ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.152 by root, Wed Nov 28 11:15:55 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
178 220
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 224
190#if __GNUC__ >= 3 225#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
192# define inline static inline 233# define inline_speed static inline
234# endif
193#else 235#else
194# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
195# define inline static 238# define inline_size static
239# define noinline
196#endif 240#endif
197 241
198#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
200 244
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 247
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
206 250
207typedef struct ev_watcher *W; 251typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
210 254
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 256
213#ifdef _WIN32 257#ifdef _WIN32
214# include "ev_win32.c" 258# include "ev_win32.c"
216 260
217/*****************************************************************************/ 261/*****************************************************************************/
218 262
219static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
220 264
265void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 267{
223 syserr_cb = cb; 268 syserr_cb = cb;
224} 269}
225 270
226static void 271static void noinline
227syserr (const char *msg) 272syserr (const char *msg)
228{ 273{
229 if (!msg) 274 if (!msg)
230 msg = "(libev) system error"; 275 msg = "(libev) system error";
231 276
236 perror (msg); 281 perror (msg);
237 abort (); 282 abort ();
238 } 283 }
239} 284}
240 285
241static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, size_t size) = realloc;
242 287
288void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, size_t size))
244{ 290{
245 alloc = cb; 291 alloc = cb;
246} 292}
247 293
248static void * 294inline_speed void *
249ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, size_t size)
250{ 296{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc (ptr, size);
252 298
253 if (!ptr && size) 299 if (!ptr && size)
254 { 300 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size);
256 abort (); 302 abort ();
257 } 303 }
258 304
259 return ptr; 305 return ptr;
260} 306}
277typedef struct 323typedef struct
278{ 324{
279 W w; 325 W w;
280 int events; 326 int events;
281} ANPENDING; 327} ANPENDING;
328
329typedef struct
330{
331#if EV_USE_INOTIFY
332 WL head;
333#endif
334} ANFS;
282 335
283#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
284 337
285 struct ev_loop 338 struct ev_loop
286 { 339 {
320 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 375#endif
323} 376}
324 377
325inline ev_tstamp 378ev_tstamp inline_size
326get_clock (void) 379get_clock (void)
327{ 380{
328#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
330 { 383 {
373#define array_free(stem, idx) \ 426#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 428
376/*****************************************************************************/ 429/*****************************************************************************/
377 430
378static void 431void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 432ev_feed_event (EV_P_ void *w, int revents)
393{ 433{
394 W w_ = (W)w; 434 W w_ = (W)w;
395 435
396 if (expect_false (w_->pending)) 436 if (expect_false (w_->pending))
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 446}
407 447
408static void 448void inline_size
409queue_events (EV_P_ W *events, int eventcnt, int type) 449queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 450{
411 int i; 451 int i;
412 452
413 for (i = 0; i < eventcnt; ++i) 453 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 454 ev_feed_event (EV_A_ events [i], type);
415} 455}
416 456
417inline void 457/*****************************************************************************/
458
459void inline_size
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
418fd_event (EV_P_ int fd, int revents) 473fd_event (EV_P_ int fd, int revents)
419{ 474{
420 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 476 ev_io *w;
422 477
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 479 {
425 int ev = w->events & revents; 480 int ev = w->events & revents;
426 481
427 if (ev) 482 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
433ev_feed_fd_event (EV_P_ int fd, int revents) 488ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 489{
435 fd_event (EV_A_ fd, revents); 490 fd_event (EV_A_ fd, revents);
436} 491}
437 492
438/*****************************************************************************/ 493void inline_size
439
440inline void
441fd_reify (EV_P) 494fd_reify (EV_P)
442{ 495{
443 int i; 496 int i;
444 497
445 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
446 { 499 {
447 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 502 ev_io *w;
450 503
451 int events = 0; 504 int events = 0;
452 505
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 507 events |= w->events;
455 508
456#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
457 if (events) 510 if (events)
458 { 511 {
469 } 522 }
470 523
471 fdchangecnt = 0; 524 fdchangecnt = 0;
472} 525}
473 526
474static void 527void inline_size
475fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
476{ 529{
477 if (expect_false (anfds [fd].reify)) 530 if (expect_false (anfds [fd].reify))
478 return; 531 return;
479 532
482 ++fdchangecnt; 535 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
485} 538}
486 539
487static void 540void inline_speed
488fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
489{ 542{
490 struct ev_io *w; 543 ev_io *w;
491 544
492 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
493 { 546 {
494 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 549 }
497} 550}
498 551
499inline int 552int inline_size
500fd_valid (int fd) 553fd_valid (int fd)
501{ 554{
502#ifdef _WIN32 555#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 556 return _get_osfhandle (fd) != -1;
504#else 557#else
505 return fcntl (fd, F_GETFD) != -1; 558 return fcntl (fd, F_GETFD) != -1;
506#endif 559#endif
507} 560}
508 561
509/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
510static void 563static void noinline
511fd_ebadf (EV_P) 564fd_ebadf (EV_P)
512{ 565{
513 int fd; 566 int fd;
514 567
515 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
519} 572}
520 573
521/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 575static void noinline
523fd_enomem (EV_P) 576fd_enomem (EV_P)
524{ 577{
525 int fd; 578 int fd;
526 579
527 for (fd = anfdmax; fd--; ) 580 for (fd = anfdmax; fd--; )
531 return; 584 return;
532 } 585 }
533} 586}
534 587
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 588/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 589static void noinline
537fd_rearm_all (EV_P) 590fd_rearm_all (EV_P)
538{ 591{
539 int fd; 592 int fd;
540 593
541 /* this should be highly optimised to not do anything but set a flag */ 594 /* this should be highly optimised to not do anything but set a flag */
547 } 600 }
548} 601}
549 602
550/*****************************************************************************/ 603/*****************************************************************************/
551 604
552static void 605void inline_speed
553upheap (WT *heap, int k) 606upheap (WT *heap, int k)
554{ 607{
555 WT w = heap [k]; 608 WT w = heap [k];
556 609
557 while (k && heap [k >> 1]->at > w->at) 610 while (k && heap [k >> 1]->at > w->at)
564 heap [k] = w; 617 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 618 ((W)heap [k])->active = k + 1;
566 619
567} 620}
568 621
569static void 622void inline_speed
570downheap (WT *heap, int N, int k) 623downheap (WT *heap, int N, int k)
571{ 624{
572 WT w = heap [k]; 625 WT w = heap [k];
573 626
574 while (k < (N >> 1)) 627 while (k < (N >> 1))
588 641
589 heap [k] = w; 642 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 643 ((W)heap [k])->active = k + 1;
591} 644}
592 645
593inline void 646void inline_size
594adjustheap (WT *heap, int N, int k) 647adjustheap (WT *heap, int N, int k)
595{ 648{
596 upheap (heap, k); 649 upheap (heap, k);
597 downheap (heap, N, k); 650 downheap (heap, N, k);
598} 651}
608static ANSIG *signals; 661static ANSIG *signals;
609static int signalmax; 662static int signalmax;
610 663
611static int sigpipe [2]; 664static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 665static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 666static ev_io sigev;
614 667
615static void 668void inline_size
616signals_init (ANSIG *base, int count) 669signals_init (ANSIG *base, int count)
617{ 670{
618 while (count--) 671 while (count--)
619 { 672 {
620 base->head = 0; 673 base->head = 0;
640 write (sigpipe [1], &signum, 1); 693 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 694 errno = old_errno;
642 } 695 }
643} 696}
644 697
645void 698void noinline
646ev_feed_signal_event (EV_P_ int signum) 699ev_feed_signal_event (EV_P_ int signum)
647{ 700{
648 WL w; 701 WL w;
649 702
650#if EV_MULTIPLICITY 703#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 714 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 716}
664 717
665static void 718static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 719sigcb (EV_P_ ev_io *iow, int revents)
667{ 720{
668 int signum; 721 int signum;
669 722
670 read (sigpipe [0], &revents, 1); 723 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 724 gotsig = 0;
673 for (signum = signalmax; signum--; ) 726 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 727 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 728 ev_feed_signal_event (EV_A_ signum + 1);
676} 729}
677 730
678static void 731void inline_size
679fd_intern (int fd) 732fd_intern (int fd)
680{ 733{
681#ifdef _WIN32 734#ifdef _WIN32
682 int arg = 1; 735 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 738 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 739 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 740#endif
688} 741}
689 742
690static void 743static void noinline
691siginit (EV_P) 744siginit (EV_P)
692{ 745{
693 fd_intern (sigpipe [0]); 746 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 747 fd_intern (sigpipe [1]);
695 748
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 751 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 752}
700 753
701/*****************************************************************************/ 754/*****************************************************************************/
702 755
703static struct ev_child *childs [PID_HASHSIZE]; 756static ev_child *childs [EV_PID_HASHSIZE];
704 757
705#ifndef _WIN32 758#ifndef _WIN32
706 759
707static struct ev_signal childev; 760static ev_signal childev;
708 761
709#ifndef WCONTINUED 762void inline_speed
710# define WCONTINUED 0
711#endif
712
713static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{ 764{
716 struct ev_child *w; 765 ev_child *w;
717 766
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid) 768 if (w->pid == pid || !w->pid)
720 { 769 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid; 771 w->rpid = pid;
723 w->rstatus = status; 772 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD); 773 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 } 774 }
726} 775}
727 776
777#ifndef WCONTINUED
778# define WCONTINUED 0
779#endif
780
728static void 781static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 782childcb (EV_P_ ev_signal *sw, int revents)
730{ 783{
731 int pid, status; 784 int pid, status;
732 785
786 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 787 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 788 if (!WCONTINUED
789 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return;
792
735 /* make sure we are called again until all childs have been reaped */ 793 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 794 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 796
739 child_reap (EV_A_ sw, pid, pid, status); 797 child_reap (EV_A_ sw, pid, pid, status);
798 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 800}
743 801
744#endif 802#endif
745 803
746/*****************************************************************************/ 804/*****************************************************************************/
772{ 830{
773 return EV_VERSION_MINOR; 831 return EV_VERSION_MINOR;
774} 832}
775 833
776/* return true if we are running with elevated privileges and should ignore env variables */ 834/* return true if we are running with elevated privileges and should ignore env variables */
777static int 835int inline_size
778enable_secure (void) 836enable_secure (void)
779{ 837{
780#ifdef _WIN32 838#ifdef _WIN32
781 return 0; 839 return 0;
782#else 840#else
816 874
817 return flags; 875 return flags;
818} 876}
819 877
820unsigned int 878unsigned int
879ev_embeddable_backends (void)
880{
881 return EVBACKEND_EPOLL
882 | EVBACKEND_KQUEUE
883 | EVBACKEND_PORT;
884}
885
886unsigned int
821ev_backend (EV_P) 887ev_backend (EV_P)
822{ 888{
823 return backend; 889 return backend;
824} 890}
825 891
826static void 892static void noinline
827loop_init (EV_P_ unsigned int flags) 893loop_init (EV_P_ unsigned int flags)
828{ 894{
829 if (!backend) 895 if (!backend)
830 { 896 {
831#if EV_USE_MONOTONIC 897#if EV_USE_MONOTONIC
848 914
849 if (!(flags & 0x0000ffffUL)) 915 if (!(flags & 0x0000ffffUL))
850 flags |= ev_recommended_backends (); 916 flags |= ev_recommended_backends ();
851 917
852 backend = 0; 918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923
853#if EV_USE_PORT 924#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 926#endif
856#if EV_USE_KQUEUE 927#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
869 ev_init (&sigev, sigcb); 940 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI); 941 ev_set_priority (&sigev, EV_MAXPRI);
871 } 942 }
872} 943}
873 944
874static void 945static void noinline
875loop_destroy (EV_P) 946loop_destroy (EV_P)
876{ 947{
877 int i; 948 int i;
949
950#if EV_USE_INOTIFY
951 if (fs_fd >= 0)
952 close (fs_fd);
953#endif
954
955 if (backend_fd >= 0)
956 close (backend_fd);
878 957
879#if EV_USE_PORT 958#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 960#endif
882#if EV_USE_KQUEUE 961#if EV_USE_KQUEUE
896 array_free (pending, [i]); 975 array_free (pending, [i]);
897 976
898 /* have to use the microsoft-never-gets-it-right macro */ 977 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 978 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0); 979 array_free (timer, EMPTY0);
901#if EV_PERIODICS 980#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 981 array_free (periodic, EMPTY0);
903#endif 982#endif
904 array_free (idle, EMPTY0); 983 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 984 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0); 985 array_free (check, EMPTY0);
907 986
908 backend = 0; 987 backend = 0;
909} 988}
910 989
911static void 990void inline_size
912loop_fork (EV_P) 991loop_fork (EV_P)
913{ 992{
914#if EV_USE_PORT 993#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 994 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 995#endif
1042 postfork = 1; 1121 postfork = 1;
1043} 1122}
1044 1123
1045/*****************************************************************************/ 1124/*****************************************************************************/
1046 1125
1047static int 1126int inline_size
1048any_pending (EV_P) 1127any_pending (EV_P)
1049{ 1128{
1050 int pri; 1129 int pri;
1051 1130
1052 for (pri = NUMPRI; pri--; ) 1131 for (pri = NUMPRI; pri--; )
1054 return 1; 1133 return 1;
1055 1134
1056 return 0; 1135 return 0;
1057} 1136}
1058 1137
1059inline void 1138void inline_speed
1060call_pending (EV_P) 1139call_pending (EV_P)
1061{ 1140{
1062 int pri; 1141 int pri;
1063 1142
1064 for (pri = NUMPRI; pri--; ) 1143 for (pri = NUMPRI; pri--; )
1066 { 1145 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1146 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1147
1069 if (expect_true (p->w)) 1148 if (expect_true (p->w))
1070 { 1149 {
1150 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1151
1071 p->w->pending = 0; 1152 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1153 EV_CB_INVOKE (p->w, p->events);
1073 } 1154 }
1074 } 1155 }
1075} 1156}
1076 1157
1077inline void 1158void inline_size
1078timers_reify (EV_P) 1159timers_reify (EV_P)
1079{ 1160{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1161 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1162 {
1082 struct ev_timer *w = timers [0]; 1163 ev_timer *w = timers [0];
1083 1164
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1085 1166
1086 /* first reschedule or stop timer */ 1167 /* first reschedule or stop timer */
1087 if (w->repeat) 1168 if (w->repeat)
1088 { 1169 {
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1170 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1099 1180
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1182 }
1102} 1183}
1103 1184
1104#if EV_PERIODICS 1185#if EV_PERIODIC_ENABLE
1105inline void 1186void inline_size
1106periodics_reify (EV_P) 1187periodics_reify (EV_P)
1107{ 1188{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1190 {
1110 struct ev_periodic *w = periodics [0]; 1191 ev_periodic *w = periodics [0];
1111 1192
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 1194
1114 /* first reschedule or stop timer */ 1195 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1196 if (w->reschedule_cb)
1116 { 1197 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 1210
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1212 }
1132} 1213}
1133 1214
1134static void 1215static void noinline
1135periodics_reschedule (EV_P) 1216periodics_reschedule (EV_P)
1136{ 1217{
1137 int i; 1218 int i;
1138 1219
1139 /* adjust periodics after time jump */ 1220 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1221 for (i = 0; i < periodiccnt; ++i)
1141 { 1222 {
1142 struct ev_periodic *w = periodics [i]; 1223 ev_periodic *w = periodics [i];
1143 1224
1144 if (w->reschedule_cb) 1225 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1227 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1151 for (i = periodiccnt >> 1; i--; ) 1232 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1233 downheap ((WT *)periodics, periodiccnt, i);
1153} 1234}
1154#endif 1235#endif
1155 1236
1156inline int 1237int inline_size
1157time_update_monotonic (EV_P) 1238time_update_monotonic (EV_P)
1158{ 1239{
1159 mn_now = get_clock (); 1240 mn_now = get_clock ();
1160 1241
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1169 ev_rt_now = ev_time (); 1250 ev_rt_now = ev_time ();
1170 return 1; 1251 return 1;
1171 } 1252 }
1172} 1253}
1173 1254
1174inline void 1255void inline_size
1175time_update (EV_P) 1256time_update (EV_P)
1176{ 1257{
1177 int i; 1258 int i;
1178 1259
1179#if EV_USE_MONOTONIC 1260#if EV_USE_MONOTONIC
1181 { 1262 {
1182 if (time_update_monotonic (EV_A)) 1263 if (time_update_monotonic (EV_A))
1183 { 1264 {
1184 ev_tstamp odiff = rtmn_diff; 1265 ev_tstamp odiff = rtmn_diff;
1185 1266
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1187 { 1276 {
1188 rtmn_diff = ev_rt_now - mn_now; 1277 rtmn_diff = ev_rt_now - mn_now;
1189 1278
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1280 return; /* all is well */
1193 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1283 mn_now = get_clock ();
1195 now_floor = mn_now; 1284 now_floor = mn_now;
1196 } 1285 }
1197 1286
1198# if EV_PERIODICS 1287# if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1288 periodics_reschedule (EV_A);
1200# endif 1289# endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */ 1290 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 1292 }
1207 { 1296 {
1208 ev_rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
1209 1298
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 { 1300 {
1212#if EV_PERIODICS 1301#if EV_PERIODIC_ENABLE
1213 periodics_reschedule (EV_A); 1302 periodics_reschedule (EV_A);
1214#endif 1303#endif
1215 1304
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1305 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i) 1306 for (i = 0; i < timercnt; ++i)
1237static int loop_done; 1326static int loop_done;
1238 1327
1239void 1328void
1240ev_loop (EV_P_ int flags) 1329ev_loop (EV_P_ int flags)
1241{ 1330{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1332 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL;
1244 1334
1245 while (activecnt) 1335 while (activecnt)
1246 { 1336 {
1337 /* we might have forked, so reify kernel state if necessary */
1338 #if EV_FORK_ENABLE
1339 if (expect_false (postfork))
1340 if (forkcnt)
1341 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A);
1344 }
1345 #endif
1346
1247 /* queue check watchers (and execute them) */ 1347 /* queue check watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1348 if (expect_false (preparecnt))
1249 { 1349 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1351 call_pending (EV_A);
1257 1357
1258 /* update fd-related kernel structures */ 1358 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1359 fd_reify (EV_A);
1260 1360
1261 /* calculate blocking time */ 1361 /* calculate blocking time */
1362 {
1363 double block;
1262 1364
1263 /* we only need this for !monotonic clock or timers, but as we basically 1365 if (flags & EVLOOP_NONBLOCK || idlecnt)
1264 always have timers, we just calculate it always */ 1366 block = 0.; /* do not block at all */
1367 else
1368 {
1369 /* update time to cancel out callback processing overhead */
1265#if EV_USE_MONOTONIC 1370#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic)) 1371 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A); 1372 time_update_monotonic (EV_A);
1268 else 1373 else
1269#endif 1374#endif
1270 { 1375 {
1271 ev_rt_now = ev_time (); 1376 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now; 1377 mn_now = ev_rt_now;
1273 } 1378 }
1274 1379
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1380 block = MAX_BLOCKTIME;
1280 1381
1281 if (timercnt) 1382 if (timercnt)
1282 { 1383 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1384 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1385 if (block > to) block = to;
1285 } 1386 }
1286 1387
1287#if EV_PERIODICS 1388#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1389 if (periodiccnt)
1289 { 1390 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1391 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1392 if (block > to) block = to;
1292 } 1393 }
1293#endif 1394#endif
1294 1395
1295 if (expect_false (block < 0.)) block = 0.; 1396 if (expect_false (block < 0.)) block = 0.;
1296 } 1397 }
1297 1398
1298 backend_poll (EV_A_ block); 1399 backend_poll (EV_A_ block);
1400 }
1299 1401
1300 /* update ev_rt_now, do magic */ 1402 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1403 time_update (EV_A);
1302 1404
1303 /* queue pending timers and reschedule them */ 1405 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1406 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1407#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1408 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1409#endif
1308 1410
1309 /* queue idle watchers unless io or timers are pending */ 1411 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1412 if (idlecnt && !any_pending (EV_A))
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1312 1414
1313 /* queue check watchers, to be executed first */ 1415 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1416 if (expect_false (checkcnt))
1318 1420
1319 if (expect_false (loop_done)) 1421 if (expect_false (loop_done))
1320 break; 1422 break;
1321 } 1423 }
1322 1424
1323 if (loop_done != 2) 1425 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1426 loop_done = EVUNLOOP_CANCEL;
1325} 1427}
1326 1428
1327void 1429void
1328ev_unloop (EV_P_ int how) 1430ev_unloop (EV_P_ int how)
1329{ 1431{
1330 loop_done = how; 1432 loop_done = how;
1331} 1433}
1332 1434
1333/*****************************************************************************/ 1435/*****************************************************************************/
1334 1436
1335inline void 1437void inline_size
1336wlist_add (WL *head, WL elem) 1438wlist_add (WL *head, WL elem)
1337{ 1439{
1338 elem->next = *head; 1440 elem->next = *head;
1339 *head = elem; 1441 *head = elem;
1340} 1442}
1341 1443
1342inline void 1444void inline_size
1343wlist_del (WL *head, WL elem) 1445wlist_del (WL *head, WL elem)
1344{ 1446{
1345 while (*head) 1447 while (*head)
1346 { 1448 {
1347 if (*head == elem) 1449 if (*head == elem)
1352 1454
1353 head = &(*head)->next; 1455 head = &(*head)->next;
1354 } 1456 }
1355} 1457}
1356 1458
1357inline void 1459void inline_speed
1358ev_clear_pending (EV_P_ W w) 1460ev_clear_pending (EV_P_ W w)
1359{ 1461{
1360 if (w->pending) 1462 if (w->pending)
1361 { 1463 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1464 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1465 w->pending = 0;
1364 } 1466 }
1365} 1467}
1366 1468
1367inline void 1469void inline_speed
1368ev_start (EV_P_ W w, int active) 1470ev_start (EV_P_ W w, int active)
1369{ 1471{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372 1474
1373 w->active = active; 1475 w->active = active;
1374 ev_ref (EV_A); 1476 ev_ref (EV_A);
1375} 1477}
1376 1478
1377inline void 1479void inline_size
1378ev_stop (EV_P_ W w) 1480ev_stop (EV_P_ W w)
1379{ 1481{
1380 ev_unref (EV_A); 1482 ev_unref (EV_A);
1381 w->active = 0; 1483 w->active = 0;
1382} 1484}
1383 1485
1384/*****************************************************************************/ 1486/*****************************************************************************/
1385 1487
1386void 1488void
1387ev_io_start (EV_P_ struct ev_io *w) 1489ev_io_start (EV_P_ ev_io *w)
1388{ 1490{
1389 int fd = w->fd; 1491 int fd = w->fd;
1390 1492
1391 if (expect_false (ev_is_active (w))) 1493 if (expect_false (ev_is_active (w)))
1392 return; 1494 return;
1399 1501
1400 fd_change (EV_A_ fd); 1502 fd_change (EV_A_ fd);
1401} 1503}
1402 1504
1403void 1505void
1404ev_io_stop (EV_P_ struct ev_io *w) 1506ev_io_stop (EV_P_ ev_io *w)
1405{ 1507{
1406 ev_clear_pending (EV_A_ (W)w); 1508 ev_clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1509 if (expect_false (!ev_is_active (w)))
1408 return; 1510 return;
1409 1511
1414 1516
1415 fd_change (EV_A_ w->fd); 1517 fd_change (EV_A_ w->fd);
1416} 1518}
1417 1519
1418void 1520void
1419ev_timer_start (EV_P_ struct ev_timer *w) 1521ev_timer_start (EV_P_ ev_timer *w)
1420{ 1522{
1421 if (expect_false (ev_is_active (w))) 1523 if (expect_false (ev_is_active (w)))
1422 return; 1524 return;
1423 1525
1424 ((WT)w)->at += mn_now; 1526 ((WT)w)->at += mn_now;
1425 1527
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1529
1428 ev_start (EV_A_ (W)w, ++timercnt); 1530 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1532 timers [timercnt - 1] = w;
1431 upheap ((WT *)timers, timercnt - 1); 1533 upheap ((WT *)timers, timercnt - 1);
1432 1534
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1434} 1536}
1435 1537
1436void 1538void
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1539ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1540{
1439 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1542 if (expect_false (!ev_is_active (w)))
1441 return; 1543 return;
1442 1544
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1444 1546
1547 {
1548 int active = ((W)w)->active;
1549
1445 if (expect_true (((W)w)->active < timercnt--)) 1550 if (expect_true (--active < --timercnt))
1446 { 1551 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 1552 timers [active] = timers [timercnt];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1553 adjustheap ((WT *)timers, timercnt, active);
1449 } 1554 }
1555 }
1450 1556
1451 ((WT)w)->at -= mn_now; 1557 ((WT)w)->at -= mn_now;
1452 1558
1453 ev_stop (EV_A_ (W)w); 1559 ev_stop (EV_A_ (W)w);
1454} 1560}
1455 1561
1456void 1562void
1457ev_timer_again (EV_P_ struct ev_timer *w) 1563ev_timer_again (EV_P_ ev_timer *w)
1458{ 1564{
1459 if (ev_is_active (w)) 1565 if (ev_is_active (w))
1460 { 1566 {
1461 if (w->repeat) 1567 if (w->repeat)
1462 { 1568 {
1471 w->at = w->repeat; 1577 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1578 ev_timer_start (EV_A_ w);
1473 } 1579 }
1474} 1580}
1475 1581
1476#if EV_PERIODICS 1582#if EV_PERIODIC_ENABLE
1477void 1583void
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1584ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1585{
1480 if (expect_false (ev_is_active (w))) 1586 if (expect_false (ev_is_active (w)))
1481 return; 1587 return;
1482 1588
1483 if (w->reschedule_cb) 1589 if (w->reschedule_cb)
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1594 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 1596 }
1491 1597
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1598 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1600 periodics [periodiccnt - 1] = w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1601 upheap ((WT *)periodics, periodiccnt - 1);
1496 1602
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1498} 1604}
1499 1605
1500void 1606void
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1607ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1608{
1503 ev_clear_pending (EV_A_ (W)w); 1609 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1610 if (expect_false (!ev_is_active (w)))
1505 return; 1611 return;
1506 1612
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1508 1614
1615 {
1616 int active = ((W)w)->active;
1617
1509 if (expect_true (((W)w)->active < periodiccnt--)) 1618 if (expect_true (--active < --periodiccnt))
1510 { 1619 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1620 periodics [active] = periodics [periodiccnt];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1621 adjustheap ((WT *)periodics, periodiccnt, active);
1513 } 1622 }
1623 }
1514 1624
1515 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1516} 1626}
1517 1627
1518void 1628void
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1629ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1630{
1521 /* TODO: use adjustheap and recalculation */ 1631 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1632 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1633 ev_periodic_start (EV_A_ w);
1524} 1634}
1525#endif 1635#endif
1526 1636
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 1637#ifndef SA_RESTART
1594# define SA_RESTART 0 1638# define SA_RESTART 0
1595#endif 1639#endif
1596 1640
1597void 1641void
1598ev_signal_start (EV_P_ struct ev_signal *w) 1642ev_signal_start (EV_P_ ev_signal *w)
1599{ 1643{
1600#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1646#endif
1603 if (expect_false (ev_is_active (w))) 1647 if (expect_false (ev_is_active (w)))
1622#endif 1666#endif
1623 } 1667 }
1624} 1668}
1625 1669
1626void 1670void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1671ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1672{
1629 ev_clear_pending (EV_A_ (W)w); 1673 ev_clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1674 if (expect_false (!ev_is_active (w)))
1631 return; 1675 return;
1632 1676
1636 if (!signals [w->signum - 1].head) 1680 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1681 signal (w->signum, SIG_DFL);
1638} 1682}
1639 1683
1640void 1684void
1641ev_child_start (EV_P_ struct ev_child *w) 1685ev_child_start (EV_P_ ev_child *w)
1642{ 1686{
1643#if EV_MULTIPLICITY 1687#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1688 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1689#endif
1646 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1647 return; 1691 return;
1648 1692
1649 ev_start (EV_A_ (W)w, 1); 1693 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1651} 1695}
1652 1696
1653void 1697void
1654ev_child_stop (EV_P_ struct ev_child *w) 1698ev_child_stop (EV_P_ ev_child *w)
1655{ 1699{
1656 ev_clear_pending (EV_A_ (W)w); 1700 ev_clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1701 if (expect_false (!ev_is_active (w)))
1658 return; 1702 return;
1659 1703
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1705 ev_stop (EV_A_ (W)w);
1662} 1706}
1663 1707
1708#if EV_STAT_ENABLE
1709
1710# ifdef _WIN32
1711# undef lstat
1712# define lstat(a,b) _stati64 (a,b)
1713# endif
1714
1715#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891
1717
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719
1720#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE ((PATH_MAX + sizeof (struct inotify_event)) + 2048)
1722
1723static void noinline
1724infy_add (EV_P_ ev_stat *w)
1725{
1726 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1727
1728 if (w->wd < 0)
1729 {
1730 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1731
1732 /* monitor some parent directory for speedup hints */
1733 if (errno == ENOENT || errno == EACCES)
1734 {
1735 char path [PATH_MAX];
1736 strcpy (path, w->path);
1737
1738 do
1739 {
1740 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1741 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1742
1743 char *pend = strrchr (path, '/');
1744
1745 if (!pend)
1746 break; /* whoops, no '/', complain to your admin */
1747
1748 *pend = 0;
1749 w->wd = inotify_add_watch (fs_fd, path, IN_DELETE_SELF | IN_CREATE | IN_MOVED_TO | IN_MASK_ADD);
1750 }
1751 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1752 }
1753 }
1754 else
1755 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1756
1757 if (w->wd >= 0)
1758 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1759}
1760
1761static void noinline
1762infy_del (EV_P_ ev_stat *w)
1763{
1764 WL w_;
1765 int slot;
1766 int wd = w->wd;
1767
1768 if (wd < 0)
1769 return;
1770
1771 w->wd = -2;
1772 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1773 wlist_del (&fs_hash [slot].head, (WL)w);
1774
1775 /* remove this watcher, if others are watching it, they will rearm */
1776 inotify_rm_watch (fs_fd, wd);
1777}
1778
1779static void noinline
1780infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1781{
1782 if (slot < 0)
1783 /* overflow, need to check for all hahs slots */
1784 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1785 infy_wd (EV_A_ slot, wd, ev);
1786 else
1787 {
1788 WL w_;
1789
1790 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1791 {
1792 ev_stat *w = (ev_stat *)w_;
1793 w_ = w_->next; /* lets us remove this watcher and all before it */
1794
1795 if (w->wd == wd || wd == -1)
1796 {
1797 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1798 {
1799 w->wd = -1;
1800 infy_add (EV_A_ w); /* re-add, no matter what */
1801 }
1802
1803 stat_timer_cb (EV_P_ &w->timer, 0);
1804 }
1805 }
1806 }
1807}
1808
1809static void
1810infy_cb (EV_P_ ev_io *w, int revents)
1811{
1812 char buf [EV_INOTIFY_BUFSIZE];
1813 struct inotify_event *ev = (struct inotify_event *)buf;
1814 int ofs;
1815 int len = read (fs_fd, buf, sizeof (buf));
1816
1817 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1818 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1819}
1820
1821void inline_size
1822infy_init (EV_P)
1823{
1824 if (fs_fd != -2)
1825 return;
1826
1827 fs_fd = inotify_init ();
1828
1829 if (fs_fd >= 0)
1830 {
1831 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1832 ev_set_priority (&fs_w, EV_MAXPRI);
1833 ev_io_start (EV_A_ &fs_w);
1834 }
1835}
1836
1837#endif
1838
1839void
1840ev_stat_stat (EV_P_ ev_stat *w)
1841{
1842 if (lstat (w->path, &w->attr) < 0)
1843 w->attr.st_nlink = 0;
1844 else if (!w->attr.st_nlink)
1845 w->attr.st_nlink = 1;
1846}
1847
1848void noinline
1849stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1850{
1851 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1852
1853 /* we copy this here each the time so that */
1854 /* prev has the old value when the callback gets invoked */
1855 w->prev = w->attr;
1856 ev_stat_stat (EV_A_ w);
1857
1858 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1859 {
1860 #if EV_USE_INOTIFY
1861 infy_del (EV_A_ w);
1862 infy_add (EV_A_ w);
1863 ev_stat_stat (EV_A_ w); /* avoid race... */
1864 #endif
1865
1866 ev_feed_event (EV_A_ w, EV_STAT);
1867 }
1868}
1869
1870void
1871ev_stat_start (EV_P_ ev_stat *w)
1872{
1873 if (expect_false (ev_is_active (w)))
1874 return;
1875
1876 /* since we use memcmp, we need to clear any padding data etc. */
1877 memset (&w->prev, 0, sizeof (ev_statdata));
1878 memset (&w->attr, 0, sizeof (ev_statdata));
1879
1880 ev_stat_stat (EV_A_ w);
1881
1882 if (w->interval < MIN_STAT_INTERVAL)
1883 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1884
1885 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1886 ev_set_priority (&w->timer, ev_priority (w));
1887
1888#if EV_USE_INOTIFY
1889 infy_init (EV_A);
1890
1891 if (fs_fd >= 0)
1892 infy_add (EV_A_ w);
1893 else
1894#endif
1895 ev_timer_start (EV_A_ &w->timer);
1896
1897 ev_start (EV_A_ (W)w, 1);
1898}
1899
1900void
1901ev_stat_stop (EV_P_ ev_stat *w)
1902{
1903 ev_clear_pending (EV_A_ (W)w);
1904 if (expect_false (!ev_is_active (w)))
1905 return;
1906
1907#if EV_USE_INOTIFY
1908 infy_del (EV_A_ w);
1909#endif
1910 ev_timer_stop (EV_A_ &w->timer);
1911
1912 ev_stop (EV_A_ (W)w);
1913}
1914#endif
1915
1916void
1917ev_idle_start (EV_P_ ev_idle *w)
1918{
1919 if (expect_false (ev_is_active (w)))
1920 return;
1921
1922 ev_start (EV_A_ (W)w, ++idlecnt);
1923 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1924 idles [idlecnt - 1] = w;
1925}
1926
1927void
1928ev_idle_stop (EV_P_ ev_idle *w)
1929{
1930 ev_clear_pending (EV_A_ (W)w);
1931 if (expect_false (!ev_is_active (w)))
1932 return;
1933
1934 {
1935 int active = ((W)w)->active;
1936 idles [active - 1] = idles [--idlecnt];
1937 ((W)idles [active - 1])->active = active;
1938 }
1939
1940 ev_stop (EV_A_ (W)w);
1941}
1942
1943void
1944ev_prepare_start (EV_P_ ev_prepare *w)
1945{
1946 if (expect_false (ev_is_active (w)))
1947 return;
1948
1949 ev_start (EV_A_ (W)w, ++preparecnt);
1950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1951 prepares [preparecnt - 1] = w;
1952}
1953
1954void
1955ev_prepare_stop (EV_P_ ev_prepare *w)
1956{
1957 ev_clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w)))
1959 return;
1960
1961 {
1962 int active = ((W)w)->active;
1963 prepares [active - 1] = prepares [--preparecnt];
1964 ((W)prepares [active - 1])->active = active;
1965 }
1966
1967 ev_stop (EV_A_ (W)w);
1968}
1969
1970void
1971ev_check_start (EV_P_ ev_check *w)
1972{
1973 if (expect_false (ev_is_active (w)))
1974 return;
1975
1976 ev_start (EV_A_ (W)w, ++checkcnt);
1977 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1978 checks [checkcnt - 1] = w;
1979}
1980
1981void
1982ev_check_stop (EV_P_ ev_check *w)
1983{
1984 ev_clear_pending (EV_A_ (W)w);
1985 if (expect_false (!ev_is_active (w)))
1986 return;
1987
1988 {
1989 int active = ((W)w)->active;
1990 checks [active - 1] = checks [--checkcnt];
1991 ((W)checks [active - 1])->active = active;
1992 }
1993
1994 ev_stop (EV_A_ (W)w);
1995}
1996
1997#if EV_EMBED_ENABLE
1998void noinline
1999ev_embed_sweep (EV_P_ ev_embed *w)
2000{
2001 ev_loop (w->loop, EVLOOP_NONBLOCK);
2002}
2003
2004static void
2005embed_cb (EV_P_ ev_io *io, int revents)
2006{
2007 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2008
2009 if (ev_cb (w))
2010 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2011 else
2012 ev_embed_sweep (loop, w);
2013}
2014
2015void
2016ev_embed_start (EV_P_ ev_embed *w)
2017{
2018 if (expect_false (ev_is_active (w)))
2019 return;
2020
2021 {
2022 struct ev_loop *loop = w->loop;
2023 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2024 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2025 }
2026
2027 ev_set_priority (&w->io, ev_priority (w));
2028 ev_io_start (EV_A_ &w->io);
2029
2030 ev_start (EV_A_ (W)w, 1);
2031}
2032
2033void
2034ev_embed_stop (EV_P_ ev_embed *w)
2035{
2036 ev_clear_pending (EV_A_ (W)w);
2037 if (expect_false (!ev_is_active (w)))
2038 return;
2039
2040 ev_io_stop (EV_A_ &w->io);
2041
2042 ev_stop (EV_A_ (W)w);
2043}
2044#endif
2045
2046#if EV_FORK_ENABLE
2047void
2048ev_fork_start (EV_P_ ev_fork *w)
2049{
2050 if (expect_false (ev_is_active (w)))
2051 return;
2052
2053 ev_start (EV_A_ (W)w, ++forkcnt);
2054 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2055 forks [forkcnt - 1] = w;
2056}
2057
2058void
2059ev_fork_stop (EV_P_ ev_fork *w)
2060{
2061 ev_clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w)))
2063 return;
2064
2065 {
2066 int active = ((W)w)->active;
2067 forks [active - 1] = forks [--forkcnt];
2068 ((W)forks [active - 1])->active = active;
2069 }
2070
2071 ev_stop (EV_A_ (W)w);
2072}
2073#endif
2074
1664/*****************************************************************************/ 2075/*****************************************************************************/
1665 2076
1666struct ev_once 2077struct ev_once
1667{ 2078{
1668 struct ev_io io; 2079 ev_io io;
1669 struct ev_timer to; 2080 ev_timer to;
1670 void (*cb)(int revents, void *arg); 2081 void (*cb)(int revents, void *arg);
1671 void *arg; 2082 void *arg;
1672}; 2083};
1673 2084
1674static void 2085static void
1683 2094
1684 cb (revents, arg); 2095 cb (revents, arg);
1685} 2096}
1686 2097
1687static void 2098static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 2099once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 2100{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2101 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 2102}
1692 2103
1693static void 2104static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 2105once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 2106{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2107 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 2108}
1698 2109
1699void 2110void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines