ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 237# define noinline __attribute__ ((noinline))
193#else 238#else
194# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
195# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
196#endif 244#endif
197 245
198#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
200 255
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 258
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
206 261
207typedef struct ev_watcher *W; 262typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
210 265
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 267
213#ifdef _WIN32 268#ifdef _WIN32
214# include "ev_win32.c" 269# include "ev_win32.c"
216 271
217/*****************************************************************************/ 272/*****************************************************************************/
218 273
219static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
220 275
276void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 278{
223 syserr_cb = cb; 279 syserr_cb = cb;
224} 280}
225 281
226static void 282static void noinline
227syserr (const char *msg) 283syserr (const char *msg)
228{ 284{
229 if (!msg) 285 if (!msg)
230 msg = "(libev) system error"; 286 msg = "(libev) system error";
231 287
238 } 294 }
239} 295}
240 296
241static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
242 298
299void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 301{
245 alloc = cb; 302 alloc = cb;
246} 303}
247 304
248static void * 305inline_speed void *
249ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
250{ 307{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 309
253 if (!ptr && size) 310 if (!ptr && size)
277typedef struct 334typedef struct
278{ 335{
279 W w; 336 W w;
280 int events; 337 int events;
281} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
282 346
283#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
284 348
285 struct ev_loop 349 struct ev_loop
286 { 350 {
320 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 386#endif
323} 387}
324 388
325inline ev_tstamp 389ev_tstamp inline_size
326get_clock (void) 390get_clock (void)
327{ 391{
328#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
330 { 394 {
343{ 407{
344 return ev_rt_now; 408 return ev_rt_now;
345} 409}
346#endif 410#endif
347 411
348#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
349 439
350#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
352 { \ 442 { \
353 int newcnt = cur; \ 443 int ocur_ = (cur); \
354 do \ 444 (base) = (type *)array_realloc \
355 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 447 }
364 448
449#if 0
365#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 452 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 456 }
457#endif
372 458
373#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 461
376/*****************************************************************************/ 462/*****************************************************************************/
377 463
378static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
379anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
380{ 494{
381 while (count--) 495 while (count--)
382 { 496 {
383 base->head = 0; 497 base->head = 0;
386 500
387 ++base; 501 ++base;
388 } 502 }
389} 503}
390 504
391void 505void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406}
407
408static void
409queue_events (EV_P_ W *events, int eventcnt, int type)
410{
411 int i;
412
413 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type);
415}
416
417inline void
418fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
419{ 507{
420 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 509 ev_io *w;
422 510
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 512 {
425 int ev = w->events & revents; 513 int ev = w->events & revents;
426 514
427 if (ev) 515 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
430} 518}
431 519
432void 520void
433ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 522{
523 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
436} 525}
437 526
438/*****************************************************************************/ 527void inline_size
439
440inline void
441fd_reify (EV_P) 528fd_reify (EV_P)
442{ 529{
443 int i; 530 int i;
444 531
445 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
446 { 533 {
447 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 536 ev_io *w;
450 537
451 int events = 0; 538 int events = 0;
452 539
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 541 events |= w->events;
455 542
456#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
457 if (events) 544 if (events)
458 { 545 {
469 } 556 }
470 557
471 fdchangecnt = 0; 558 fdchangecnt = 0;
472} 559}
473 560
474static void 561void inline_size
475fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd, int flags)
476{ 563{
477 if (expect_false (anfds [fd].reify)) 564 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 565 anfds [fd].reify |= flags | 1;
481 566
567 if (expect_true (!reify))
568 {
482 ++fdchangecnt; 569 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
572 }
485} 573}
486 574
487static void 575void inline_speed
488fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
489{ 577{
490 struct ev_io *w; 578 ev_io *w;
491 579
492 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
493 { 581 {
494 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 584 }
497} 585}
498 586
499inline int 587int inline_size
500fd_valid (int fd) 588fd_valid (int fd)
501{ 589{
502#ifdef _WIN32 590#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 591 return _get_osfhandle (fd) != -1;
504#else 592#else
505 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
506#endif 594#endif
507} 595}
508 596
509/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
510static void 598static void noinline
511fd_ebadf (EV_P) 599fd_ebadf (EV_P)
512{ 600{
513 int fd; 601 int fd;
514 602
515 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
519} 607}
520 608
521/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 610static void noinline
523fd_enomem (EV_P) 611fd_enomem (EV_P)
524{ 612{
525 int fd; 613 int fd;
526 614
527 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
531 return; 619 return;
532 } 620 }
533} 621}
534 622
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 624static void noinline
537fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
538{ 626{
539 int fd; 627 int fd;
540 628
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 630 if (anfds [fd].events)
544 { 631 {
545 anfds [fd].events = 0; 632 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd, EV_IOFDSET);
547 } 634 }
548} 635}
549 636
550/*****************************************************************************/ 637/*****************************************************************************/
551 638
552static void 639void inline_speed
553upheap (WT *heap, int k) 640upheap (WT *heap, int k)
554{ 641{
555 WT w = heap [k]; 642 WT w = heap [k];
556 643
557 while (k && heap [k >> 1]->at > w->at) 644 while (k)
558 { 645 {
646 int p = (k - 1) >> 1;
647
648 if (heap [p]->at <= w->at)
649 break;
650
559 heap [k] = heap [k >> 1]; 651 heap [k] = heap [p];
560 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
561 k >>= 1; 653 k = p;
562 } 654 }
563 655
564 heap [k] = w; 656 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 657 ((W)heap [k])->active = k + 1;
566
567} 658}
568 659
569static void 660void inline_speed
570downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
571{ 662{
572 WT w = heap [k]; 663 WT w = heap [k];
573 664
574 while (k < (N >> 1)) 665 for (;;)
575 { 666 {
576 int j = k << 1; 667 int c = (k << 1) + 1;
577 668
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break; 670 break;
583 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
584 heap [k] = heap [j]; 678 heap [k] = heap [c];
585 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
586 k = j; 681 k = c;
587 } 682 }
588 683
589 heap [k] = w; 684 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
591} 686}
592 687
593inline void 688void inline_size
594adjustheap (WT *heap, int N, int k) 689adjustheap (WT *heap, int N, int k)
595{ 690{
596 upheap (heap, k); 691 upheap (heap, k);
597 downheap (heap, N, k); 692 downheap (heap, N, k);
598} 693}
608static ANSIG *signals; 703static ANSIG *signals;
609static int signalmax; 704static int signalmax;
610 705
611static int sigpipe [2]; 706static int sigpipe [2];
612static sig_atomic_t volatile gotsig; 707static sig_atomic_t volatile gotsig;
613static struct ev_io sigev; 708static ev_io sigev;
614 709
615static void 710void inline_size
616signals_init (ANSIG *base, int count) 711signals_init (ANSIG *base, int count)
617{ 712{
618 while (count--) 713 while (count--)
619 { 714 {
620 base->head = 0; 715 base->head = 0;
640 write (sigpipe [1], &signum, 1); 735 write (sigpipe [1], &signum, 1);
641 errno = old_errno; 736 errno = old_errno;
642 } 737 }
643} 738}
644 739
645void 740void noinline
646ev_feed_signal_event (EV_P_ int signum) 741ev_feed_signal_event (EV_P_ int signum)
647{ 742{
648 WL w; 743 WL w;
649 744
650#if EV_MULTIPLICITY 745#if EV_MULTIPLICITY
661 for (w = signals [signum].head; w; w = w->next) 756 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663} 758}
664 759
665static void 760static void
666sigcb (EV_P_ struct ev_io *iow, int revents) 761sigcb (EV_P_ ev_io *iow, int revents)
667{ 762{
668 int signum; 763 int signum;
669 764
670 read (sigpipe [0], &revents, 1); 765 read (sigpipe [0], &revents, 1);
671 gotsig = 0; 766 gotsig = 0;
673 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
676} 771}
677 772
678static void 773void inline_speed
679fd_intern (int fd) 774fd_intern (int fd)
680{ 775{
681#ifdef _WIN32 776#ifdef _WIN32
682 int arg = 1; 777 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 780 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 781 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 782#endif
688} 783}
689 784
690static void 785static void noinline
691siginit (EV_P) 786siginit (EV_P)
692{ 787{
693 fd_intern (sigpipe [0]); 788 fd_intern (sigpipe [0]);
694 fd_intern (sigpipe [1]); 789 fd_intern (sigpipe [1]);
695 790
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
699} 794}
700 795
701/*****************************************************************************/ 796/*****************************************************************************/
702 797
703static struct ev_child *childs [PID_HASHSIZE]; 798static WL childs [EV_PID_HASHSIZE];
704 799
705#ifndef _WIN32 800#ifndef _WIN32
706 801
707static struct ev_signal childev; 802static ev_signal childev;
803
804void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
806{
807 ev_child *w;
808
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
810 if (w->pid == pid || !w->pid)
811 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
813 w->rpid = pid;
814 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 }
817}
708 818
709#ifndef WCONTINUED 819#ifndef WCONTINUED
710# define WCONTINUED 0 820# define WCONTINUED 0
711#endif 821#endif
712 822
713static void 823static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 824childcb (EV_P_ ev_signal *sw, int revents)
730{ 825{
731 int pid, status; 826 int pid, status;
732 827
828 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 829 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 830 if (!WCONTINUED
831 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return;
834
735 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 836 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 838
739 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 842}
743 843
744#endif 844#endif
745 845
746/*****************************************************************************/ 846/*****************************************************************************/
772{ 872{
773 return EV_VERSION_MINOR; 873 return EV_VERSION_MINOR;
774} 874}
775 875
776/* return true if we are running with elevated privileges and should ignore env variables */ 876/* return true if we are running with elevated privileges and should ignore env variables */
777static int 877int inline_size
778enable_secure (void) 878enable_secure (void)
779{ 879{
780#ifdef _WIN32 880#ifdef _WIN32
781 return 0; 881 return 0;
782#else 882#else
816 916
817 return flags; 917 return flags;
818} 918}
819 919
820unsigned int 920unsigned int
921ev_embeddable_backends (void)
922{
923 return EVBACKEND_EPOLL
924 | EVBACKEND_KQUEUE
925 | EVBACKEND_PORT;
926}
927
928unsigned int
821ev_backend (EV_P) 929ev_backend (EV_P)
822{ 930{
823 return backend; 931 return backend;
824} 932}
825 933
826static void 934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
827loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
828{ 942{
829 if (!backend) 943 if (!backend)
830 { 944 {
831#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
839 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
840 mn_now = get_clock (); 954 mn_now = get_clock ();
841 now_floor = mn_now; 955 now_floor = mn_now;
842 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
843 957
958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
844 if (!(flags & EVFLAG_NOENV) 964 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 965 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 966 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
848 968
849 if (!(flags & 0x0000ffffUL)) 969 if (!(flags & 0x0000ffffUL))
850 flags |= ev_recommended_backends (); 970 flags |= ev_recommended_backends ();
851 971
852 backend = 0; 972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977
853#if EV_USE_PORT 978#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 980#endif
856#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
869 ev_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
871 } 996 }
872} 997}
873 998
874static void 999static void noinline
875loop_destroy (EV_P) 1000loop_destroy (EV_P)
876{ 1001{
877 int i; 1002 int i;
1003
1004#if EV_USE_INOTIFY
1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
878 1011
879#if EV_USE_PORT 1012#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 1014#endif
882#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
891#if EV_USE_SELECT 1024#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 1026#endif
894 1027
895 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
896 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
897 1035
898 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
901#if EV_PERIODICS 1039#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
903#endif 1041#endif
904 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
907 1044
908 backend = 0; 1045 backend = 0;
909} 1046}
910 1047
911static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
912loop_fork (EV_P) 1051loop_fork (EV_P)
913{ 1052{
914#if EV_USE_PORT 1053#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 1055#endif
917#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 1058#endif
920#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1061#endif
1062#if EV_USE_INOTIFY
1063 infy_fork (EV_A);
922#endif 1064#endif
923 1065
924 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
925 { 1067 {
926 /* default loop */ 1068 /* default loop */
1042 postfork = 1; 1184 postfork = 1;
1043} 1185}
1044 1186
1045/*****************************************************************************/ 1187/*****************************************************************************/
1046 1188
1047static int 1189void
1048any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1049{ 1191{
1050 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057} 1193}
1058 1194
1059inline void 1195void inline_speed
1060call_pending (EV_P) 1196call_pending (EV_P)
1061{ 1197{
1062 int pri; 1198 int pri;
1063 1199
1064 for (pri = NUMPRI; pri--; ) 1200 for (pri = NUMPRI; pri--; )
1066 { 1202 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1204
1069 if (expect_true (p->w)) 1205 if (expect_true (p->w))
1070 { 1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
1071 p->w->pending = 0; 1209 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
1073 } 1211 }
1074 } 1212 }
1075} 1213}
1076 1214
1077inline void 1215void inline_size
1078timers_reify (EV_P) 1216timers_reify (EV_P)
1079{ 1217{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1219 {
1082 struct ev_timer *w = timers [0]; 1220 ev_timer *w = (ev_timer *)timers [0];
1083 1221
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1085 1223
1086 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1087 if (w->repeat) 1225 if (w->repeat)
1088 { 1226 {
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 1228
1091 ((WT)w)->at += w->repeat; 1229 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now) 1230 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now; 1231 ((WT)w)->at = mn_now;
1094 1232
1095 downheap ((WT *)timers, timercnt, 0); 1233 downheap (timers, timercnt, 0);
1096 } 1234 }
1097 else 1235 else
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 1237
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1239 }
1102} 1240}
1103 1241
1104#if EV_PERIODICS 1242#if EV_PERIODIC_ENABLE
1105inline void 1243void inline_size
1106periodics_reify (EV_P) 1244periodics_reify (EV_P)
1107{ 1245{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1247 {
1110 struct ev_periodic *w = periodics [0]; 1248 ev_periodic *w = (ev_periodic *)periodics [0];
1111 1249
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 1251
1114 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1116 { 1254 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap (periodics, periodiccnt, 0);
1120 } 1258 }
1121 else if (w->interval) 1259 else if (w->interval)
1122 { 1260 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1126 } 1265 }
1127 else 1266 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 1268
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1270 }
1132} 1271}
1133 1272
1134static void 1273static void noinline
1135periodics_reschedule (EV_P) 1274periodics_reschedule (EV_P)
1136{ 1275{
1137 int i; 1276 int i;
1138 1277
1139 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1141 { 1280 {
1142 struct ev_periodic *w = periodics [i]; 1281 ev_periodic *w = (ev_periodic *)periodics [i];
1143 1282
1144 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1285 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1148 } 1287 }
1149 1288
1150 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap (periodics, periodiccnt, i);
1153} 1292}
1154#endif 1293#endif
1155 1294
1156inline int 1295#if EV_IDLE_ENABLE
1157time_update_monotonic (EV_P) 1296void inline_size
1297idle_reify (EV_P)
1158{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1159 mn_now = get_clock (); 1328 mn_now = get_clock ();
1160 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 { 1333 {
1163 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1164 return 0; 1335 return;
1165 } 1336 }
1166 else 1337
1167 {
1168 now_floor = mn_now; 1338 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 1340
1174inline void 1341 /* loop a few times, before making important decisions.
1175time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1176{ 1343 * in case we get preempted during the calls to
1177 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1178 1345 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1181 { 1348 */
1182 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1183 { 1350 {
1184 ev_tstamp odiff = rtmn_diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1189 1352
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1354 return; /* all is well */
1192 1355
1193 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1357 mn_now = get_clock ();
1195 now_floor = mn_now; 1358 now_floor = mn_now;
1196 } 1359 }
1197 1360
1198# if EV_PERIODICS 1361# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A);
1363# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 }
1367 else
1368#endif
1369 {
1370 ev_rt_now = ev_time ();
1371
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 {
1374#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1200# endif 1376#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1217 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 } 1380 }
1220 1381
1221 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1237static int loop_done; 1398static int loop_done;
1238 1399
1239void 1400void
1240ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1241{ 1402{
1242 double block;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1244 1406
1245 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1246 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1247 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1249 { 1432 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1434 call_pending (EV_A);
1252 } 1435 }
1253 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1254 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1256 loop_fork (EV_A); 1442 loop_fork (EV_A);
1257 1443
1258 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1445 fd_reify (EV_A);
1260 1446
1261 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1262 1450
1263 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1264 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1265#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A);
1268 else 1453 else
1269#endif
1270 { 1454 {
1271 ev_rt_now = ev_time (); 1455 /* update time to cancel out callback processing overhead */
1272 mn_now = ev_rt_now; 1456 time_update (EV_A_ 1e100);
1273 }
1274 1457
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1280 1459
1281 if (timercnt) 1460 if (timercnt)
1282 { 1461 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1463 if (block > to) block = to;
1285 } 1464 }
1286 1465
1287#if EV_PERIODICS 1466#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1467 if (periodiccnt)
1289 { 1468 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1470 if (block > to) block = to;
1292 } 1471 }
1293#endif 1472#endif
1294 1473
1295 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1296 } 1475 }
1297 1476
1477 ++loop_count;
1298 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1299 1479
1300 /* update ev_rt_now, do magic */ 1480 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1481 time_update (EV_A_ block);
1482 }
1302 1483
1303 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1486#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1488#endif
1308 1489
1490#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 1491 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1312 1494
1313 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1316 1498
1317 call_pending (EV_A); 1499 call_pending (EV_A);
1318 1500
1319 if (expect_false (loop_done))
1320 break;
1321 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1322 1503
1323 if (loop_done != 2) 1504 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1505 loop_done = EVUNLOOP_CANCEL;
1325} 1506}
1326 1507
1327void 1508void
1328ev_unloop (EV_P_ int how) 1509ev_unloop (EV_P_ int how)
1329{ 1510{
1330 loop_done = how; 1511 loop_done = how;
1331} 1512}
1332 1513
1333/*****************************************************************************/ 1514/*****************************************************************************/
1334 1515
1335inline void 1516void inline_size
1336wlist_add (WL *head, WL elem) 1517wlist_add (WL *head, WL elem)
1337{ 1518{
1338 elem->next = *head; 1519 elem->next = *head;
1339 *head = elem; 1520 *head = elem;
1340} 1521}
1341 1522
1342inline void 1523void inline_size
1343wlist_del (WL *head, WL elem) 1524wlist_del (WL *head, WL elem)
1344{ 1525{
1345 while (*head) 1526 while (*head)
1346 { 1527 {
1347 if (*head == elem) 1528 if (*head == elem)
1352 1533
1353 head = &(*head)->next; 1534 head = &(*head)->next;
1354 } 1535 }
1355} 1536}
1356 1537
1357inline void 1538void inline_speed
1358ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1359{ 1540{
1360 if (w->pending) 1541 if (w->pending)
1361 { 1542 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1544 w->pending = 0;
1364 } 1545 }
1365} 1546}
1366 1547
1367inline void 1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1574void inline_speed
1368ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1369{ 1576{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 1578 w->active = active;
1374 ev_ref (EV_A); 1579 ev_ref (EV_A);
1375} 1580}
1376 1581
1377inline void 1582void inline_size
1378ev_stop (EV_P_ W w) 1583ev_stop (EV_P_ W w)
1379{ 1584{
1380 ev_unref (EV_A); 1585 ev_unref (EV_A);
1381 w->active = 0; 1586 w->active = 0;
1382} 1587}
1383 1588
1384/*****************************************************************************/ 1589/*****************************************************************************/
1385 1590
1386void 1591void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1388{ 1593{
1389 int fd = w->fd; 1594 int fd = w->fd;
1390 1595
1391 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1392 return; 1597 return;
1393 1598
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1395 1600
1396 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add (&anfds[fd].head, (WL)w);
1399 1604
1400 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET);
1606 w->events &= ~ EV_IOFDSET;
1401} 1607}
1402 1608
1403void 1609void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 1610ev_io_stop (EV_P_ ev_io *w)
1405{ 1611{
1406 ev_clear_pending (EV_A_ (W)w); 1612 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1613 if (expect_false (!ev_is_active (w)))
1408 return; 1614 return;
1409 1615
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 1617
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1618 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 1619 ev_stop (EV_A_ (W)w);
1414 1620
1415 fd_change (EV_A_ w->fd); 1621 fd_change (EV_A_ w->fd, 0);
1416} 1622}
1417 1623
1418void 1624void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 1625ev_timer_start (EV_P_ ev_timer *w)
1420{ 1626{
1421 if (expect_false (ev_is_active (w))) 1627 if (expect_false (ev_is_active (w)))
1422 return; 1628 return;
1423 1629
1424 ((WT)w)->at += mn_now; 1630 ((WT)w)->at += mn_now;
1425 1631
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1633
1428 ev_start (EV_A_ (W)w, ++timercnt); 1634 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1636 timers [timercnt - 1] = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 1637 upheap (timers, timercnt - 1);
1432 1638
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1434} 1640}
1435 1641
1436void 1642void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1643ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1644{
1439 ev_clear_pending (EV_A_ (W)w); 1645 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1646 if (expect_false (!ev_is_active (w)))
1441 return; 1647 return;
1442 1648
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1444 1650
1651 {
1652 int active = ((W)w)->active;
1653
1445 if (expect_true (((W)w)->active < timercnt--)) 1654 if (expect_true (--active < --timercnt))
1446 { 1655 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 1656 timers [active] = timers [timercnt];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1657 adjustheap (timers, timercnt, active);
1449 } 1658 }
1659 }
1450 1660
1451 ((WT)w)->at -= mn_now; 1661 ((WT)w)->at -= mn_now;
1452 1662
1453 ev_stop (EV_A_ (W)w); 1663 ev_stop (EV_A_ (W)w);
1454} 1664}
1455 1665
1456void 1666void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 1667ev_timer_again (EV_P_ ev_timer *w)
1458{ 1668{
1459 if (ev_is_active (w)) 1669 if (ev_is_active (w))
1460 { 1670 {
1461 if (w->repeat) 1671 if (w->repeat)
1462 { 1672 {
1463 ((WT)w)->at = mn_now + w->repeat; 1673 ((WT)w)->at = mn_now + w->repeat;
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1674 adjustheap (timers, timercnt, ((W)w)->active - 1);
1465 } 1675 }
1466 else 1676 else
1467 ev_timer_stop (EV_A_ w); 1677 ev_timer_stop (EV_A_ w);
1468 } 1678 }
1469 else if (w->repeat) 1679 else if (w->repeat)
1471 w->at = w->repeat; 1681 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1682 ev_timer_start (EV_A_ w);
1473 } 1683 }
1474} 1684}
1475 1685
1476#if EV_PERIODICS 1686#if EV_PERIODIC_ENABLE
1477void 1687void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1688ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1689{
1480 if (expect_false (ev_is_active (w))) 1690 if (expect_false (ev_is_active (w)))
1481 return; 1691 return;
1482 1692
1483 if (w->reschedule_cb) 1693 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 1695 else if (w->interval)
1486 { 1696 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1698 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1490 } 1700 }
1701 else
1702 ((WT)w)->at = w->offset;
1491 1703
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1704 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1706 periodics [periodiccnt - 1] = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1707 upheap (periodics, periodiccnt - 1);
1496 1708
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1498} 1710}
1499 1711
1500void 1712void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1713ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1714{
1503 ev_clear_pending (EV_A_ (W)w); 1715 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1716 if (expect_false (!ev_is_active (w)))
1505 return; 1717 return;
1506 1718
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1508 1720
1721 {
1722 int active = ((W)w)->active;
1723
1509 if (expect_true (((W)w)->active < periodiccnt--)) 1724 if (expect_true (--active < --periodiccnt))
1510 { 1725 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1726 periodics [active] = periodics [periodiccnt];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1727 adjustheap (periodics, periodiccnt, active);
1513 } 1728 }
1729 }
1514 1730
1515 ev_stop (EV_A_ (W)w); 1731 ev_stop (EV_A_ (W)w);
1516} 1732}
1517 1733
1518void 1734void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1735ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1736{
1521 /* TODO: use adjustheap and recalculation */ 1737 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1738 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1739 ev_periodic_start (EV_A_ w);
1524} 1740}
1525#endif 1741#endif
1526 1742
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 1743#ifndef SA_RESTART
1594# define SA_RESTART 0 1744# define SA_RESTART 0
1595#endif 1745#endif
1596 1746
1597void 1747void noinline
1598ev_signal_start (EV_P_ struct ev_signal *w) 1748ev_signal_start (EV_P_ ev_signal *w)
1599{ 1749{
1600#if EV_MULTIPLICITY 1750#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 1752#endif
1603 if (expect_false (ev_is_active (w))) 1753 if (expect_false (ev_is_active (w)))
1604 return; 1754 return;
1605 1755
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1607 1757
1758 {
1759#ifndef _WIN32
1760 sigset_t full, prev;
1761 sigfillset (&full);
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766
1767#ifndef _WIN32
1768 sigprocmask (SIG_SETMASK, &prev, 0);
1769#endif
1770 }
1771
1608 ev_start (EV_A_ (W)w, 1); 1772 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1611 1774
1612 if (!((WL)w)->next) 1775 if (!((WL)w)->next)
1613 { 1776 {
1614#if _WIN32 1777#if _WIN32
1615 signal (w->signum, sighandler); 1778 signal (w->signum, sighandler);
1621 sigaction (w->signum, &sa, 0); 1784 sigaction (w->signum, &sa, 0);
1622#endif 1785#endif
1623 } 1786 }
1624} 1787}
1625 1788
1626void 1789void noinline
1627ev_signal_stop (EV_P_ struct ev_signal *w) 1790ev_signal_stop (EV_P_ ev_signal *w)
1628{ 1791{
1629 ev_clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1631 return; 1794 return;
1632 1795
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1796 wlist_del (&signals [w->signum - 1].head, (WL)w);
1634 ev_stop (EV_A_ (W)w); 1797 ev_stop (EV_A_ (W)w);
1635 1798
1636 if (!signals [w->signum - 1].head) 1799 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 1800 signal (w->signum, SIG_DFL);
1638} 1801}
1639 1802
1640void 1803void
1641ev_child_start (EV_P_ struct ev_child *w) 1804ev_child_start (EV_P_ ev_child *w)
1642{ 1805{
1643#if EV_MULTIPLICITY 1806#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 1808#endif
1646 if (expect_false (ev_is_active (w))) 1809 if (expect_false (ev_is_active (w)))
1647 return; 1810 return;
1648 1811
1649 ev_start (EV_A_ (W)w, 1); 1812 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1651} 1814}
1652 1815
1653void 1816void
1654ev_child_stop (EV_P_ struct ev_child *w) 1817ev_child_stop (EV_P_ ev_child *w)
1655{ 1818{
1656 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 1820 if (expect_false (!ev_is_active (w)))
1658 return; 1821 return;
1659 1822
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 1824 ev_stop (EV_A_ (W)w);
1662} 1825}
1663 1826
1827#if EV_STAT_ENABLE
1828
1829# ifdef _WIN32
1830# undef lstat
1831# define lstat(a,b) _stati64 (a,b)
1832# endif
1833
1834#define DEF_STAT_INTERVAL 5.0074891
1835#define MIN_STAT_INTERVAL 0.1074891
1836
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838
1839#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192
1841
1842static void noinline
1843infy_add (EV_P_ ev_stat *w)
1844{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846
1847 if (w->wd < 0)
1848 {
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850
1851 /* monitor some parent directory for speedup hints */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 {
1854 char path [4096];
1855 strcpy (path, w->path);
1856
1857 do
1858 {
1859 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1860 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1861
1862 char *pend = strrchr (path, '/');
1863
1864 if (!pend)
1865 break; /* whoops, no '/', complain to your admin */
1866
1867 *pend = 0;
1868 w->wd = inotify_add_watch (fs_fd, path, mask);
1869 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 }
1872 }
1873 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1875
1876 if (w->wd >= 0)
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1878}
1879
1880static void noinline
1881infy_del (EV_P_ ev_stat *w)
1882{
1883 int slot;
1884 int wd = w->wd;
1885
1886 if (wd < 0)
1887 return;
1888
1889 w->wd = -2;
1890 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1891 wlist_del (&fs_hash [slot].head, (WL)w);
1892
1893 /* remove this watcher, if others are watching it, they will rearm */
1894 inotify_rm_watch (fs_fd, wd);
1895}
1896
1897static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{
1900 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev);
1904 else
1905 {
1906 WL w_;
1907
1908 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1909 {
1910 ev_stat *w = (ev_stat *)w_;
1911 w_ = w_->next; /* lets us remove this watcher and all before it */
1912
1913 if (w->wd == wd || wd == -1)
1914 {
1915 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1916 {
1917 w->wd = -1;
1918 infy_add (EV_A_ w); /* re-add, no matter what */
1919 }
1920
1921 stat_timer_cb (EV_A_ &w->timer, 0);
1922 }
1923 }
1924 }
1925}
1926
1927static void
1928infy_cb (EV_P_ ev_io *w, int revents)
1929{
1930 char buf [EV_INOTIFY_BUFSIZE];
1931 struct inotify_event *ev = (struct inotify_event *)buf;
1932 int ofs;
1933 int len = read (fs_fd, buf, sizeof (buf));
1934
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937}
1938
1939void inline_size
1940infy_init (EV_P)
1941{
1942 if (fs_fd != -2)
1943 return;
1944
1945 fs_fd = inotify_init ();
1946
1947 if (fs_fd >= 0)
1948 {
1949 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1950 ev_set_priority (&fs_w, EV_MAXPRI);
1951 ev_io_start (EV_A_ &fs_w);
1952 }
1953}
1954
1955void inline_size
1956infy_fork (EV_P)
1957{
1958 int slot;
1959
1960 if (fs_fd < 0)
1961 return;
1962
1963 close (fs_fd);
1964 fs_fd = inotify_init ();
1965
1966 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1967 {
1968 WL w_ = fs_hash [slot].head;
1969 fs_hash [slot].head = 0;
1970
1971 while (w_)
1972 {
1973 ev_stat *w = (ev_stat *)w_;
1974 w_ = w_->next; /* lets us add this watcher */
1975
1976 w->wd = -1;
1977
1978 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else
1981 ev_timer_start (EV_A_ &w->timer);
1982 }
1983
1984 }
1985}
1986
1987#endif
1988
1989void
1990ev_stat_stat (EV_P_ ev_stat *w)
1991{
1992 if (lstat (w->path, &w->attr) < 0)
1993 w->attr.st_nlink = 0;
1994 else if (!w->attr.st_nlink)
1995 w->attr.st_nlink = 1;
1996}
1997
1998static void noinline
1999stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2000{
2001 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2002
2003 /* we copy this here each the time so that */
2004 /* prev has the old value when the callback gets invoked */
2005 w->prev = w->attr;
2006 ev_stat_stat (EV_A_ w);
2007
2008 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2009 if (
2010 w->prev.st_dev != w->attr.st_dev
2011 || w->prev.st_ino != w->attr.st_ino
2012 || w->prev.st_mode != w->attr.st_mode
2013 || w->prev.st_nlink != w->attr.st_nlink
2014 || w->prev.st_uid != w->attr.st_uid
2015 || w->prev.st_gid != w->attr.st_gid
2016 || w->prev.st_rdev != w->attr.st_rdev
2017 || w->prev.st_size != w->attr.st_size
2018 || w->prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime
2021 ) {
2022 #if EV_USE_INOTIFY
2023 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */
2026 #endif
2027
2028 ev_feed_event (EV_A_ w, EV_STAT);
2029 }
2030}
2031
2032void
2033ev_stat_start (EV_P_ ev_stat *w)
2034{
2035 if (expect_false (ev_is_active (w)))
2036 return;
2037
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w);
2043
2044 if (w->interval < MIN_STAT_INTERVAL)
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2048 ev_set_priority (&w->timer, ev_priority (w));
2049
2050#if EV_USE_INOTIFY
2051 infy_init (EV_A);
2052
2053 if (fs_fd >= 0)
2054 infy_add (EV_A_ w);
2055 else
2056#endif
2057 ev_timer_start (EV_A_ &w->timer);
2058
2059 ev_start (EV_A_ (W)w, 1);
2060}
2061
2062void
2063ev_stat_stop (EV_P_ ev_stat *w)
2064{
2065 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w)))
2067 return;
2068
2069#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w);
2071#endif
2072 ev_timer_stop (EV_A_ &w->timer);
2073
2074 ev_stop (EV_A_ (W)w);
2075}
2076#endif
2077
2078#if EV_IDLE_ENABLE
2079void
2080ev_idle_start (EV_P_ ev_idle *w)
2081{
2082 if (expect_false (ev_is_active (w)))
2083 return;
2084
2085 pri_adjust (EV_A_ (W)w);
2086
2087 {
2088 int active = ++idlecnt [ABSPRI (w)];
2089
2090 ++idleall;
2091 ev_start (EV_A_ (W)w, active);
2092
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w;
2095 }
2096}
2097
2098void
2099ev_idle_stop (EV_P_ ev_idle *w)
2100{
2101 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w)))
2103 return;
2104
2105 {
2106 int active = ((W)w)->active;
2107
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2110
2111 ev_stop (EV_A_ (W)w);
2112 --idleall;
2113 }
2114}
2115#endif
2116
2117void
2118ev_prepare_start (EV_P_ ev_prepare *w)
2119{
2120 if (expect_false (ev_is_active (w)))
2121 return;
2122
2123 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w;
2126}
2127
2128void
2129ev_prepare_stop (EV_P_ ev_prepare *w)
2130{
2131 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w)))
2133 return;
2134
2135 {
2136 int active = ((W)w)->active;
2137 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active;
2139 }
2140
2141 ev_stop (EV_A_ (W)w);
2142}
2143
2144void
2145ev_check_start (EV_P_ ev_check *w)
2146{
2147 if (expect_false (ev_is_active (w)))
2148 return;
2149
2150 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w;
2153}
2154
2155void
2156ev_check_stop (EV_P_ ev_check *w)
2157{
2158 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w)))
2160 return;
2161
2162 {
2163 int active = ((W)w)->active;
2164 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active;
2166 }
2167
2168 ev_stop (EV_A_ (W)w);
2169}
2170
2171#if EV_EMBED_ENABLE
2172void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w)
2174{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK);
2176}
2177
2178static void
2179embed_cb (EV_P_ ev_io *io, int revents)
2180{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182
2183 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else
2186 ev_embed_sweep (loop, w);
2187}
2188
2189void
2190ev_embed_start (EV_P_ ev_embed *w)
2191{
2192 if (expect_false (ev_is_active (w)))
2193 return;
2194
2195 {
2196 struct ev_loop *loop = w->loop;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2199 }
2200
2201 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io);
2203
2204 ev_start (EV_A_ (W)w, 1);
2205}
2206
2207void
2208ev_embed_stop (EV_P_ ev_embed *w)
2209{
2210 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w)))
2212 return;
2213
2214 ev_io_stop (EV_A_ &w->io);
2215
2216 ev_stop (EV_A_ (W)w);
2217}
2218#endif
2219
2220#if EV_FORK_ENABLE
2221void
2222ev_fork_start (EV_P_ ev_fork *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w;
2230}
2231
2232void
2233ev_fork_stop (EV_P_ ev_fork *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247#endif
2248
1664/*****************************************************************************/ 2249/*****************************************************************************/
1665 2250
1666struct ev_once 2251struct ev_once
1667{ 2252{
1668 struct ev_io io; 2253 ev_io io;
1669 struct ev_timer to; 2254 ev_timer to;
1670 void (*cb)(int revents, void *arg); 2255 void (*cb)(int revents, void *arg);
1671 void *arg; 2256 void *arg;
1672}; 2257};
1673 2258
1674static void 2259static void
1683 2268
1684 cb (revents, arg); 2269 cb (revents, arg);
1685} 2270}
1686 2271
1687static void 2272static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 2273once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 2274{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 2276}
1692 2277
1693static void 2278static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 2279once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 2280{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 2282}
1698 2283
1699void 2284void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines