ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
212 335
213#ifdef _WIN32 336#ifdef _WIN32
214# include "ev_win32.c" 337# include "ev_win32.c"
215#endif 338#endif
216 339
217/*****************************************************************************/ 340/*****************************************************************************/
218 341
219static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
220 343
344void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 346{
223 syserr_cb = cb; 347 syserr_cb = cb;
224} 348}
225 349
226static void 350static void noinline
227syserr (const char *msg) 351syserr (const char *msg)
228{ 352{
229 if (!msg) 353 if (!msg)
230 msg = "(libev) system error"; 354 msg = "(libev) system error";
231 355
236 perror (msg); 360 perror (msg);
237 abort (); 361 abort ();
238 } 362 }
239} 363}
240 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
241static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 381
382void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 384{
245 alloc = cb; 385 alloc = cb;
246} 386}
247 387
248static void * 388inline_speed void *
249ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
250{ 390{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
252 392
253 if (!ptr && size) 393 if (!ptr && size)
254 { 394 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 396 abort ();
277typedef struct 417typedef struct
278{ 418{
279 W w; 419 W w;
280 int events; 420 int events;
281} ANPENDING; 421} ANPENDING;
422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
282 429
283#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
284 431
285 struct ev_loop 432 struct ev_loop
286 { 433 {
320 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 469#endif
323} 470}
324 471
325inline ev_tstamp 472ev_tstamp inline_size
326get_clock (void) 473get_clock (void)
327{ 474{
328#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
330 { 477 {
343{ 490{
344 return ev_rt_now; 491 return ev_rt_now;
345} 492}
346#endif 493#endif
347 494
348#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
349 549
350#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
352 { \ 552 { \
353 int newcnt = cur; \ 553 int ocur_ = (cur); \
354 do \ 554 (base) = (type *)array_realloc \
355 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 557 }
364 558
559#if 0
365#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 562 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 566 }
567#endif
372 568
373#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 571
376/*****************************************************************************/ 572/*****************************************************************************/
377 573
378static void 574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
379anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
380{ 604{
381 while (count--) 605 while (count--)
382 { 606 {
383 base->head = 0; 607 base->head = 0;
386 610
387 ++base; 611 ++base;
388 } 612 }
389} 613}
390 614
391void 615void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406}
407
408static void
409queue_events (EV_P_ W *events, int eventcnt, int type)
410{
411 int i;
412
413 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type);
415}
416
417inline void
418fd_event (EV_P_ int fd, int revents) 616fd_event (EV_P_ int fd, int revents)
419{ 617{
420 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 619 ev_io *w;
422 620
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 622 {
425 int ev = w->events & revents; 623 int ev = w->events & revents;
426 624
427 if (ev) 625 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
430} 628}
431 629
432void 630void
433ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 632{
633 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
436} 635}
437 636
438/*****************************************************************************/ 637void inline_size
439
440inline void
441fd_reify (EV_P) 638fd_reify (EV_P)
442{ 639{
443 int i; 640 int i;
444 641
445 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
446 { 643 {
447 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 646 ev_io *w;
450 647
451 int events = 0; 648 unsigned char events = 0;
452 649
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 651 events |= (unsigned char)w->events;
455 652
456#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
457 if (events) 654 if (events)
458 { 655 {
459 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
460 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 } 663 }
463#endif 664#endif
464 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
465 anfd->reify = 0; 670 anfd->reify = 0;
466
467 backend_modify (EV_A_ fd, anfd->events, events);
468 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
469 } 676 }
470 677
471 fdchangecnt = 0; 678 fdchangecnt = 0;
472} 679}
473 680
474static void 681void inline_size
475fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
476{ 683{
477 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
481 686
687 if (expect_true (!reify))
688 {
482 ++fdchangecnt; 689 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
485} 693}
486 694
487static void 695void inline_speed
488fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
489{ 697{
490 struct ev_io *w; 698 ev_io *w;
491 699
492 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
493 { 701 {
494 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 704 }
497} 705}
498 706
499inline int 707int inline_size
500fd_valid (int fd) 708fd_valid (int fd)
501{ 709{
502#ifdef _WIN32 710#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 711 return _get_osfhandle (fd) != -1;
504#else 712#else
505 return fcntl (fd, F_GETFD) != -1; 713 return fcntl (fd, F_GETFD) != -1;
506#endif 714#endif
507} 715}
508 716
509/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
510static void 718static void noinline
511fd_ebadf (EV_P) 719fd_ebadf (EV_P)
512{ 720{
513 int fd; 721 int fd;
514 722
515 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
518 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
519} 727}
520 728
521/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 730static void noinline
523fd_enomem (EV_P) 731fd_enomem (EV_P)
524{ 732{
525 int fd; 733 int fd;
526 734
527 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
531 return; 739 return;
532 } 740 }
533} 741}
534 742
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 744static void noinline
537fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
538{ 746{
539 int fd; 747 int fd;
540 748
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 750 if (anfds [fd].events)
544 { 751 {
545 anfds [fd].events = 0; 752 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
547 } 754 }
548} 755}
549 756
550/*****************************************************************************/ 757/*****************************************************************************/
551 758
552static void 759/* towards the root */
760void inline_speed
553upheap (WT *heap, int k) 761upheap (WT *heap, int k)
554{ 762{
555 WT w = heap [k]; 763 WT w = heap [k];
556 764
557 while (k && heap [k >> 1]->at > w->at) 765 while (k)
558 { 766 {
767 int p = (k - 1) >> 1;
768
769 if (heap [p]->at <= w->at)
770 break;
771
559 heap [k] = heap [k >> 1]; 772 heap [k] = heap [p];
560 ((W)heap [k])->active = k + 1; 773 ((W)heap [k])->active = k + 1;
561 k >>= 1; 774 k = p;
562 } 775 }
563 776
564 heap [k] = w; 777 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
566
567} 779}
568 780
569static void 781/* away from the root */
782void inline_speed
570downheap (WT *heap, int N, int k) 783downheap (WT *heap, int N, int k)
571{ 784{
572 WT w = heap [k]; 785 WT w = heap [k];
573 786
574 while (k < (N >> 1)) 787 for (;;)
575 { 788 {
576 int j = k << 1; 789 int c = (k << 1) + 1;
577 790
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 791 if (c >= N)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break; 792 break;
583 793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
584 heap [k] = heap [j]; 800 heap [k] = heap [c];
585 ((W)heap [k])->active = k + 1; 801 ((W)heap [k])->active = k + 1;
802
586 k = j; 803 k = c;
587 } 804 }
588 805
589 heap [k] = w; 806 heap [k] = w;
590 ((W)heap [k])->active = k + 1; 807 ((W)heap [k])->active = k + 1;
591} 808}
592 809
593inline void 810void inline_size
594adjustheap (WT *heap, int N, int k) 811adjustheap (WT *heap, int N, int k)
595{ 812{
596 upheap (heap, k); 813 upheap (heap, k);
597 downheap (heap, N, k); 814 downheap (heap, N, k);
598} 815}
600/*****************************************************************************/ 817/*****************************************************************************/
601 818
602typedef struct 819typedef struct
603{ 820{
604 WL head; 821 WL head;
605 sig_atomic_t volatile gotsig; 822 EV_ATOMIC_T gotsig;
606} ANSIG; 823} ANSIG;
607 824
608static ANSIG *signals; 825static ANSIG *signals;
609static int signalmax; 826static int signalmax;
610 827
611static int sigpipe [2]; 828static EV_ATOMIC_T gotsig;
612static sig_atomic_t volatile gotsig;
613static struct ev_io sigev;
614 829
615static void 830void inline_size
616signals_init (ANSIG *base, int count) 831signals_init (ANSIG *base, int count)
617{ 832{
618 while (count--) 833 while (count--)
619 { 834 {
620 base->head = 0; 835 base->head = 0;
622 837
623 ++base; 838 ++base;
624 } 839 }
625} 840}
626 841
627static void 842/*****************************************************************************/
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633 843
634 signals [signum - 1].gotsig = 1; 844void inline_speed
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ struct ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 845fd_intern (int fd)
680{ 846{
681#ifdef _WIN32 847#ifdef _WIN32
682 int arg = 1; 848 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 851 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 852 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 853#endif
688} 854}
689 855
856static void noinline
857evpipe_init (EV_P)
858{
859 if (!ev_is_active (&pipeev))
860 {
861#if EV_USE_EVENTFD
862 if ((evfd = eventfd (0, 0)) >= 0)
863 {
864 evpipe [0] = -1;
865 fd_intern (evfd);
866 ev_io_set (&pipeev, evfd, EV_READ);
867 }
868 else
869#endif
870 {
871 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe");
873
874 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ);
877 }
878
879 ev_io_start (EV_A_ &pipeev);
880 ev_unref (EV_A); /* watcher should not keep loop alive */
881 }
882}
883
884void inline_size
885evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{
887 if (!*flag)
888 {
889 int old_errno = errno; /* save errno because write might clobber it */
890
891 *flag = 1;
892
893#if EV_USE_EVENTFD
894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 write (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 write (evpipe [1], &old_errno, 1);
902
903 errno = old_errno;
904 }
905}
906
690static void 907static void
691siginit (EV_P) 908pipecb (EV_P_ ev_io *iow, int revents)
692{ 909{
693 fd_intern (sigpipe [0]); 910#if EV_USE_EVENTFD
694 fd_intern (sigpipe [1]); 911 if (evfd >= 0)
912 {
913 uint64_t counter = 1;
914 read (evfd, &counter, sizeof (uint64_t));
915 }
916 else
917#endif
918 {
919 char dummy;
920 read (evpipe [0], &dummy, 1);
921 }
695 922
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 923 if (gotsig && ev_is_default_loop (EV_A))
697 ev_io_start (EV_A_ &sigev); 924 {
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 925 int signum;
926 gotsig = 0;
927
928 for (signum = signalmax; signum--; )
929 if (signals [signum].gotsig)
930 ev_feed_signal_event (EV_A_ signum + 1);
931 }
932
933#if EV_ASYNC_ENABLE
934 if (gotasync)
935 {
936 int i;
937 gotasync = 0;
938
939 for (i = asynccnt; i--; )
940 if (asyncs [i]->sent)
941 {
942 asyncs [i]->sent = 0;
943 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
944 }
945 }
946#endif
699} 947}
700 948
701/*****************************************************************************/ 949/*****************************************************************************/
702 950
703static struct ev_child *childs [PID_HASHSIZE]; 951static void
952ev_sighandler (int signum)
953{
954#if EV_MULTIPLICITY
955 struct ev_loop *loop = &default_loop_struct;
956#endif
957
958#if _WIN32
959 signal (signum, ev_sighandler);
960#endif
961
962 signals [signum - 1].gotsig = 1;
963 evpipe_write (EV_A_ &gotsig);
964}
965
966void noinline
967ev_feed_signal_event (EV_P_ int signum)
968{
969 WL w;
970
971#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif
974
975 --signum;
976
977 if (signum < 0 || signum >= signalmax)
978 return;
979
980 signals [signum].gotsig = 0;
981
982 for (w = signals [signum].head; w; w = w->next)
983 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
984}
985
986/*****************************************************************************/
987
988static WL childs [EV_PID_HASHSIZE];
704 989
705#ifndef _WIN32 990#ifndef _WIN32
706 991
707static struct ev_signal childev; 992static ev_signal childev;
993
994#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0
996#endif
997
998void inline_speed
999child_reap (EV_P_ int chain, int pid, int status)
1000{
1001 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003
1004 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1005 {
1006 if ((w->pid == pid || !w->pid)
1007 && (!traced || (w->flags & 1)))
1008 {
1009 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1010 w->rpid = pid;
1011 w->rstatus = status;
1012 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1013 }
1014 }
1015}
708 1016
709#ifndef WCONTINUED 1017#ifndef WCONTINUED
710# define WCONTINUED 0 1018# define WCONTINUED 0
711#endif 1019#endif
712 1020
713static void 1021static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 1022childcb (EV_P_ ev_signal *sw, int revents)
730{ 1023{
731 int pid, status; 1024 int pid, status;
732 1025
1026 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1027 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1028 if (!WCONTINUED
1029 || errno != EINVAL
1030 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1031 return;
1032
735 /* make sure we are called again until all childs have been reaped */ 1033 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1034 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1035 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1036
739 child_reap (EV_A_ sw, pid, pid, status); 1037 child_reap (EV_A_ pid, pid, status);
1038 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1039 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1040}
743 1041
744#endif 1042#endif
745 1043
746/*****************************************************************************/ 1044/*****************************************************************************/
772{ 1070{
773 return EV_VERSION_MINOR; 1071 return EV_VERSION_MINOR;
774} 1072}
775 1073
776/* return true if we are running with elevated privileges and should ignore env variables */ 1074/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1075int inline_size
778enable_secure (void) 1076enable_secure (void)
779{ 1077{
780#ifdef _WIN32 1078#ifdef _WIN32
781 return 0; 1079 return 0;
782#else 1080#else
816 1114
817 return flags; 1115 return flags;
818} 1116}
819 1117
820unsigned int 1118unsigned int
1119ev_embeddable_backends (void)
1120{
1121 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1122
1123 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1124 /* please fix it and tell me how to detect the fix */
1125 flags &= ~EVBACKEND_EPOLL;
1126
1127 return flags;
1128}
1129
1130unsigned int
821ev_backend (EV_P) 1131ev_backend (EV_P)
822{ 1132{
823 return backend; 1133 return backend;
824} 1134}
825 1135
826static void 1136unsigned int
1137ev_loop_count (EV_P)
1138{
1139 return loop_count;
1140}
1141
1142void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{
1145 io_blocktime = interval;
1146}
1147
1148void
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 timeout_blocktime = interval;
1152}
1153
1154static void noinline
827loop_init (EV_P_ unsigned int flags) 1155loop_init (EV_P_ unsigned int flags)
828{ 1156{
829 if (!backend) 1157 if (!backend)
830 { 1158 {
831#if EV_USE_MONOTONIC 1159#if EV_USE_MONOTONIC
834 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
835 have_monotonic = 1; 1163 have_monotonic = 1;
836 } 1164 }
837#endif 1165#endif
838 1166
839 ev_rt_now = ev_time (); 1167 ev_rt_now = ev_time ();
840 mn_now = get_clock (); 1168 mn_now = get_clock ();
841 now_floor = mn_now; 1169 now_floor = mn_now;
842 rtmn_diff = ev_rt_now - mn_now; 1170 rtmn_diff = ev_rt_now - mn_now;
1171
1172 io_blocktime = 0.;
1173 timeout_blocktime = 0.;
1174 backend = 0;
1175 backend_fd = -1;
1176 gotasync = 0;
1177#if EV_USE_INOTIFY
1178 fs_fd = -2;
1179#endif
1180
1181 /* pid check not overridable via env */
1182#ifndef _WIN32
1183 if (flags & EVFLAG_FORKCHECK)
1184 curpid = getpid ();
1185#endif
843 1186
844 if (!(flags & EVFLAG_NOENV) 1187 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 1188 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 1189 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 1190 flags = atoi (getenv ("LIBEV_FLAGS"));
848 1191
849 if (!(flags & 0x0000ffffUL)) 1192 if (!(flags & 0x0000ffffU))
850 flags |= ev_recommended_backends (); 1193 flags |= ev_recommended_backends ();
851 1194
852 backend = 0;
853#if EV_USE_PORT 1195#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1196 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 1197#endif
856#if EV_USE_KQUEUE 1198#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1199 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864#endif 1206#endif
865#if EV_USE_SELECT 1207#if EV_USE_SELECT
866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
867#endif 1209#endif
868 1210
869 ev_init (&sigev, sigcb); 1211 ev_init (&pipeev, pipecb);
870 ev_set_priority (&sigev, EV_MAXPRI); 1212 ev_set_priority (&pipeev, EV_MAXPRI);
871 } 1213 }
872} 1214}
873 1215
874static void 1216static void noinline
875loop_destroy (EV_P) 1217loop_destroy (EV_P)
876{ 1218{
877 int i; 1219 int i;
1220
1221 if (ev_is_active (&pipeev))
1222 {
1223 ev_ref (EV_A); /* signal watcher */
1224 ev_io_stop (EV_A_ &pipeev);
1225
1226#if EV_USE_EVENTFD
1227 if (evfd >= 0)
1228 close (evfd);
1229#endif
1230
1231 if (evpipe [0] >= 0)
1232 {
1233 close (evpipe [0]);
1234 close (evpipe [1]);
1235 }
1236 }
1237
1238#if EV_USE_INOTIFY
1239 if (fs_fd >= 0)
1240 close (fs_fd);
1241#endif
1242
1243 if (backend_fd >= 0)
1244 close (backend_fd);
878 1245
879#if EV_USE_PORT 1246#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1247 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 1248#endif
882#if EV_USE_KQUEUE 1249#if EV_USE_KQUEUE
891#if EV_USE_SELECT 1258#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1259 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 1260#endif
894 1261
895 for (i = NUMPRI; i--; ) 1262 for (i = NUMPRI; i--; )
1263 {
896 array_free (pending, [i]); 1264 array_free (pending, [i]);
1265#if EV_IDLE_ENABLE
1266 array_free (idle, [i]);
1267#endif
1268 }
1269
1270 ev_free (anfds); anfdmax = 0;
897 1271
898 /* have to use the microsoft-never-gets-it-right macro */ 1272 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0); 1273 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 1274 array_free (timer, EMPTY);
901#if EV_PERIODICS 1275#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 1276 array_free (periodic, EMPTY);
903#endif 1277#endif
1278#if EV_FORK_ENABLE
904 array_free (idle, EMPTY0); 1279 array_free (fork, EMPTY);
1280#endif
905 array_free (prepare, EMPTY0); 1281 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 1282 array_free (check, EMPTY);
1283#if EV_ASYNC_ENABLE
1284 array_free (async, EMPTY);
1285#endif
907 1286
908 backend = 0; 1287 backend = 0;
909} 1288}
910 1289
911static void 1290#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P);
1292#endif
1293
1294void inline_size
912loop_fork (EV_P) 1295loop_fork (EV_P)
913{ 1296{
914#if EV_USE_PORT 1297#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 1299#endif
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1301 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 1302#endif
920#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1304 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
922#endif 1305#endif
1306#if EV_USE_INOTIFY
1307 infy_fork (EV_A);
1308#endif
923 1309
924 if (ev_is_active (&sigev)) 1310 if (ev_is_active (&pipeev))
925 { 1311 {
926 /* default loop */ 1312 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */
1314 gotsig = 1;
1315#if EV_ASYNC_ENABLE
1316 gotasync = 1;
1317#endif
927 1318
928 ev_ref (EV_A); 1319 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev); 1320 ev_io_stop (EV_A_ &pipeev);
1321
1322#if EV_USE_EVENTFD
1323 if (evfd >= 0)
1324 close (evfd);
1325#endif
1326
1327 if (evpipe [0] >= 0)
1328 {
930 close (sigpipe [0]); 1329 close (evpipe [0]);
931 close (sigpipe [1]); 1330 close (evpipe [1]);
1331 }
932 1332
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A); 1333 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ);
937 } 1336 }
938 1337
939 postfork = 0; 1338 postfork = 0;
940} 1339}
941 1340
963} 1362}
964 1363
965void 1364void
966ev_loop_fork (EV_P) 1365ev_loop_fork (EV_P)
967{ 1366{
968 postfork = 1; 1367 postfork = 1; /* must be in line with ev_default_fork */
969} 1368}
970 1369
971#endif 1370#endif
972 1371
973#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
976#else 1375#else
977int 1376int
978ev_default_loop (unsigned int flags) 1377ev_default_loop (unsigned int flags)
979#endif 1378#endif
980{ 1379{
981 if (sigpipe [0] == sigpipe [1])
982 if (pipe (sigpipe))
983 return 0;
984
985 if (!ev_default_loop_ptr) 1380 if (!ev_default_loop_ptr)
986 { 1381 {
987#if EV_MULTIPLICITY 1382#if EV_MULTIPLICITY
988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1383 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
989#else 1384#else
992 1387
993 loop_init (EV_A_ flags); 1388 loop_init (EV_A_ flags);
994 1389
995 if (ev_backend (EV_A)) 1390 if (ev_backend (EV_A))
996 { 1391 {
997 siginit (EV_A);
998
999#ifndef _WIN32 1392#ifndef _WIN32
1000 ev_signal_init (&childev, childcb, SIGCHLD); 1393 ev_signal_init (&childev, childcb, SIGCHLD);
1001 ev_set_priority (&childev, EV_MAXPRI); 1394 ev_set_priority (&childev, EV_MAXPRI);
1002 ev_signal_start (EV_A_ &childev); 1395 ev_signal_start (EV_A_ &childev);
1003 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1396 ev_unref (EV_A); /* child watcher should not keep loop alive */
1020#ifndef _WIN32 1413#ifndef _WIN32
1021 ev_ref (EV_A); /* child watcher */ 1414 ev_ref (EV_A); /* child watcher */
1022 ev_signal_stop (EV_A_ &childev); 1415 ev_signal_stop (EV_A_ &childev);
1023#endif 1416#endif
1024 1417
1025 ev_ref (EV_A); /* signal watcher */
1026 ev_io_stop (EV_A_ &sigev);
1027
1028 close (sigpipe [0]); sigpipe [0] = 0;
1029 close (sigpipe [1]); sigpipe [1] = 0;
1030
1031 loop_destroy (EV_A); 1418 loop_destroy (EV_A);
1032} 1419}
1033 1420
1034void 1421void
1035ev_default_fork (void) 1422ev_default_fork (void)
1037#if EV_MULTIPLICITY 1424#if EV_MULTIPLICITY
1038 struct ev_loop *loop = ev_default_loop_ptr; 1425 struct ev_loop *loop = ev_default_loop_ptr;
1039#endif 1426#endif
1040 1427
1041 if (backend) 1428 if (backend)
1042 postfork = 1; 1429 postfork = 1; /* must be in line with ev_loop_fork */
1043} 1430}
1044 1431
1045/*****************************************************************************/ 1432/*****************************************************************************/
1046 1433
1047static int 1434void
1048any_pending (EV_P) 1435ev_invoke (EV_P_ void *w, int revents)
1049{ 1436{
1050 int pri; 1437 EV_CB_INVOKE ((W)w, revents);
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057} 1438}
1058 1439
1059inline void 1440void inline_speed
1060call_pending (EV_P) 1441call_pending (EV_P)
1061{ 1442{
1062 int pri; 1443 int pri;
1063 1444
1064 for (pri = NUMPRI; pri--; ) 1445 for (pri = NUMPRI; pri--; )
1066 { 1447 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1449
1069 if (expect_true (p->w)) 1450 if (expect_true (p->w))
1070 { 1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453
1071 p->w->pending = 0; 1454 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1455 EV_CB_INVOKE (p->w, p->events);
1073 } 1456 }
1074 } 1457 }
1075} 1458}
1076 1459
1077inline void 1460void inline_size
1078timers_reify (EV_P) 1461timers_reify (EV_P)
1079{ 1462{
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1081 { 1464 {
1082 struct ev_timer *w = timers [0]; 1465 ev_timer *w = (ev_timer *)timers [0];
1083 1466
1084 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1085 1468
1086 /* first reschedule or stop timer */ 1469 /* first reschedule or stop timer */
1087 if (w->repeat) 1470 if (w->repeat)
1088 { 1471 {
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 1473
1091 ((WT)w)->at += w->repeat; 1474 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now) 1475 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now; 1476 ((WT)w)->at = mn_now;
1094 1477
1095 downheap ((WT *)timers, timercnt, 0); 1478 downheap (timers, timercnt, 0);
1096 } 1479 }
1097 else 1480 else
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 1482
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1101 } 1484 }
1102} 1485}
1103 1486
1104#if EV_PERIODICS 1487#if EV_PERIODIC_ENABLE
1105inline void 1488void inline_size
1106periodics_reify (EV_P) 1489periodics_reify (EV_P)
1107{ 1490{
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1109 { 1492 {
1110 struct ev_periodic *w = periodics [0]; 1493 ev_periodic *w = (ev_periodic *)periodics [0];
1111 1494
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 1496
1114 /* first reschedule or stop timer */ 1497 /* first reschedule or stop timer */
1115 if (w->reschedule_cb) 1498 if (w->reschedule_cb)
1116 { 1499 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1502 downheap (periodics, periodiccnt, 0);
1120 } 1503 }
1121 else if (w->interval) 1504 else if (w->interval)
1122 { 1505 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0); 1509 downheap (periodics, periodiccnt, 0);
1126 } 1510 }
1127 else 1511 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 1513
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 } 1515 }
1132} 1516}
1133 1517
1134static void 1518static void noinline
1135periodics_reschedule (EV_P) 1519periodics_reschedule (EV_P)
1136{ 1520{
1137 int i; 1521 int i;
1138 1522
1139 /* adjust periodics after time jump */ 1523 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i) 1524 for (i = 0; i < periodiccnt; ++i)
1141 { 1525 {
1142 struct ev_periodic *w = periodics [i]; 1526 ev_periodic *w = (ev_periodic *)periodics [i];
1143 1527
1144 if (w->reschedule_cb) 1528 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval) 1530 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1148 } 1532 }
1149 1533
1150 /* now rebuild the heap */ 1534 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; ) 1535 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i); 1536 downheap (periodics, periodiccnt, i);
1153} 1537}
1154#endif 1538#endif
1155 1539
1156inline int 1540#if EV_IDLE_ENABLE
1157time_update_monotonic (EV_P) 1541void inline_size
1542idle_reify (EV_P)
1158{ 1543{
1544 if (expect_false (idleall))
1545 {
1546 int pri;
1547
1548 for (pri = NUMPRI; pri--; )
1549 {
1550 if (pendingcnt [pri])
1551 break;
1552
1553 if (idlecnt [pri])
1554 {
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break;
1557 }
1558 }
1559 }
1560}
1561#endif
1562
1563void inline_speed
1564time_update (EV_P_ ev_tstamp max_block)
1565{
1566 int i;
1567
1568#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic))
1570 {
1571 ev_tstamp odiff = rtmn_diff;
1572
1159 mn_now = get_clock (); 1573 mn_now = get_clock ();
1160 1574
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1576 /* interpolate in the meantime */
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1577 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 { 1578 {
1163 ev_rt_now = rtmn_diff + mn_now; 1579 ev_rt_now = rtmn_diff + mn_now;
1164 return 0; 1580 return;
1165 } 1581 }
1166 else 1582
1167 {
1168 now_floor = mn_now; 1583 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 1584 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 1585
1174inline void 1586 /* loop a few times, before making important decisions.
1175time_update (EV_P) 1587 * on the choice of "4": one iteration isn't enough,
1176{ 1588 * in case we get preempted during the calls to
1177 int i; 1589 * ev_time and get_clock. a second call is almost guaranteed
1178 1590 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 1591 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 1592 * in the unlikely event of having been preempted here.
1181 { 1593 */
1182 if (time_update_monotonic (EV_A)) 1594 for (i = 4; --i; )
1183 { 1595 {
1184 ev_tstamp odiff = rtmn_diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 1596 rtmn_diff = ev_rt_now - mn_now;
1189 1597
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1191 return; /* all is well */ 1599 return; /* all is well */
1192 1600
1193 ev_rt_now = ev_time (); 1601 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 1602 mn_now = get_clock ();
1195 now_floor = mn_now; 1603 now_floor = mn_now;
1196 } 1604 }
1197 1605
1198# if EV_PERIODICS 1606# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A);
1608# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 }
1612 else
1613#endif
1614 {
1615 ev_rt_now = ev_time ();
1616
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 {
1619#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 1620 periodics_reschedule (EV_A);
1200# endif 1621#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */ 1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1217 for (i = 0; i < timercnt; ++i) 1623 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now; 1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 } 1625 }
1220 1626
1221 mn_now = ev_rt_now; 1627 mn_now = ev_rt_now;
1237static int loop_done; 1643static int loop_done;
1238 1644
1239void 1645void
1240ev_loop (EV_P_ int flags) 1646ev_loop (EV_P_ int flags)
1241{ 1647{
1242 double block; 1648 loop_done = EVUNLOOP_CANCEL;
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1244 1649
1245 while (activecnt) 1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651
1652 do
1246 { 1653 {
1654#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid))
1657 {
1658 curpid = getpid ();
1659 postfork = 1;
1660 }
1661#endif
1662
1663#if EV_FORK_ENABLE
1664 /* we might have forked, so queue fork handlers */
1665 if (expect_false (postfork))
1666 if (forkcnt)
1667 {
1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1669 call_pending (EV_A);
1670 }
1671#endif
1672
1247 /* queue check watchers (and execute them) */ 1673 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 1674 if (expect_false (preparecnt))
1249 { 1675 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 1677 call_pending (EV_A);
1252 } 1678 }
1253 1679
1680 if (expect_false (!activecnt))
1681 break;
1682
1254 /* we might have forked, so reify kernel state if necessary */ 1683 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 1684 if (expect_false (postfork))
1256 loop_fork (EV_A); 1685 loop_fork (EV_A);
1257 1686
1258 /* update fd-related kernel structures */ 1687 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 1688 fd_reify (EV_A);
1260 1689
1261 /* calculate blocking time */ 1690 /* calculate blocking time */
1691 {
1692 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.;
1262 1694
1263 /* we only need this for !monotonic clock or timers, but as we basically 1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1264 always have timers, we just calculate it always */
1265#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A);
1268 else
1269#endif
1270 { 1696 {
1271 ev_rt_now = ev_time (); 1697 /* update time to cancel out callback processing overhead */
1272 mn_now = ev_rt_now; 1698 time_update (EV_A_ 1e100);
1273 }
1274 1699
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 1700 waittime = MAX_BLOCKTIME;
1280 1701
1281 if (timercnt) 1702 if (timercnt)
1282 { 1703 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1284 if (block > to) block = to; 1705 if (waittime > to) waittime = to;
1285 } 1706 }
1286 1707
1287#if EV_PERIODICS 1708#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 1709 if (periodiccnt)
1289 { 1710 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 1712 if (waittime > to) waittime = to;
1292 } 1713 }
1293#endif 1714#endif
1294 1715
1295 if (expect_false (block < 0.)) block = 0.; 1716 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime;
1718
1719 sleeptime = waittime - backend_fudge;
1720
1721 if (expect_true (sleeptime > io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 {
1726 ev_sleep (sleeptime);
1727 waittime -= sleeptime;
1728 }
1296 } 1729 }
1297 1730
1731 ++loop_count;
1298 backend_poll (EV_A_ block); 1732 backend_poll (EV_A_ waittime);
1299 1733
1300 /* update ev_rt_now, do magic */ 1734 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 1735 time_update (EV_A_ waittime + sleeptime);
1736 }
1302 1737
1303 /* queue pending timers and reschedule them */ 1738 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 1739 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 1740#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 1741 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 1742#endif
1308 1743
1744#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 1745 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 1746 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1747#endif
1312 1748
1313 /* queue check watchers, to be executed first */ 1749 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 1750 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1316 1752
1317 call_pending (EV_A); 1753 call_pending (EV_A);
1318
1319 if (expect_false (loop_done))
1320 break;
1321 } 1754 }
1755 while (expect_true (
1756 activecnt
1757 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1759 ));
1322 1760
1323 if (loop_done != 2) 1761 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 1762 loop_done = EVUNLOOP_CANCEL;
1325} 1763}
1326 1764
1327void 1765void
1328ev_unloop (EV_P_ int how) 1766ev_unloop (EV_P_ int how)
1329{ 1767{
1330 loop_done = how; 1768 loop_done = how;
1331} 1769}
1332 1770
1333/*****************************************************************************/ 1771/*****************************************************************************/
1334 1772
1335inline void 1773void inline_size
1336wlist_add (WL *head, WL elem) 1774wlist_add (WL *head, WL elem)
1337{ 1775{
1338 elem->next = *head; 1776 elem->next = *head;
1339 *head = elem; 1777 *head = elem;
1340} 1778}
1341 1779
1342inline void 1780void inline_size
1343wlist_del (WL *head, WL elem) 1781wlist_del (WL *head, WL elem)
1344{ 1782{
1345 while (*head) 1783 while (*head)
1346 { 1784 {
1347 if (*head == elem) 1785 if (*head == elem)
1352 1790
1353 head = &(*head)->next; 1791 head = &(*head)->next;
1354 } 1792 }
1355} 1793}
1356 1794
1357inline void 1795void inline_speed
1358ev_clear_pending (EV_P_ W w) 1796clear_pending (EV_P_ W w)
1359{ 1797{
1360 if (w->pending) 1798 if (w->pending)
1361 { 1799 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1800 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1363 w->pending = 0; 1801 w->pending = 0;
1364 } 1802 }
1365} 1803}
1366 1804
1367inline void 1805int
1806ev_clear_pending (EV_P_ void *w)
1807{
1808 W w_ = (W)w;
1809 int pending = w_->pending;
1810
1811 if (expect_true (pending))
1812 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1814 w_->pending = 0;
1815 p->w = 0;
1816 return p->events;
1817 }
1818 else
1819 return 0;
1820}
1821
1822void inline_size
1823pri_adjust (EV_P_ W w)
1824{
1825 int pri = w->priority;
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri;
1829}
1830
1831void inline_speed
1368ev_start (EV_P_ W w, int active) 1832ev_start (EV_P_ W w, int active)
1369{ 1833{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1834 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 1835 w->active = active;
1374 ev_ref (EV_A); 1836 ev_ref (EV_A);
1375} 1837}
1376 1838
1377inline void 1839void inline_size
1378ev_stop (EV_P_ W w) 1840ev_stop (EV_P_ W w)
1379{ 1841{
1380 ev_unref (EV_A); 1842 ev_unref (EV_A);
1381 w->active = 0; 1843 w->active = 0;
1382} 1844}
1383 1845
1384/*****************************************************************************/ 1846/*****************************************************************************/
1385 1847
1386void 1848void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 1849ev_io_start (EV_P_ ev_io *w)
1388{ 1850{
1389 int fd = w->fd; 1851 int fd = w->fd;
1390 1852
1391 if (expect_false (ev_is_active (w))) 1853 if (expect_false (ev_is_active (w)))
1392 return; 1854 return;
1393 1855
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 1856 assert (("ev_io_start called with negative fd", fd >= 0));
1395 1857
1396 ev_start (EV_A_ (W)w, 1); 1858 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1860 wlist_add (&anfds[fd].head, (WL)w);
1399 1861
1400 fd_change (EV_A_ fd); 1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET;
1401} 1864}
1402 1865
1403void 1866void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 1867ev_io_stop (EV_P_ ev_io *w)
1405{ 1868{
1406 ev_clear_pending (EV_A_ (W)w); 1869 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 1870 if (expect_false (!ev_is_active (w)))
1408 return; 1871 return;
1409 1872
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 1874
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1875 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 1876 ev_stop (EV_A_ (W)w);
1414 1877
1415 fd_change (EV_A_ w->fd); 1878 fd_change (EV_A_ w->fd, 1);
1416} 1879}
1417 1880
1418void 1881void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 1882ev_timer_start (EV_P_ ev_timer *w)
1420{ 1883{
1421 if (expect_false (ev_is_active (w))) 1884 if (expect_false (ev_is_active (w)))
1422 return; 1885 return;
1423 1886
1424 ((WT)w)->at += mn_now; 1887 ((WT)w)->at += mn_now;
1425 1888
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 1890
1428 ev_start (EV_A_ (W)w, ++timercnt); 1891 ev_start (EV_A_ (W)w, ++timercnt);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1430 timers [timercnt - 1] = w; 1893 timers [timercnt - 1] = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 1894 upheap (timers, timercnt - 1);
1432 1895
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1434} 1897}
1435 1898
1436void 1899void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 1900ev_timer_stop (EV_P_ ev_timer *w)
1438{ 1901{
1439 ev_clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1441 return; 1904 return;
1442 1905
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1444 1907
1908 {
1909 int active = ((W)w)->active;
1910
1445 if (expect_true (((W)w)->active < timercnt--)) 1911 if (expect_true (--active < --timercnt))
1446 { 1912 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 1913 timers [active] = timers [timercnt];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1914 adjustheap (timers, timercnt, active);
1449 } 1915 }
1916 }
1450 1917
1451 ((WT)w)->at -= mn_now; 1918 ((WT)w)->at -= mn_now;
1452 1919
1453 ev_stop (EV_A_ (W)w); 1920 ev_stop (EV_A_ (W)w);
1454} 1921}
1455 1922
1456void 1923void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 1924ev_timer_again (EV_P_ ev_timer *w)
1458{ 1925{
1459 if (ev_is_active (w)) 1926 if (ev_is_active (w))
1460 { 1927 {
1461 if (w->repeat) 1928 if (w->repeat)
1462 { 1929 {
1463 ((WT)w)->at = mn_now + w->repeat; 1930 ((WT)w)->at = mn_now + w->repeat;
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1931 adjustheap (timers, timercnt, ((W)w)->active - 1);
1465 } 1932 }
1466 else 1933 else
1467 ev_timer_stop (EV_A_ w); 1934 ev_timer_stop (EV_A_ w);
1468 } 1935 }
1469 else if (w->repeat) 1936 else if (w->repeat)
1471 w->at = w->repeat; 1938 w->at = w->repeat;
1472 ev_timer_start (EV_A_ w); 1939 ev_timer_start (EV_A_ w);
1473 } 1940 }
1474} 1941}
1475 1942
1476#if EV_PERIODICS 1943#if EV_PERIODIC_ENABLE
1477void 1944void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 1945ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 1946{
1480 if (expect_false (ev_is_active (w))) 1947 if (expect_false (ev_is_active (w)))
1481 return; 1948 return;
1482 1949
1483 if (w->reschedule_cb) 1950 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 1952 else if (w->interval)
1486 { 1953 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 1955 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1490 } 1957 }
1958 else
1959 ((WT)w)->at = w->offset;
1491 1960
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 1961 ev_start (EV_A_ (W)w, ++periodiccnt);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 1963 periodics [periodiccnt - 1] = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 1964 upheap (periodics, periodiccnt - 1);
1496 1965
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1498} 1967}
1499 1968
1500void 1969void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 1970ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 1971{
1503 ev_clear_pending (EV_A_ (W)w); 1972 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 1973 if (expect_false (!ev_is_active (w)))
1505 return; 1974 return;
1506 1975
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1508 1977
1978 {
1979 int active = ((W)w)->active;
1980
1509 if (expect_true (((W)w)->active < periodiccnt--)) 1981 if (expect_true (--active < --periodiccnt))
1510 { 1982 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1983 periodics [active] = periodics [periodiccnt];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1984 adjustheap (periodics, periodiccnt, active);
1513 } 1985 }
1986 }
1514 1987
1515 ev_stop (EV_A_ (W)w); 1988 ev_stop (EV_A_ (W)w);
1516} 1989}
1517 1990
1518void 1991void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 1992ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 1993{
1521 /* TODO: use adjustheap and recalculation */ 1994 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 1995 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 1996 ev_periodic_start (EV_A_ w);
1524} 1997}
1525#endif 1998#endif
1526 1999
1527void
1528ev_idle_start (EV_P_ struct ev_idle *w)
1529{
1530 if (expect_false (ev_is_active (w)))
1531 return;
1532
1533 ev_start (EV_A_ (W)w, ++idlecnt);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1535 idles [idlecnt - 1] = w;
1536}
1537
1538void
1539ev_idle_stop (EV_P_ struct ev_idle *w)
1540{
1541 ev_clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w)))
1543 return;
1544
1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1546 ev_stop (EV_A_ (W)w);
1547}
1548
1549void
1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1551{
1552 if (expect_false (ev_is_active (w)))
1553 return;
1554
1555 ev_start (EV_A_ (W)w, ++preparecnt);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1557 prepares [preparecnt - 1] = w;
1558}
1559
1560void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1562{
1563 ev_clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w)))
1565 return;
1566
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1568 ev_stop (EV_A_ (W)w);
1569}
1570
1571void
1572ev_check_start (EV_P_ struct ev_check *w)
1573{
1574 if (expect_false (ev_is_active (w)))
1575 return;
1576
1577 ev_start (EV_A_ (W)w, ++checkcnt);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581
1582void
1583ev_check_stop (EV_P_ struct ev_check *w)
1584{
1585 ev_clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w)))
1587 return;
1588
1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1590 ev_stop (EV_A_ (W)w);
1591}
1592
1593#ifndef SA_RESTART 2000#ifndef SA_RESTART
1594# define SA_RESTART 0 2001# define SA_RESTART 0
1595#endif 2002#endif
1596 2003
1597void 2004void noinline
1598ev_signal_start (EV_P_ struct ev_signal *w) 2005ev_signal_start (EV_P_ ev_signal *w)
1599{ 2006{
1600#if EV_MULTIPLICITY 2007#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 2009#endif
1603 if (expect_false (ev_is_active (w))) 2010 if (expect_false (ev_is_active (w)))
1604 return; 2011 return;
1605 2012
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1607 2014
2015 evpipe_init (EV_A);
2016
2017 {
2018#ifndef _WIN32
2019 sigset_t full, prev;
2020 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif
2023
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2025
2026#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif
2029 }
2030
1608 ev_start (EV_A_ (W)w, 1); 2031 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2032 wlist_add (&signals [w->signum - 1].head, (WL)w);
1611 2033
1612 if (!((WL)w)->next) 2034 if (!((WL)w)->next)
1613 { 2035 {
1614#if _WIN32 2036#if _WIN32
1615 signal (w->signum, sighandler); 2037 signal (w->signum, ev_sighandler);
1616#else 2038#else
1617 struct sigaction sa; 2039 struct sigaction sa;
1618 sa.sa_handler = sighandler; 2040 sa.sa_handler = ev_sighandler;
1619 sigfillset (&sa.sa_mask); 2041 sigfillset (&sa.sa_mask);
1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1621 sigaction (w->signum, &sa, 0); 2043 sigaction (w->signum, &sa, 0);
1622#endif 2044#endif
1623 } 2045 }
1624} 2046}
1625 2047
1626void 2048void noinline
1627ev_signal_stop (EV_P_ struct ev_signal *w) 2049ev_signal_stop (EV_P_ ev_signal *w)
1628{ 2050{
1629 ev_clear_pending (EV_A_ (W)w); 2051 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 2052 if (expect_false (!ev_is_active (w)))
1631 return; 2053 return;
1632 2054
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2055 wlist_del (&signals [w->signum - 1].head, (WL)w);
1634 ev_stop (EV_A_ (W)w); 2056 ev_stop (EV_A_ (W)w);
1635 2057
1636 if (!signals [w->signum - 1].head) 2058 if (!signals [w->signum - 1].head)
1637 signal (w->signum, SIG_DFL); 2059 signal (w->signum, SIG_DFL);
1638} 2060}
1639 2061
1640void 2062void
1641ev_child_start (EV_P_ struct ev_child *w) 2063ev_child_start (EV_P_ ev_child *w)
1642{ 2064{
1643#if EV_MULTIPLICITY 2065#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 2067#endif
1646 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1647 return; 2069 return;
1648 2070
1649 ev_start (EV_A_ (W)w, 1); 2071 ev_start (EV_A_ (W)w, 1);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1651} 2073}
1652 2074
1653void 2075void
1654ev_child_stop (EV_P_ struct ev_child *w) 2076ev_child_stop (EV_P_ ev_child *w)
1655{ 2077{
1656 ev_clear_pending (EV_A_ (W)w); 2078 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 2079 if (expect_false (!ev_is_active (w)))
1658 return; 2080 return;
1659 2081
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1661 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1662} 2084}
1663 2085
2086#if EV_STAT_ENABLE
2087
2088# ifdef _WIN32
2089# undef lstat
2090# define lstat(a,b) _stati64 (a,b)
2091# endif
2092
2093#define DEF_STAT_INTERVAL 5.0074891
2094#define MIN_STAT_INTERVAL 0.1074891
2095
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097
2098#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192
2100
2101static void noinline
2102infy_add (EV_P_ ev_stat *w)
2103{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105
2106 if (w->wd < 0)
2107 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109
2110 /* monitor some parent directory for speedup hints */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 {
2113 char path [4096];
2114 strcpy (path, w->path);
2115
2116 do
2117 {
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120
2121 char *pend = strrchr (path, '/');
2122
2123 if (!pend)
2124 break; /* whoops, no '/', complain to your admin */
2125
2126 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 }
2131 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134
2135 if (w->wd >= 0)
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2137}
2138
2139static void noinline
2140infy_del (EV_P_ ev_stat *w)
2141{
2142 int slot;
2143 int wd = w->wd;
2144
2145 if (wd < 0)
2146 return;
2147
2148 w->wd = -2;
2149 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2150 wlist_del (&fs_hash [slot].head, (WL)w);
2151
2152 /* remove this watcher, if others are watching it, they will rearm */
2153 inotify_rm_watch (fs_fd, wd);
2154}
2155
2156static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{
2159 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev);
2163 else
2164 {
2165 WL w_;
2166
2167 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2168 {
2169 ev_stat *w = (ev_stat *)w_;
2170 w_ = w_->next; /* lets us remove this watcher and all before it */
2171
2172 if (w->wd == wd || wd == -1)
2173 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 {
2176 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */
2178 }
2179
2180 stat_timer_cb (EV_A_ &w->timer, 0);
2181 }
2182 }
2183 }
2184}
2185
2186static void
2187infy_cb (EV_P_ ev_io *w, int revents)
2188{
2189 char buf [EV_INOTIFY_BUFSIZE];
2190 struct inotify_event *ev = (struct inotify_event *)buf;
2191 int ofs;
2192 int len = read (fs_fd, buf, sizeof (buf));
2193
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2196}
2197
2198void inline_size
2199infy_init (EV_P)
2200{
2201 if (fs_fd != -2)
2202 return;
2203
2204 fs_fd = inotify_init ();
2205
2206 if (fs_fd >= 0)
2207 {
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2209 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w);
2211 }
2212}
2213
2214void inline_size
2215infy_fork (EV_P)
2216{
2217 int slot;
2218
2219 if (fs_fd < 0)
2220 return;
2221
2222 close (fs_fd);
2223 fs_fd = inotify_init ();
2224
2225 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2226 {
2227 WL w_ = fs_hash [slot].head;
2228 fs_hash [slot].head = 0;
2229
2230 while (w_)
2231 {
2232 ev_stat *w = (ev_stat *)w_;
2233 w_ = w_->next; /* lets us add this watcher */
2234
2235 w->wd = -1;
2236
2237 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else
2240 ev_timer_start (EV_A_ &w->timer);
2241 }
2242
2243 }
2244}
2245
2246#endif
2247
2248void
2249ev_stat_stat (EV_P_ ev_stat *w)
2250{
2251 if (lstat (w->path, &w->attr) < 0)
2252 w->attr.st_nlink = 0;
2253 else if (!w->attr.st_nlink)
2254 w->attr.st_nlink = 1;
2255}
2256
2257static void noinline
2258stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2259{
2260 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2261
2262 /* we copy this here each the time so that */
2263 /* prev has the old value when the callback gets invoked */
2264 w->prev = w->attr;
2265 ev_stat_stat (EV_A_ w);
2266
2267 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2268 if (
2269 w->prev.st_dev != w->attr.st_dev
2270 || w->prev.st_ino != w->attr.st_ino
2271 || w->prev.st_mode != w->attr.st_mode
2272 || w->prev.st_nlink != w->attr.st_nlink
2273 || w->prev.st_uid != w->attr.st_uid
2274 || w->prev.st_gid != w->attr.st_gid
2275 || w->prev.st_rdev != w->attr.st_rdev
2276 || w->prev.st_size != w->attr.st_size
2277 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime
2280 ) {
2281 #if EV_USE_INOTIFY
2282 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */
2285 #endif
2286
2287 ev_feed_event (EV_A_ w, EV_STAT);
2288 }
2289}
2290
2291void
2292ev_stat_start (EV_P_ ev_stat *w)
2293{
2294 if (expect_false (ev_is_active (w)))
2295 return;
2296
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w);
2302
2303 if (w->interval < MIN_STAT_INTERVAL)
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2307 ev_set_priority (&w->timer, ev_priority (w));
2308
2309#if EV_USE_INOTIFY
2310 infy_init (EV_A);
2311
2312 if (fs_fd >= 0)
2313 infy_add (EV_A_ w);
2314 else
2315#endif
2316 ev_timer_start (EV_A_ &w->timer);
2317
2318 ev_start (EV_A_ (W)w, 1);
2319}
2320
2321void
2322ev_stat_stop (EV_P_ ev_stat *w)
2323{
2324 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w)))
2326 return;
2327
2328#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w);
2330#endif
2331 ev_timer_stop (EV_A_ &w->timer);
2332
2333 ev_stop (EV_A_ (W)w);
2334}
2335#endif
2336
2337#if EV_IDLE_ENABLE
2338void
2339ev_idle_start (EV_P_ ev_idle *w)
2340{
2341 if (expect_false (ev_is_active (w)))
2342 return;
2343
2344 pri_adjust (EV_A_ (W)w);
2345
2346 {
2347 int active = ++idlecnt [ABSPRI (w)];
2348
2349 ++idleall;
2350 ev_start (EV_A_ (W)w, active);
2351
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w;
2354 }
2355}
2356
2357void
2358ev_idle_stop (EV_P_ ev_idle *w)
2359{
2360 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w)))
2362 return;
2363
2364 {
2365 int active = ((W)w)->active;
2366
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2369
2370 ev_stop (EV_A_ (W)w);
2371 --idleall;
2372 }
2373}
2374#endif
2375
2376void
2377ev_prepare_start (EV_P_ ev_prepare *w)
2378{
2379 if (expect_false (ev_is_active (w)))
2380 return;
2381
2382 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w;
2385}
2386
2387void
2388ev_prepare_stop (EV_P_ ev_prepare *w)
2389{
2390 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w)))
2392 return;
2393
2394 {
2395 int active = ((W)w)->active;
2396 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active;
2398 }
2399
2400 ev_stop (EV_A_ (W)w);
2401}
2402
2403void
2404ev_check_start (EV_P_ ev_check *w)
2405{
2406 if (expect_false (ev_is_active (w)))
2407 return;
2408
2409 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w;
2412}
2413
2414void
2415ev_check_stop (EV_P_ ev_check *w)
2416{
2417 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w)))
2419 return;
2420
2421 {
2422 int active = ((W)w)->active;
2423 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active;
2425 }
2426
2427 ev_stop (EV_A_ (W)w);
2428}
2429
2430#if EV_EMBED_ENABLE
2431void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w)
2433{
2434 ev_loop (w->other, EVLOOP_NONBLOCK);
2435}
2436
2437static void
2438embed_io_cb (EV_P_ ev_io *io, int revents)
2439{
2440 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2441
2442 if (ev_cb (w))
2443 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2444 else
2445 ev_loop (w->other, EVLOOP_NONBLOCK);
2446}
2447
2448static void
2449embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2450{
2451 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2452
2453 {
2454 struct ev_loop *loop = w->other;
2455
2456 while (fdchangecnt)
2457 {
2458 fd_reify (EV_A);
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 }
2461 }
2462}
2463
2464#if 0
2465static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{
2468 ev_idle_stop (EV_A_ idle);
2469}
2470#endif
2471
2472void
2473ev_embed_start (EV_P_ ev_embed *w)
2474{
2475 if (expect_false (ev_is_active (w)))
2476 return;
2477
2478 {
2479 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 }
2483
2484 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io);
2486
2487 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare);
2490
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492
2493 ev_start (EV_A_ (W)w, 1);
2494}
2495
2496void
2497ev_embed_stop (EV_P_ ev_embed *w)
2498{
2499 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w)))
2501 return;
2502
2503 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare);
2505
2506 ev_stop (EV_A_ (W)w);
2507}
2508#endif
2509
2510#if EV_FORK_ENABLE
2511void
2512ev_fork_start (EV_P_ ev_fork *w)
2513{
2514 if (expect_false (ev_is_active (w)))
2515 return;
2516
2517 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w;
2520}
2521
2522void
2523ev_fork_stop (EV_P_ ev_fork *w)
2524{
2525 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w)))
2527 return;
2528
2529 {
2530 int active = ((W)w)->active;
2531 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active;
2533 }
2534
2535 ev_stop (EV_A_ (W)w);
2536}
2537#endif
2538
2539#if EV_ASYNC_ENABLE
2540void
2541ev_async_start (EV_P_ ev_async *w)
2542{
2543 if (expect_false (ev_is_active (w)))
2544 return;
2545
2546 evpipe_init (EV_A);
2547
2548 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w;
2551}
2552
2553void
2554ev_async_stop (EV_P_ ev_async *w)
2555{
2556 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w)))
2558 return;
2559
2560 {
2561 int active = ((W)w)->active;
2562 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active;
2564 }
2565
2566 ev_stop (EV_A_ (W)w);
2567}
2568
2569void
2570ev_async_send (EV_P_ ev_async *w)
2571{
2572 w->sent = 1;
2573 evpipe_write (EV_A_ &gotasync);
2574}
2575#endif
2576
1664/*****************************************************************************/ 2577/*****************************************************************************/
1665 2578
1666struct ev_once 2579struct ev_once
1667{ 2580{
1668 struct ev_io io; 2581 ev_io io;
1669 struct ev_timer to; 2582 ev_timer to;
1670 void (*cb)(int revents, void *arg); 2583 void (*cb)(int revents, void *arg);
1671 void *arg; 2584 void *arg;
1672}; 2585};
1673 2586
1674static void 2587static void
1683 2596
1684 cb (revents, arg); 2597 cb (revents, arg);
1685} 2598}
1686 2599
1687static void 2600static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 2601once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 2602{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1691} 2604}
1692 2605
1693static void 2606static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 2607once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 2608{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1697} 2610}
1698 2611
1699void 2612void
1723 ev_timer_set (&once->to, timeout, 0.); 2636 ev_timer_set (&once->to, timeout, 0.);
1724 ev_timer_start (EV_A_ &once->to); 2637 ev_timer_start (EV_A_ &once->to);
1725 } 2638 }
1726} 2639}
1727 2640
2641#if EV_MULTIPLICITY
2642 #include "ev_wrap.h"
2643#endif
2644
1728#ifdef __cplusplus 2645#ifdef __cplusplus
1729} 2646}
1730#endif 2647#endif
1731 2648

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines