_free (fdchange, EMPTY0); 1786 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1787 array_free (timer, EMPTY);
897#if EV_PERIODICS 1788#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1789 array_free (periodic, EMPTY);
899#endif 1790#endif
1791#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1792 array_free (fork, EMPTY);
1793#endif
901 array_free (prepare, EMPTY0); 1794 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1795 array_free (check, EMPTY);
1796#if EV_ASYNC_ENABLE
1797 array_free (async, EMPTY);
1798#endif
903 1799
904 backend = 0; 1800 backend = 0;
905} 1801}
906 1802
907static void 1803#if EV_USE_INOTIFY
1804inline_size void infy_fork (EV_P);
1805#endif
1806
1807inline_size void
908loop_fork (EV_P) 1808loop_fork (EV_P)
909{ 1809{
910#if EV_USE_PORT 1810#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1811 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1812#endif
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1814 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1815#endif
916#if EV_USE_EPOLL 1816#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1817 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
918#endif 1818#endif
1819#if EV_USE_INOTIFY
1820 infy_fork (EV_A);
1821#endif
919 1822
920 if (ev_is_active (&sigev)) 1823 if (ev_is_active (&pipe_w))
921 { 1824 {
922 /* default loop */ 1825 /* this "locks" the handlers against writing to the pipe */
1826 /* while we modify the fd vars */
1827 sig_pending = 1;
1828#if EV_ASYNC_ENABLE
1829 async_pending = 1;
1830#endif
923 1831
924 ev_ref (EV_A); 1832 ev_ref (EV_A);
925 ev_io_stop (EV_A_ &sigev); 1833 ev_io_stop (EV_A_ &pipe_w);
926 close (sigpipe [0]);
927 close (sigpipe [1]);
928 1834
929 while (pipe (sigpipe)) 1835#if EV_USE_EVENTFD
930 syserr ("(libev) error creating pipe"); 1836 if (evfd >= 0)
1837 close (evfd);
1838#endif
931 1839
1840 if (evpipe [0] >= 0)
1841 {
1842 EV_WIN32_CLOSE_FD (evpipe [0]);
1843 EV_WIN32_CLOSE_FD (evpipe [1]);
1844 }
1845
1846#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
932 siginit (EV_A); 1847 evpipe_init (EV_A);
1848 /* now iterate over everything, in case we missed something */
1849 pipecb (EV_A_ &pipe_w, EV_READ);
1850#endif
933 } 1851 }
934 1852
935 postfork = 0; 1853 postfork = 0;
936} 1854}
937 1855
938#if EV_MULTIPLICITY 1856#if EV_MULTIPLICITY
1857
939struct ev_loop * 1858struct ev_loop *
940ev_loop_new (unsigned int flags) 1859ev_loop_new (unsigned int flags)
941{ 1860{
942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1861 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
943 1862
944 memset (loop, 0, sizeof (struct ev_loop)); 1863 memset (EV_A, 0, sizeof (struct ev_loop));
945
946 loop_init (EV_A_ flags); 1864 loop_init (EV_A_ flags);
947 1865
948 if (ev_backend (EV_A)) 1866 if (ev_backend (EV_A))
949 return loop; 1867 return EV_A;
950 1868
951 return 0; 1869 return 0;
952} 1870}
953 1871
954void 1872void
959} 1877}
960 1878
961void 1879void
962ev_loop_fork (EV_P) 1880ev_loop_fork (EV_P)
963{ 1881{
964 postfork = 1; 1882 postfork = 1; /* must be in line with ev_default_fork */
965} 1883}
1884#endif /* multiplicity */
966 1885
1886#if EV_VERIFY
1887static void noinline
1888verify_watcher (EV_P_ W w)
1889{
1890 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1891
1892 if (w->pending)
1893 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1894}
1895
1896static void noinline
1897verify_heap (EV_P_ ANHE *heap, int N)
1898{
1899 int i;
1900
1901 for (i = HEAP0; i < N + HEAP0; ++i)
1902 {
1903 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1904 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1905 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1906
1907 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1908 }
1909}
1910
1911static void noinline
1912array_verify (EV_P_ W *ws, int cnt)
1913{
1914 while (cnt--)
1915 {
1916 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1917 verify_watcher (EV_A_ ws [cnt]);
1918 }
1919}
1920#endif
1921
1922#if EV_FEATURE_API
1923void
1924ev_verify (EV_P)
1925{
1926#if EV_VERIFY
1927 int i;
1928 WL w;
1929
1930 assert (activecnt >= -1);
1931
1932 assert (fdchangemax >= fdchangecnt);
1933 for (i = 0; i < fdchangecnt; ++i)
1934 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1935
1936 assert (anfdmax >= 0);
1937 for (i = 0; i < anfdmax; ++i)
1938 for (w = anfds [i].head; w; w = w->next)
1939 {
1940 verify_watcher (EV_A_ (W)w);
1941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1943 }
1944
1945 assert (timermax >= timercnt);
1946 verify_heap (EV_A_ timers, timercnt);
1947
1948#if EV_PERIODIC_ENABLE
1949 assert (periodicmax >= periodiccnt);
1950 verify_heap (EV_A_ periodics, periodiccnt);
1951#endif
1952
1953 for (i = NUMPRI; i--; )
1954 {
1955 assert (pendingmax [i] >= pendingcnt [i]);
1956#if EV_IDLE_ENABLE
1957 assert (idleall >= 0);
1958 assert (idlemax [i] >= idlecnt [i]);
1959 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1960#endif
1961 }
1962
1963#if EV_FORK_ENABLE
1964 assert (forkmax >= forkcnt);
1965 array_verify (EV_A_ (W *)forks, forkcnt);
1966#endif
1967
1968#if EV_ASYNC_ENABLE
1969 assert (asyncmax >= asynccnt);
1970 array_verify (EV_A_ (W *)asyncs, asynccnt);
1971#endif
1972
1973#if EV_PREPARE_ENABLE
1974 assert (preparemax >= preparecnt);
1975 array_verify (EV_A_ (W *)prepares, preparecnt);
1976#endif
1977
1978#if EV_CHECK_ENABLE
1979 assert (checkmax >= checkcnt);
1980 array_verify (EV_A_ (W *)checks, checkcnt);
1981#endif
1982
1983# if 0
1984#if EV_CHILD_ENABLE
1985 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1986 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1987#endif
1988# endif
1989#endif
1990}
967#endif 1991#endif
968 1992
969#if EV_MULTIPLICITY 1993#if EV_MULTIPLICITY
970struct ev_loop * 1994struct ev_loop *
971ev_default_loop_init (unsigned int flags) 1995ev_default_loop_init (unsigned int flags)
972#else 1996#else
973int 1997int
974ev_default_loop (unsigned int flags) 1998ev_default_loop (unsigned int flags)
975#endif 1999#endif
976{ 2000{
977 if (sigpipe [0] == sigpipe [1])
978 if (pipe (sigpipe))
979 return 0;
980
981 if (!ev_default_loop_ptr) 2001 if (!ev_default_loop_ptr)
982 { 2002 {
983#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2004 EV_P = ev_default_loop_ptr = &default_loop_struct;
985#else 2005#else
986 ev_default_loop_ptr = 1; 2006 ev_default_loop_ptr = 1;
987#endif 2007#endif
988 2008
989 loop_init (EV_A_ flags); 2009 loop_init (EV_A_ flags);
990 2010
991 if (ev_backend (EV_A)) 2011 if (ev_backend (EV_A))
992 { 2012 {
993 siginit (EV_A); 2013#if EV_CHILD_ENABLE
994
995#ifndef _WIN32
996 ev_signal_init (&childev, childcb, SIGCHLD); 2014 ev_signal_init (&childev, childcb, SIGCHLD);
997 ev_set_priority (&childev, EV_MAXPRI); 2015 ev_set_priority (&childev, EV_MAXPRI);
998 ev_signal_start (EV_A_ &childev); 2016 ev_signal_start (EV_A_ &childev);
999 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2017 ev_unref (EV_A); /* child watcher should not keep loop alive */
1000#endif 2018#endif
1008 2026
1009void 2027void
1010ev_default_destroy (void) 2028ev_default_destroy (void)
1011{ 2029{
1012#if EV_MULTIPLICITY 2030#if EV_MULTIPLICITY
1013 struct ev_loop *loop = ev_default_loop_ptr; 2031 EV_P = ev_default_loop_ptr;
1014#endif 2032#endif
1015 2033
1016#ifndef _WIN32 2034 ev_default_loop_ptr = 0;
2035
2036#if EV_CHILD_ENABLE
1017 ev_ref (EV_A); /* child watcher */ 2037 ev_ref (EV_A); /* child watcher */
1018 ev_signal_stop (EV_A_ &childev); 2038 ev_signal_stop (EV_A_ &childev);
1019#endif 2039#endif
1020 2040
1021 ev_ref (EV_A); /* signal watcher */
1022 ev_io_stop (EV_A_ &sigev);
1023
1024 close (sigpipe [0]); sigpipe [0] = 0;
1025 close (sigpipe [1]); sigpipe [1] = 0;
1026
1027 loop_destroy (EV_A); 2041 loop_destroy (EV_A);
1028} 2042}
1029 2043
1030void 2044void
1031ev_default_fork (void) 2045ev_default_fork (void)
1032{ 2046{
1033#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 2048 EV_P = ev_default_loop_ptr;
1035#endif 2049#endif
1036 2050
1037 if (backend) 2051 postfork = 1; /* must be in line with ev_loop_fork */
1038 postfork = 1;
1039} 2052}
1040 2053
1041/*****************************************************************************/ 2054/*****************************************************************************/
1042 2055
1043static int 2056void
1044any_pending (EV_P) 2057ev_invoke (EV_P_ void *w, int revents)
2058{
2059 EV_CB_INVOKE ((W)w, revents);
2060}
2061
2062unsigned int
2063ev_pending_count (EV_P)
1045{ 2064{
1046 int pri; 2065 int pri;
2066 unsigned int count = 0;
1047 2067
1048 for (pri = NUMPRI; pri--; ) 2068 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri]) 2069 count += pendingcnt [pri];
1050 return 1;
1051 2070
1052 return 0; 2071 return count;
1053} 2072}
1054 2073
1055inline void 2074void noinline
1056call_pending (EV_P) 2075ev_invoke_pending (EV_P)
1057{ 2076{
1058 int pri; 2077 int pri;
1059 2078
1060 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1061 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1062 { 2081 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 2083
1065 if (expect_true (p->w)) 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1066 { 2085 /* ^ this is no longer true, as pending_w could be here */
2086
1067 p->w->pending = 0; 2087 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1069 } 2089 EV_FREQUENT_CHECK;
1070 } 2090 }
1071} 2091}
1072 2092
2093#if EV_IDLE_ENABLE
2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
1073inline void 2096inline_size void
2097idle_reify (EV_P)
2098{
2099 if (expect_false (idleall))
2100 {
2101 int pri;
2102
2103 for (pri = NUMPRI; pri--; )
2104 {
2105 if (pendingcnt [pri])
2106 break;
2107
2108 if (idlecnt [pri])
2109 {
2110 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2111 break;
2112 }
2113 }
2114 }
2115}
2116#endif
2117
2118/* make timers pending */
2119inline_size void
1074timers_reify (EV_P) 2120timers_reify (EV_P)
1075{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1077 { 2125 {
1078 struct ev_timer *w = timers [0]; 2126 do
1079
1080 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1081
1082 /* first reschedule or stop timer */
1083 if (w->repeat)
1084 { 2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 2140
1087 ((WT)w)->at += w->repeat; 2141 ANHE_at_cache (timers [HEAP0]);
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
1091 downheap ((WT *)timers, timercnt, 0); 2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1092 } 2149 }
1093 else 2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 2151
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2152 feed_reverse_done (EV_A_ EV_TIMER);
1097 } 2153 }
1098} 2154}
1099 2155
1100#if EV_PERIODICS 2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
1101inline void 2158inline_size void
1102periodics_reify (EV_P) 2159periodics_reify (EV_P)
1103{ 2160{
2161 EV_FREQUENT_CHECK;
2162
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1105 { 2164 {
1106 struct ev_periodic *w = periodics [0]; 2165 int feed_count = 0;
1107 2166
2167 do
2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 2172
1110 /* first reschedule or stop timer */ 2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
2218{
2219 int i;
2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
1111 if (w->reschedule_cb) 2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
2255time_update (EV_P_ ev_tstamp max_block)
2256{
2257#if EV_USE_MONOTONIC
2258 if (expect_true (have_monotonic))
2259 {
2260 int i;
2261 ev_tstamp odiff = rtmn_diff;
2262
2263 mn_now = get_clock ();
2264
2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2266 /* interpolate in the meantime */
2267 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1112 { 2268 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2269 ev_rt_now = rtmn_diff + mn_now;
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2270 return;
1115 downheap ((WT *)periodics, periodiccnt, 0);
1116 } 2271 }
1117 else if (w->interval)
1118 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0);
1122 }
1123 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 2272
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 }
1128}
1129
1130static void
1131periodics_reschedule (EV_P)
1132{
1133 int i;
1134
1135 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i)
1137 {
1138 struct ev_periodic *w = periodics [i];
1139
1140 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1144 }
1145
1146 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i);
1149}
1150#endif
1151
1152inline int
1153time_update_monotonic (EV_P)
1154{
1155 mn_now = get_clock ();
1156
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 {
1159 ev_rt_now = rtmn_diff + mn_now;
1160 return 0;
1161 }
1162 else
1163 {
1164 now_floor = mn_now; 2273 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 2275
1170inline void 2276 /* loop a few times, before making important decisions.
1171time_update (EV_P) 2277 * on the choice of "4": one iteration isn't enough,
1172{ 2278 * in case we get preempted during the calls to
1173 int i; 2279 * ev_time and get_clock. a second call is almost guaranteed
1174 2280 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 2281 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 2282 * in the unlikely event of having been preempted here.
1177 { 2283 */
1178 if (time_update_monotonic (EV_A)) 2284 for (i = 4; --i; )
1179 { 2285 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1185 2287
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1187 return; /* all is well */ 2289 return; /* all is well */
1188 2290
1189 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 2292 mn_now = get_clock ();
1191 now_floor = mn_now; 2293 now_floor = mn_now;
1192 } 2294 }
1193 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1194# if EV_PERIODICS 2298# if EV_PERIODIC_ENABLE
2299 periodics_reschedule (EV_A);
2300# endif
2301 }
2302 else
2303#endif
2304 {
2305 ev_rt_now = ev_time ();
2306
2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2311#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1196# endif 2313#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 } 2314 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */
1213 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 }
1216 2315
1217 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1218 } 2317 }
1219} 2318}
1220 2319
1221void 2320void
1222ev_ref (EV_P)
1223{
1224 ++activecnt;
1225}
1226
1227void
1228ev_unref (EV_P)
1229{
1230 --activecnt;
1231}
1232
1233static int loop_done;
1234
1235void
1236ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1237{ 2322{
1238 double block; 2323#if EV_FEATURE_API
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2324 ++loop_depth;
2325#endif
1240 2326
1241 while (activecnt) 2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2332
2333 do
1242 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
2339#ifndef _WIN32
2340 if (expect_false (curpid)) /* penalise the forking check even more */
2341 if (expect_false (getpid () != curpid))
2342 {
2343 curpid = getpid ();
2344 postfork = 1;
2345 }
2346#endif
2347
2348#if EV_FORK_ENABLE
2349 /* we might have forked, so queue fork handlers */
2350 if (expect_false (postfork))
2351 if (forkcnt)
2352 {
2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_PREPARE_ENABLE
1243 /* queue check watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1245 { 2361 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1248 } 2364 }
2365#endif
2366
2367 if (expect_false (loop_done))
2368 break;
1249 2369
1250 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1252 loop_fork (EV_A); 2372 loop_fork (EV_A);
1253 2373
1254 /* update fd-related kernel structures */ 2374 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 2375 fd_reify (EV_A);
1256 2376
1257 /* calculate blocking time */ 2377 /* calculate blocking time */
2378 {
2379 ev_tstamp waittime = 0.;
2380 ev_tstamp sleeptime = 0.;
1258 2381
1259 /* we only need this for !monotonic clock or timers, but as we basically 2382 /* remember old timestamp for io_blocktime calculation */
1260 always have timers, we just calculate it always */ 2383 ev_tstamp prev_mn_now = mn_now;
1261#if EV_USE_MONOTONIC 2384
1262 if (expect_true (have_monotonic)) 2385 /* update time to cancel out callback processing overhead */
1263 time_update_monotonic (EV_A); 2386 time_update (EV_A_ 1e100);
1264 else 2387
1265#endif 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1266 { 2389 {
1267 ev_rt_now = ev_time ();
1268 mn_now = ev_rt_now;
1269 }
1270
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1276 2391
1277 if (timercnt) 2392 if (timercnt)
1278 { 2393 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1280 if (block > to) block = to; 2395 if (waittime > to) waittime = to;
1281 } 2396 }
1282 2397
1283#if EV_PERIODICS 2398#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 2399 if (periodiccnt)
1285 { 2400 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 2402 if (waittime > to) waittime = to;
1288 } 2403 }
1289#endif 2404#endif
1290 2405
1291 if (expect_false (block < 0.)) block = 0.; 2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
2407 if (expect_false (waittime < timeout_blocktime))
2408 waittime = timeout_blocktime;
2409
2410 /* extra check because io_blocktime is commonly 0 */
2411 if (expect_false (io_blocktime))
2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
2420 ev_sleep (sleeptime);
2421 waittime -= sleeptime;
2422 }
2423 }
1292 } 2424 }
1293 2425
2426#if EV_FEATURE_API
2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1294 backend_poll (EV_A_ block); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1295 2432
1296 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 2434 time_update (EV_A_ waittime + sleeptime);
2435 }
1298 2436
1299 /* queue pending timers and reschedule them */ 2437 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 2438 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 2439#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 2440 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 2441#endif
1304 2442
2443#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 2444 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 2445 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2446#endif
1308 2447
2448#if EV_CHECK_ENABLE
1309 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1312 2453
1313 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1314
1315 if (expect_false (loop_done))
1316 break;
1317 } 2455 }
2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1318 2461
1319 if (loop_done != 2) 2462 if (loop_done == EVBREAK_ONE)
1320 loop_done = 0; 2463 loop_done = EVBREAK_CANCEL;
1321}
1322 2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
2468}
2469
1323void 2470void
1324ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1325{ 2472{
1326 loop_done = how; 2473 loop_done = how;
1327} 2474}
1328 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1329/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1330 2515
1331inline void 2516inline_size void
1332wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1333{ 2518{
1334 elem->next = *head; 2519 elem->next = *head;
1335 *head = elem; 2520 *head = elem;
1336} 2521}
1337 2522
1338inline void 2523inline_size void
1339wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1340{ 2525{
1341 while (*head) 2526 while (*head)
1342 { 2527 {
1343 if (*head == elem) 2528 if (expect_true (*head == elem))
1344 { 2529 {
1345 *head = elem->next; 2530 *head = elem->next;
1346 return; 2531 break;
1347 } 2532 }
1348 2533
1349 head = &(*head)->next; 2534 head = &(*head)->next;
1350 } 2535 }
1351} 2536}
1352 2537
2538/* internal, faster, version of ev_clear_pending */
1353inline void 2539inline_speed void
1354ev_clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1355{ 2541{
1356 if (w->pending) 2542 if (w->pending)
1357 { 2543 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1359 w->pending = 0; 2545 w->pending = 0;
1360 } 2546 }
1361} 2547}
1362 2548
2549int
2550ev_clear_pending (EV_P_ void *w)
2551{
2552 W w_ = (W)w;
2553 int pending = w_->pending;
2554
2555 if (expect_true (pending))
2556 {
2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
2559 w_->pending = 0;
2560 return p->events;
2561 }
2562 else
2563 return 0;
2564}
2565
1363inline void 2566inline_size void
2567pri_adjust (EV_P_ W w)
2568{
2569 int pri = ev_priority (w);
2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2572 ev_set_priority (w, pri);
2573}
2574
2575inline_speed void
1364ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1365{ 2577{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2578 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 2579 w->active = active;
1370 ev_ref (EV_A); 2580 ev_ref (EV_A);
1371} 2581}
1372 2582
1373inline void 2583inline_size void
1374ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1375{ 2585{
1376 ev_unref (EV_A); 2586 ev_unref (EV_A);
1377 w->active = 0; 2587 w->active = 0;
1378} 2588}
1379 2589
1380/*****************************************************************************/ 2590/*****************************************************************************/
1381 2591
1382void 2592void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 2593ev_io_start (EV_P_ ev_io *w)
1384{ 2594{
1385 int fd = w->fd; 2595 int fd = w->fd;
1386 2596
1387 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1388 return; 2598 return;
1389 2599
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1391 2604
1392 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1395 2608
1396 fd_change (EV_A_ fd); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1397} 2610 w->events &= ~EV__IOFDSET;
1398 2611
1399void 2612 EV_FREQUENT_CHECK;
2613}
2614
2615void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1401{ 2617{
1402 ev_clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1404 return; 2620 return;
1405 2621
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 2623
2624 EV_FREQUENT_CHECK;
2625
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1410 2628
1411 fd_change (EV_A_ w->fd); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1412}
1413 2630
1414void 2631 EV_FREQUENT_CHECK;
2632}
2633
2634void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1416{ 2636{
1417 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1418 return; 2638 return;
1419 2639
1420 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1421 2641
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1424 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1426 timers [timercnt - 1] = w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1428 2652
2653 EV_FREQUENT_CHECK;
2654
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1430} 2656}
1431 2657
1432void 2658void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1434{ 2660{
1435 ev_clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1437 return; 2663 return;
1438 2664
2665 EV_FREQUENT_CHECK;
2666
2667 {
2668 int active = ev_active (w);
2669
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1440 2671
2672 --timercnt;
2673
1441 if (expect_true (((W)w)->active < timercnt--)) 2674 if (expect_true (active < timercnt + HEAP0))
1442 { 2675 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2677 adjustheap (timers, timercnt, active);
1445 } 2678 }
2679 }
1446 2680
1447 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1448 2682
1449 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
1450}
1451 2684
1452void 2685 EV_FREQUENT_CHECK;
2686}
2687
2688void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1454{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1455 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1456 { 2694 {
1457 if (w->repeat) 2695 if (w->repeat)
1458 { 2696 {
1459 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1461 } 2700 }
1462 else 2701 else
1463 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1464 } 2703 }
1465 else if (w->repeat) 2704 else if (w->repeat)
1466 { 2705 {
1467 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1468 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1469 } 2708 }
1470}
1471 2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2717}
2718
1472#if EV_PERIODICS 2719#if EV_PERIODIC_ENABLE
1473void 2720void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 2722{
1476 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1477 return; 2724 return;
1478 2725
1479 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 2728 else if (w->interval)
1482 { 2729 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 2733 }
2734 else
2735 ev_at (w) = w->offset;
1487 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1492 2745
2746 EV_FREQUENT_CHECK;
2747
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1494} 2749}
1495 2750
1496void 2751void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 2753{
1499 ev_clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1501 return; 2756 return;
1502 2757
2758 EV_FREQUENT_CHECK;
2759
2760 {
2761 int active = ev_active (w);
2762
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1504 2764
2765 --periodiccnt;
2766
1505 if (expect_true (((W)w)->active < periodiccnt--)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1506 { 2768 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2770 adjustheap (periodics, periodiccnt, active);
1509 } 2771 }
2772 }
1510 2773
1511 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
1512}
1513 2775
1514void 2776 EV_FREQUENT_CHECK;
2777}
2778
2779void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 2781{
1517 /* TODO: use adjustheap and recalculation */ 2782 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 2783 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 2784 ev_periodic_start (EV_A_ w);
1520} 2785}
1521#endif 2786#endif
1522 2787
1523void 2788#ifndef SA_RESTART
1524ev_idle_start (EV_P_ struct ev_idle *w) 2789# define SA_RESTART 0
2790#endif
2791
2792#if EV_SIGNAL_ENABLE
2793
2794void noinline
2795ev_signal_start (EV_P_ ev_signal *w)
1525{ 2796{
1526 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
1527 return; 2798 return;
1528 2799
2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2801
2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2813 {
2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2815 if (sigfd < 0 && errno == EINVAL)
2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2817
2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2821
2822 sigemptyset (&sigfd_set);
2823
2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2840
1529 ev_start (EV_A_ (W)w, ++idlecnt); 2841 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
1531 idles [idlecnt - 1] = w;
1532}
1533 2843
1534void 2844 if (!((WL)w)->next)
1535ev_idle_stop (EV_P_ struct ev_idle *w) 2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2848 {
2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2852 signal (w->signum, ev_sighandler);
2853# else
2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2858 sa.sa_handler = ev_sighandler;
2859 sigfillset (&sa.sa_mask);
2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2866#endif
2867 }
2868
2869 EV_FREQUENT_CHECK;
2870}
2871
2872void noinline
2873ev_signal_stop (EV_P_ ev_signal *w)
1536{ 2874{
1537 ev_clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
1539 return; 2877 return;
1540 2878
1541 idles [((W)w)->active - 1] = idles [--idlecnt]; 2879 EV_FREQUENT_CHECK;
2880
2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1542 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
1543}
1544 2883
2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2912
1545void 2913void
1546ev_prepare_start (EV_P_ struct ev_prepare *w) 2914ev_child_start (EV_P_ ev_child *w)
1547{ 2915{
2916#if EV_MULTIPLICITY
2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2918#endif
1548 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
1549 return; 2920 return;
1550 2921
2922 EV_FREQUENT_CHECK;
2923
1551 ev_start (EV_A_ (W)w, ++preparecnt); 2924 ev_start (EV_A_ (W)w, 1);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1553 prepares [preparecnt - 1] = w;
1554}
1555 2926
2927 EV_FREQUENT_CHECK;
2928}
2929
1556void 2930void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w) 2931ev_child_stop (EV_P_ ev_child *w)
1558{ 2932{
1559 ev_clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
1561 return; 2935 return;
1562 2936
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2937 EV_FREQUENT_CHECK;
2938
2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1564 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
1565}
1566 2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945#endif
2946
2947#if EV_STAT_ENABLE
2948
2949# ifdef _WIN32
2950# undef lstat
2951# define lstat(a,b) _stati64 (a,b)
2952# endif
2953
2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2956#define MIN_STAT_INTERVAL 0.1074891
2957
2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2959
2960#if EV_USE_INOTIFY
2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2964
2965static void noinline
2966infy_add (EV_P_ ev_stat *w)
2967{
2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2969
2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2990 }
2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995
2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3000 {
3001 char path [4096];
3002 strcpy (path, w->path);
3003
3004 do
3005 {
3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3008
3009 char *pend = strrchr (path, '/');
3010
3011 if (!pend || pend == path)
3012 break;
3013
3014 *pend = 0;
3015 w->wd = inotify_add_watch (fs_fd, path, mask);
3016 }
3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3018 }
3019 }
3020
3021 if (w->wd >= 0)
3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3028}
3029
3030static void noinline
3031infy_del (EV_P_ ev_stat *w)
3032{
3033 int slot;
3034 int wd = w->wd;
3035
3036 if (wd < 0)
3037 return;
3038
3039 w->wd = -2;
3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3041 wlist_del (&fs_hash [slot].head, (WL)w);
3042
3043 /* remove this watcher, if others are watching it, they will rearm */
3044 inotify_rm_watch (fs_fd, wd);
3045}
3046
3047static void noinline
3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3049{
3050 if (slot < 0)
3051 /* overflow, need to check for all hash slots */
3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3053 infy_wd (EV_A_ slot, wd, ev);
3054 else
3055 {
3056 WL w_;
3057
3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3059 {
3060 ev_stat *w = (ev_stat *)w_;
3061 w_ = w_->next; /* lets us remove this watcher and all before it */
3062
3063 if (w->wd == wd || wd == -1)
3064 {
3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3068 w->wd = -1;
3069 infy_add (EV_A_ w); /* re-add, no matter what */
3070 }
3071
3072 stat_timer_cb (EV_A_ &w->timer, 0);
3073 }
3074 }
3075 }
3076}
3077
3078static void
3079infy_cb (EV_P_ ev_io *w, int revents)
3080{
3081 char buf [EV_INOTIFY_BUFSIZE];
3082 int ofs;
3083 int len = read (fs_fd, buf, sizeof (buf));
3084
3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
3091}
3092
3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
3117infy_init (EV_P)
3118{
3119 if (fs_fd != -2)
3120 return;
3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
3126 fs_fd = infy_newfd ();
3127
3128 if (fs_fd >= 0)
3129 {
3130 fd_intern (fs_fd);
3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3132 ev_set_priority (&fs_w, EV_MAXPRI);
3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
3135 }
3136}
3137
3138inline_size void
3139infy_fork (EV_P)
3140{
3141 int slot;
3142
3143 if (fs_fd < 0)
3144 return;
3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
3148 close (fs_fd);
3149 fs_fd = infy_newfd ();
3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3160 {
3161 WL w_ = fs_hash [slot].head;
3162 fs_hash [slot].head = 0;
3163
3164 while (w_)
3165 {
3166 ev_stat *w = (ev_stat *)w_;
3167 w_ = w_->next; /* lets us add this watcher */
3168
3169 w->wd = -1;
3170
3171 if (fs_fd >= 0)
3172 infy_add (EV_A_ w); /* re-add, no matter what */
3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
3180 }
3181 }
3182}
3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
3190#endif
3191
1567void 3192void
1568ev_check_start (EV_P_ struct ev_check *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
3194{
3195 if (lstat (w->path, &w->attr) < 0)
3196 w->attr.st_nlink = 0;
3197 else if (!w->attr.st_nlink)
3198 w->attr.st_nlink = 1;
3199}
3200
3201static void noinline
3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3203{
3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3205
3206 ev_statdata prev = w->attr;
3207 ev_stat_stat (EV_A_ w);
3208
3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3210 if (
3211 prev.st_dev != w->attr.st_dev
3212 || prev.st_ino != w->attr.st_ino
3213 || prev.st_mode != w->attr.st_mode
3214 || prev.st_nlink != w->attr.st_nlink
3215 || prev.st_uid != w->attr.st_uid
3216 || prev.st_gid != w->attr.st_gid
3217 || prev.st_rdev != w->attr.st_rdev
3218 || prev.st_size != w->attr.st_size
3219 || prev.st_atime != w->attr.st_atime
3220 || prev.st_mtime != w->attr.st_mtime
3221 || prev.st_ctime != w->attr.st_ctime
3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
3231 infy_del (EV_A_ w);
3232 infy_add (EV_A_ w);
3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
3235 #endif
3236
3237 ev_feed_event (EV_A_ w, EV_STAT);
3238 }
3239}
3240
3241void
3242ev_stat_start (EV_P_ ev_stat *w)
1569{ 3243{
1570 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
1571 return; 3245 return;
1572 3246
3247 ev_stat_stat (EV_A_ w);
3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3250 w->interval = MIN_STAT_INTERVAL;
3251
3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3253 ev_set_priority (&w->timer, ev_priority (w));
3254
3255#if EV_USE_INOTIFY
3256 infy_init (EV_A);
3257
3258 if (fs_fd >= 0)
3259 infy_add (EV_A_ w);
3260 else
3261#endif
3262 {
3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
3266
1573 ev_start (EV_A_ (W)w, ++checkcnt); 3267 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577 3268
3269 EV_FREQUENT_CHECK;
3270}
3271
1578void 3272void
1579ev_check_stop (EV_P_ struct ev_check *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
1580{ 3274{
1581 ev_clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
1583 return; 3277 return;
1584 3278
1585 checks [((W)w)->active - 1] = checks [--checkcnt]; 3279 EV_FREQUENT_CHECK;
3280
3281#if EV_USE_INOTIFY
3282 infy_del (EV_A_ w);
3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
3290
1586 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
1587}
1588 3292
1589#ifndef SA_RESTART 3293 EV_FREQUENT_CHECK;
1590# define SA_RESTART 0 3294}
1591#endif 3295#endif
1592 3296
3297#if EV_IDLE_ENABLE
1593void 3298void
1594ev_signal_start (EV_P_ struct ev_signal *w) 3299ev_idle_start (EV_P_ ev_idle *w)
1595{ 3300{
1596#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif
1599 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
1600 return; 3302 return;
1601 3303
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3304 pri_adjust (EV_A_ (W)w);
1603 3305
3306 EV_FREQUENT_CHECK;
3307
3308 {
3309 int active = ++idlecnt [ABSPRI (w)];
3310
3311 ++idleall;
1604 ev_start (EV_A_ (W)w, 1); 3312 ev_start (EV_A_ (W)w, active);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 3313
1608 if (!((WL)w)->next) 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1609 { 3315 idles [ABSPRI (w)][active - 1] = w;
1610#if _WIN32
1611 signal (w->signum, sighandler);
1612#else
1613 struct sigaction sa;
1614 sa.sa_handler = sighandler;
1615 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0);
1618#endif
1619 } 3316 }
1620}
1621 3317
3318 EV_FREQUENT_CHECK;
3319}
3320
1622void 3321void
1623ev_signal_stop (EV_P_ struct ev_signal *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
1624{ 3323{
1625 ev_clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
1627 return; 3326 return;
1628 3327
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3328 EV_FREQUENT_CHECK;
3329
3330 {
3331 int active = ev_active (w);
3332
3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3335
1630 ev_stop (EV_A_ (W)w); 3336 ev_stop (EV_A_ (W)w);
3337 --idleall;
3338 }
1631 3339
1632 if (!signals [w->signum - 1].head) 3340 EV_FREQUENT_CHECK;
1633 signal (w->signum, SIG_DFL);
1634} 3341}
1635
1636void
1637ev_child_start (EV_P_ struct ev_child *w)
1638{
1639#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 3342#endif
3343
3344#if EV_PREPARE_ENABLE
3345void
3346ev_prepare_start (EV_P_ ev_prepare *w)
3347{
1642 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
1643 return; 3349 return;
1644 3350
3351 EV_FREQUENT_CHECK;
3352
1645 ev_start (EV_A_ (W)w, 1); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1647} 3355 prepares [preparecnt - 1] = w;
1648 3356
3357 EV_FREQUENT_CHECK;
3358}
3359
1649void 3360void
1650ev_child_stop (EV_P_ struct ev_child *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
1651{ 3362{
1652 ev_clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
1654 return; 3365 return;
1655 3366
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3367 EV_FREQUENT_CHECK;
3368
3369 {
3370 int active = ev_active (w);
3371
3372 prepares [active - 1] = prepares [--preparecnt];
3373 ev_active (prepares [active - 1]) = active;
3374 }
3375
1657 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
3377
3378 EV_FREQUENT_CHECK;
1658} 3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
3383void
3384ev_check_start (EV_P_ ev_check *w)
3385{
3386 if (expect_false (ev_is_active (w)))
3387 return;
3388
3389 EV_FREQUENT_CHECK;
3390
3391 ev_start (EV_A_ (W)w, ++checkcnt);
3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
3396}
3397
3398void
3399ev_check_stop (EV_P_ ev_check *w)
3400{
3401 clear_pending (EV_A_ (W)w);
3402 if (expect_false (!ev_is_active (w)))
3403 return;
3404
3405 EV_FREQUENT_CHECK;
3406
3407 {
3408 int active = ev_active (w);
3409
3410 checks [active - 1] = checks [--checkcnt];
3411 ev_active (checks [active - 1]) = active;
3412 }
3413
3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
3417}
3418#endif
3419
3420#if EV_EMBED_ENABLE
3421void noinline
3422ev_embed_sweep (EV_P_ ev_embed *w)
3423{
3424 ev_run (w->other, EVRUN_NOWAIT);
3425}
3426
3427static void
3428embed_io_cb (EV_P_ ev_io *io, int revents)
3429{
3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3431
3432 if (ev_cb (w))
3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3434 else
3435 ev_run (w->other, EVRUN_NOWAIT);
3436}
3437
3438static void
3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3442
3443 {
3444 EV_P = w->other;
3445
3446 while (fdchangecnt)
3447 {
3448 fd_reify (EV_A);
3449 ev_run (EV_A_ EVRUN_NOWAIT);
3450 }
3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
3469}
3470
3471#if 0
3472static void
3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3474{
3475 ev_idle_stop (EV_A_ idle);
3476}
3477#endif
3478
3479void
3480ev_embed_start (EV_P_ ev_embed *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 {
3486 EV_P = w->other;
3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3489 }
3490
3491 EV_FREQUENT_CHECK;
3492
3493 ev_set_priority (&w->io, ev_priority (w));
3494 ev_io_start (EV_A_ &w->io);
3495
3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
3497 ev_set_priority (&w->prepare, EV_MINPRI);
3498 ev_prepare_start (EV_A_ &w->prepare);
3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3504
3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
3508}
3509
3510void
3511ev_embed_stop (EV_P_ ev_embed *w)
3512{
3513 clear_pending (EV_A_ (W)w);
3514 if (expect_false (!ev_is_active (w)))
3515 return;
3516
3517 EV_FREQUENT_CHECK;
3518
3519 ev_io_stop (EV_A_ &w->io);
3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
3522
3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
3526}
3527#endif
3528
3529#if EV_FORK_ENABLE
3530void
3531ev_fork_start (EV_P_ ev_fork *w)
3532{
3533 if (expect_false (ev_is_active (w)))
3534 return;
3535
3536 EV_FREQUENT_CHECK;
3537
3538 ev_start (EV_A_ (W)w, ++forkcnt);
3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545void
3546ev_fork_stop (EV_P_ ev_fork *w)
3547{
3548 clear_pending (EV_A_ (W)w);
3549 if (expect_false (!ev_is_active (w)))
3550 return;
3551
3552 EV_FREQUENT_CHECK;
3553
3554 {
3555 int active = ev_active (w);
3556
3557 forks [active - 1] = forks [--forkcnt];
3558 ev_active (forks [active - 1]) = active;
3559 }
3560
3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
3564}
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568void
3569ev_async_start (EV_P_ ev_async *w)
3570{
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 w->sent = 0;
3575
3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++asynccnt);
3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_stop (EV_P_ ev_async *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 asyncs [active - 1] = asyncs [--asynccnt];
3600 ev_active (asyncs [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_async_send (EV_P_ ev_async *w)
3610{
3611 w->sent = 1;
3612 evpipe_write (EV_A_ &async_pending);
3613}
3614#endif
1659 3615
1660/*****************************************************************************/ 3616/*****************************************************************************/
1661 3617
1662struct ev_once 3618struct ev_once
1663{ 3619{
1664 struct ev_io io; 3620 ev_io io;
1665 struct ev_timer to; 3621 ev_timer to;
1666 void (*cb)(int revents, void *arg); 3622 void (*cb)(int revents, void *arg);
1667 void *arg; 3623 void *arg;
1668}; 3624};
1669 3625
1670static void 3626static void
1671once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
1672{ 3628{
1673 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
1674 void *arg = once->arg; 3630 void *arg = once->arg;
1675 3631
1676 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
1677 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
1678 ev_free (once); 3634 ev_free (once);
1679 3635
1680 cb (revents, arg); 3636 cb (revents, arg);
1681} 3637}
1682 3638
1683static void 3639static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 3641{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1687} 3645}
1688 3646
1689static void 3647static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 3649{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1693} 3653}
1694 3654
1695void 3655void
1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1697{ 3657{
1698 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1699 3659
1700 if (expect_false (!once)) 3660 if (expect_false (!once))
1701 { 3661 {
1702 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1703 return; 3663 return;
1704 } 3664 }
1705 3665
1706 once->cb = cb; 3666 once->cb = cb;
1707 once->arg = arg; 3667 once->arg = arg;
1719 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
1721 } 3681 }
1722} 3682}
1723 3683
1724#ifdef __cplusplus 3684/*****************************************************************************/
1725} 3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
1726#endif 3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
1727 3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
3800#if EV_MULTIPLICITY
3801 #include "ev_wrap.h"
3802#endif
3803
3804EV_CPP(})
3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines