ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
195# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 404}
407 405
408static void 406void inline_size
409queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 408{
411 int i; 409 int i;
412 410
413 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
415} 413}
416 414
417inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
418fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
419{ 432{
420 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 434 ev_io *w;
422 435
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 437 {
425 int ev = w->events & revents; 438 int ev = w->events & revents;
426 439
427 if (ev) 440 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
433ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 447{
435 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
436} 449}
437 450
438/*****************************************************************************/ 451void inline_size
439
440inline void
441fd_reify (EV_P) 452fd_reify (EV_P)
442{ 453{
443 int i; 454 int i;
444 455
445 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
446 { 457 {
447 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 460 ev_io *w;
450 461
451 int events = 0; 462 int events = 0;
452 463
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 465 events |= w->events;
455 466
456#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
457 if (events) 468 if (events)
458 { 469 {
469 } 480 }
470 481
471 fdchangecnt = 0; 482 fdchangecnt = 0;
472} 483}
473 484
474static void 485void inline_size
475fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
476{ 487{
477 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
478 return; 489 return;
479 490
482 ++fdchangecnt; 493 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
485} 496}
486 497
487static void 498void inline_speed
488fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
489{ 500{
490 struct ev_io *w; 501 ev_io *w;
491 502
492 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
493 { 504 {
494 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 507 }
497} 508}
498 509
499inline int 510int inline_size
500fd_valid (int fd) 511fd_valid (int fd)
501{ 512{
502#ifdef _WIN32 513#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
504#else 515#else
505 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
506#endif 517#endif
507} 518}
508 519
509/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
510static void 521static void noinline
511fd_ebadf (EV_P) 522fd_ebadf (EV_P)
512{ 523{
513 int fd; 524 int fd;
514 525
515 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
519} 530}
520 531
521/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 533static void noinline
523fd_enomem (EV_P) 534fd_enomem (EV_P)
524{ 535{
525 int fd; 536 int fd;
526 537
527 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
531 return; 542 return;
532 } 543 }
533} 544}
534 545
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 547static void noinline
537fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
538{ 549{
539 int fd; 550 int fd;
540 551
541 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
547 } 558 }
548} 559}
549 560
550/*****************************************************************************/ 561/*****************************************************************************/
551 562
552static void 563void inline_speed
553upheap (WT *heap, int k) 564upheap (WT *heap, int k)
554{ 565{
555 WT w = heap [k]; 566 WT w = heap [k];
556 567
557 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
564 heap [k] = w; 575 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
566 577
567} 578}
568 579
569static void 580void inline_speed
570downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
571{ 582{
572 WT w = heap [k]; 583 WT w = heap [k];
573 584
574 while (k < (N >> 1)) 585 while (k < (N >> 1))
588 599
589 heap [k] = w; 600 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
591} 602}
592 603
593inline void 604void inline_size
594adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
595{ 606{
596 upheap (heap, k); 607 upheap (heap, k);
597 downheap (heap, N, k); 608 downheap (heap, N, k);
598} 609}
608static ANSIG *signals; 619static ANSIG *signals;
609static int signalmax; 620static int signalmax;
610 621
611static int sigpipe [2]; 622static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 624static ev_io sigev;
614 625
615static void 626void inline_size
616signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
617{ 628{
618 while (count--) 629 while (count--)
619 { 630 {
620 base->head = 0; 631 base->head = 0;
640 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 652 errno = old_errno;
642 } 653 }
643} 654}
644 655
645void 656void noinline
646ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
647{ 658{
648 WL w; 659 WL w;
649 660
650#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 674}
664 675
665static void 676static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
667{ 678{
668 int signum; 679 int signum;
669 680
670 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 682 gotsig = 0;
673 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
676} 687}
677 688
678static void 689void inline_size
679fd_intern (int fd) 690fd_intern (int fd)
680{ 691{
681#ifdef _WIN32 692#ifdef _WIN32
682 int arg = 1; 693 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 698#endif
688} 699}
689 700
690static void 701static void noinline
691siginit (EV_P) 702siginit (EV_P)
692{ 703{
693 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
695 706
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 710}
700 711
701/*****************************************************************************/ 712/*****************************************************************************/
702 713
703static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
704 715
705#ifndef _WIN32 716#ifndef _WIN32
706 717
707static struct ev_signal childev; 718static ev_signal childev;
708 719
709#ifndef WCONTINUED 720#ifndef WCONTINUED
710# define WCONTINUED 0 721# define WCONTINUED 0
711#endif 722#endif
712 723
713static void 724void inline_speed
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{ 726{
716 struct ev_child *w; 727 ev_child *w;
717 728
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
720 { 731 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid; 733 w->rpid = pid;
723 w->rstatus = status; 734 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 } 736 }
726} 737}
727 738
728static void 739static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
730{ 741{
731 int pid, status; 742 int pid, status;
732 743
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 745 {
772{ 783{
773 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
774} 785}
775 786
776/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
777static int 788int inline_size
778enable_secure (void) 789enable_secure (void)
779{ 790{
780#ifdef _WIN32 791#ifdef _WIN32
781 return 0; 792 return 0;
782#else 793#else
816 827
817 return flags; 828 return flags;
818} 829}
819 830
820unsigned int 831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
821ev_backend (EV_P) 840ev_backend (EV_P)
822{ 841{
823 return backend; 842 return backend;
824} 843}
825 844
896 array_free (pending, [i]); 915 array_free (pending, [i]);
897 916
898 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 918 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0); 919 array_free (timer, EMPTY0);
901#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 921 array_free (periodic, EMPTY0);
903#endif 922#endif
904 array_free (idle, EMPTY0); 923 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 924 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0); 925 array_free (check, EMPTY0);
1042 postfork = 1; 1061 postfork = 1;
1043} 1062}
1044 1063
1045/*****************************************************************************/ 1064/*****************************************************************************/
1046 1065
1047static int 1066int inline_size
1048any_pending (EV_P) 1067any_pending (EV_P)
1049{ 1068{
1050 int pri; 1069 int pri;
1051 1070
1052 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
1054 return 1; 1073 return 1;
1055 1074
1056 return 0; 1075 return 0;
1057} 1076}
1058 1077
1059inline void 1078void inline_speed
1060call_pending (EV_P) 1079call_pending (EV_P)
1061{ 1080{
1062 int pri; 1081 int pri;
1063 1082
1064 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
1066 { 1085 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1087
1069 if (expect_true (p->w)) 1088 if (expect_true (p->w))
1070 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
1071 p->w->pending = 0; 1092 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
1073 } 1094 }
1074 } 1095 }
1075} 1096}
1076 1097
1077inline void 1098void inline_size
1078timers_reify (EV_P) 1099timers_reify (EV_P)
1079{ 1100{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1102 {
1082 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
1083 1104
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085 1106
1086 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
1087 if (w->repeat) 1108 if (w->repeat)
1099 1120
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1122 }
1102} 1123}
1103 1124
1104#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1105inline void 1126void inline_size
1106periodics_reify (EV_P) 1127periodics_reify (EV_P)
1107{ 1128{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1130 {
1110 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1111 1132
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1113 1134
1114 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1129 1150
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1152 }
1132} 1153}
1133 1154
1134static void 1155static void noinline
1135periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1136{ 1157{
1137 int i; 1158 int i;
1138 1159
1139 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1141 { 1162 {
1142 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1143 1164
1144 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1167 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1151 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1153} 1174}
1154#endif 1175#endif
1155 1176
1156inline int 1177int inline_size
1157time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1158{ 1179{
1159 mn_now = get_clock (); 1180 mn_now = get_clock ();
1160 1181
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1169 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1170 return 1; 1191 return 1;
1171 } 1192 }
1172} 1193}
1173 1194
1174inline void 1195void inline_size
1175time_update (EV_P) 1196time_update (EV_P)
1176{ 1197{
1177 int i; 1198 int i;
1178 1199
1179#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1181 { 1202 {
1182 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1183 { 1204 {
1184 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1185 1206
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1187 { 1216 {
1188 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1189 1218
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1220 return; /* all is well */
1193 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1223 mn_now = get_clock ();
1195 now_floor = mn_now; 1224 now_floor = mn_now;
1196 } 1225 }
1197 1226
1198# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1200# endif 1229# endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 1232 }
1207 { 1236 {
1208 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1209 1238
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 { 1240 {
1212#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1213 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1214#endif 1243#endif
1215 1244
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1237static int loop_done; 1266static int loop_done;
1238 1267
1239void 1268void
1240ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1241{ 1270{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1244 1274
1245 while (activecnt) 1275 while (activecnt)
1246 { 1276 {
1247 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1257 1287
1258 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1289 fd_reify (EV_A);
1260 1290
1261 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1262 1294
1263 /* we only need this for !monotonic clock or timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1264 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1265#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1268 else 1303 else
1269#endif 1304#endif
1270 { 1305 {
1271 ev_rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now; 1307 mn_now = ev_rt_now;
1273 } 1308 }
1274 1309
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1280 1311
1281 if (timercnt) 1312 if (timercnt)
1282 { 1313 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1315 if (block > to) block = to;
1285 } 1316 }
1286 1317
1287#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1319 if (periodiccnt)
1289 { 1320 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1322 if (block > to) block = to;
1292 } 1323 }
1293#endif 1324#endif
1294 1325
1295 if (expect_false (block < 0.)) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1296 } 1327 }
1297 1328
1298 backend_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1299 1331
1300 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1333 time_update (EV_A);
1302 1334
1303 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1339#endif
1308 1340
1309 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1312 1344
1313 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1346 if (expect_false (checkcnt))
1318 1350
1319 if (expect_false (loop_done)) 1351 if (expect_false (loop_done))
1320 break; 1352 break;
1321 } 1353 }
1322 1354
1323 if (loop_done != 2) 1355 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1356 loop_done = EVUNLOOP_CANCEL;
1325} 1357}
1326 1358
1327void 1359void
1328ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1329{ 1361{
1330 loop_done = how; 1362 loop_done = how;
1331} 1363}
1332 1364
1333/*****************************************************************************/ 1365/*****************************************************************************/
1334 1366
1335inline void 1367void inline_size
1336wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1337{ 1369{
1338 elem->next = *head; 1370 elem->next = *head;
1339 *head = elem; 1371 *head = elem;
1340} 1372}
1341 1373
1342inline void 1374void inline_size
1343wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1344{ 1376{
1345 while (*head) 1377 while (*head)
1346 { 1378 {
1347 if (*head == elem) 1379 if (*head == elem)
1352 1384
1353 head = &(*head)->next; 1385 head = &(*head)->next;
1354 } 1386 }
1355} 1387}
1356 1388
1357inline void 1389void inline_speed
1358ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1359{ 1391{
1360 if (w->pending) 1392 if (w->pending)
1361 { 1393 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1395 w->pending = 0;
1364 } 1396 }
1365} 1397}
1366 1398
1367inline void 1399void inline_speed
1368ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1369{ 1401{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372 1404
1373 w->active = active; 1405 w->active = active;
1374 ev_ref (EV_A); 1406 ev_ref (EV_A);
1375} 1407}
1376 1408
1377inline void 1409void inline_size
1378ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1379{ 1411{
1380 ev_unref (EV_A); 1412 ev_unref (EV_A);
1381 w->active = 0; 1413 w->active = 0;
1382} 1414}
1383 1415
1384/*****************************************************************************/ 1416/*****************************************************************************/
1385 1417
1386void 1418void
1387ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1388{ 1420{
1389 int fd = w->fd; 1421 int fd = w->fd;
1390 1422
1391 if (expect_false (ev_is_active (w))) 1423 if (expect_false (ev_is_active (w)))
1392 return; 1424 return;
1399 1431
1400 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1401} 1433}
1402 1434
1403void 1435void
1404ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1405{ 1437{
1406 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1439 if (expect_false (!ev_is_active (w)))
1408 return; 1440 return;
1409 1441
1414 1446
1415 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1416} 1448}
1417 1449
1418void 1450void
1419ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1420{ 1452{
1421 if (expect_false (ev_is_active (w))) 1453 if (expect_false (ev_is_active (w)))
1422 return; 1454 return;
1423 1455
1424 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1425 1457
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1459
1428 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1431 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1432 1464
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1434} 1466}
1435 1467
1436void 1468void
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1470{
1439 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1472 if (expect_false (!ev_is_active (w)))
1441 return; 1473 return;
1442 1474
1452 1484
1453 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1454} 1486}
1455 1487
1456void 1488void
1457ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1458{ 1490{
1459 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1460 { 1492 {
1461 if (w->repeat) 1493 if (w->repeat)
1462 { 1494 {
1471 w->at = w->repeat; 1503 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1473 } 1505 }
1474} 1506}
1475 1507
1476#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1477void 1509void
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1511{
1480 if (expect_false (ev_is_active (w))) 1512 if (expect_false (ev_is_active (w)))
1481 return; 1513 return;
1482 1514
1483 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 1522 }
1491 1523
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1496 1528
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1498} 1530}
1499 1531
1500void 1532void
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1534{
1503 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1536 if (expect_false (!ev_is_active (w)))
1505 return; 1537 return;
1506 1538
1514 1546
1515 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1516} 1548}
1517 1549
1518void 1550void
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1552{
1521 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1524} 1556}
1525#endif 1557#endif
1526 1558
1527void 1559void
1528ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1529{ 1561{
1530 if (expect_false (ev_is_active (w))) 1562 if (expect_false (ev_is_active (w)))
1531 return; 1563 return;
1532 1564
1533 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1536} 1568}
1537 1569
1538void 1570void
1539ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1540{ 1572{
1541 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 1574 if (expect_false (!ev_is_active (w)))
1543 return; 1575 return;
1544 1576
1577 {
1578 int active = ((W)w)->active;
1545 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1546 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1547} 1584}
1548 1585
1549void 1586void
1550ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1551{ 1588{
1552 if (expect_false (ev_is_active (w))) 1589 if (expect_false (ev_is_active (w)))
1553 return; 1590 return;
1554 1591
1555 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1558} 1595}
1559 1596
1560void 1597void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1562{ 1599{
1563 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w))) 1601 if (expect_false (!ev_is_active (w)))
1565 return; 1602 return;
1566 1603
1604 {
1605 int active = ((W)w)->active;
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1568 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1569} 1611}
1570 1612
1571void 1613void
1572ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1573{ 1615{
1574 if (expect_false (ev_is_active (w))) 1616 if (expect_false (ev_is_active (w)))
1575 return; 1617 return;
1576 1618
1577 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1580} 1622}
1581 1623
1582void 1624void
1583ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1584{ 1626{
1585 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w))) 1628 if (expect_false (!ev_is_active (w)))
1587 return; 1629 return;
1588 1630
1631 {
1632 int active = ((W)w)->active;
1589 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1590 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1591} 1638}
1592 1639
1593#ifndef SA_RESTART 1640#ifndef SA_RESTART
1594# define SA_RESTART 0 1641# define SA_RESTART 0
1595#endif 1642#endif
1596 1643
1597void 1644void
1598ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1599{ 1646{
1600#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1649#endif
1603 if (expect_false (ev_is_active (w))) 1650 if (expect_false (ev_is_active (w)))
1622#endif 1669#endif
1623 } 1670 }
1624} 1671}
1625 1672
1626void 1673void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1675{
1629 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1677 if (expect_false (!ev_is_active (w)))
1631 return; 1678 return;
1632 1679
1636 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1638} 1685}
1639 1686
1640void 1687void
1641ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1642{ 1689{
1643#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1692#endif
1646 if (expect_false (ev_is_active (w))) 1693 if (expect_false (ev_is_active (w)))
1649 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1651} 1698}
1652 1699
1653void 1700void
1654ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1655{ 1702{
1656 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1704 if (expect_false (!ev_is_active (w)))
1658 return; 1705 return;
1659 1706
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1662} 1709}
1663 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1664/*****************************************************************************/ 1821/*****************************************************************************/
1665 1822
1666struct ev_once 1823struct ev_once
1667{ 1824{
1668 struct ev_io io; 1825 ev_io io;
1669 struct ev_timer to; 1826 ev_timer to;
1670 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1671 void *arg; 1828 void *arg;
1672}; 1829};
1673 1830
1674static void 1831static void
1683 1840
1684 cb (revents, arg); 1841 cb (revents, arg);
1685} 1842}
1686 1843
1687static void 1844static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 1846{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 1848}
1692 1849
1693static void 1850static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 1852{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 1854}
1698 1855
1699void 1856void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines