ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.332 by root, Tue Mar 9 08:58:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
103#include <fcntl.h> 159#include <fcntl.h>
104#include <stddef.h> 160#include <stddef.h>
105 161
106#include <stdio.h> 162#include <stdio.h>
107 163
108#include <assert.h> 164#include <assert.h>
109#include <errno.h> 165#include <errno.h>
110#include <sys/types.h> 166#include <sys/types.h>
111#include <time.h> 167#include <time.h>
168#include <limits.h>
112 169
113#include <signal.h> 170#include <signal.h>
114 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
115#ifndef _WIN32 178#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 179# include <sys/time.h>
118# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
119#else 182#else
183# include <io.h>
120# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 185# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
124# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
125#endif 226# endif
126 227#endif
127/**/
128 228
129#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
130# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
131#endif 235#endif
132 236
133#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
135#endif 247#endif
136 248
137#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
139#endif 251#endif
145# define EV_USE_POLL 1 257# define EV_USE_POLL 1
146# endif 258# endif
147#endif 259#endif
148 260
149#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
150# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
151#endif 267#endif
152 268
153#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
155#endif 271#endif
156 272
157#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 274# define EV_USE_PORT 0
159#endif 275#endif
160 276
161/**/ 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
281# define EV_USE_INOTIFY 0
282# endif
283#endif
284
285#ifndef EV_PID_HASHSIZE
286# if EV_MINIMAL
287# define EV_PID_HASHSIZE 1
288# else
289# define EV_PID_HASHSIZE 16
290# endif
291#endif
292
293#ifndef EV_INOTIFY_HASHSIZE
294# if EV_MINIMAL
295# define EV_INOTIFY_HASHSIZE 1
296# else
297# define EV_INOTIFY_HASHSIZE 16
298# endif
299#endif
300
301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
162 356
163#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
166#endif 360#endif
168#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
171#endif 365#endif
172 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
173#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 390# include <winsock.h>
175#endif 391#endif
176 392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
177/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 461
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 464
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 465#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 467# define noinline __attribute__ ((noinline))
193#else 468#else
194# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
195# define inline static 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
196#endif 474#endif
197 475
198#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
200 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
203 493
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
206 496
207typedef struct ev_watcher *W; 497typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
210 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
212 523
213#ifdef _WIN32 524#ifdef _WIN32
214# include "ev_win32.c" 525# include "ev_win32.c"
215#endif 526#endif
216 527
217/*****************************************************************************/ 528/*****************************************************************************/
218 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
219static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
220 539
540void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 542{
223 syserr_cb = cb; 543 syserr_cb = cb;
224} 544}
225 545
226static void 546static void noinline
227syserr (const char *msg) 547ev_syserr (const char *msg)
228{ 548{
229 if (!msg) 549 if (!msg)
230 msg = "(libev) system error"; 550 msg = "(libev) system error";
231 551
232 if (syserr_cb) 552 if (syserr_cb)
233 syserr_cb (msg); 553 syserr_cb (msg);
234 else 554 else
235 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
236 perror (msg); 564 perror (msg);
565#endif
237 abort (); 566 abort ();
238 } 567 }
239} 568}
240 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577 if (size)
578 return realloc (ptr, size);
579
580 free (ptr);
581 return 0;
582}
583
241static void *(*alloc)(void *ptr, long size); 584static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 585
586void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 587ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 588{
245 alloc = cb; 589 alloc = cb;
246} 590}
247 591
248static void * 592inline_speed void *
249ev_realloc (void *ptr, long size) 593ev_realloc (void *ptr, long size)
250{ 594{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 595 ptr = alloc (ptr, size);
252 596
253 if (!ptr && size) 597 if (!ptr && size)
254 { 598 {
599#if EV_AVOID_STDIO
600 ev_printerr ("libev: memory allocation failed, aborting.\n");
601#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 602 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
603#endif
256 abort (); 604 abort ();
257 } 605 }
258 606
259 return ptr; 607 return ptr;
260} 608}
262#define ev_malloc(size) ev_realloc (0, (size)) 610#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 611#define ev_free(ptr) ev_realloc ((ptr), 0)
264 612
265/*****************************************************************************/ 613/*****************************************************************************/
266 614
615/* set in reify when reification needed */
616#define EV_ANFD_REIFY 1
617
618/* file descriptor info structure */
267typedef struct 619typedef struct
268{ 620{
269 WL head; 621 WL head;
270 unsigned char events; 622 unsigned char events; /* the events watched for */
623 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
624 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 625 unsigned char unused;
626#if EV_USE_EPOLL
627 unsigned int egen; /* generation counter to counter epoll bugs */
628#endif
272#if EV_SELECT_IS_WINSOCKET 629#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 630 SOCKET handle;
274#endif 631#endif
275} ANFD; 632} ANFD;
276 633
634/* stores the pending event set for a given watcher */
277typedef struct 635typedef struct
278{ 636{
279 W w; 637 W w;
280 int events; 638 int events; /* the pending event set for the given watcher */
281} ANPENDING; 639} ANPENDING;
640
641#if EV_USE_INOTIFY
642/* hash table entry per inotify-id */
643typedef struct
644{
645 WL head;
646} ANFS;
647#endif
648
649/* Heap Entry */
650#if EV_HEAP_CACHE_AT
651 /* a heap element */
652 typedef struct {
653 ev_tstamp at;
654 WT w;
655 } ANHE;
656
657 #define ANHE_w(he) (he).w /* access watcher, read-write */
658 #define ANHE_at(he) (he).at /* access cached at, read-only */
659 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
660#else
661 /* a heap element */
662 typedef WT ANHE;
663
664 #define ANHE_w(he) (he)
665 #define ANHE_at(he) (he)->at
666 #define ANHE_at_cache(he)
667#endif
282 668
283#if EV_MULTIPLICITY 669#if EV_MULTIPLICITY
284 670
285 struct ev_loop 671 struct ev_loop
286 { 672 {
304 690
305 static int ev_default_loop_ptr; 691 static int ev_default_loop_ptr;
306 692
307#endif 693#endif
308 694
695#if EV_MINIMAL < 2
696# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
697# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
698# define EV_INVOKE_PENDING invoke_cb (EV_A)
699#else
700# define EV_RELEASE_CB (void)0
701# define EV_ACQUIRE_CB (void)0
702# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
703#endif
704
705#define EVUNLOOP_RECURSE 0x80
706
309/*****************************************************************************/ 707/*****************************************************************************/
310 708
709#ifndef EV_HAVE_EV_TIME
311ev_tstamp 710ev_tstamp
312ev_time (void) 711ev_time (void)
313{ 712{
314#if EV_USE_REALTIME 713#if EV_USE_REALTIME
714 if (expect_true (have_realtime))
715 {
315 struct timespec ts; 716 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 717 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 718 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 719 }
720#endif
721
319 struct timeval tv; 722 struct timeval tv;
320 gettimeofday (&tv, 0); 723 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 724 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 725}
726#endif
324 727
325inline ev_tstamp 728inline_size ev_tstamp
326get_clock (void) 729get_clock (void)
327{ 730{
328#if EV_USE_MONOTONIC 731#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 732 if (expect_true (have_monotonic))
330 { 733 {
343{ 746{
344 return ev_rt_now; 747 return ev_rt_now;
345} 748}
346#endif 749#endif
347 750
348#define array_roundsize(type,n) (((n) | 4) & ~3) 751void
752ev_sleep (ev_tstamp delay)
753{
754 if (delay > 0.)
755 {
756#if EV_USE_NANOSLEEP
757 struct timespec ts;
758
759 ts.tv_sec = (time_t)delay;
760 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
761
762 nanosleep (&ts, 0);
763#elif defined(_WIN32)
764 Sleep ((unsigned long)(delay * 1e3));
765#else
766 struct timeval tv;
767
768 tv.tv_sec = (time_t)delay;
769 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
770
771 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
772 /* something not guaranteed by newer posix versions, but guaranteed */
773 /* by older ones */
774 select (0, 0, 0, 0, &tv);
775#endif
776 }
777}
778
779/*****************************************************************************/
780
781#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
782
783/* find a suitable new size for the given array, */
784/* hopefully by rounding to a ncie-to-malloc size */
785inline_size int
786array_nextsize (int elem, int cur, int cnt)
787{
788 int ncur = cur + 1;
789
790 do
791 ncur <<= 1;
792 while (cnt > ncur);
793
794 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
795 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
796 {
797 ncur *= elem;
798 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
799 ncur = ncur - sizeof (void *) * 4;
800 ncur /= elem;
801 }
802
803 return ncur;
804}
805
806static noinline void *
807array_realloc (int elem, void *base, int *cur, int cnt)
808{
809 *cur = array_nextsize (elem, *cur, cnt);
810 return ev_realloc (base, elem * *cur);
811}
812
813#define array_init_zero(base,count) \
814 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 815
350#define array_needsize(type,base,cur,cnt,init) \ 816#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 817 if (expect_false ((cnt) > (cur))) \
352 { \ 818 { \
353 int newcnt = cur; \ 819 int ocur_ = (cur); \
354 do \ 820 (base) = (type *)array_realloc \
355 { \ 821 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 822 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 823 }
364 824
825#if 0
365#define array_slim(type,stem) \ 826#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 827 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 828 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 829 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 830 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 831 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 832 }
833#endif
372 834
373#define array_free(stem, idx) \ 835#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 836 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 837
376/*****************************************************************************/ 838/*****************************************************************************/
377 839
378static void 840/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 841static void noinline
842pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 843{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 844}
390 845
391void 846void noinline
392ev_feed_event (EV_P_ void *w, int revents) 847ev_feed_event (EV_P_ void *w, int revents)
393{ 848{
394 W w_ = (W)w; 849 W w_ = (W)w;
850 int pri = ABSPRI (w_);
395 851
396 if (expect_false (w_->pending)) 852 if (expect_false (w_->pending))
853 pendings [pri][w_->pending - 1].events |= revents;
854 else
397 { 855 {
856 w_->pending = ++pendingcnt [pri];
857 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
858 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 859 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 860 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 861}
407 862
408static void 863inline_speed void
864feed_reverse (EV_P_ W w)
865{
866 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
867 rfeeds [rfeedcnt++] = w;
868}
869
870inline_size void
871feed_reverse_done (EV_P_ int revents)
872{
873 do
874 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
875 while (rfeedcnt);
876}
877
878inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 879queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 880{
411 int i; 881 int i;
412 882
413 for (i = 0; i < eventcnt; ++i) 883 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 884 ev_feed_event (EV_A_ events [i], type);
415} 885}
416 886
887/*****************************************************************************/
888
417inline void 889inline_speed void
418fd_event (EV_P_ int fd, int revents) 890fd_event_nc (EV_P_ int fd, int revents)
419{ 891{
420 ANFD *anfd = anfds + fd; 892 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 893 ev_io *w;
422 894
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 895 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 896 {
425 int ev = w->events & revents; 897 int ev = w->events & revents;
426 898
427 if (ev) 899 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 900 ev_feed_event (EV_A_ (W)w, ev);
429 } 901 }
430} 902}
431 903
904/* do not submit kernel events for fds that have reify set */
905/* because that means they changed while we were polling for new events */
906inline_speed void
907fd_event (EV_P_ int fd, int revents)
908{
909 ANFD *anfd = anfds + fd;
910
911 if (expect_true (!anfd->reify))
912 fd_event_nc (EV_A_ fd, revents);
913}
914
432void 915void
433ev_feed_fd_event (EV_P_ int fd, int revents) 916ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 917{
918 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 919 fd_event_nc (EV_A_ fd, revents);
436} 920}
437 921
438/*****************************************************************************/ 922/* make sure the external fd watch events are in-sync */
439 923/* with the kernel/libev internal state */
440inline void 924inline_size void
441fd_reify (EV_P) 925fd_reify (EV_P)
442{ 926{
443 int i; 927 int i;
444 928
445 for (i = 0; i < fdchangecnt; ++i) 929 for (i = 0; i < fdchangecnt; ++i)
446 { 930 {
447 int fd = fdchanges [i]; 931 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 933 ev_io *w;
450 934
451 int events = 0; 935 unsigned char events = 0;
452 936
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 937 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 938 events |= (unsigned char)w->events;
455 939
456#if EV_SELECT_IS_WINSOCKET 940#if EV_SELECT_IS_WINSOCKET
457 if (events) 941 if (events)
458 { 942 {
459 unsigned long argp; 943 unsigned long arg;
460 anfd->handle = _get_osfhandle (fd); 944 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 945 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
462 } 946 }
463#endif 947#endif
464 948
949 {
950 unsigned char o_events = anfd->events;
951 unsigned char o_reify = anfd->reify;
952
465 anfd->reify = 0; 953 anfd->reify = 0;
466
467 backend_modify (EV_A_ fd, anfd->events, events);
468 anfd->events = events; 954 anfd->events = events;
955
956 if (o_events != events || o_reify & EV__IOFDSET)
957 backend_modify (EV_A_ fd, o_events, events);
958 }
469 } 959 }
470 960
471 fdchangecnt = 0; 961 fdchangecnt = 0;
472} 962}
473 963
474static void 964/* something about the given fd changed */
965inline_size void
475fd_change (EV_P_ int fd) 966fd_change (EV_P_ int fd, int flags)
476{ 967{
477 if (expect_false (anfds [fd].reify)) 968 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 969 anfds [fd].reify |= flags;
481 970
971 if (expect_true (!reify))
972 {
482 ++fdchangecnt; 973 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 974 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 975 fdchanges [fdchangecnt - 1] = fd;
976 }
485} 977}
486 978
487static void 979/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
980inline_speed void
488fd_kill (EV_P_ int fd) 981fd_kill (EV_P_ int fd)
489{ 982{
490 struct ev_io *w; 983 ev_io *w;
491 984
492 while ((w = (struct ev_io *)anfds [fd].head)) 985 while ((w = (ev_io *)anfds [fd].head))
493 { 986 {
494 ev_io_stop (EV_A_ w); 987 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 988 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 989 }
497} 990}
498 991
992/* check whether the given fd is atcually valid, for error recovery */
499inline int 993inline_size int
500fd_valid (int fd) 994fd_valid (int fd)
501{ 995{
502#ifdef _WIN32 996#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 997 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 998#else
505 return fcntl (fd, F_GETFD) != -1; 999 return fcntl (fd, F_GETFD) != -1;
506#endif 1000#endif
507} 1001}
508 1002
509/* called on EBADF to verify fds */ 1003/* called on EBADF to verify fds */
510static void 1004static void noinline
511fd_ebadf (EV_P) 1005fd_ebadf (EV_P)
512{ 1006{
513 int fd; 1007 int fd;
514 1008
515 for (fd = 0; fd < anfdmax; ++fd) 1009 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 1010 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 1011 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 1012 fd_kill (EV_A_ fd);
519} 1013}
520 1014
521/* called on ENOMEM in select/poll to kill some fds and retry */ 1015/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 1016static void noinline
523fd_enomem (EV_P) 1017fd_enomem (EV_P)
524{ 1018{
525 int fd; 1019 int fd;
526 1020
527 for (fd = anfdmax; fd--; ) 1021 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 1022 if (anfds [fd].events)
529 { 1023 {
530 fd_kill (EV_A_ fd); 1024 fd_kill (EV_A_ fd);
531 return; 1025 break;
532 } 1026 }
533} 1027}
534 1028
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 1029/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 1030static void noinline
537fd_rearm_all (EV_P) 1031fd_rearm_all (EV_P)
538{ 1032{
539 int fd; 1033 int fd;
540 1034
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 1035 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 1036 if (anfds [fd].events)
544 { 1037 {
545 anfds [fd].events = 0; 1038 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 1039 anfds [fd].emask = 0;
1040 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 1041 }
548} 1042}
549 1043
550/*****************************************************************************/ 1044/*****************************************************************************/
551 1045
552static void 1046/*
553upheap (WT *heap, int k) 1047 * the heap functions want a real array index. array index 0 uis guaranteed to not
554{ 1048 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
555 WT w = heap [k]; 1049 * the branching factor of the d-tree.
1050 */
556 1051
557 while (k && heap [k >> 1]->at > w->at) 1052/*
558 { 1053 * at the moment we allow libev the luxury of two heaps,
559 heap [k] = heap [k >> 1]; 1054 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
560 ((W)heap [k])->active = k + 1; 1055 * which is more cache-efficient.
561 k >>= 1; 1056 * the difference is about 5% with 50000+ watchers.
562 } 1057 */
1058#if EV_USE_4HEAP
563 1059
564 heap [k] = w; 1060#define DHEAP 4
565 ((W)heap [k])->active = k + 1; 1061#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1062#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1063#define UPHEAP_DONE(p,k) ((p) == (k))
566 1064
567} 1065/* away from the root */
568 1066inline_speed void
569static void
570downheap (WT *heap, int N, int k) 1067downheap (ANHE *heap, int N, int k)
571{ 1068{
572 WT w = heap [k]; 1069 ANHE he = heap [k];
1070 ANHE *E = heap + N + HEAP0;
573 1071
574 while (k < (N >> 1)) 1072 for (;;)
575 { 1073 {
576 int j = k << 1; 1074 ev_tstamp minat;
1075 ANHE *minpos;
1076 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
577 1077
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1078 /* find minimum child */
1079 if (expect_true (pos + DHEAP - 1 < E))
579 ++j; 1080 {
580 1081 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
581 if (w->at <= heap [j]->at) 1082 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1083 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1085 }
1086 else if (pos < E)
1087 {
1088 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1089 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1090 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1091 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1092 }
1093 else
582 break; 1094 break;
583 1095
1096 if (ANHE_at (he) <= minat)
1097 break;
1098
1099 heap [k] = *minpos;
1100 ev_active (ANHE_w (*minpos)) = k;
1101
1102 k = minpos - heap;
1103 }
1104
1105 heap [k] = he;
1106 ev_active (ANHE_w (he)) = k;
1107}
1108
1109#else /* 4HEAP */
1110
1111#define HEAP0 1
1112#define HPARENT(k) ((k) >> 1)
1113#define UPHEAP_DONE(p,k) (!(p))
1114
1115/* away from the root */
1116inline_speed void
1117downheap (ANHE *heap, int N, int k)
1118{
1119 ANHE he = heap [k];
1120
1121 for (;;)
1122 {
1123 int c = k << 1;
1124
1125 if (c >= N + HEAP0)
1126 break;
1127
1128 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1129 ? 1 : 0;
1130
1131 if (ANHE_at (he) <= ANHE_at (heap [c]))
1132 break;
1133
584 heap [k] = heap [j]; 1134 heap [k] = heap [c];
585 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (heap [k])) = k;
1136
586 k = j; 1137 k = c;
587 } 1138 }
588 1139
589 heap [k] = w; 1140 heap [k] = he;
590 ((W)heap [k])->active = k + 1; 1141 ev_active (ANHE_w (he)) = k;
591} 1142}
1143#endif
592 1144
1145/* towards the root */
1146inline_speed void
1147upheap (ANHE *heap, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int p = HPARENT (k);
1154
1155 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1156 break;
1157
1158 heap [k] = heap [p];
1159 ev_active (ANHE_w (heap [k])) = k;
1160 k = p;
1161 }
1162
1163 heap [k] = he;
1164 ev_active (ANHE_w (he)) = k;
1165}
1166
1167/* move an element suitably so it is in a correct place */
593inline void 1168inline_size void
594adjustheap (WT *heap, int N, int k) 1169adjustheap (ANHE *heap, int N, int k)
595{ 1170{
1171 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
596 upheap (heap, k); 1172 upheap (heap, k);
1173 else
597 downheap (heap, N, k); 1174 downheap (heap, N, k);
1175}
1176
1177/* rebuild the heap: this function is used only once and executed rarely */
1178inline_size void
1179reheap (ANHE *heap, int N)
1180{
1181 int i;
1182
1183 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1184 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1185 for (i = 0; i < N; ++i)
1186 upheap (heap, i + HEAP0);
598} 1187}
599 1188
600/*****************************************************************************/ 1189/*****************************************************************************/
601 1190
1191/* associate signal watchers to a signal signal */
602typedef struct 1192typedef struct
603{ 1193{
1194 EV_ATOMIC_T pending;
1195#if EV_MULTIPLICITY
1196 EV_P;
1197#endif
604 WL head; 1198 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG; 1199} ANSIG;
607 1200
608static ANSIG *signals; 1201static ANSIG signals [EV_NSIG - 1];
609static int signalmax;
610 1202
611static int sigpipe [2]; 1203/*****************************************************************************/
612static sig_atomic_t volatile gotsig;
613static struct ev_io sigev;
614 1204
615static void 1205/* used to prepare libev internal fd's */
616signals_init (ANSIG *base, int count) 1206/* this is not fork-safe */
617{ 1207inline_speed void
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ struct ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1208fd_intern (int fd)
680{ 1209{
681#ifdef _WIN32 1210#ifdef _WIN32
682 int arg = 1; 1211 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1212 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 1213#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1214 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1215 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1216#endif
688} 1217}
689 1218
1219static void noinline
1220evpipe_init (EV_P)
1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224#if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236#endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
1241 fd_intern (evpipe [0]);
1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
1245
1246 ev_io_start (EV_A_ &pipe_w);
1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257
1258 *flag = 1;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter = 1;
1264 write (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 write (evpipe [1], &old_errno, 1);
1269
1270 errno = old_errno;
1271 }
1272}
1273
1274/* called whenever the libev signal pipe */
1275/* got some events (signal, async) */
690static void 1276static void
691siginit (EV_P) 1277pipecb (EV_P_ ev_io *iow, int revents)
692{ 1278{
693 fd_intern (sigpipe [0]); 1279 int i;
694 fd_intern (sigpipe [1]);
695 1280
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1281#if EV_USE_EVENTFD
697 ev_io_start (EV_A_ &sigev); 1282 if (evfd >= 0)
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1283 {
1284 uint64_t counter;
1285 read (evfd, &counter, sizeof (uint64_t));
1286 }
1287 else
1288#endif
1289 {
1290 char dummy;
1291 read (evpipe [0], &dummy, 1);
1292 }
1293
1294 if (sig_pending)
1295 {
1296 sig_pending = 0;
1297
1298 for (i = EV_NSIG - 1; i--; )
1299 if (expect_false (signals [i].pending))
1300 ev_feed_signal_event (EV_A_ i + 1);
1301 }
1302
1303#if EV_ASYNC_ENABLE
1304 if (async_pending)
1305 {
1306 async_pending = 0;
1307
1308 for (i = asynccnt; i--; )
1309 if (asyncs [i]->sent)
1310 {
1311 asyncs [i]->sent = 0;
1312 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1313 }
1314 }
1315#endif
699} 1316}
700 1317
701/*****************************************************************************/ 1318/*****************************************************************************/
702 1319
703static struct ev_child *childs [PID_HASHSIZE]; 1320static void
1321ev_sighandler (int signum)
1322{
1323#if EV_MULTIPLICITY
1324 EV_P = signals [signum - 1].loop;
1325#endif
1326
1327#ifdef _WIN32
1328 signal (signum, ev_sighandler);
1329#endif
1330
1331 signals [signum - 1].pending = 1;
1332 evpipe_write (EV_A_ &sig_pending);
1333}
1334
1335void noinline
1336ev_feed_signal_event (EV_P_ int signum)
1337{
1338 WL w;
1339
1340 if (expect_false (signum <= 0 || signum > EV_NSIG))
1341 return;
1342
1343 --signum;
1344
1345#if EV_MULTIPLICITY
1346 /* it is permissible to try to feed a signal to the wrong loop */
1347 /* or, likely more useful, feeding a signal nobody is waiting for */
1348
1349 if (expect_false (signals [signum].loop != EV_A))
1350 return;
1351#endif
1352
1353 signals [signum].pending = 0;
1354
1355 for (w = signals [signum].head; w; w = w->next)
1356 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1357}
1358
1359#if EV_USE_SIGNALFD
1360static void
1361sigfdcb (EV_P_ ev_io *iow, int revents)
1362{
1363 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1364
1365 for (;;)
1366 {
1367 ssize_t res = read (sigfd, si, sizeof (si));
1368
1369 /* not ISO-C, as res might be -1, but works with SuS */
1370 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1371 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1372
1373 if (res < (ssize_t)sizeof (si))
1374 break;
1375 }
1376}
1377#endif
1378
1379/*****************************************************************************/
1380
1381static WL childs [EV_PID_HASHSIZE];
704 1382
705#ifndef _WIN32 1383#ifndef _WIN32
706 1384
707static struct ev_signal childev; 1385static ev_signal childev;
1386
1387#ifndef WIFCONTINUED
1388# define WIFCONTINUED(status) 0
1389#endif
1390
1391/* handle a single child status event */
1392inline_speed void
1393child_reap (EV_P_ int chain, int pid, int status)
1394{
1395 ev_child *w;
1396 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1397
1398 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1399 {
1400 if ((w->pid == pid || !w->pid)
1401 && (!traced || (w->flags & 1)))
1402 {
1403 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1404 w->rpid = pid;
1405 w->rstatus = status;
1406 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1407 }
1408 }
1409}
708 1410
709#ifndef WCONTINUED 1411#ifndef WCONTINUED
710# define WCONTINUED 0 1412# define WCONTINUED 0
711#endif 1413#endif
712 1414
1415/* called on sigchld etc., calls waitpid */
713static void 1416static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 1417childcb (EV_P_ ev_signal *sw, int revents)
730{ 1418{
731 int pid, status; 1419 int pid, status;
732 1420
1421 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1422 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1423 if (!WCONTINUED
1424 || errno != EINVAL
1425 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1426 return;
1427
735 /* make sure we are called again until all childs have been reaped */ 1428 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1429 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1430 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1431
739 child_reap (EV_A_ sw, pid, pid, status); 1432 child_reap (EV_A_ pid, pid, status);
1433 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1434 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1435}
743 1436
744#endif 1437#endif
745 1438
746/*****************************************************************************/ 1439/*****************************************************************************/
772{ 1465{
773 return EV_VERSION_MINOR; 1466 return EV_VERSION_MINOR;
774} 1467}
775 1468
776/* return true if we are running with elevated privileges and should ignore env variables */ 1469/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1470int inline_size
778enable_secure (void) 1471enable_secure (void)
779{ 1472{
780#ifdef _WIN32 1473#ifdef _WIN32
781 return 0; 1474 return 0;
782#else 1475#else
808 /* kqueue is borked on everything but netbsd apparently */ 1501 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1502 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1503 flags &= ~EVBACKEND_KQUEUE;
811#endif 1504#endif
812#ifdef __APPLE__ 1505#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1506 /* only select works correctly on that "unix-certified" platform */
1507 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1508 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1509#endif
1510
1511 return flags;
1512}
1513
1514unsigned int
1515ev_embeddable_backends (void)
1516{
1517 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1518
1519 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1520 /* please fix it and tell me how to detect the fix */
814 flags &= ~EVBACKEND_POLL; 1521 flags &= ~EVBACKEND_EPOLL;
815#endif
816 1522
817 return flags; 1523 return flags;
818} 1524}
819 1525
820unsigned int 1526unsigned int
821ev_backend (EV_P) 1527ev_backend (EV_P)
822{ 1528{
823 return backend; 1529 return backend;
824} 1530}
825 1531
826static void 1532#if EV_MINIMAL < 2
1533unsigned int
1534ev_loop_count (EV_P)
1535{
1536 return loop_count;
1537}
1538
1539unsigned int
1540ev_loop_depth (EV_P)
1541{
1542 return loop_depth;
1543}
1544
1545void
1546ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1547{
1548 io_blocktime = interval;
1549}
1550
1551void
1552ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1553{
1554 timeout_blocktime = interval;
1555}
1556
1557void
1558ev_set_userdata (EV_P_ void *data)
1559{
1560 userdata = data;
1561}
1562
1563void *
1564ev_userdata (EV_P)
1565{
1566 return userdata;
1567}
1568
1569void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1570{
1571 invoke_cb = invoke_pending_cb;
1572}
1573
1574void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1575{
1576 release_cb = release;
1577 acquire_cb = acquire;
1578}
1579#endif
1580
1581/* initialise a loop structure, must be zero-initialised */
1582static void noinline
827loop_init (EV_P_ unsigned int flags) 1583loop_init (EV_P_ unsigned int flags)
828{ 1584{
829 if (!backend) 1585 if (!backend)
830 { 1586 {
1587#if EV_USE_REALTIME
1588 if (!have_realtime)
1589 {
1590 struct timespec ts;
1591
1592 if (!clock_gettime (CLOCK_REALTIME, &ts))
1593 have_realtime = 1;
1594 }
1595#endif
1596
831#if EV_USE_MONOTONIC 1597#if EV_USE_MONOTONIC
1598 if (!have_monotonic)
832 { 1599 {
833 struct timespec ts; 1600 struct timespec ts;
1601
834 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
835 have_monotonic = 1; 1603 have_monotonic = 1;
836 } 1604 }
837#endif 1605#endif
838 1606
839 ev_rt_now = ev_time (); 1607 /* pid check not overridable via env */
840 mn_now = get_clock (); 1608#ifndef _WIN32
841 now_floor = mn_now; 1609 if (flags & EVFLAG_FORKCHECK)
842 rtmn_diff = ev_rt_now - mn_now; 1610 curpid = getpid ();
1611#endif
843 1612
844 if (!(flags & EVFLAG_NOENV) 1613 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 1614 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 1615 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 1616 flags = atoi (getenv ("LIBEV_FLAGS"));
848 1617
1618 ev_rt_now = ev_time ();
1619 mn_now = get_clock ();
1620 now_floor = mn_now;
1621 rtmn_diff = ev_rt_now - mn_now;
1622#if EV_MINIMAL < 2
1623 invoke_cb = ev_invoke_pending;
1624#endif
1625
1626 io_blocktime = 0.;
1627 timeout_blocktime = 0.;
1628 backend = 0;
1629 backend_fd = -1;
1630 sig_pending = 0;
1631#if EV_ASYNC_ENABLE
1632 async_pending = 0;
1633#endif
1634#if EV_USE_INOTIFY
1635 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1636#endif
1637#if EV_USE_SIGNALFD
1638 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1639#endif
1640
849 if (!(flags & 0x0000ffffUL)) 1641 if (!(flags & 0x0000ffffU))
850 flags |= ev_recommended_backends (); 1642 flags |= ev_recommended_backends ();
851 1643
852 backend = 0;
853#if EV_USE_PORT 1644#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1645 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 1646#endif
856#if EV_USE_KQUEUE 1647#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1648 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864#endif 1655#endif
865#if EV_USE_SELECT 1656#if EV_USE_SELECT
866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1657 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
867#endif 1658#endif
868 1659
1660 ev_prepare_init (&pending_w, pendingcb);
1661
869 ev_init (&sigev, sigcb); 1662 ev_init (&pipe_w, pipecb);
870 ev_set_priority (&sigev, EV_MAXPRI); 1663 ev_set_priority (&pipe_w, EV_MAXPRI);
871 } 1664 }
872} 1665}
873 1666
874static void 1667/* free up a loop structure */
1668static void noinline
875loop_destroy (EV_P) 1669loop_destroy (EV_P)
876{ 1670{
877 int i; 1671 int i;
1672
1673 if (ev_is_active (&pipe_w))
1674 {
1675 /*ev_ref (EV_A);*/
1676 /*ev_io_stop (EV_A_ &pipe_w);*/
1677
1678#if EV_USE_EVENTFD
1679 if (evfd >= 0)
1680 close (evfd);
1681#endif
1682
1683 if (evpipe [0] >= 0)
1684 {
1685 EV_WIN32_CLOSE_FD (evpipe [0]);
1686 EV_WIN32_CLOSE_FD (evpipe [1]);
1687 }
1688 }
1689
1690#if EV_USE_SIGNALFD
1691 if (ev_is_active (&sigfd_w))
1692 close (sigfd);
1693#endif
1694
1695#if EV_USE_INOTIFY
1696 if (fs_fd >= 0)
1697 close (fs_fd);
1698#endif
1699
1700 if (backend_fd >= 0)
1701 close (backend_fd);
878 1702
879#if EV_USE_PORT 1703#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1704 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 1705#endif
882#if EV_USE_KQUEUE 1706#if EV_USE_KQUEUE
891#if EV_USE_SELECT 1715#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1716 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 1717#endif
894 1718
895 for (i = NUMPRI; i--; ) 1719 for (i = NUMPRI; i--; )
1720 {
896 array_free (pending, [i]); 1721 array_free (pending, [i]);
1722#if EV_IDLE_ENABLE
1723 array_free (idle, [i]);
1724#endif
1725 }
1726
1727 ev_free (anfds); anfds = 0; anfdmax = 0;
897 1728
898 /* have to use the microsoft-never-gets-it-right macro */ 1729 /* have to use the microsoft-never-gets-it-right macro */
1730 array_free (rfeed, EMPTY);
899 array_free (fdchange, EMPTY0); 1731 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 1732 array_free (timer, EMPTY);
901#if EV_PERIODICS 1733#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 1734 array_free (periodic, EMPTY);
903#endif 1735#endif
1736#if EV_FORK_ENABLE
904 array_free (idle, EMPTY0); 1737 array_free (fork, EMPTY);
1738#endif
905 array_free (prepare, EMPTY0); 1739 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 1740 array_free (check, EMPTY);
1741#if EV_ASYNC_ENABLE
1742 array_free (async, EMPTY);
1743#endif
907 1744
908 backend = 0; 1745 backend = 0;
909} 1746}
910 1747
911static void 1748#if EV_USE_INOTIFY
1749inline_size void infy_fork (EV_P);
1750#endif
1751
1752inline_size void
912loop_fork (EV_P) 1753loop_fork (EV_P)
913{ 1754{
914#if EV_USE_PORT 1755#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1756 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 1757#endif
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1759 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 1760#endif
920#if EV_USE_EPOLL 1761#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1762 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
922#endif 1763#endif
1764#if EV_USE_INOTIFY
1765 infy_fork (EV_A);
1766#endif
923 1767
924 if (ev_is_active (&sigev)) 1768 if (ev_is_active (&pipe_w))
925 { 1769 {
926 /* default loop */ 1770 /* this "locks" the handlers against writing to the pipe */
1771 /* while we modify the fd vars */
1772 sig_pending = 1;
1773#if EV_ASYNC_ENABLE
1774 async_pending = 1;
1775#endif
927 1776
928 ev_ref (EV_A); 1777 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev); 1778 ev_io_stop (EV_A_ &pipe_w);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932 1779
933 while (pipe (sigpipe)) 1780#if EV_USE_EVENTFD
934 syserr ("(libev) error creating pipe"); 1781 if (evfd >= 0)
1782 close (evfd);
1783#endif
935 1784
1785 if (evpipe [0] >= 0)
1786 {
1787 EV_WIN32_CLOSE_FD (evpipe [0]);
1788 EV_WIN32_CLOSE_FD (evpipe [1]);
1789 }
1790
936 siginit (EV_A); 1791 evpipe_init (EV_A);
1792 /* now iterate over everything, in case we missed something */
1793 pipecb (EV_A_ &pipe_w, EV_READ);
937 } 1794 }
938 1795
939 postfork = 0; 1796 postfork = 0;
940} 1797}
941 1798
942#if EV_MULTIPLICITY 1799#if EV_MULTIPLICITY
1800
943struct ev_loop * 1801struct ev_loop *
944ev_loop_new (unsigned int flags) 1802ev_loop_new (unsigned int flags)
945{ 1803{
946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1804 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
947 1805
948 memset (loop, 0, sizeof (struct ev_loop)); 1806 memset (EV_A, 0, sizeof (struct ev_loop));
949
950 loop_init (EV_A_ flags); 1807 loop_init (EV_A_ flags);
951 1808
952 if (ev_backend (EV_A)) 1809 if (ev_backend (EV_A))
953 return loop; 1810 return EV_A;
954 1811
955 return 0; 1812 return 0;
956} 1813}
957 1814
958void 1815void
963} 1820}
964 1821
965void 1822void
966ev_loop_fork (EV_P) 1823ev_loop_fork (EV_P)
967{ 1824{
968 postfork = 1; 1825 postfork = 1; /* must be in line with ev_default_fork */
969} 1826}
1827#endif /* multiplicity */
970 1828
1829#if EV_VERIFY
1830static void noinline
1831verify_watcher (EV_P_ W w)
1832{
1833 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1834
1835 if (w->pending)
1836 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1837}
1838
1839static void noinline
1840verify_heap (EV_P_ ANHE *heap, int N)
1841{
1842 int i;
1843
1844 for (i = HEAP0; i < N + HEAP0; ++i)
1845 {
1846 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1847 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1848 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1849
1850 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1851 }
1852}
1853
1854static void noinline
1855array_verify (EV_P_ W *ws, int cnt)
1856{
1857 while (cnt--)
1858 {
1859 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1860 verify_watcher (EV_A_ ws [cnt]);
1861 }
1862}
1863#endif
1864
1865#if EV_MINIMAL < 2
1866void
1867ev_loop_verify (EV_P)
1868{
1869#if EV_VERIFY
1870 int i;
1871 WL w;
1872
1873 assert (activecnt >= -1);
1874
1875 assert (fdchangemax >= fdchangecnt);
1876 for (i = 0; i < fdchangecnt; ++i)
1877 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1878
1879 assert (anfdmax >= 0);
1880 for (i = 0; i < anfdmax; ++i)
1881 for (w = anfds [i].head; w; w = w->next)
1882 {
1883 verify_watcher (EV_A_ (W)w);
1884 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1885 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1886 }
1887
1888 assert (timermax >= timercnt);
1889 verify_heap (EV_A_ timers, timercnt);
1890
1891#if EV_PERIODIC_ENABLE
1892 assert (periodicmax >= periodiccnt);
1893 verify_heap (EV_A_ periodics, periodiccnt);
1894#endif
1895
1896 for (i = NUMPRI; i--; )
1897 {
1898 assert (pendingmax [i] >= pendingcnt [i]);
1899#if EV_IDLE_ENABLE
1900 assert (idleall >= 0);
1901 assert (idlemax [i] >= idlecnt [i]);
1902 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1903#endif
1904 }
1905
1906#if EV_FORK_ENABLE
1907 assert (forkmax >= forkcnt);
1908 array_verify (EV_A_ (W *)forks, forkcnt);
1909#endif
1910
1911#if EV_ASYNC_ENABLE
1912 assert (asyncmax >= asynccnt);
1913 array_verify (EV_A_ (W *)asyncs, asynccnt);
1914#endif
1915
1916 assert (preparemax >= preparecnt);
1917 array_verify (EV_A_ (W *)prepares, preparecnt);
1918
1919 assert (checkmax >= checkcnt);
1920 array_verify (EV_A_ (W *)checks, checkcnt);
1921
1922# if 0
1923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1924 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1925# endif
1926#endif
1927}
971#endif 1928#endif
972 1929
973#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
974struct ev_loop * 1931struct ev_loop *
975ev_default_loop_init (unsigned int flags) 1932ev_default_loop_init (unsigned int flags)
976#else 1933#else
977int 1934int
978ev_default_loop (unsigned int flags) 1935ev_default_loop (unsigned int flags)
979#endif 1936#endif
980{ 1937{
981 if (sigpipe [0] == sigpipe [1])
982 if (pipe (sigpipe))
983 return 0;
984
985 if (!ev_default_loop_ptr) 1938 if (!ev_default_loop_ptr)
986 { 1939 {
987#if EV_MULTIPLICITY 1940#if EV_MULTIPLICITY
988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1941 EV_P = ev_default_loop_ptr = &default_loop_struct;
989#else 1942#else
990 ev_default_loop_ptr = 1; 1943 ev_default_loop_ptr = 1;
991#endif 1944#endif
992 1945
993 loop_init (EV_A_ flags); 1946 loop_init (EV_A_ flags);
994 1947
995 if (ev_backend (EV_A)) 1948 if (ev_backend (EV_A))
996 { 1949 {
997 siginit (EV_A);
998
999#ifndef _WIN32 1950#ifndef _WIN32
1000 ev_signal_init (&childev, childcb, SIGCHLD); 1951 ev_signal_init (&childev, childcb, SIGCHLD);
1001 ev_set_priority (&childev, EV_MAXPRI); 1952 ev_set_priority (&childev, EV_MAXPRI);
1002 ev_signal_start (EV_A_ &childev); 1953 ev_signal_start (EV_A_ &childev);
1003 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1954 ev_unref (EV_A); /* child watcher should not keep loop alive */
1012 1963
1013void 1964void
1014ev_default_destroy (void) 1965ev_default_destroy (void)
1015{ 1966{
1016#if EV_MULTIPLICITY 1967#if EV_MULTIPLICITY
1017 struct ev_loop *loop = ev_default_loop_ptr; 1968 EV_P = ev_default_loop_ptr;
1018#endif 1969#endif
1970
1971 ev_default_loop_ptr = 0;
1019 1972
1020#ifndef _WIN32 1973#ifndef _WIN32
1021 ev_ref (EV_A); /* child watcher */ 1974 ev_ref (EV_A); /* child watcher */
1022 ev_signal_stop (EV_A_ &childev); 1975 ev_signal_stop (EV_A_ &childev);
1023#endif 1976#endif
1024 1977
1025 ev_ref (EV_A); /* signal watcher */
1026 ev_io_stop (EV_A_ &sigev);
1027
1028 close (sigpipe [0]); sigpipe [0] = 0;
1029 close (sigpipe [1]); sigpipe [1] = 0;
1030
1031 loop_destroy (EV_A); 1978 loop_destroy (EV_A);
1032} 1979}
1033 1980
1034void 1981void
1035ev_default_fork (void) 1982ev_default_fork (void)
1036{ 1983{
1037#if EV_MULTIPLICITY 1984#if EV_MULTIPLICITY
1038 struct ev_loop *loop = ev_default_loop_ptr; 1985 EV_P = ev_default_loop_ptr;
1039#endif 1986#endif
1040 1987
1041 if (backend) 1988 postfork = 1; /* must be in line with ev_loop_fork */
1042 postfork = 1;
1043} 1989}
1044 1990
1045/*****************************************************************************/ 1991/*****************************************************************************/
1046 1992
1047static int 1993void
1048any_pending (EV_P) 1994ev_invoke (EV_P_ void *w, int revents)
1995{
1996 EV_CB_INVOKE ((W)w, revents);
1997}
1998
1999unsigned int
2000ev_pending_count (EV_P)
1049{ 2001{
1050 int pri; 2002 int pri;
2003 unsigned int count = 0;
1051 2004
1052 for (pri = NUMPRI; pri--; ) 2005 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri]) 2006 count += pendingcnt [pri];
1054 return 1;
1055 2007
1056 return 0; 2008 return count;
1057} 2009}
1058 2010
1059inline void 2011void noinline
1060call_pending (EV_P) 2012ev_invoke_pending (EV_P)
1061{ 2013{
1062 int pri; 2014 int pri;
1063 2015
1064 for (pri = NUMPRI; pri--; ) 2016 for (pri = NUMPRI; pri--; )
1065 while (pendingcnt [pri]) 2017 while (pendingcnt [pri])
1066 { 2018 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2019 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 2020
1069 if (expect_true (p->w)) 2021 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1070 { 2022 /* ^ this is no longer true, as pending_w could be here */
2023
1071 p->w->pending = 0; 2024 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 2025 EV_CB_INVOKE (p->w, p->events);
1073 } 2026 EV_FREQUENT_CHECK;
1074 } 2027 }
1075} 2028}
1076 2029
2030#if EV_IDLE_ENABLE
2031/* make idle watchers pending. this handles the "call-idle */
2032/* only when higher priorities are idle" logic */
1077inline void 2033inline_size void
2034idle_reify (EV_P)
2035{
2036 if (expect_false (idleall))
2037 {
2038 int pri;
2039
2040 for (pri = NUMPRI; pri--; )
2041 {
2042 if (pendingcnt [pri])
2043 break;
2044
2045 if (idlecnt [pri])
2046 {
2047 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2048 break;
2049 }
2050 }
2051 }
2052}
2053#endif
2054
2055/* make timers pending */
2056inline_size void
1078timers_reify (EV_P) 2057timers_reify (EV_P)
1079{ 2058{
2059 EV_FREQUENT_CHECK;
2060
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 2061 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1081 { 2062 {
1082 struct ev_timer *w = timers [0]; 2063 do
1083
1084 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085
1086 /* first reschedule or stop timer */
1087 if (w->repeat)
1088 { 2064 {
2065 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2066
2067 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2068
2069 /* first reschedule or stop timer */
2070 if (w->repeat)
2071 {
2072 ev_at (w) += w->repeat;
2073 if (ev_at (w) < mn_now)
2074 ev_at (w) = mn_now;
2075
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2076 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 2077
1091 ((WT)w)->at += w->repeat; 2078 ANHE_at_cache (timers [HEAP0]);
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
1095 downheap ((WT *)timers, timercnt, 0); 2079 downheap (timers, timercnt, HEAP0);
2080 }
2081 else
2082 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1096 } 2086 }
1097 else 2087 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 2088
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2089 feed_reverse_done (EV_A_ EV_TIMEOUT);
1101 } 2090 }
1102} 2091}
1103 2092
1104#if EV_PERIODICS 2093#if EV_PERIODIC_ENABLE
2094/* make periodics pending */
1105inline void 2095inline_size void
1106periodics_reify (EV_P) 2096periodics_reify (EV_P)
1107{ 2097{
2098 EV_FREQUENT_CHECK;
2099
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2100 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1109 { 2101 {
1110 struct ev_periodic *w = periodics [0]; 2102 int feed_count = 0;
1111 2103
2104 do
2105 {
2106 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2107
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2108 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 2109
1114 /* first reschedule or stop timer */ 2110 /* first reschedule or stop timer */
2111 if (w->reschedule_cb)
2112 {
2113 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2114
2115 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2116
2117 ANHE_at_cache (periodics [HEAP0]);
2118 downheap (periodics, periodiccnt, HEAP0);
2119 }
2120 else if (w->interval)
2121 {
2122 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2123 /* if next trigger time is not sufficiently in the future, put it there */
2124 /* this might happen because of floating point inexactness */
2125 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2126 {
2127 ev_at (w) += w->interval;
2128
2129 /* if interval is unreasonably low we might still have a time in the past */
2130 /* so correct this. this will make the periodic very inexact, but the user */
2131 /* has effectively asked to get triggered more often than possible */
2132 if (ev_at (w) < ev_rt_now)
2133 ev_at (w) = ev_rt_now;
2134 }
2135
2136 ANHE_at_cache (periodics [HEAP0]);
2137 downheap (periodics, periodiccnt, HEAP0);
2138 }
2139 else
2140 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2141
2142 EV_FREQUENT_CHECK;
2143 feed_reverse (EV_A_ (W)w);
2144 }
2145 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2146
2147 feed_reverse_done (EV_A_ EV_PERIODIC);
2148 }
2149}
2150
2151/* simply recalculate all periodics */
2152/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2153static void noinline
2154periodics_reschedule (EV_P)
2155{
2156 int i;
2157
2158 /* adjust periodics after time jump */
2159 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2160 {
2161 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2162
1115 if (w->reschedule_cb) 2163 if (w->reschedule_cb)
2164 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2165 else if (w->interval)
2166 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2167
2168 ANHE_at_cache (periodics [i]);
2169 }
2170
2171 reheap (periodics, periodiccnt);
2172}
2173#endif
2174
2175/* adjust all timers by a given offset */
2176static void noinline
2177timers_reschedule (EV_P_ ev_tstamp adjust)
2178{
2179 int i;
2180
2181 for (i = 0; i < timercnt; ++i)
2182 {
2183 ANHE *he = timers + i + HEAP0;
2184 ANHE_w (*he)->at += adjust;
2185 ANHE_at_cache (*he);
2186 }
2187}
2188
2189/* fetch new monotonic and realtime times from the kernel */
2190/* also detect if there was a timejump, and act accordingly */
2191inline_speed void
2192time_update (EV_P_ ev_tstamp max_block)
2193{
2194#if EV_USE_MONOTONIC
2195 if (expect_true (have_monotonic))
2196 {
2197 int i;
2198 ev_tstamp odiff = rtmn_diff;
2199
2200 mn_now = get_clock ();
2201
2202 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2203 /* interpolate in the meantime */
2204 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1116 { 2205 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2206 ev_rt_now = rtmn_diff + mn_now;
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2207 return;
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 } 2208 }
1121 else if (w->interval)
1122 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0);
1126 }
1127 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 2209
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 }
1132}
1133
1134static void
1135periodics_reschedule (EV_P)
1136{
1137 int i;
1138
1139 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i)
1141 {
1142 struct ev_periodic *w = periodics [i];
1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
1153}
1154#endif
1155
1156inline int
1157time_update_monotonic (EV_P)
1158{
1159 mn_now = get_clock ();
1160
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 {
1163 ev_rt_now = rtmn_diff + mn_now;
1164 return 0;
1165 }
1166 else
1167 {
1168 now_floor = mn_now; 2210 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 2211 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 2212
1174inline void 2213 /* loop a few times, before making important decisions.
1175time_update (EV_P) 2214 * on the choice of "4": one iteration isn't enough,
1176{ 2215 * in case we get preempted during the calls to
1177 int i; 2216 * ev_time and get_clock. a second call is almost guaranteed
1178 2217 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 2218 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 2219 * in the unlikely event of having been preempted here.
1181 { 2220 */
1182 if (time_update_monotonic (EV_A)) 2221 for (i = 4; --i; )
1183 { 2222 {
1184 ev_tstamp odiff = rtmn_diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 2223 rtmn_diff = ev_rt_now - mn_now;
1189 2224
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2225 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1191 return; /* all is well */ 2226 return; /* all is well */
1192 2227
1193 ev_rt_now = ev_time (); 2228 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 2229 mn_now = get_clock ();
1195 now_floor = mn_now; 2230 now_floor = mn_now;
1196 } 2231 }
1197 2232
2233 /* no timer adjustment, as the monotonic clock doesn't jump */
2234 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198# if EV_PERIODICS 2235# if EV_PERIODIC_ENABLE
2236 periodics_reschedule (EV_A);
2237# endif
2238 }
2239 else
2240#endif
2241 {
2242 ev_rt_now = ev_time ();
2243
2244 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2245 {
2246 /* adjust timers. this is easy, as the offset is the same for all of them */
2247 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2248#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 2249 periodics_reschedule (EV_A);
1200# endif 2250#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 2251 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 }
1220 2252
1221 mn_now = ev_rt_now; 2253 mn_now = ev_rt_now;
1222 } 2254 }
1223} 2255}
1224 2256
1225void 2257void
1226ev_ref (EV_P)
1227{
1228 ++activecnt;
1229}
1230
1231void
1232ev_unref (EV_P)
1233{
1234 --activecnt;
1235}
1236
1237static int loop_done;
1238
1239void
1240ev_loop (EV_P_ int flags) 2258ev_loop (EV_P_ int flags)
1241{ 2259{
1242 double block; 2260#if EV_MINIMAL < 2
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2261 ++loop_depth;
2262#endif
1244 2263
1245 while (activecnt) 2264 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2265
2266 loop_done = EVUNLOOP_CANCEL;
2267
2268 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2269
2270 do
1246 { 2271 {
2272#if EV_VERIFY >= 2
2273 ev_loop_verify (EV_A);
2274#endif
2275
2276#ifndef _WIN32
2277 if (expect_false (curpid)) /* penalise the forking check even more */
2278 if (expect_false (getpid () != curpid))
2279 {
2280 curpid = getpid ();
2281 postfork = 1;
2282 }
2283#endif
2284
2285#if EV_FORK_ENABLE
2286 /* we might have forked, so queue fork handlers */
2287 if (expect_false (postfork))
2288 if (forkcnt)
2289 {
2290 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2291 EV_INVOKE_PENDING;
2292 }
2293#endif
2294
1247 /* queue check watchers (and execute them) */ 2295 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 2296 if (expect_false (preparecnt))
1249 { 2297 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2298 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 2299 EV_INVOKE_PENDING;
1252 } 2300 }
2301
2302 if (expect_false (loop_done))
2303 break;
1253 2304
1254 /* we might have forked, so reify kernel state if necessary */ 2305 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 2306 if (expect_false (postfork))
1256 loop_fork (EV_A); 2307 loop_fork (EV_A);
1257 2308
1258 /* update fd-related kernel structures */ 2309 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 2310 fd_reify (EV_A);
1260 2311
1261 /* calculate blocking time */ 2312 /* calculate blocking time */
2313 {
2314 ev_tstamp waittime = 0.;
2315 ev_tstamp sleeptime = 0.;
1262 2316
1263 /* we only need this for !monotonic clock or timers, but as we basically 2317 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1264 always have timers, we just calculate it always */
1265#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A);
1268 else
1269#endif
1270 { 2318 {
1271 ev_rt_now = ev_time (); 2319 /* remember old timestamp for io_blocktime calculation */
1272 mn_now = ev_rt_now; 2320 ev_tstamp prev_mn_now = mn_now;
1273 }
1274 2321
1275 if (flags & EVLOOP_NONBLOCK || idlecnt) 2322 /* update time to cancel out callback processing overhead */
1276 block = 0.; 2323 time_update (EV_A_ 1e100);
1277 else 2324
1278 {
1279 block = MAX_BLOCKTIME; 2325 waittime = MAX_BLOCKTIME;
1280 2326
1281 if (timercnt) 2327 if (timercnt)
1282 { 2328 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2329 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1284 if (block > to) block = to; 2330 if (waittime > to) waittime = to;
1285 } 2331 }
1286 2332
1287#if EV_PERIODICS 2333#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 2334 if (periodiccnt)
1289 { 2335 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2336 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 2337 if (waittime > to) waittime = to;
1292 } 2338 }
1293#endif 2339#endif
1294 2340
1295 if (expect_false (block < 0.)) block = 0.; 2341 /* don't let timeouts decrease the waittime below timeout_blocktime */
2342 if (expect_false (waittime < timeout_blocktime))
2343 waittime = timeout_blocktime;
2344
2345 /* extra check because io_blocktime is commonly 0 */
2346 if (expect_false (io_blocktime))
2347 {
2348 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2349
2350 if (sleeptime > waittime - backend_fudge)
2351 sleeptime = waittime - backend_fudge;
2352
2353 if (expect_true (sleeptime > 0.))
2354 {
2355 ev_sleep (sleeptime);
2356 waittime -= sleeptime;
2357 }
2358 }
1296 } 2359 }
1297 2360
2361#if EV_MINIMAL < 2
2362 ++loop_count;
2363#endif
2364 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1298 backend_poll (EV_A_ block); 2365 backend_poll (EV_A_ waittime);
2366 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1299 2367
1300 /* update ev_rt_now, do magic */ 2368 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 2369 time_update (EV_A_ waittime + sleeptime);
2370 }
1302 2371
1303 /* queue pending timers and reschedule them */ 2372 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 2373 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 2374#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 2375 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 2376#endif
1308 2377
2378#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 2379 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 2380 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2381#endif
1312 2382
1313 /* queue check watchers, to be executed first */ 2383 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 2384 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2385 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1316 2386
1317 call_pending (EV_A); 2387 EV_INVOKE_PENDING;
1318
1319 if (expect_false (loop_done))
1320 break;
1321 } 2388 }
2389 while (expect_true (
2390 activecnt
2391 && !loop_done
2392 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2393 ));
1322 2394
1323 if (loop_done != 2) 2395 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 2396 loop_done = EVUNLOOP_CANCEL;
2397
2398#if EV_MINIMAL < 2
2399 --loop_depth;
2400#endif
1325} 2401}
1326 2402
1327void 2403void
1328ev_unloop (EV_P_ int how) 2404ev_unloop (EV_P_ int how)
1329{ 2405{
1330 loop_done = how; 2406 loop_done = how;
1331} 2407}
1332 2408
2409void
2410ev_ref (EV_P)
2411{
2412 ++activecnt;
2413}
2414
2415void
2416ev_unref (EV_P)
2417{
2418 --activecnt;
2419}
2420
2421void
2422ev_now_update (EV_P)
2423{
2424 time_update (EV_A_ 1e100);
2425}
2426
2427void
2428ev_suspend (EV_P)
2429{
2430 ev_now_update (EV_A);
2431}
2432
2433void
2434ev_resume (EV_P)
2435{
2436 ev_tstamp mn_prev = mn_now;
2437
2438 ev_now_update (EV_A);
2439 timers_reschedule (EV_A_ mn_now - mn_prev);
2440#if EV_PERIODIC_ENABLE
2441 /* TODO: really do this? */
2442 periodics_reschedule (EV_A);
2443#endif
2444}
2445
1333/*****************************************************************************/ 2446/*****************************************************************************/
2447/* singly-linked list management, used when the expected list length is short */
1334 2448
1335inline void 2449inline_size void
1336wlist_add (WL *head, WL elem) 2450wlist_add (WL *head, WL elem)
1337{ 2451{
1338 elem->next = *head; 2452 elem->next = *head;
1339 *head = elem; 2453 *head = elem;
1340} 2454}
1341 2455
1342inline void 2456inline_size void
1343wlist_del (WL *head, WL elem) 2457wlist_del (WL *head, WL elem)
1344{ 2458{
1345 while (*head) 2459 while (*head)
1346 { 2460 {
1347 if (*head == elem) 2461 if (expect_true (*head == elem))
1348 { 2462 {
1349 *head = elem->next; 2463 *head = elem->next;
1350 return; 2464 break;
1351 } 2465 }
1352 2466
1353 head = &(*head)->next; 2467 head = &(*head)->next;
1354 } 2468 }
1355} 2469}
1356 2470
2471/* internal, faster, version of ev_clear_pending */
1357inline void 2472inline_speed void
1358ev_clear_pending (EV_P_ W w) 2473clear_pending (EV_P_ W w)
1359{ 2474{
1360 if (w->pending) 2475 if (w->pending)
1361 { 2476 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1363 w->pending = 0; 2478 w->pending = 0;
1364 } 2479 }
1365} 2480}
1366 2481
2482int
2483ev_clear_pending (EV_P_ void *w)
2484{
2485 W w_ = (W)w;
2486 int pending = w_->pending;
2487
2488 if (expect_true (pending))
2489 {
2490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2491 p->w = (W)&pending_w;
2492 w_->pending = 0;
2493 return p->events;
2494 }
2495 else
2496 return 0;
2497}
2498
1367inline void 2499inline_size void
2500pri_adjust (EV_P_ W w)
2501{
2502 int pri = ev_priority (w);
2503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2505 ev_set_priority (w, pri);
2506}
2507
2508inline_speed void
1368ev_start (EV_P_ W w, int active) 2509ev_start (EV_P_ W w, int active)
1369{ 2510{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2511 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 2512 w->active = active;
1374 ev_ref (EV_A); 2513 ev_ref (EV_A);
1375} 2514}
1376 2515
1377inline void 2516inline_size void
1378ev_stop (EV_P_ W w) 2517ev_stop (EV_P_ W w)
1379{ 2518{
1380 ev_unref (EV_A); 2519 ev_unref (EV_A);
1381 w->active = 0; 2520 w->active = 0;
1382} 2521}
1383 2522
1384/*****************************************************************************/ 2523/*****************************************************************************/
1385 2524
1386void 2525void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 2526ev_io_start (EV_P_ ev_io *w)
1388{ 2527{
1389 int fd = w->fd; 2528 int fd = w->fd;
1390 2529
1391 if (expect_false (ev_is_active (w))) 2530 if (expect_false (ev_is_active (w)))
1392 return; 2531 return;
1393 2532
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 2533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2535
2536 EV_FREQUENT_CHECK;
1395 2537
1396 ev_start (EV_A_ (W)w, 1); 2538 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2540 wlist_add (&anfds[fd].head, (WL)w);
1399 2541
1400 fd_change (EV_A_ fd); 2542 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1401} 2543 w->events &= ~EV__IOFDSET;
1402 2544
1403void 2545 EV_FREQUENT_CHECK;
2546}
2547
2548void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 2549ev_io_stop (EV_P_ ev_io *w)
1405{ 2550{
1406 ev_clear_pending (EV_A_ (W)w); 2551 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2552 if (expect_false (!ev_is_active (w)))
1408 return; 2553 return;
1409 2554
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2555 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 2556
2557 EV_FREQUENT_CHECK;
2558
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2559 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1414 2561
1415 fd_change (EV_A_ w->fd); 2562 fd_change (EV_A_ w->fd, 1);
1416}
1417 2563
1418void 2564 EV_FREQUENT_CHECK;
2565}
2566
2567void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 2568ev_timer_start (EV_P_ ev_timer *w)
1420{ 2569{
1421 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1422 return; 2571 return;
1423 2572
1424 ((WT)w)->at += mn_now; 2573 ev_at (w) += mn_now;
1425 2574
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2575 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 2576
2577 EV_FREQUENT_CHECK;
2578
2579 ++timercnt;
1428 ev_start (EV_A_ (W)w, ++timercnt); 2580 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2581 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1430 timers [timercnt - 1] = w; 2582 ANHE_w (timers [ev_active (w)]) = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 2583 ANHE_at_cache (timers [ev_active (w)]);
2584 upheap (timers, ev_active (w));
1432 2585
2586 EV_FREQUENT_CHECK;
2587
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2588 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1434} 2589}
1435 2590
1436void 2591void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 2592ev_timer_stop (EV_P_ ev_timer *w)
1438{ 2593{
1439 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1441 return; 2596 return;
1442 2597
2598 EV_FREQUENT_CHECK;
2599
2600 {
2601 int active = ev_active (w);
2602
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2603 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1444 2604
2605 --timercnt;
2606
1445 if (expect_true (((W)w)->active < timercnt--)) 2607 if (expect_true (active < timercnt + HEAP0))
1446 { 2608 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 2609 timers [active] = timers [timercnt + HEAP0];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, active);
1449 } 2611 }
2612 }
1450 2613
1451 ((WT)w)->at -= mn_now; 2614 ev_at (w) -= mn_now;
1452 2615
1453 ev_stop (EV_A_ (W)w); 2616 ev_stop (EV_A_ (W)w);
1454}
1455 2617
1456void 2618 EV_FREQUENT_CHECK;
2619}
2620
2621void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 2622ev_timer_again (EV_P_ ev_timer *w)
1458{ 2623{
2624 EV_FREQUENT_CHECK;
2625
1459 if (ev_is_active (w)) 2626 if (ev_is_active (w))
1460 { 2627 {
1461 if (w->repeat) 2628 if (w->repeat)
1462 { 2629 {
1463 ((WT)w)->at = mn_now + w->repeat; 2630 ev_at (w) = mn_now + w->repeat;
2631 ANHE_at_cache (timers [ev_active (w)]);
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2632 adjustheap (timers, timercnt, ev_active (w));
1465 } 2633 }
1466 else 2634 else
1467 ev_timer_stop (EV_A_ w); 2635 ev_timer_stop (EV_A_ w);
1468 } 2636 }
1469 else if (w->repeat) 2637 else if (w->repeat)
1470 { 2638 {
1471 w->at = w->repeat; 2639 ev_at (w) = w->repeat;
1472 ev_timer_start (EV_A_ w); 2640 ev_timer_start (EV_A_ w);
1473 } 2641 }
1474}
1475 2642
2643 EV_FREQUENT_CHECK;
2644}
2645
2646ev_tstamp
2647ev_timer_remaining (EV_P_ ev_timer *w)
2648{
2649 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2650}
2651
1476#if EV_PERIODICS 2652#if EV_PERIODIC_ENABLE
1477void 2653void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 2654ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 2655{
1480 if (expect_false (ev_is_active (w))) 2656 if (expect_false (ev_is_active (w)))
1481 return; 2657 return;
1482 2658
1483 if (w->reschedule_cb) 2659 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2660 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 2661 else if (w->interval)
1486 { 2662 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2663 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 2664 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2665 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1490 } 2666 }
2667 else
2668 ev_at (w) = w->offset;
1491 2669
2670 EV_FREQUENT_CHECK;
2671
2672 ++periodiccnt;
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 2673 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2674 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 2675 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 2676 ANHE_at_cache (periodics [ev_active (w)]);
2677 upheap (periodics, ev_active (w));
1496 2678
2679 EV_FREQUENT_CHECK;
2680
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2681 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1498} 2682}
1499 2683
1500void 2684void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 2685ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 2686{
1503 ev_clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
1505 return; 2689 return;
1506 2690
2691 EV_FREQUENT_CHECK;
2692
2693 {
2694 int active = ev_active (w);
2695
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2696 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1508 2697
2698 --periodiccnt;
2699
1509 if (expect_true (((W)w)->active < periodiccnt--)) 2700 if (expect_true (active < periodiccnt + HEAP0))
1510 { 2701 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2702 periodics [active] = periodics [periodiccnt + HEAP0];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2703 adjustheap (periodics, periodiccnt, active);
1513 } 2704 }
2705 }
1514 2706
1515 ev_stop (EV_A_ (W)w); 2707 ev_stop (EV_A_ (W)w);
1516}
1517 2708
1518void 2709 EV_FREQUENT_CHECK;
2710}
2711
2712void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 2713ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 2714{
1521 /* TODO: use adjustheap and recalculation */ 2715 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 2716 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 2717 ev_periodic_start (EV_A_ w);
1524} 2718}
1525#endif 2719#endif
1526 2720
1527void 2721#ifndef SA_RESTART
1528ev_idle_start (EV_P_ struct ev_idle *w) 2722# define SA_RESTART 0
2723#endif
2724
2725void noinline
2726ev_signal_start (EV_P_ ev_signal *w)
1529{ 2727{
1530 if (expect_false (ev_is_active (w))) 2728 if (expect_false (ev_is_active (w)))
1531 return; 2729 return;
1532 2730
2731 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2732
2733#if EV_MULTIPLICITY
2734 assert (("libev: a signal must not be attached to two different loops",
2735 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2736
2737 signals [w->signum - 1].loop = EV_A;
2738#endif
2739
2740 EV_FREQUENT_CHECK;
2741
2742#if EV_USE_SIGNALFD
2743 if (sigfd == -2)
2744 {
2745 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2746 if (sigfd < 0 && errno == EINVAL)
2747 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2748
2749 if (sigfd >= 0)
2750 {
2751 fd_intern (sigfd); /* doing it twice will not hurt */
2752
2753 sigemptyset (&sigfd_set);
2754
2755 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2756 ev_set_priority (&sigfd_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &sigfd_w);
2758 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2759 }
2760 }
2761
2762 if (sigfd >= 0)
2763 {
2764 /* TODO: check .head */
2765 sigaddset (&sigfd_set, w->signum);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2767
2768 signalfd (sigfd, &sigfd_set, 0);
2769 }
2770#endif
2771
1533 ev_start (EV_A_ (W)w, ++idlecnt); 2772 ev_start (EV_A_ (W)w, 1);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1535 idles [idlecnt - 1] = w;
1536}
1537 2774
1538void 2775 if (!((WL)w)->next)
1539ev_idle_stop (EV_P_ struct ev_idle *w) 2776# if EV_USE_SIGNALFD
2777 if (sigfd < 0) /*TODO*/
2778# endif
2779 {
2780# ifdef _WIN32
2781 evpipe_init (EV_A);
2782
2783 signal (w->signum, ev_sighandler);
2784# else
2785 struct sigaction sa;
2786
2787 evpipe_init (EV_A);
2788
2789 sa.sa_handler = ev_sighandler;
2790 sigfillset (&sa.sa_mask);
2791 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2792 sigaction (w->signum, &sa, 0);
2793
2794 sigemptyset (&sa.sa_mask);
2795 sigaddset (&sa.sa_mask, w->signum);
2796 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2797#endif
2798 }
2799
2800 EV_FREQUENT_CHECK;
2801}
2802
2803void noinline
2804ev_signal_stop (EV_P_ ev_signal *w)
1540{ 2805{
1541 ev_clear_pending (EV_A_ (W)w); 2806 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 2807 if (expect_false (!ev_is_active (w)))
1543 return; 2808 return;
1544 2809
1545 idles [((W)w)->active - 1] = idles [--idlecnt]; 2810 EV_FREQUENT_CHECK;
2811
2812 wlist_del (&signals [w->signum - 1].head, (WL)w);
1546 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
1547}
1548 2814
2815 if (!signals [w->signum - 1].head)
2816 {
2817#if EV_MULTIPLICITY
2818 signals [w->signum - 1].loop = 0; /* unattach from signal */
2819#endif
2820#if EV_USE_SIGNALFD
2821 if (sigfd >= 0)
2822 {
2823 sigset_t ss;
2824
2825 sigemptyset (&ss);
2826 sigaddset (&ss, w->signum);
2827 sigdelset (&sigfd_set, w->signum);
2828
2829 signalfd (sigfd, &sigfd_set, 0);
2830 sigprocmask (SIG_UNBLOCK, &ss, 0);
2831 }
2832 else
2833#endif
2834 signal (w->signum, SIG_DFL);
2835 }
2836
2837 EV_FREQUENT_CHECK;
2838}
2839
1549void 2840void
1550ev_prepare_start (EV_P_ struct ev_prepare *w) 2841ev_child_start (EV_P_ ev_child *w)
1551{ 2842{
2843#if EV_MULTIPLICITY
2844 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2845#endif
1552 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1553 return; 2847 return;
1554 2848
2849 EV_FREQUENT_CHECK;
2850
1555 ev_start (EV_A_ (W)w, ++preparecnt); 2851 ev_start (EV_A_ (W)w, 1);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2852 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1557 prepares [preparecnt - 1] = w;
1558}
1559 2853
2854 EV_FREQUENT_CHECK;
2855}
2856
1560void 2857void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w) 2858ev_child_stop (EV_P_ ev_child *w)
1562{ 2859{
1563 ev_clear_pending (EV_A_ (W)w); 2860 clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w))) 2861 if (expect_false (!ev_is_active (w)))
1565 return; 2862 return;
1566 2863
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2864 EV_FREQUENT_CHECK;
2865
2866 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1568 ev_stop (EV_A_ (W)w); 2867 ev_stop (EV_A_ (W)w);
1569}
1570 2868
2869 EV_FREQUENT_CHECK;
2870}
2871
2872#if EV_STAT_ENABLE
2873
2874# ifdef _WIN32
2875# undef lstat
2876# define lstat(a,b) _stati64 (a,b)
2877# endif
2878
2879#define DEF_STAT_INTERVAL 5.0074891
2880#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2881#define MIN_STAT_INTERVAL 0.1074891
2882
2883static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2884
2885#if EV_USE_INOTIFY
2886
2887/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2888# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2889
2890static void noinline
2891infy_add (EV_P_ ev_stat *w)
2892{
2893 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2894
2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 /* now local changes will be tracked by inotify, but remote changes won't */
2900 /* unless the filesystem is known to be local, we therefore still poll */
2901 /* also do poll on <2.6.25, but with normal frequency */
2902
2903 if (!fs_2625)
2904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2905 else if (!statfs (w->path, &sfs)
2906 && (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */))
2912 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2913 else
2914 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2915 }
2916 else
2917 {
2918 /* can't use inotify, continue to stat */
2919 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2920
2921 /* if path is not there, monitor some parent directory for speedup hints */
2922 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2923 /* but an efficiency issue only */
2924 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2925 {
2926 char path [4096];
2927 strcpy (path, w->path);
2928
2929 do
2930 {
2931 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2932 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2933
2934 char *pend = strrchr (path, '/');
2935
2936 if (!pend || pend == path)
2937 break;
2938
2939 *pend = 0;
2940 w->wd = inotify_add_watch (fs_fd, path, mask);
2941 }
2942 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2943 }
2944 }
2945
2946 if (w->wd >= 0)
2947 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2948
2949 /* now re-arm timer, if required */
2950 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2951 ev_timer_again (EV_A_ &w->timer);
2952 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2953}
2954
2955static void noinline
2956infy_del (EV_P_ ev_stat *w)
2957{
2958 int slot;
2959 int wd = w->wd;
2960
2961 if (wd < 0)
2962 return;
2963
2964 w->wd = -2;
2965 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2966 wlist_del (&fs_hash [slot].head, (WL)w);
2967
2968 /* remove this watcher, if others are watching it, they will rearm */
2969 inotify_rm_watch (fs_fd, wd);
2970}
2971
2972static void noinline
2973infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2974{
2975 if (slot < 0)
2976 /* overflow, need to check for all hash slots */
2977 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2978 infy_wd (EV_A_ slot, wd, ev);
2979 else
2980 {
2981 WL w_;
2982
2983 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2984 {
2985 ev_stat *w = (ev_stat *)w_;
2986 w_ = w_->next; /* lets us remove this watcher and all before it */
2987
2988 if (w->wd == wd || wd == -1)
2989 {
2990 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2991 {
2992 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2993 w->wd = -1;
2994 infy_add (EV_A_ w); /* re-add, no matter what */
2995 }
2996
2997 stat_timer_cb (EV_A_ &w->timer, 0);
2998 }
2999 }
3000 }
3001}
3002
3003static void
3004infy_cb (EV_P_ ev_io *w, int revents)
3005{
3006 char buf [EV_INOTIFY_BUFSIZE];
3007 int ofs;
3008 int len = read (fs_fd, buf, sizeof (buf));
3009
3010 for (ofs = 0; ofs < len; )
3011 {
3012 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3013 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3014 ofs += sizeof (struct inotify_event) + ev->len;
3015 }
3016}
3017
3018inline_size unsigned int
3019ev_linux_version (void)
3020{
3021 struct utsname buf;
3022 unsigned int v;
3023 int i;
3024 char *p = buf.release;
3025
3026 if (uname (&buf))
3027 return 0;
3028
3029 for (i = 3+1; --i; )
3030 {
3031 unsigned int c = 0;
3032
3033 for (;;)
3034 {
3035 if (*p >= '0' && *p <= '9')
3036 c = c * 10 + *p++ - '0';
3037 else
3038 {
3039 p += *p == '.';
3040 break;
3041 }
3042 }
3043
3044 v = (v << 8) | c;
3045 }
3046
3047 return v;
3048}
3049
3050inline_size void
3051ev_check_2625 (EV_P)
3052{
3053 /* kernels < 2.6.25 are borked
3054 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3055 */
3056 if (ev_linux_version () < 0x020619)
3057 return;
3058
3059 fs_2625 = 1;
3060}
3061
3062inline_size int
3063infy_newfd (void)
3064{
3065#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3066 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3067 if (fd >= 0)
3068 return fd;
3069#endif
3070 return inotify_init ();
3071}
3072
3073inline_size void
3074infy_init (EV_P)
3075{
3076 if (fs_fd != -2)
3077 return;
3078
3079 fs_fd = -1;
3080
3081 ev_check_2625 (EV_A);
3082
3083 fs_fd = infy_newfd ();
3084
3085 if (fs_fd >= 0)
3086 {
3087 fd_intern (fs_fd);
3088 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3089 ev_set_priority (&fs_w, EV_MAXPRI);
3090 ev_io_start (EV_A_ &fs_w);
3091 ev_unref (EV_A);
3092 }
3093}
3094
3095inline_size void
3096infy_fork (EV_P)
3097{
3098 int slot;
3099
3100 if (fs_fd < 0)
3101 return;
3102
3103 ev_ref (EV_A);
3104 ev_io_stop (EV_A_ &fs_w);
3105 close (fs_fd);
3106 fs_fd = infy_newfd ();
3107
3108 if (fs_fd >= 0)
3109 {
3110 fd_intern (fs_fd);
3111 ev_io_set (&fs_w, fs_fd, EV_READ);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
3115
3116 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3117 {
3118 WL w_ = fs_hash [slot].head;
3119 fs_hash [slot].head = 0;
3120
3121 while (w_)
3122 {
3123 ev_stat *w = (ev_stat *)w_;
3124 w_ = w_->next; /* lets us add this watcher */
3125
3126 w->wd = -1;
3127
3128 if (fs_fd >= 0)
3129 infy_add (EV_A_ w); /* re-add, no matter what */
3130 else
3131 {
3132 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3133 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3134 ev_timer_again (EV_A_ &w->timer);
3135 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3136 }
3137 }
3138 }
3139}
3140
3141#endif
3142
3143#ifdef _WIN32
3144# define EV_LSTAT(p,b) _stati64 (p, b)
3145#else
3146# define EV_LSTAT(p,b) lstat (p, b)
3147#endif
3148
1571void 3149void
1572ev_check_start (EV_P_ struct ev_check *w) 3150ev_stat_stat (EV_P_ ev_stat *w)
3151{
3152 if (lstat (w->path, &w->attr) < 0)
3153 w->attr.st_nlink = 0;
3154 else if (!w->attr.st_nlink)
3155 w->attr.st_nlink = 1;
3156}
3157
3158static void noinline
3159stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3160{
3161 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3162
3163 ev_statdata prev = w->attr;
3164 ev_stat_stat (EV_A_ w);
3165
3166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3167 if (
3168 prev.st_dev != w->attr.st_dev
3169 || prev.st_ino != w->attr.st_ino
3170 || prev.st_mode != w->attr.st_mode
3171 || prev.st_nlink != w->attr.st_nlink
3172 || prev.st_uid != w->attr.st_uid
3173 || prev.st_gid != w->attr.st_gid
3174 || prev.st_rdev != w->attr.st_rdev
3175 || prev.st_size != w->attr.st_size
3176 || prev.st_atime != w->attr.st_atime
3177 || prev.st_mtime != w->attr.st_mtime
3178 || prev.st_ctime != w->attr.st_ctime
3179 ) {
3180 /* we only update w->prev on actual differences */
3181 /* in case we test more often than invoke the callback, */
3182 /* to ensure that prev is always different to attr */
3183 w->prev = prev;
3184
3185 #if EV_USE_INOTIFY
3186 if (fs_fd >= 0)
3187 {
3188 infy_del (EV_A_ w);
3189 infy_add (EV_A_ w);
3190 ev_stat_stat (EV_A_ w); /* avoid race... */
3191 }
3192 #endif
3193
3194 ev_feed_event (EV_A_ w, EV_STAT);
3195 }
3196}
3197
3198void
3199ev_stat_start (EV_P_ ev_stat *w)
1573{ 3200{
1574 if (expect_false (ev_is_active (w))) 3201 if (expect_false (ev_is_active (w)))
1575 return; 3202 return;
1576 3203
3204 ev_stat_stat (EV_A_ w);
3205
3206 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3207 w->interval = MIN_STAT_INTERVAL;
3208
3209 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3210 ev_set_priority (&w->timer, ev_priority (w));
3211
3212#if EV_USE_INOTIFY
3213 infy_init (EV_A);
3214
3215 if (fs_fd >= 0)
3216 infy_add (EV_A_ w);
3217 else
3218#endif
3219 {
3220 ev_timer_again (EV_A_ &w->timer);
3221 ev_unref (EV_A);
3222 }
3223
1577 ev_start (EV_A_ (W)w, ++checkcnt); 3224 ev_start (EV_A_ (W)w, 1);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581 3225
3226 EV_FREQUENT_CHECK;
3227}
3228
1582void 3229void
1583ev_check_stop (EV_P_ struct ev_check *w) 3230ev_stat_stop (EV_P_ ev_stat *w)
1584{ 3231{
1585 ev_clear_pending (EV_A_ (W)w); 3232 clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w))) 3233 if (expect_false (!ev_is_active (w)))
1587 return; 3234 return;
1588 3235
1589 checks [((W)w)->active - 1] = checks [--checkcnt]; 3236 EV_FREQUENT_CHECK;
3237
3238#if EV_USE_INOTIFY
3239 infy_del (EV_A_ w);
3240#endif
3241
3242 if (ev_is_active (&w->timer))
3243 {
3244 ev_ref (EV_A);
3245 ev_timer_stop (EV_A_ &w->timer);
3246 }
3247
1590 ev_stop (EV_A_ (W)w); 3248 ev_stop (EV_A_ (W)w);
1591}
1592 3249
1593#ifndef SA_RESTART 3250 EV_FREQUENT_CHECK;
1594# define SA_RESTART 0 3251}
1595#endif 3252#endif
1596 3253
3254#if EV_IDLE_ENABLE
1597void 3255void
1598ev_signal_start (EV_P_ struct ev_signal *w) 3256ev_idle_start (EV_P_ ev_idle *w)
1599{ 3257{
1600#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3258 if (expect_false (ev_is_active (w)))
1604 return; 3259 return;
1605 3260
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3261 pri_adjust (EV_A_ (W)w);
1607 3262
3263 EV_FREQUENT_CHECK;
3264
3265 {
3266 int active = ++idlecnt [ABSPRI (w)];
3267
3268 ++idleall;
1608 ev_start (EV_A_ (W)w, 1); 3269 ev_start (EV_A_ (W)w, active);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1611 3270
1612 if (!((WL)w)->next) 3271 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1613 { 3272 idles [ABSPRI (w)][active - 1] = w;
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1617 struct sigaction sa;
1618 sa.sa_handler = sighandler;
1619 sigfillset (&sa.sa_mask);
1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1621 sigaction (w->signum, &sa, 0);
1622#endif
1623 } 3273 }
1624}
1625 3274
3275 EV_FREQUENT_CHECK;
3276}
3277
1626void 3278void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 3279ev_idle_stop (EV_P_ ev_idle *w)
1628{ 3280{
1629 ev_clear_pending (EV_A_ (W)w); 3281 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 3282 if (expect_false (!ev_is_active (w)))
1631 return; 3283 return;
1632 3284
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3285 EV_FREQUENT_CHECK;
3286
3287 {
3288 int active = ev_active (w);
3289
3290 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3291 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3292
1634 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
3294 --idleall;
3295 }
1635 3296
1636 if (!signals [w->signum - 1].head) 3297 EV_FREQUENT_CHECK;
1637 signal (w->signum, SIG_DFL);
1638} 3298}
1639
1640void
1641ev_child_start (EV_P_ struct ev_child *w)
1642{
1643#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 3299#endif
3300
3301void
3302ev_prepare_start (EV_P_ ev_prepare *w)
3303{
1646 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
1647 return; 3305 return;
1648 3306
3307 EV_FREQUENT_CHECK;
3308
1649 ev_start (EV_A_ (W)w, 1); 3309 ev_start (EV_A_ (W)w, ++preparecnt);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3310 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1651} 3311 prepares [preparecnt - 1] = w;
1652 3312
3313 EV_FREQUENT_CHECK;
3314}
3315
1653void 3316void
1654ev_child_stop (EV_P_ struct ev_child *w) 3317ev_prepare_stop (EV_P_ ev_prepare *w)
1655{ 3318{
1656 ev_clear_pending (EV_A_ (W)w); 3319 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 3320 if (expect_false (!ev_is_active (w)))
1658 return; 3321 return;
1659 3322
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3323 EV_FREQUENT_CHECK;
3324
3325 {
3326 int active = ev_active (w);
3327
3328 prepares [active - 1] = prepares [--preparecnt];
3329 ev_active (prepares [active - 1]) = active;
3330 }
3331
1661 ev_stop (EV_A_ (W)w); 3332 ev_stop (EV_A_ (W)w);
3333
3334 EV_FREQUENT_CHECK;
1662} 3335}
3336
3337void
3338ev_check_start (EV_P_ ev_check *w)
3339{
3340 if (expect_false (ev_is_active (w)))
3341 return;
3342
3343 EV_FREQUENT_CHECK;
3344
3345 ev_start (EV_A_ (W)w, ++checkcnt);
3346 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3347 checks [checkcnt - 1] = w;
3348
3349 EV_FREQUENT_CHECK;
3350}
3351
3352void
3353ev_check_stop (EV_P_ ev_check *w)
3354{
3355 clear_pending (EV_A_ (W)w);
3356 if (expect_false (!ev_is_active (w)))
3357 return;
3358
3359 EV_FREQUENT_CHECK;
3360
3361 {
3362 int active = ev_active (w);
3363
3364 checks [active - 1] = checks [--checkcnt];
3365 ev_active (checks [active - 1]) = active;
3366 }
3367
3368 ev_stop (EV_A_ (W)w);
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373#if EV_EMBED_ENABLE
3374void noinline
3375ev_embed_sweep (EV_P_ ev_embed *w)
3376{
3377 ev_loop (w->other, EVLOOP_NONBLOCK);
3378}
3379
3380static void
3381embed_io_cb (EV_P_ ev_io *io, int revents)
3382{
3383 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3384
3385 if (ev_cb (w))
3386 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3387 else
3388 ev_loop (w->other, EVLOOP_NONBLOCK);
3389}
3390
3391static void
3392embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3393{
3394 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3395
3396 {
3397 EV_P = w->other;
3398
3399 while (fdchangecnt)
3400 {
3401 fd_reify (EV_A);
3402 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3403 }
3404 }
3405}
3406
3407static void
3408embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3409{
3410 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3411
3412 ev_embed_stop (EV_A_ w);
3413
3414 {
3415 EV_P = w->other;
3416
3417 ev_loop_fork (EV_A);
3418 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3419 }
3420
3421 ev_embed_start (EV_A_ w);
3422}
3423
3424#if 0
3425static void
3426embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3427{
3428 ev_idle_stop (EV_A_ idle);
3429}
3430#endif
3431
3432void
3433ev_embed_start (EV_P_ ev_embed *w)
3434{
3435 if (expect_false (ev_is_active (w)))
3436 return;
3437
3438 {
3439 EV_P = w->other;
3440 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3441 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3442 }
3443
3444 EV_FREQUENT_CHECK;
3445
3446 ev_set_priority (&w->io, ev_priority (w));
3447 ev_io_start (EV_A_ &w->io);
3448
3449 ev_prepare_init (&w->prepare, embed_prepare_cb);
3450 ev_set_priority (&w->prepare, EV_MINPRI);
3451 ev_prepare_start (EV_A_ &w->prepare);
3452
3453 ev_fork_init (&w->fork, embed_fork_cb);
3454 ev_fork_start (EV_A_ &w->fork);
3455
3456 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3457
3458 ev_start (EV_A_ (W)w, 1);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462
3463void
3464ev_embed_stop (EV_P_ ev_embed *w)
3465{
3466 clear_pending (EV_A_ (W)w);
3467 if (expect_false (!ev_is_active (w)))
3468 return;
3469
3470 EV_FREQUENT_CHECK;
3471
3472 ev_io_stop (EV_A_ &w->io);
3473 ev_prepare_stop (EV_A_ &w->prepare);
3474 ev_fork_stop (EV_A_ &w->fork);
3475
3476 ev_stop (EV_A_ (W)w);
3477
3478 EV_FREQUENT_CHECK;
3479}
3480#endif
3481
3482#if EV_FORK_ENABLE
3483void
3484ev_fork_start (EV_P_ ev_fork *w)
3485{
3486 if (expect_false (ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 ev_start (EV_A_ (W)w, ++forkcnt);
3492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3493 forks [forkcnt - 1] = w;
3494
3495 EV_FREQUENT_CHECK;
3496}
3497
3498void
3499ev_fork_stop (EV_P_ ev_fork *w)
3500{
3501 clear_pending (EV_A_ (W)w);
3502 if (expect_false (!ev_is_active (w)))
3503 return;
3504
3505 EV_FREQUENT_CHECK;
3506
3507 {
3508 int active = ev_active (w);
3509
3510 forks [active - 1] = forks [--forkcnt];
3511 ev_active (forks [active - 1]) = active;
3512 }
3513
3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
3517}
3518#endif
3519
3520#if EV_ASYNC_ENABLE
3521void
3522ev_async_start (EV_P_ ev_async *w)
3523{
3524 if (expect_false (ev_is_active (w)))
3525 return;
3526
3527 evpipe_init (EV_A);
3528
3529 EV_FREQUENT_CHECK;
3530
3531 ev_start (EV_A_ (W)w, ++asynccnt);
3532 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3533 asyncs [asynccnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
3536}
3537
3538void
3539ev_async_stop (EV_P_ ev_async *w)
3540{
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 {
3548 int active = ev_active (w);
3549
3550 asyncs [active - 1] = asyncs [--asynccnt];
3551 ev_active (asyncs [active - 1]) = active;
3552 }
3553
3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557}
3558
3559void
3560ev_async_send (EV_P_ ev_async *w)
3561{
3562 w->sent = 1;
3563 evpipe_write (EV_A_ &async_pending);
3564}
3565#endif
1663 3566
1664/*****************************************************************************/ 3567/*****************************************************************************/
1665 3568
1666struct ev_once 3569struct ev_once
1667{ 3570{
1668 struct ev_io io; 3571 ev_io io;
1669 struct ev_timer to; 3572 ev_timer to;
1670 void (*cb)(int revents, void *arg); 3573 void (*cb)(int revents, void *arg);
1671 void *arg; 3574 void *arg;
1672}; 3575};
1673 3576
1674static void 3577static void
1675once_cb (EV_P_ struct ev_once *once, int revents) 3578once_cb (EV_P_ struct ev_once *once, int revents)
1676{ 3579{
1677 void (*cb)(int revents, void *arg) = once->cb; 3580 void (*cb)(int revents, void *arg) = once->cb;
1678 void *arg = once->arg; 3581 void *arg = once->arg;
1679 3582
1680 ev_io_stop (EV_A_ &once->io); 3583 ev_io_stop (EV_A_ &once->io);
1681 ev_timer_stop (EV_A_ &once->to); 3584 ev_timer_stop (EV_A_ &once->to);
1682 ev_free (once); 3585 ev_free (once);
1683 3586
1684 cb (revents, arg); 3587 cb (revents, arg);
1685} 3588}
1686 3589
1687static void 3590static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 3591once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 3592{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1691} 3596}
1692 3597
1693static void 3598static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 3599once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 3600{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3601 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3602
3603 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1697} 3604}
1698 3605
1699void 3606void
1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3607ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1701{ 3608{
1723 ev_timer_set (&once->to, timeout, 0.); 3630 ev_timer_set (&once->to, timeout, 0.);
1724 ev_timer_start (EV_A_ &once->to); 3631 ev_timer_start (EV_A_ &once->to);
1725 } 3632 }
1726} 3633}
1727 3634
3635/*****************************************************************************/
3636
3637#if EV_WALK_ENABLE
3638void
3639ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3640{
3641 int i, j;
3642 ev_watcher_list *wl, *wn;
3643
3644 if (types & (EV_IO | EV_EMBED))
3645 for (i = 0; i < anfdmax; ++i)
3646 for (wl = anfds [i].head; wl; )
3647 {
3648 wn = wl->next;
3649
3650#if EV_EMBED_ENABLE
3651 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3652 {
3653 if (types & EV_EMBED)
3654 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3655 }
3656 else
3657#endif
3658#if EV_USE_INOTIFY
3659 if (ev_cb ((ev_io *)wl) == infy_cb)
3660 ;
3661 else
3662#endif
3663 if ((ev_io *)wl != &pipe_w)
3664 if (types & EV_IO)
3665 cb (EV_A_ EV_IO, wl);
3666
3667 wl = wn;
3668 }
3669
3670 if (types & (EV_TIMER | EV_STAT))
3671 for (i = timercnt + HEAP0; i-- > HEAP0; )
3672#if EV_STAT_ENABLE
3673 /*TODO: timer is not always active*/
3674 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3675 {
3676 if (types & EV_STAT)
3677 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3678 }
3679 else
3680#endif
3681 if (types & EV_TIMER)
3682 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3683
3684#if EV_PERIODIC_ENABLE
3685 if (types & EV_PERIODIC)
3686 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3687 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3688#endif
3689
3690#if EV_IDLE_ENABLE
3691 if (types & EV_IDLE)
3692 for (j = NUMPRI; i--; )
3693 for (i = idlecnt [j]; i--; )
3694 cb (EV_A_ EV_IDLE, idles [j][i]);
3695#endif
3696
3697#if EV_FORK_ENABLE
3698 if (types & EV_FORK)
3699 for (i = forkcnt; i--; )
3700 if (ev_cb (forks [i]) != embed_fork_cb)
3701 cb (EV_A_ EV_FORK, forks [i]);
3702#endif
3703
3704#if EV_ASYNC_ENABLE
3705 if (types & EV_ASYNC)
3706 for (i = asynccnt; i--; )
3707 cb (EV_A_ EV_ASYNC, asyncs [i]);
3708#endif
3709
3710 if (types & EV_PREPARE)
3711 for (i = preparecnt; i--; )
3712#if EV_EMBED_ENABLE
3713 if (ev_cb (prepares [i]) != embed_prepare_cb)
3714#endif
3715 cb (EV_A_ EV_PREPARE, prepares [i]);
3716
3717 if (types & EV_CHECK)
3718 for (i = checkcnt; i--; )
3719 cb (EV_A_ EV_CHECK, checks [i]);
3720
3721 if (types & EV_SIGNAL)
3722 for (i = 0; i < EV_NSIG - 1; ++i)
3723 for (wl = signals [i].head; wl; )
3724 {
3725 wn = wl->next;
3726 cb (EV_A_ EV_SIGNAL, wl);
3727 wl = wn;
3728 }
3729
3730 if (types & EV_CHILD)
3731 for (i = EV_PID_HASHSIZE; i--; )
3732 for (wl = childs [i]; wl; )
3733 {
3734 wn = wl->next;
3735 cb (EV_A_ EV_CHILD, wl);
3736 wl = wn;
3737 }
3738/* EV_STAT 0x00001000 /* stat data changed */
3739/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3740}
3741#endif
3742
3743#if EV_MULTIPLICITY
3744 #include "ev_wrap.h"
3745#endif
3746
1728#ifdef __cplusplus 3747#ifdef __cplusplus
1729} 3748}
1730#endif 3749#endif
1731 3750

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines