ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.369 by root, Sun Jan 23 18:53:06 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
99#endif 159#endif
100 160
101#include <math.h> 161#include <math.h>
102#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
103#include <fcntl.h> 164#include <fcntl.h>
104#include <stddef.h> 165#include <stddef.h>
105 166
106#include <stdio.h> 167#include <stdio.h>
107 168
108#include <assert.h> 169#include <assert.h>
109#include <errno.h> 170#include <errno.h>
110#include <sys/types.h> 171#include <sys/types.h>
111#include <time.h> 172#include <time.h>
173#include <limits.h>
112 174
113#include <signal.h> 175#include <signal.h>
114 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
115#ifndef _WIN32 185#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 186# include <sys/time.h>
118# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
119#else 189#else
190# include <io.h>
120# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 192# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
124# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
125#endif 242# endif
126 243#endif
127/**/
128 244
129#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
130# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
131#endif 251#endif
132 252
133#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
135#endif 263#endif
136 264
137#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 267#endif
140 268
141#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
142# ifdef _WIN32 270# ifdef _WIN32
143# define EV_USE_POLL 0 271# define EV_USE_POLL 0
144# else 272# else
145# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 274# endif
147#endif 275#endif
148 276
149#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
150# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
151#endif 283#endif
152 284
153#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
155#endif 287#endif
156 288
157#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 290# define EV_USE_PORT 0
159#endif 291#endif
160 292
161/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
162 364
163#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
166#endif 368#endif
168#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
171#endif 373#endif
172 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
173#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 397# include <winsock.h>
175#endif 398#endif
176 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
177/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 455
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 458
184#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
186#else
187# include "ev.h"
188#endif
189 461
190#if __GNUC__ >= 3 462#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 464# define noinline __attribute__ ((noinline))
193#else 465#else
194# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
195# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
196#endif 471#endif
197 472
198#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
200 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
203 490
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
206 493
207typedef struct ev_watcher *W; 494typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
210 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
212 520
213#ifdef _WIN32 521#ifdef _WIN32
214# include "ev_win32.c" 522# include "ev_win32.c"
215#endif 523#endif
216 524
217/*****************************************************************************/ 525/*****************************************************************************/
218 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
219static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
220 578
579void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 581{
223 syserr_cb = cb; 582 syserr_cb = cb;
224} 583}
225 584
226static void 585static void noinline
227syserr (const char *msg) 586ev_syserr (const char *msg)
228{ 587{
229 if (!msg) 588 if (!msg)
230 msg = "(libev) system error"; 589 msg = "(libev) system error";
231 590
232 if (syserr_cb) 591 if (syserr_cb)
233 syserr_cb (msg); 592 syserr_cb (msg);
234 else 593 else
235 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
236 perror (msg); 601 perror (msg);
602#endif
237 abort (); 603 abort ();
238 } 604 }
239} 605}
240 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
241static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 627
628void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 630{
245 alloc = cb; 631 alloc = cb;
246} 632}
247 633
248static void * 634inline_speed void *
249ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
250{ 636{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
252 638
253 if (!ptr && size) 639 if (!ptr && size)
254 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
256 abort (); 646 abort ();
257 } 647 }
258 648
259 return ptr; 649 return ptr;
260} 650}
262#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
264 654
265/*****************************************************************************/ 655/*****************************************************************************/
266 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
267typedef struct 661typedef struct
268{ 662{
269 WL head; 663 WL head;
270 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
272#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 672 SOCKET handle;
274#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
275} ANFD; 677} ANFD;
276 678
679/* stores the pending event set for a given watcher */
277typedef struct 680typedef struct
278{ 681{
279 W w; 682 W w;
280 int events; 683 int events; /* the pending event set for the given watcher */
281} ANPENDING; 684} ANPENDING;
685
686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
688typedef struct
689{
690 WL head;
691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712#endif
282 713
283#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
284 715
285 struct ev_loop 716 struct ev_loop
286 { 717 {
304 735
305 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
306 737
307#endif 738#endif
308 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
309/*****************************************************************************/ 752/*****************************************************************************/
310 753
754#ifndef EV_HAVE_EV_TIME
311ev_tstamp 755ev_tstamp
312ev_time (void) 756ev_time (void)
313{ 757{
314#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
315 struct timespec ts; 761 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 764 }
765#endif
766
319 struct timeval tv; 767 struct timeval tv;
320 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 770}
771#endif
324 772
325inline ev_tstamp 773inline_size ev_tstamp
326get_clock (void) 774get_clock (void)
327{ 775{
328#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
330 { 778 {
343{ 791{
344 return ev_rt_now; 792 return ev_rt_now;
345} 793}
346#endif 794#endif
347 795
348#define array_roundsize(type,n) (((n) | 4) & ~3) 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
828/*****************************************************************************/
829
830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
835array_nextsize (int elem, int cur, int cnt)
836{
837 int ncur = cur + 1;
838
839 do
840 ncur <<= 1;
841 while (cnt > ncur);
842
843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
845 {
846 ncur *= elem;
847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
848 ncur = ncur - sizeof (void *) * 4;
849 ncur /= elem;
850 }
851
852 return ncur;
853}
854
855static noinline void *
856array_realloc (int elem, void *base, int *cur, int cnt)
857{
858 *cur = array_nextsize (elem, *cur, cnt);
859 return ev_realloc (base, elem * *cur);
860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 864
350#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 866 if (expect_false ((cnt) > (cur))) \
352 { \ 867 { \
353 int newcnt = cur; \ 868 int ocur_ = (cur); \
354 do \ 869 (base) = (type *)array_realloc \
355 { \ 870 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 871 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 872 }
364 873
874#if 0
365#define array_slim(type,stem) \ 875#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 876 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 877 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 878 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 879 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 881 }
882#endif
372 883
373#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 886
376/*****************************************************************************/ 887/*****************************************************************************/
377 888
378static void 889/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 892{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 893}
390 894
391void 895void noinline
392ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
393{ 897{
394 W w_ = (W)w; 898 W w_ = (W)w;
899 int pri = ABSPRI (w_);
395 900
396 if (expect_false (w_->pending)) 901 if (expect_false (w_->pending))
902 pendings [pri][w_->pending - 1].events |= revents;
903 else
397 { 904 {
905 w_->pending = ++pendingcnt [pri];
906 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
907 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 908 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 909 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 910}
407 911
408static void 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 929{
411 int i; 930 int i;
412 931
413 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
415} 934}
416 935
936/*****************************************************************************/
937
417inline void 938inline_speed void
418fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
419{ 940{
420 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 942 ev_io *w;
422 943
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 945 {
425 int ev = w->events & revents; 946 int ev = w->events & revents;
426 947
427 if (ev) 948 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
429 } 950 }
430} 951}
431 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
432void 964void
433ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 966{
967 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
436} 969}
437 970
438/*****************************************************************************/ 971/* make sure the external fd watch events are in-sync */
439 972/* with the kernel/libev internal state */
440inline void 973inline_size void
441fd_reify (EV_P) 974fd_reify (EV_P)
442{ 975{
443 int i; 976 int i;
444 977
445 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
446 { 979 {
447 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 982 ev_io *w;
450 983
451 int events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
452 986
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 987 anfd->reify = 0;
454 events |= w->events;
455 988
456#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 if (events) 990 if (o_reify & EV__IOFDSET)
458 { 991 {
459 unsigned long argp; 992 unsigned long arg;
460 anfd->handle = _get_osfhandle (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
462 } 996 }
463#endif 997#endif
464 998
465 anfd->reify = 0; 999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000 {
1001 anfd->events = 0;
466 1002
1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
467 backend_modify (EV_A_ fd, anfd->events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
468 anfd->events = events;
469 } 1012 }
470 1013
471 fdchangecnt = 0; 1014 fdchangecnt = 0;
472} 1015}
473 1016
474static void 1017/* something about the given fd changed */
1018inline_size void
475fd_change (EV_P_ int fd) 1019fd_change (EV_P_ int fd, int flags)
476{ 1020{
477 if (expect_false (anfds [fd].reify)) 1021 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 1022 anfds [fd].reify |= flags;
481 1023
1024 if (expect_true (!reify))
1025 {
482 ++fdchangecnt; 1026 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
1029 }
485} 1030}
486 1031
487static void 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
488fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
489{ 1035{
490 struct ev_io *w; 1036 ev_io *w;
491 1037
492 while ((w = (struct ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
493 { 1039 {
494 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 1042 }
497} 1043}
498 1044
1045/* check whether the given fd is actually valid, for error recovery */
499inline int 1046inline_size int
500fd_valid (int fd) 1047fd_valid (int fd)
501{ 1048{
502#ifdef _WIN32 1049#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 1051#else
505 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
506#endif 1053#endif
507} 1054}
508 1055
509/* called on EBADF to verify fds */ 1056/* called on EBADF to verify fds */
510static void 1057static void noinline
511fd_ebadf (EV_P) 1058fd_ebadf (EV_P)
512{ 1059{
513 int fd; 1060 int fd;
514 1061
515 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 1063 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
519} 1066}
520 1067
521/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 1069static void noinline
523fd_enomem (EV_P) 1070fd_enomem (EV_P)
524{ 1071{
525 int fd; 1072 int fd;
526 1073
527 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 1075 if (anfds [fd].events)
529 { 1076 {
530 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
531 return; 1078 break;
532 } 1079 }
533} 1080}
534 1081
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 1083static void noinline
537fd_rearm_all (EV_P) 1084fd_rearm_all (EV_P)
538{ 1085{
539 int fd; 1086 int fd;
540 1087
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 1089 if (anfds [fd].events)
544 { 1090 {
545 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 1092 anfds [fd].emask = 0;
1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 1094 }
548} 1095}
549 1096
550/*****************************************************************************/ 1097/* used to prepare libev internal fd's */
551 1098/* this is not fork-safe */
552static void
553upheap (WT *heap, int k)
554{
555 WT w = heap [k];
556
557 while (k && heap [k >> 1]->at > w->at)
558 {
559 heap [k] = heap [k >> 1];
560 ((W)heap [k])->active = k + 1;
561 k >>= 1;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566
567}
568
569static void
570downheap (WT *heap, int N, int k)
571{
572 WT w = heap [k];
573
574 while (k < (N >> 1))
575 {
576 int j = k << 1;
577
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break;
583
584 heap [k] = heap [j];
585 ((W)heap [k])->active = k + 1;
586 k = j;
587 }
588
589 heap [k] = w;
590 ((W)heap [k])->active = k + 1;
591}
592
593inline void 1099inline_speed void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
600/*****************************************************************************/
601
602typedef struct
603{
604 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG;
607
608static ANSIG *signals;
609static int signalmax;
610
611static int sigpipe [2];
612static sig_atomic_t volatile gotsig;
613static struct ev_io sigev;
614
615static void
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ struct ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1100fd_intern (int fd)
680{ 1101{
681#ifdef _WIN32 1102#ifdef _WIN32
682 int arg = 1; 1103 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 1105#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1107 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1108#endif
688} 1109}
689 1110
1111/*****************************************************************************/
1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
1274static void noinline
1275evpipe_init (EV_P)
1276{
1277 if (!ev_is_active (&pipe_w))
1278 {
1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1285 {
1286 evpipe [0] = -1;
1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 }
1290 else
1291# endif
1292 {
1293 while (pipe (evpipe))
1294 ev_syserr ("(libev) error creating signal/async pipe");
1295
1296 fd_intern (evpipe [0]);
1297 fd_intern (evpipe [1]);
1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 }
1300
1301 ev_io_start (EV_A_ &pipe_w);
1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 }
1304}
1305
1306inline_size void
1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308{
1309 if (!*flag)
1310 {
1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1313
1314 *flag = 1;
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 {
1319 uint64_t counter = 1;
1320 write (evfd, &counter, sizeof (uint64_t));
1321 }
1322 else
1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1329 write (evpipe [1], &dummy, 1);
1330
1331 errno = old_errno;
1332 }
1333}
1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
690static void 1337static void
691siginit (EV_P) 1338pipecb (EV_P_ ev_io *iow, int revents)
692{ 1339{
693 fd_intern (sigpipe [0]); 1340 int i;
694 fd_intern (sigpipe [1]);
695 1341
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1342#if EV_USE_EVENTFD
697 ev_io_start (EV_A_ &sigev); 1343 if (evfd >= 0)
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1344 {
1345 uint64_t counter;
1346 read (evfd, &counter, sizeof (uint64_t));
1347 }
1348 else
1349#endif
1350 {
1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 read (evpipe [0], &dummy, 1);
1354 }
1355
1356#if EV_SIGNAL_ENABLE
1357 if (sig_pending)
1358 {
1359 sig_pending = 0;
1360
1361 for (i = EV_NSIG - 1; i--; )
1362 if (expect_false (signals [i].pending))
1363 ev_feed_signal_event (EV_A_ i + 1);
1364 }
1365#endif
1366
1367#if EV_ASYNC_ENABLE
1368 if (async_pending)
1369 {
1370 async_pending = 0;
1371
1372 for (i = asynccnt; i--; )
1373 if (asyncs [i]->sent)
1374 {
1375 asyncs [i]->sent = 0;
1376 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1377 }
1378 }
1379#endif
699} 1380}
700 1381
701/*****************************************************************************/ 1382/*****************************************************************************/
702 1383
703static struct ev_child *childs [PID_HASHSIZE]; 1384void
1385ev_feed_signal (int signum)
1386{
1387#if EV_MULTIPLICITY
1388 EV_P = signals [signum - 1].loop;
704 1389
1390 if (!EV_A)
1391 return;
1392#endif
1393
1394 signals [signum - 1].pending = 1;
1395 evpipe_write (EV_A_ &sig_pending);
1396}
1397
1398static void
1399ev_sighandler (int signum)
1400{
705#ifndef _WIN32 1401#ifdef _WIN32
1402 signal (signum, ev_sighandler);
1403#endif
706 1404
1405 ev_feed_signal (signum);
1406}
1407
1408void noinline
1409ev_feed_signal_event (EV_P_ int signum)
1410{
1411 WL w;
1412
1413 if (expect_false (signum <= 0 || signum > EV_NSIG))
1414 return;
1415
1416 --signum;
1417
1418#if EV_MULTIPLICITY
1419 /* it is permissible to try to feed a signal to the wrong loop */
1420 /* or, likely more useful, feeding a signal nobody is waiting for */
1421
1422 if (expect_false (signals [signum].loop != EV_A))
1423 return;
1424#endif
1425
1426 signals [signum].pending = 0;
1427
1428 for (w = signals [signum].head; w; w = w->next)
1429 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1430}
1431
1432#if EV_USE_SIGNALFD
1433static void
1434sigfdcb (EV_P_ ev_io *iow, int revents)
1435{
1436 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1437
1438 for (;;)
1439 {
1440 ssize_t res = read (sigfd, si, sizeof (si));
1441
1442 /* not ISO-C, as res might be -1, but works with SuS */
1443 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1444 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1445
1446 if (res < (ssize_t)sizeof (si))
1447 break;
1448 }
1449}
1450#endif
1451
1452#endif
1453
1454/*****************************************************************************/
1455
1456#if EV_CHILD_ENABLE
1457static WL childs [EV_PID_HASHSIZE];
1458
707static struct ev_signal childev; 1459static ev_signal childev;
1460
1461#ifndef WIFCONTINUED
1462# define WIFCONTINUED(status) 0
1463#endif
1464
1465/* handle a single child status event */
1466inline_speed void
1467child_reap (EV_P_ int chain, int pid, int status)
1468{
1469 ev_child *w;
1470 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1471
1472 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1473 {
1474 if ((w->pid == pid || !w->pid)
1475 && (!traced || (w->flags & 1)))
1476 {
1477 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1478 w->rpid = pid;
1479 w->rstatus = status;
1480 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1481 }
1482 }
1483}
708 1484
709#ifndef WCONTINUED 1485#ifndef WCONTINUED
710# define WCONTINUED 0 1486# define WCONTINUED 0
711#endif 1487#endif
712 1488
1489/* called on sigchld etc., calls waitpid */
713static void 1490static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 1491childcb (EV_P_ ev_signal *sw, int revents)
730{ 1492{
731 int pid, status; 1493 int pid, status;
732 1494
1495 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1496 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1497 if (!WCONTINUED
1498 || errno != EINVAL
1499 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1500 return;
1501
735 /* make sure we are called again until all childs have been reaped */ 1502 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1503 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1504 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1505
739 child_reap (EV_A_ sw, pid, pid, status); 1506 child_reap (EV_A_ pid, pid, status);
1507 if ((EV_PID_HASHSIZE) > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1508 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1509}
743 1510
744#endif 1511#endif
745 1512
746/*****************************************************************************/ 1513/*****************************************************************************/
747 1514
1515#if EV_USE_IOCP
1516# include "ev_iocp.c"
1517#endif
748#if EV_USE_PORT 1518#if EV_USE_PORT
749# include "ev_port.c" 1519# include "ev_port.c"
750#endif 1520#endif
751#if EV_USE_KQUEUE 1521#if EV_USE_KQUEUE
752# include "ev_kqueue.c" 1522# include "ev_kqueue.c"
772{ 1542{
773 return EV_VERSION_MINOR; 1543 return EV_VERSION_MINOR;
774} 1544}
775 1545
776/* return true if we are running with elevated privileges and should ignore env variables */ 1546/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1547int inline_size
778enable_secure (void) 1548enable_secure (void)
779{ 1549{
780#ifdef _WIN32 1550#ifdef _WIN32
781 return 0; 1551 return 0;
782#else 1552#else
808 /* kqueue is borked on everything but netbsd apparently */ 1578 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1579 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1580 flags &= ~EVBACKEND_KQUEUE;
811#endif 1581#endif
812#ifdef __APPLE__ 1582#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1583 /* only select works correctly on that "unix-certified" platform */
1584 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1585 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1586#endif
1587#ifdef __FreeBSD__
1588 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1589#endif
1590
1591 return flags;
1592}
1593
1594unsigned int
1595ev_embeddable_backends (void)
1596{
1597 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1598
1599 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1600 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
814 flags &= ~EVBACKEND_POLL; 1601 flags &= ~EVBACKEND_EPOLL;
815#endif
816 1602
817 return flags; 1603 return flags;
818} 1604}
819 1605
820unsigned int 1606unsigned int
821ev_backend (EV_P) 1607ev_backend (EV_P)
822{ 1608{
823 return backend; 1609 return backend;
824} 1610}
825 1611
826static void 1612#if EV_FEATURE_API
1613unsigned int
1614ev_iteration (EV_P)
1615{
1616 return loop_count;
1617}
1618
1619unsigned int
1620ev_depth (EV_P)
1621{
1622 return loop_depth;
1623}
1624
1625void
1626ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1627{
1628 io_blocktime = interval;
1629}
1630
1631void
1632ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1633{
1634 timeout_blocktime = interval;
1635}
1636
1637void
1638ev_set_userdata (EV_P_ void *data)
1639{
1640 userdata = data;
1641}
1642
1643void *
1644ev_userdata (EV_P)
1645{
1646 return userdata;
1647}
1648
1649void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1650{
1651 invoke_cb = invoke_pending_cb;
1652}
1653
1654void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1655{
1656 release_cb = release;
1657 acquire_cb = acquire;
1658}
1659#endif
1660
1661/* initialise a loop structure, must be zero-initialised */
1662static void noinline
827loop_init (EV_P_ unsigned int flags) 1663loop_init (EV_P_ unsigned int flags)
828{ 1664{
829 if (!backend) 1665 if (!backend)
830 { 1666 {
1667 origflags = flags;
1668
1669#if EV_USE_REALTIME
1670 if (!have_realtime)
1671 {
1672 struct timespec ts;
1673
1674 if (!clock_gettime (CLOCK_REALTIME, &ts))
1675 have_realtime = 1;
1676 }
1677#endif
1678
831#if EV_USE_MONOTONIC 1679#if EV_USE_MONOTONIC
1680 if (!have_monotonic)
832 { 1681 {
833 struct timespec ts; 1682 struct timespec ts;
1683
834 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
835 have_monotonic = 1; 1685 have_monotonic = 1;
836 } 1686 }
837#endif 1687#endif
838 1688
839 ev_rt_now = ev_time (); 1689 /* pid check not overridable via env */
840 mn_now = get_clock (); 1690#ifndef _WIN32
841 now_floor = mn_now; 1691 if (flags & EVFLAG_FORKCHECK)
842 rtmn_diff = ev_rt_now - mn_now; 1692 curpid = getpid ();
1693#endif
843 1694
844 if (!(flags & EVFLAG_NOENV) 1695 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 1696 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 1697 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 1698 flags = atoi (getenv ("LIBEV_FLAGS"));
848 1699
849 if (!(flags & 0x0000ffffUL)) 1700 ev_rt_now = ev_time ();
1701 mn_now = get_clock ();
1702 now_floor = mn_now;
1703 rtmn_diff = ev_rt_now - mn_now;
1704#if EV_FEATURE_API
1705 invoke_cb = ev_invoke_pending;
1706#endif
1707
1708 io_blocktime = 0.;
1709 timeout_blocktime = 0.;
1710 backend = 0;
1711 backend_fd = -1;
1712 sig_pending = 0;
1713#if EV_ASYNC_ENABLE
1714 async_pending = 0;
1715#endif
1716#if EV_USE_INOTIFY
1717 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1718#endif
1719#if EV_USE_SIGNALFD
1720 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1721#endif
1722
1723 if (!(flags & EVBACKEND_MASK))
850 flags |= ev_recommended_backends (); 1724 flags |= ev_recommended_backends ();
851 1725
852 backend = 0; 1726#if EV_USE_IOCP
1727 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1728#endif
853#if EV_USE_PORT 1729#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1730 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 1731#endif
856#if EV_USE_KQUEUE 1732#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1733 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864#endif 1740#endif
865#if EV_USE_SELECT 1741#if EV_USE_SELECT
866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1742 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
867#endif 1743#endif
868 1744
1745 ev_prepare_init (&pending_w, pendingcb);
1746
1747#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
869 ev_init (&sigev, sigcb); 1748 ev_init (&pipe_w, pipecb);
870 ev_set_priority (&sigev, EV_MAXPRI); 1749 ev_set_priority (&pipe_w, EV_MAXPRI);
1750#endif
871 } 1751 }
872} 1752}
873 1753
874static void 1754/* free up a loop structure */
1755void
875loop_destroy (EV_P) 1756ev_loop_destroy (EV_P)
876{ 1757{
877 int i; 1758 int i;
878 1759
1760#if EV_MULTIPLICITY
1761 /* mimic free (0) */
1762 if (!EV_A)
1763 return;
1764#endif
1765
1766#if EV_CLEANUP_ENABLE
1767 /* queue cleanup watchers (and execute them) */
1768 if (expect_false (cleanupcnt))
1769 {
1770 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1771 EV_INVOKE_PENDING;
1772 }
1773#endif
1774
1775#if EV_CHILD_ENABLE
1776 if (ev_is_active (&childev))
1777 {
1778 ev_ref (EV_A); /* child watcher */
1779 ev_signal_stop (EV_A_ &childev);
1780 }
1781#endif
1782
1783 if (ev_is_active (&pipe_w))
1784 {
1785 /*ev_ref (EV_A);*/
1786 /*ev_io_stop (EV_A_ &pipe_w);*/
1787
1788#if EV_USE_EVENTFD
1789 if (evfd >= 0)
1790 close (evfd);
1791#endif
1792
1793 if (evpipe [0] >= 0)
1794 {
1795 EV_WIN32_CLOSE_FD (evpipe [0]);
1796 EV_WIN32_CLOSE_FD (evpipe [1]);
1797 }
1798 }
1799
1800#if EV_USE_SIGNALFD
1801 if (ev_is_active (&sigfd_w))
1802 close (sigfd);
1803#endif
1804
1805#if EV_USE_INOTIFY
1806 if (fs_fd >= 0)
1807 close (fs_fd);
1808#endif
1809
1810 if (backend_fd >= 0)
1811 close (backend_fd);
1812
1813#if EV_USE_IOCP
1814 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1815#endif
879#if EV_USE_PORT 1816#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1817 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 1818#endif
882#if EV_USE_KQUEUE 1819#if EV_USE_KQUEUE
883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1820 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
891#if EV_USE_SELECT 1828#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1829 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 1830#endif
894 1831
895 for (i = NUMPRI; i--; ) 1832 for (i = NUMPRI; i--; )
1833 {
896 array_free (pending, [i]); 1834 array_free (pending, [i]);
1835#if EV_IDLE_ENABLE
1836 array_free (idle, [i]);
1837#endif
1838 }
1839
1840 ev_free (anfds); anfds = 0; anfdmax = 0;
897 1841
898 /* have to use the microsoft-never-gets-it-right macro */ 1842 /* have to use the microsoft-never-gets-it-right macro */
1843 array_free (rfeed, EMPTY);
899 array_free (fdchange, EMPTY0); 1844 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 1845 array_free (timer, EMPTY);
901#if EV_PERIODICS 1846#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 1847 array_free (periodic, EMPTY);
903#endif 1848#endif
1849#if EV_FORK_ENABLE
1850 array_free (fork, EMPTY);
1851#endif
1852#if EV_CLEANUP_ENABLE
904 array_free (idle, EMPTY0); 1853 array_free (cleanup, EMPTY);
1854#endif
905 array_free (prepare, EMPTY0); 1855 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 1856 array_free (check, EMPTY);
1857#if EV_ASYNC_ENABLE
1858 array_free (async, EMPTY);
1859#endif
907 1860
908 backend = 0; 1861 backend = 0;
909}
910 1862
911static void 1863#if EV_MULTIPLICITY
1864 if (ev_is_default_loop (EV_A))
1865#endif
1866 ev_default_loop_ptr = 0;
1867#if EV_MULTIPLICITY
1868 else
1869 ev_free (EV_A);
1870#endif
1871}
1872
1873#if EV_USE_INOTIFY
1874inline_size void infy_fork (EV_P);
1875#endif
1876
1877inline_size void
912loop_fork (EV_P) 1878loop_fork (EV_P)
913{ 1879{
914#if EV_USE_PORT 1880#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1881 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 1882#endif
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1884 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 1885#endif
920#if EV_USE_EPOLL 1886#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1887 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
922#endif 1888#endif
1889#if EV_USE_INOTIFY
1890 infy_fork (EV_A);
1891#endif
923 1892
924 if (ev_is_active (&sigev)) 1893 if (ev_is_active (&pipe_w))
925 { 1894 {
926 /* default loop */ 1895 /* this "locks" the handlers against writing to the pipe */
1896 /* while we modify the fd vars */
1897 sig_pending = 1;
1898#if EV_ASYNC_ENABLE
1899 async_pending = 1;
1900#endif
927 1901
928 ev_ref (EV_A); 1902 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev); 1903 ev_io_stop (EV_A_ &pipe_w);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932 1904
933 while (pipe (sigpipe)) 1905#if EV_USE_EVENTFD
934 syserr ("(libev) error creating pipe"); 1906 if (evfd >= 0)
1907 close (evfd);
1908#endif
935 1909
1910 if (evpipe [0] >= 0)
1911 {
1912 EV_WIN32_CLOSE_FD (evpipe [0]);
1913 EV_WIN32_CLOSE_FD (evpipe [1]);
1914 }
1915
1916#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
936 siginit (EV_A); 1917 evpipe_init (EV_A);
1918 /* now iterate over everything, in case we missed something */
1919 pipecb (EV_A_ &pipe_w, EV_READ);
1920#endif
937 } 1921 }
938 1922
939 postfork = 0; 1923 postfork = 0;
940} 1924}
1925
1926#if EV_MULTIPLICITY
1927
1928struct ev_loop *
1929ev_loop_new (unsigned int flags)
1930{
1931 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1932
1933 memset (EV_A, 0, sizeof (struct ev_loop));
1934 loop_init (EV_A_ flags);
1935
1936 if (ev_backend (EV_A))
1937 return EV_A;
1938
1939 ev_free (EV_A);
1940 return 0;
1941}
1942
1943#endif /* multiplicity */
1944
1945#if EV_VERIFY
1946static void noinline
1947verify_watcher (EV_P_ W w)
1948{
1949 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1950
1951 if (w->pending)
1952 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1953}
1954
1955static void noinline
1956verify_heap (EV_P_ ANHE *heap, int N)
1957{
1958 int i;
1959
1960 for (i = HEAP0; i < N + HEAP0; ++i)
1961 {
1962 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1963 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1964 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1965
1966 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1967 }
1968}
1969
1970static void noinline
1971array_verify (EV_P_ W *ws, int cnt)
1972{
1973 while (cnt--)
1974 {
1975 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1976 verify_watcher (EV_A_ ws [cnt]);
1977 }
1978}
1979#endif
1980
1981#if EV_FEATURE_API
1982void
1983ev_verify (EV_P)
1984{
1985#if EV_VERIFY
1986 int i;
1987 WL w;
1988
1989 assert (activecnt >= -1);
1990
1991 assert (fdchangemax >= fdchangecnt);
1992 for (i = 0; i < fdchangecnt; ++i)
1993 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1994
1995 assert (anfdmax >= 0);
1996 for (i = 0; i < anfdmax; ++i)
1997 for (w = anfds [i].head; w; w = w->next)
1998 {
1999 verify_watcher (EV_A_ (W)w);
2000 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2001 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2002 }
2003
2004 assert (timermax >= timercnt);
2005 verify_heap (EV_A_ timers, timercnt);
2006
2007#if EV_PERIODIC_ENABLE
2008 assert (periodicmax >= periodiccnt);
2009 verify_heap (EV_A_ periodics, periodiccnt);
2010#endif
2011
2012 for (i = NUMPRI; i--; )
2013 {
2014 assert (pendingmax [i] >= pendingcnt [i]);
2015#if EV_IDLE_ENABLE
2016 assert (idleall >= 0);
2017 assert (idlemax [i] >= idlecnt [i]);
2018 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2019#endif
2020 }
2021
2022#if EV_FORK_ENABLE
2023 assert (forkmax >= forkcnt);
2024 array_verify (EV_A_ (W *)forks, forkcnt);
2025#endif
2026
2027#if EV_CLEANUP_ENABLE
2028 assert (cleanupmax >= cleanupcnt);
2029 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2030#endif
2031
2032#if EV_ASYNC_ENABLE
2033 assert (asyncmax >= asynccnt);
2034 array_verify (EV_A_ (W *)asyncs, asynccnt);
2035#endif
2036
2037#if EV_PREPARE_ENABLE
2038 assert (preparemax >= preparecnt);
2039 array_verify (EV_A_ (W *)prepares, preparecnt);
2040#endif
2041
2042#if EV_CHECK_ENABLE
2043 assert (checkmax >= checkcnt);
2044 array_verify (EV_A_ (W *)checks, checkcnt);
2045#endif
2046
2047# if 0
2048#if EV_CHILD_ENABLE
2049 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2050 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2051#endif
2052# endif
2053#endif
2054}
2055#endif
941 2056
942#if EV_MULTIPLICITY 2057#if EV_MULTIPLICITY
943struct ev_loop * 2058struct ev_loop *
944ev_loop_new (unsigned int flags)
945{
946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
947
948 memset (loop, 0, sizeof (struct ev_loop));
949
950 loop_init (EV_A_ flags);
951
952 if (ev_backend (EV_A))
953 return loop;
954
955 return 0;
956}
957
958void
959ev_loop_destroy (EV_P)
960{
961 loop_destroy (EV_A);
962 ev_free (loop);
963}
964
965void
966ev_loop_fork (EV_P)
967{
968 postfork = 1;
969}
970
971#endif
972
973#if EV_MULTIPLICITY
974struct ev_loop *
975ev_default_loop_init (unsigned int flags)
976#else 2059#else
977int 2060int
2061#endif
978ev_default_loop (unsigned int flags) 2062ev_default_loop (unsigned int flags)
979#endif
980{ 2063{
981 if (sigpipe [0] == sigpipe [1])
982 if (pipe (sigpipe))
983 return 0;
984
985 if (!ev_default_loop_ptr) 2064 if (!ev_default_loop_ptr)
986 { 2065 {
987#if EV_MULTIPLICITY 2066#if EV_MULTIPLICITY
988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2067 EV_P = ev_default_loop_ptr = &default_loop_struct;
989#else 2068#else
990 ev_default_loop_ptr = 1; 2069 ev_default_loop_ptr = 1;
991#endif 2070#endif
992 2071
993 loop_init (EV_A_ flags); 2072 loop_init (EV_A_ flags);
994 2073
995 if (ev_backend (EV_A)) 2074 if (ev_backend (EV_A))
996 { 2075 {
997 siginit (EV_A); 2076#if EV_CHILD_ENABLE
998
999#ifndef _WIN32
1000 ev_signal_init (&childev, childcb, SIGCHLD); 2077 ev_signal_init (&childev, childcb, SIGCHLD);
1001 ev_set_priority (&childev, EV_MAXPRI); 2078 ev_set_priority (&childev, EV_MAXPRI);
1002 ev_signal_start (EV_A_ &childev); 2079 ev_signal_start (EV_A_ &childev);
1003 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2080 ev_unref (EV_A); /* child watcher should not keep loop alive */
1004#endif 2081#endif
1009 2086
1010 return ev_default_loop_ptr; 2087 return ev_default_loop_ptr;
1011} 2088}
1012 2089
1013void 2090void
1014ev_default_destroy (void) 2091ev_loop_fork (EV_P)
1015{ 2092{
1016#if EV_MULTIPLICITY 2093 postfork = 1; /* must be in line with ev_default_fork */
1017 struct ev_loop *loop = ev_default_loop_ptr;
1018#endif
1019
1020#ifndef _WIN32
1021 ev_ref (EV_A); /* child watcher */
1022 ev_signal_stop (EV_A_ &childev);
1023#endif
1024
1025 ev_ref (EV_A); /* signal watcher */
1026 ev_io_stop (EV_A_ &sigev);
1027
1028 close (sigpipe [0]); sigpipe [0] = 0;
1029 close (sigpipe [1]); sigpipe [1] = 0;
1030
1031 loop_destroy (EV_A);
1032}
1033
1034void
1035ev_default_fork (void)
1036{
1037#if EV_MULTIPLICITY
1038 struct ev_loop *loop = ev_default_loop_ptr;
1039#endif
1040
1041 if (backend)
1042 postfork = 1;
1043} 2094}
1044 2095
1045/*****************************************************************************/ 2096/*****************************************************************************/
1046 2097
1047static int 2098void
1048any_pending (EV_P) 2099ev_invoke (EV_P_ void *w, int revents)
2100{
2101 EV_CB_INVOKE ((W)w, revents);
2102}
2103
2104unsigned int
2105ev_pending_count (EV_P)
1049{ 2106{
1050 int pri; 2107 int pri;
2108 unsigned int count = 0;
1051 2109
1052 for (pri = NUMPRI; pri--; ) 2110 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri]) 2111 count += pendingcnt [pri];
1054 return 1;
1055 2112
1056 return 0; 2113 return count;
1057} 2114}
1058 2115
1059inline void 2116void noinline
1060call_pending (EV_P) 2117ev_invoke_pending (EV_P)
1061{ 2118{
1062 int pri; 2119 int pri;
1063 2120
1064 for (pri = NUMPRI; pri--; ) 2121 for (pri = NUMPRI; pri--; )
1065 while (pendingcnt [pri]) 2122 while (pendingcnt [pri])
1066 { 2123 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2124 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 2125
1069 if (expect_true (p->w))
1070 {
1071 p->w->pending = 0; 2126 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 2127 EV_CB_INVOKE (p->w, p->events);
1073 } 2128 EV_FREQUENT_CHECK;
1074 } 2129 }
1075} 2130}
1076 2131
2132#if EV_IDLE_ENABLE
2133/* make idle watchers pending. this handles the "call-idle */
2134/* only when higher priorities are idle" logic */
1077inline void 2135inline_size void
2136idle_reify (EV_P)
2137{
2138 if (expect_false (idleall))
2139 {
2140 int pri;
2141
2142 for (pri = NUMPRI; pri--; )
2143 {
2144 if (pendingcnt [pri])
2145 break;
2146
2147 if (idlecnt [pri])
2148 {
2149 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2150 break;
2151 }
2152 }
2153 }
2154}
2155#endif
2156
2157/* make timers pending */
2158inline_size void
1078timers_reify (EV_P) 2159timers_reify (EV_P)
1079{ 2160{
2161 EV_FREQUENT_CHECK;
2162
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 2163 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1081 { 2164 {
1082 struct ev_timer *w = timers [0]; 2165 do
1083
1084 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085
1086 /* first reschedule or stop timer */
1087 if (w->repeat)
1088 { 2166 {
2167 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2168
2169 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2170
2171 /* first reschedule or stop timer */
2172 if (w->repeat)
2173 {
2174 ev_at (w) += w->repeat;
2175 if (ev_at (w) < mn_now)
2176 ev_at (w) = mn_now;
2177
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2178 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 2179
1091 ((WT)w)->at += w->repeat; 2180 ANHE_at_cache (timers [HEAP0]);
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
1095 downheap ((WT *)timers, timercnt, 0); 2181 downheap (timers, timercnt, HEAP0);
2182 }
2183 else
2184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2185
2186 EV_FREQUENT_CHECK;
2187 feed_reverse (EV_A_ (W)w);
1096 } 2188 }
1097 else 2189 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 2190
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2191 feed_reverse_done (EV_A_ EV_TIMER);
1101 } 2192 }
1102} 2193}
1103 2194
1104#if EV_PERIODICS 2195#if EV_PERIODIC_ENABLE
2196/* make periodics pending */
1105inline void 2197inline_size void
1106periodics_reify (EV_P) 2198periodics_reify (EV_P)
1107{ 2199{
2200 EV_FREQUENT_CHECK;
2201
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2202 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1109 { 2203 {
1110 struct ev_periodic *w = periodics [0]; 2204 int feed_count = 0;
1111 2205
2206 do
2207 {
2208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2209
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2210 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 2211
1114 /* first reschedule or stop timer */ 2212 /* first reschedule or stop timer */
2213 if (w->reschedule_cb)
2214 {
2215 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2216
2217 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2218
2219 ANHE_at_cache (periodics [HEAP0]);
2220 downheap (periodics, periodiccnt, HEAP0);
2221 }
2222 else if (w->interval)
2223 {
2224 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2225 /* if next trigger time is not sufficiently in the future, put it there */
2226 /* this might happen because of floating point inexactness */
2227 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2228 {
2229 ev_at (w) += w->interval;
2230
2231 /* if interval is unreasonably low we might still have a time in the past */
2232 /* so correct this. this will make the periodic very inexact, but the user */
2233 /* has effectively asked to get triggered more often than possible */
2234 if (ev_at (w) < ev_rt_now)
2235 ev_at (w) = ev_rt_now;
2236 }
2237
2238 ANHE_at_cache (periodics [HEAP0]);
2239 downheap (periodics, periodiccnt, HEAP0);
2240 }
2241 else
2242 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2243
2244 EV_FREQUENT_CHECK;
2245 feed_reverse (EV_A_ (W)w);
2246 }
2247 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2248
2249 feed_reverse_done (EV_A_ EV_PERIODIC);
2250 }
2251}
2252
2253/* simply recalculate all periodics */
2254/* TODO: maybe ensure that at least one event happens when jumping forward? */
2255static void noinline
2256periodics_reschedule (EV_P)
2257{
2258 int i;
2259
2260 /* adjust periodics after time jump */
2261 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2262 {
2263 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2264
1115 if (w->reschedule_cb) 2265 if (w->reschedule_cb)
2266 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2267 else if (w->interval)
2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2269
2270 ANHE_at_cache (periodics [i]);
2271 }
2272
2273 reheap (periodics, periodiccnt);
2274}
2275#endif
2276
2277/* adjust all timers by a given offset */
2278static void noinline
2279timers_reschedule (EV_P_ ev_tstamp adjust)
2280{
2281 int i;
2282
2283 for (i = 0; i < timercnt; ++i)
2284 {
2285 ANHE *he = timers + i + HEAP0;
2286 ANHE_w (*he)->at += adjust;
2287 ANHE_at_cache (*he);
2288 }
2289}
2290
2291/* fetch new monotonic and realtime times from the kernel */
2292/* also detect if there was a timejump, and act accordingly */
2293inline_speed void
2294time_update (EV_P_ ev_tstamp max_block)
2295{
2296#if EV_USE_MONOTONIC
2297 if (expect_true (have_monotonic))
2298 {
2299 int i;
2300 ev_tstamp odiff = rtmn_diff;
2301
2302 mn_now = get_clock ();
2303
2304 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2305 /* interpolate in the meantime */
2306 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1116 { 2307 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2308 ev_rt_now = rtmn_diff + mn_now;
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2309 return;
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 } 2310 }
1121 else if (w->interval)
1122 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0);
1126 }
1127 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 2311
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 }
1132}
1133
1134static void
1135periodics_reschedule (EV_P)
1136{
1137 int i;
1138
1139 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i)
1141 {
1142 struct ev_periodic *w = periodics [i];
1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
1153}
1154#endif
1155
1156inline int
1157time_update_monotonic (EV_P)
1158{
1159 mn_now = get_clock ();
1160
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 {
1163 ev_rt_now = rtmn_diff + mn_now;
1164 return 0;
1165 }
1166 else
1167 {
1168 now_floor = mn_now; 2312 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 2313 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 2314
1174inline void 2315 /* loop a few times, before making important decisions.
1175time_update (EV_P) 2316 * on the choice of "4": one iteration isn't enough,
1176{ 2317 * in case we get preempted during the calls to
1177 int i; 2318 * ev_time and get_clock. a second call is almost guaranteed
1178 2319 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 2320 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 2321 * in the unlikely event of having been preempted here.
1181 { 2322 */
1182 if (time_update_monotonic (EV_A)) 2323 for (i = 4; --i; )
1183 { 2324 {
1184 ev_tstamp odiff = rtmn_diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 2325 rtmn_diff = ev_rt_now - mn_now;
1189 2326
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2327 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1191 return; /* all is well */ 2328 return; /* all is well */
1192 2329
1193 ev_rt_now = ev_time (); 2330 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 2331 mn_now = get_clock ();
1195 now_floor = mn_now; 2332 now_floor = mn_now;
1196 } 2333 }
1197 2334
2335 /* no timer adjustment, as the monotonic clock doesn't jump */
2336 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198# if EV_PERIODICS 2337# if EV_PERIODIC_ENABLE
2338 periodics_reschedule (EV_A);
2339# endif
2340 }
2341 else
2342#endif
2343 {
2344 ev_rt_now = ev_time ();
2345
2346 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2347 {
2348 /* adjust timers. this is easy, as the offset is the same for all of them */
2349 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2350#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 2351 periodics_reschedule (EV_A);
1200# endif 2352#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 2353 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 }
1220 2354
1221 mn_now = ev_rt_now; 2355 mn_now = ev_rt_now;
1222 } 2356 }
1223} 2357}
1224 2358
1225void 2359void
1226ev_ref (EV_P)
1227{
1228 ++activecnt;
1229}
1230
1231void
1232ev_unref (EV_P)
1233{
1234 --activecnt;
1235}
1236
1237static int loop_done;
1238
1239void
1240ev_loop (EV_P_ int flags) 2360ev_run (EV_P_ int flags)
1241{ 2361{
1242 double block; 2362#if EV_FEATURE_API
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2363 ++loop_depth;
2364#endif
1244 2365
1245 while (activecnt) 2366 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2367
2368 loop_done = EVBREAK_CANCEL;
2369
2370 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2371
2372 do
1246 { 2373 {
2374#if EV_VERIFY >= 2
2375 ev_verify (EV_A);
2376#endif
2377
2378#ifndef _WIN32
2379 if (expect_false (curpid)) /* penalise the forking check even more */
2380 if (expect_false (getpid () != curpid))
2381 {
2382 curpid = getpid ();
2383 postfork = 1;
2384 }
2385#endif
2386
2387#if EV_FORK_ENABLE
2388 /* we might have forked, so queue fork handlers */
2389 if (expect_false (postfork))
2390 if (forkcnt)
2391 {
2392 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2393 EV_INVOKE_PENDING;
2394 }
2395#endif
2396
2397#if EV_PREPARE_ENABLE
1247 /* queue check watchers (and execute them) */ 2398 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 2399 if (expect_false (preparecnt))
1249 { 2400 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2401 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 2402 EV_INVOKE_PENDING;
1252 } 2403 }
2404#endif
2405
2406 if (expect_false (loop_done))
2407 break;
1253 2408
1254 /* we might have forked, so reify kernel state if necessary */ 2409 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 2410 if (expect_false (postfork))
1256 loop_fork (EV_A); 2411 loop_fork (EV_A);
1257 2412
1258 /* update fd-related kernel structures */ 2413 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 2414 fd_reify (EV_A);
1260 2415
1261 /* calculate blocking time */ 2416 /* calculate blocking time */
2417 {
2418 ev_tstamp waittime = 0.;
2419 ev_tstamp sleeptime = 0.;
1262 2420
1263 /* we only need this for !monotonic clock or timers, but as we basically 2421 /* remember old timestamp for io_blocktime calculation */
1264 always have timers, we just calculate it always */ 2422 ev_tstamp prev_mn_now = mn_now;
1265#if EV_USE_MONOTONIC 2423
1266 if (expect_true (have_monotonic)) 2424 /* update time to cancel out callback processing overhead */
1267 time_update_monotonic (EV_A); 2425 time_update (EV_A_ 1e100);
1268 else 2426
1269#endif 2427 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1270 { 2428 {
1271 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now;
1273 }
1274
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 2429 waittime = MAX_BLOCKTIME;
1280 2430
1281 if (timercnt) 2431 if (timercnt)
1282 { 2432 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2433 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1284 if (block > to) block = to; 2434 if (waittime > to) waittime = to;
1285 } 2435 }
1286 2436
1287#if EV_PERIODICS 2437#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 2438 if (periodiccnt)
1289 { 2439 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2440 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 2441 if (waittime > to) waittime = to;
1292 } 2442 }
1293#endif 2443#endif
1294 2444
1295 if (expect_false (block < 0.)) block = 0.; 2445 /* don't let timeouts decrease the waittime below timeout_blocktime */
2446 if (expect_false (waittime < timeout_blocktime))
2447 waittime = timeout_blocktime;
2448
2449 /* extra check because io_blocktime is commonly 0 */
2450 if (expect_false (io_blocktime))
2451 {
2452 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2453
2454 if (sleeptime > waittime - backend_fudge)
2455 sleeptime = waittime - backend_fudge;
2456
2457 if (expect_true (sleeptime > 0.))
2458 {
2459 ev_sleep (sleeptime);
2460 waittime -= sleeptime;
2461 }
2462 }
1296 } 2463 }
1297 2464
2465#if EV_FEATURE_API
2466 ++loop_count;
2467#endif
2468 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1298 backend_poll (EV_A_ block); 2469 backend_poll (EV_A_ waittime);
2470 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1299 2471
1300 /* update ev_rt_now, do magic */ 2472 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 2473 time_update (EV_A_ waittime + sleeptime);
2474 }
1302 2475
1303 /* queue pending timers and reschedule them */ 2476 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 2477 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 2478#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 2479 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 2480#endif
1308 2481
2482#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 2483 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 2484 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2485#endif
1312 2486
2487#if EV_CHECK_ENABLE
1313 /* queue check watchers, to be executed first */ 2488 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 2489 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2490 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2491#endif
1316 2492
1317 call_pending (EV_A); 2493 EV_INVOKE_PENDING;
1318
1319 if (expect_false (loop_done))
1320 break;
1321 } 2494 }
2495 while (expect_true (
2496 activecnt
2497 && !loop_done
2498 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2499 ));
1322 2500
1323 if (loop_done != 2) 2501 if (loop_done == EVBREAK_ONE)
1324 loop_done = 0; 2502 loop_done = EVBREAK_CANCEL;
1325}
1326 2503
2504#if EV_FEATURE_API
2505 --loop_depth;
2506#endif
2507}
2508
1327void 2509void
1328ev_unloop (EV_P_ int how) 2510ev_break (EV_P_ int how)
1329{ 2511{
1330 loop_done = how; 2512 loop_done = how;
1331} 2513}
1332 2514
2515void
2516ev_ref (EV_P)
2517{
2518 ++activecnt;
2519}
2520
2521void
2522ev_unref (EV_P)
2523{
2524 --activecnt;
2525}
2526
2527void
2528ev_now_update (EV_P)
2529{
2530 time_update (EV_A_ 1e100);
2531}
2532
2533void
2534ev_suspend (EV_P)
2535{
2536 ev_now_update (EV_A);
2537}
2538
2539void
2540ev_resume (EV_P)
2541{
2542 ev_tstamp mn_prev = mn_now;
2543
2544 ev_now_update (EV_A);
2545 timers_reschedule (EV_A_ mn_now - mn_prev);
2546#if EV_PERIODIC_ENABLE
2547 /* TODO: really do this? */
2548 periodics_reschedule (EV_A);
2549#endif
2550}
2551
1333/*****************************************************************************/ 2552/*****************************************************************************/
2553/* singly-linked list management, used when the expected list length is short */
1334 2554
1335inline void 2555inline_size void
1336wlist_add (WL *head, WL elem) 2556wlist_add (WL *head, WL elem)
1337{ 2557{
1338 elem->next = *head; 2558 elem->next = *head;
1339 *head = elem; 2559 *head = elem;
1340} 2560}
1341 2561
1342inline void 2562inline_size void
1343wlist_del (WL *head, WL elem) 2563wlist_del (WL *head, WL elem)
1344{ 2564{
1345 while (*head) 2565 while (*head)
1346 { 2566 {
1347 if (*head == elem) 2567 if (expect_true (*head == elem))
1348 { 2568 {
1349 *head = elem->next; 2569 *head = elem->next;
1350 return; 2570 break;
1351 } 2571 }
1352 2572
1353 head = &(*head)->next; 2573 head = &(*head)->next;
1354 } 2574 }
1355} 2575}
1356 2576
2577/* internal, faster, version of ev_clear_pending */
1357inline void 2578inline_speed void
1358ev_clear_pending (EV_P_ W w) 2579clear_pending (EV_P_ W w)
1359{ 2580{
1360 if (w->pending) 2581 if (w->pending)
1361 { 2582 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2583 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1363 w->pending = 0; 2584 w->pending = 0;
1364 } 2585 }
1365} 2586}
1366 2587
2588int
2589ev_clear_pending (EV_P_ void *w)
2590{
2591 W w_ = (W)w;
2592 int pending = w_->pending;
2593
2594 if (expect_true (pending))
2595 {
2596 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2597 p->w = (W)&pending_w;
2598 w_->pending = 0;
2599 return p->events;
2600 }
2601 else
2602 return 0;
2603}
2604
1367inline void 2605inline_size void
2606pri_adjust (EV_P_ W w)
2607{
2608 int pri = ev_priority (w);
2609 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2610 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2611 ev_set_priority (w, pri);
2612}
2613
2614inline_speed void
1368ev_start (EV_P_ W w, int active) 2615ev_start (EV_P_ W w, int active)
1369{ 2616{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2617 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 2618 w->active = active;
1374 ev_ref (EV_A); 2619 ev_ref (EV_A);
1375} 2620}
1376 2621
1377inline void 2622inline_size void
1378ev_stop (EV_P_ W w) 2623ev_stop (EV_P_ W w)
1379{ 2624{
1380 ev_unref (EV_A); 2625 ev_unref (EV_A);
1381 w->active = 0; 2626 w->active = 0;
1382} 2627}
1383 2628
1384/*****************************************************************************/ 2629/*****************************************************************************/
1385 2630
1386void 2631void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 2632ev_io_start (EV_P_ ev_io *w)
1388{ 2633{
1389 int fd = w->fd; 2634 int fd = w->fd;
1390 2635
1391 if (expect_false (ev_is_active (w))) 2636 if (expect_false (ev_is_active (w)))
1392 return; 2637 return;
1393 2638
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 2639 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2640 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2641
2642 EV_FREQUENT_CHECK;
1395 2643
1396 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2645 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2646 wlist_add (&anfds[fd].head, (WL)w);
1399 2647
1400 fd_change (EV_A_ fd); 2648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1401} 2649 w->events &= ~EV__IOFDSET;
1402 2650
1403void 2651 EV_FREQUENT_CHECK;
2652}
2653
2654void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 2655ev_io_stop (EV_P_ ev_io *w)
1405{ 2656{
1406 ev_clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
1408 return; 2659 return;
1409 2660
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2661 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 2662
2663 EV_FREQUENT_CHECK;
2664
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2665 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 2666 ev_stop (EV_A_ (W)w);
1414 2667
1415 fd_change (EV_A_ w->fd); 2668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1416}
1417 2669
1418void 2670 EV_FREQUENT_CHECK;
2671}
2672
2673void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 2674ev_timer_start (EV_P_ ev_timer *w)
1420{ 2675{
1421 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
1422 return; 2677 return;
1423 2678
1424 ((WT)w)->at += mn_now; 2679 ev_at (w) += mn_now;
1425 2680
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2681 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 2682
2683 EV_FREQUENT_CHECK;
2684
2685 ++timercnt;
1428 ev_start (EV_A_ (W)w, ++timercnt); 2686 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2687 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1430 timers [timercnt - 1] = w; 2688 ANHE_w (timers [ev_active (w)]) = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 2689 ANHE_at_cache (timers [ev_active (w)]);
2690 upheap (timers, ev_active (w));
1432 2691
2692 EV_FREQUENT_CHECK;
2693
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2694 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1434} 2695}
1435 2696
1436void 2697void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 2698ev_timer_stop (EV_P_ ev_timer *w)
1438{ 2699{
1439 ev_clear_pending (EV_A_ (W)w); 2700 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 2701 if (expect_false (!ev_is_active (w)))
1441 return; 2702 return;
1442 2703
2704 EV_FREQUENT_CHECK;
2705
2706 {
2707 int active = ev_active (w);
2708
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2709 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1444 2710
2711 --timercnt;
2712
1445 if (expect_true (((W)w)->active < timercnt--)) 2713 if (expect_true (active < timercnt + HEAP0))
1446 { 2714 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 2715 timers [active] = timers [timercnt + HEAP0];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2716 adjustheap (timers, timercnt, active);
1449 } 2717 }
2718 }
1450 2719
1451 ((WT)w)->at -= mn_now; 2720 ev_at (w) -= mn_now;
1452 2721
1453 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
1454}
1455 2723
1456void 2724 EV_FREQUENT_CHECK;
2725}
2726
2727void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 2728ev_timer_again (EV_P_ ev_timer *w)
1458{ 2729{
2730 EV_FREQUENT_CHECK;
2731
1459 if (ev_is_active (w)) 2732 if (ev_is_active (w))
1460 { 2733 {
1461 if (w->repeat) 2734 if (w->repeat)
1462 { 2735 {
1463 ((WT)w)->at = mn_now + w->repeat; 2736 ev_at (w) = mn_now + w->repeat;
2737 ANHE_at_cache (timers [ev_active (w)]);
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2738 adjustheap (timers, timercnt, ev_active (w));
1465 } 2739 }
1466 else 2740 else
1467 ev_timer_stop (EV_A_ w); 2741 ev_timer_stop (EV_A_ w);
1468 } 2742 }
1469 else if (w->repeat) 2743 else if (w->repeat)
1470 { 2744 {
1471 w->at = w->repeat; 2745 ev_at (w) = w->repeat;
1472 ev_timer_start (EV_A_ w); 2746 ev_timer_start (EV_A_ w);
1473 } 2747 }
1474}
1475 2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752ev_tstamp
2753ev_timer_remaining (EV_P_ ev_timer *w)
2754{
2755 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2756}
2757
1476#if EV_PERIODICS 2758#if EV_PERIODIC_ENABLE
1477void 2759void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 2760ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 2761{
1480 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
1481 return; 2763 return;
1482 2764
1483 if (w->reschedule_cb) 2765 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 2767 else if (w->interval)
1486 { 2768 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2769 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 2770 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1490 } 2772 }
2773 else
2774 ev_at (w) = w->offset;
1491 2775
2776 EV_FREQUENT_CHECK;
2777
2778 ++periodiccnt;
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 2779 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2780 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 2781 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 2782 ANHE_at_cache (periodics [ev_active (w)]);
2783 upheap (periodics, ev_active (w));
1496 2784
2785 EV_FREQUENT_CHECK;
2786
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2787 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1498} 2788}
1499 2789
1500void 2790void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 2791ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 2792{
1503 ev_clear_pending (EV_A_ (W)w); 2793 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2794 if (expect_false (!ev_is_active (w)))
1505 return; 2795 return;
1506 2796
2797 EV_FREQUENT_CHECK;
2798
2799 {
2800 int active = ev_active (w);
2801
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2802 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1508 2803
2804 --periodiccnt;
2805
1509 if (expect_true (((W)w)->active < periodiccnt--)) 2806 if (expect_true (active < periodiccnt + HEAP0))
1510 { 2807 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2808 periodics [active] = periodics [periodiccnt + HEAP0];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2809 adjustheap (periodics, periodiccnt, active);
1513 } 2810 }
2811 }
1514 2812
1515 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
1516}
1517 2814
1518void 2815 EV_FREQUENT_CHECK;
2816}
2817
2818void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 2819ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 2820{
1521 /* TODO: use adjustheap and recalculation */ 2821 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 2822 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 2823 ev_periodic_start (EV_A_ w);
1524} 2824}
1525#endif 2825#endif
1526 2826
1527void 2827#ifndef SA_RESTART
1528ev_idle_start (EV_P_ struct ev_idle *w) 2828# define SA_RESTART 0
2829#endif
2830
2831#if EV_SIGNAL_ENABLE
2832
2833void noinline
2834ev_signal_start (EV_P_ ev_signal *w)
1529{ 2835{
1530 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
1531 return; 2837 return;
1532 2838
2839 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2840
2841#if EV_MULTIPLICITY
2842 assert (("libev: a signal must not be attached to two different loops",
2843 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2844
2845 signals [w->signum - 1].loop = EV_A;
2846#endif
2847
2848 EV_FREQUENT_CHECK;
2849
2850#if EV_USE_SIGNALFD
2851 if (sigfd == -2)
2852 {
2853 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2854 if (sigfd < 0 && errno == EINVAL)
2855 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2856
2857 if (sigfd >= 0)
2858 {
2859 fd_intern (sigfd); /* doing it twice will not hurt */
2860
2861 sigemptyset (&sigfd_set);
2862
2863 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2864 ev_set_priority (&sigfd_w, EV_MAXPRI);
2865 ev_io_start (EV_A_ &sigfd_w);
2866 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2867 }
2868 }
2869
2870 if (sigfd >= 0)
2871 {
2872 /* TODO: check .head */
2873 sigaddset (&sigfd_set, w->signum);
2874 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2875
2876 signalfd (sigfd, &sigfd_set, 0);
2877 }
2878#endif
2879
1533 ev_start (EV_A_ (W)w, ++idlecnt); 2880 ev_start (EV_A_ (W)w, 1);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2881 wlist_add (&signals [w->signum - 1].head, (WL)w);
1535 idles [idlecnt - 1] = w;
1536}
1537 2882
1538void 2883 if (!((WL)w)->next)
1539ev_idle_stop (EV_P_ struct ev_idle *w) 2884# if EV_USE_SIGNALFD
2885 if (sigfd < 0) /*TODO*/
2886# endif
2887 {
2888# ifdef _WIN32
2889 evpipe_init (EV_A);
2890
2891 signal (w->signum, ev_sighandler);
2892# else
2893 struct sigaction sa;
2894
2895 evpipe_init (EV_A);
2896
2897 sa.sa_handler = ev_sighandler;
2898 sigfillset (&sa.sa_mask);
2899 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2900 sigaction (w->signum, &sa, 0);
2901
2902 if (origflags & EVFLAG_NOSIGMASK)
2903 {
2904 sigemptyset (&sa.sa_mask);
2905 sigaddset (&sa.sa_mask, w->signum);
2906 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2907 }
2908#endif
2909 }
2910
2911 EV_FREQUENT_CHECK;
2912}
2913
2914void noinline
2915ev_signal_stop (EV_P_ ev_signal *w)
1540{ 2916{
1541 ev_clear_pending (EV_A_ (W)w); 2917 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 2918 if (expect_false (!ev_is_active (w)))
1543 return; 2919 return;
1544 2920
1545 idles [((W)w)->active - 1] = idles [--idlecnt]; 2921 EV_FREQUENT_CHECK;
2922
2923 wlist_del (&signals [w->signum - 1].head, (WL)w);
1546 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
1547}
1548 2925
2926 if (!signals [w->signum - 1].head)
2927 {
2928#if EV_MULTIPLICITY
2929 signals [w->signum - 1].loop = 0; /* unattach from signal */
2930#endif
2931#if EV_USE_SIGNALFD
2932 if (sigfd >= 0)
2933 {
2934 sigset_t ss;
2935
2936 sigemptyset (&ss);
2937 sigaddset (&ss, w->signum);
2938 sigdelset (&sigfd_set, w->signum);
2939
2940 signalfd (sigfd, &sigfd_set, 0);
2941 sigprocmask (SIG_UNBLOCK, &ss, 0);
2942 }
2943 else
2944#endif
2945 signal (w->signum, SIG_DFL);
2946 }
2947
2948 EV_FREQUENT_CHECK;
2949}
2950
2951#endif
2952
2953#if EV_CHILD_ENABLE
2954
1549void 2955void
1550ev_prepare_start (EV_P_ struct ev_prepare *w) 2956ev_child_start (EV_P_ ev_child *w)
1551{ 2957{
2958#if EV_MULTIPLICITY
2959 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2960#endif
1552 if (expect_false (ev_is_active (w))) 2961 if (expect_false (ev_is_active (w)))
1553 return; 2962 return;
1554 2963
2964 EV_FREQUENT_CHECK;
2965
1555 ev_start (EV_A_ (W)w, ++preparecnt); 2966 ev_start (EV_A_ (W)w, 1);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2967 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1557 prepares [preparecnt - 1] = w;
1558}
1559 2968
2969 EV_FREQUENT_CHECK;
2970}
2971
1560void 2972void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w) 2973ev_child_stop (EV_P_ ev_child *w)
1562{ 2974{
1563 ev_clear_pending (EV_A_ (W)w); 2975 clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w))) 2976 if (expect_false (!ev_is_active (w)))
1565 return; 2977 return;
1566 2978
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2979 EV_FREQUENT_CHECK;
2980
2981 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1568 ev_stop (EV_A_ (W)w); 2982 ev_stop (EV_A_ (W)w);
1569}
1570 2983
2984 EV_FREQUENT_CHECK;
2985}
2986
2987#endif
2988
2989#if EV_STAT_ENABLE
2990
2991# ifdef _WIN32
2992# undef lstat
2993# define lstat(a,b) _stati64 (a,b)
2994# endif
2995
2996#define DEF_STAT_INTERVAL 5.0074891
2997#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2998#define MIN_STAT_INTERVAL 0.1074891
2999
3000static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3001
3002#if EV_USE_INOTIFY
3003
3004/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3005# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3006
3007static void noinline
3008infy_add (EV_P_ ev_stat *w)
3009{
3010 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3011
3012 if (w->wd >= 0)
3013 {
3014 struct statfs sfs;
3015
3016 /* now local changes will be tracked by inotify, but remote changes won't */
3017 /* unless the filesystem is known to be local, we therefore still poll */
3018 /* also do poll on <2.6.25, but with normal frequency */
3019
3020 if (!fs_2625)
3021 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3022 else if (!statfs (w->path, &sfs)
3023 && (sfs.f_type == 0x1373 /* devfs */
3024 || sfs.f_type == 0xEF53 /* ext2/3 */
3025 || sfs.f_type == 0x3153464a /* jfs */
3026 || sfs.f_type == 0x52654973 /* reiser3 */
3027 || sfs.f_type == 0x01021994 /* tempfs */
3028 || sfs.f_type == 0x58465342 /* xfs */))
3029 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3030 else
3031 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3032 }
3033 else
3034 {
3035 /* can't use inotify, continue to stat */
3036 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3037
3038 /* if path is not there, monitor some parent directory for speedup hints */
3039 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3040 /* but an efficiency issue only */
3041 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3042 {
3043 char path [4096];
3044 strcpy (path, w->path);
3045
3046 do
3047 {
3048 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3049 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3050
3051 char *pend = strrchr (path, '/');
3052
3053 if (!pend || pend == path)
3054 break;
3055
3056 *pend = 0;
3057 w->wd = inotify_add_watch (fs_fd, path, mask);
3058 }
3059 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3060 }
3061 }
3062
3063 if (w->wd >= 0)
3064 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3065
3066 /* now re-arm timer, if required */
3067 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3068 ev_timer_again (EV_A_ &w->timer);
3069 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3070}
3071
3072static void noinline
3073infy_del (EV_P_ ev_stat *w)
3074{
3075 int slot;
3076 int wd = w->wd;
3077
3078 if (wd < 0)
3079 return;
3080
3081 w->wd = -2;
3082 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3083 wlist_del (&fs_hash [slot].head, (WL)w);
3084
3085 /* remove this watcher, if others are watching it, they will rearm */
3086 inotify_rm_watch (fs_fd, wd);
3087}
3088
3089static void noinline
3090infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3091{
3092 if (slot < 0)
3093 /* overflow, need to check for all hash slots */
3094 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3095 infy_wd (EV_A_ slot, wd, ev);
3096 else
3097 {
3098 WL w_;
3099
3100 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3101 {
3102 ev_stat *w = (ev_stat *)w_;
3103 w_ = w_->next; /* lets us remove this watcher and all before it */
3104
3105 if (w->wd == wd || wd == -1)
3106 {
3107 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3108 {
3109 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3110 w->wd = -1;
3111 infy_add (EV_A_ w); /* re-add, no matter what */
3112 }
3113
3114 stat_timer_cb (EV_A_ &w->timer, 0);
3115 }
3116 }
3117 }
3118}
3119
3120static void
3121infy_cb (EV_P_ ev_io *w, int revents)
3122{
3123 char buf [EV_INOTIFY_BUFSIZE];
3124 int ofs;
3125 int len = read (fs_fd, buf, sizeof (buf));
3126
3127 for (ofs = 0; ofs < len; )
3128 {
3129 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3130 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3131 ofs += sizeof (struct inotify_event) + ev->len;
3132 }
3133}
3134
3135inline_size void
3136ev_check_2625 (EV_P)
3137{
3138 /* kernels < 2.6.25 are borked
3139 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3140 */
3141 if (ev_linux_version () < 0x020619)
3142 return;
3143
3144 fs_2625 = 1;
3145}
3146
3147inline_size int
3148infy_newfd (void)
3149{
3150#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3151 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3152 if (fd >= 0)
3153 return fd;
3154#endif
3155 return inotify_init ();
3156}
3157
3158inline_size void
3159infy_init (EV_P)
3160{
3161 if (fs_fd != -2)
3162 return;
3163
3164 fs_fd = -1;
3165
3166 ev_check_2625 (EV_A);
3167
3168 fs_fd = infy_newfd ();
3169
3170 if (fs_fd >= 0)
3171 {
3172 fd_intern (fs_fd);
3173 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3174 ev_set_priority (&fs_w, EV_MAXPRI);
3175 ev_io_start (EV_A_ &fs_w);
3176 ev_unref (EV_A);
3177 }
3178}
3179
3180inline_size void
3181infy_fork (EV_P)
3182{
3183 int slot;
3184
3185 if (fs_fd < 0)
3186 return;
3187
3188 ev_ref (EV_A);
3189 ev_io_stop (EV_A_ &fs_w);
3190 close (fs_fd);
3191 fs_fd = infy_newfd ();
3192
3193 if (fs_fd >= 0)
3194 {
3195 fd_intern (fs_fd);
3196 ev_io_set (&fs_w, fs_fd, EV_READ);
3197 ev_io_start (EV_A_ &fs_w);
3198 ev_unref (EV_A);
3199 }
3200
3201 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3202 {
3203 WL w_ = fs_hash [slot].head;
3204 fs_hash [slot].head = 0;
3205
3206 while (w_)
3207 {
3208 ev_stat *w = (ev_stat *)w_;
3209 w_ = w_->next; /* lets us add this watcher */
3210
3211 w->wd = -1;
3212
3213 if (fs_fd >= 0)
3214 infy_add (EV_A_ w); /* re-add, no matter what */
3215 else
3216 {
3217 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3218 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3219 ev_timer_again (EV_A_ &w->timer);
3220 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3221 }
3222 }
3223 }
3224}
3225
3226#endif
3227
3228#ifdef _WIN32
3229# define EV_LSTAT(p,b) _stati64 (p, b)
3230#else
3231# define EV_LSTAT(p,b) lstat (p, b)
3232#endif
3233
1571void 3234void
1572ev_check_start (EV_P_ struct ev_check *w) 3235ev_stat_stat (EV_P_ ev_stat *w)
3236{
3237 if (lstat (w->path, &w->attr) < 0)
3238 w->attr.st_nlink = 0;
3239 else if (!w->attr.st_nlink)
3240 w->attr.st_nlink = 1;
3241}
3242
3243static void noinline
3244stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3245{
3246 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3247
3248 ev_statdata prev = w->attr;
3249 ev_stat_stat (EV_A_ w);
3250
3251 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3252 if (
3253 prev.st_dev != w->attr.st_dev
3254 || prev.st_ino != w->attr.st_ino
3255 || prev.st_mode != w->attr.st_mode
3256 || prev.st_nlink != w->attr.st_nlink
3257 || prev.st_uid != w->attr.st_uid
3258 || prev.st_gid != w->attr.st_gid
3259 || prev.st_rdev != w->attr.st_rdev
3260 || prev.st_size != w->attr.st_size
3261 || prev.st_atime != w->attr.st_atime
3262 || prev.st_mtime != w->attr.st_mtime
3263 || prev.st_ctime != w->attr.st_ctime
3264 ) {
3265 /* we only update w->prev on actual differences */
3266 /* in case we test more often than invoke the callback, */
3267 /* to ensure that prev is always different to attr */
3268 w->prev = prev;
3269
3270 #if EV_USE_INOTIFY
3271 if (fs_fd >= 0)
3272 {
3273 infy_del (EV_A_ w);
3274 infy_add (EV_A_ w);
3275 ev_stat_stat (EV_A_ w); /* avoid race... */
3276 }
3277 #endif
3278
3279 ev_feed_event (EV_A_ w, EV_STAT);
3280 }
3281}
3282
3283void
3284ev_stat_start (EV_P_ ev_stat *w)
1573{ 3285{
1574 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
1575 return; 3287 return;
1576 3288
3289 ev_stat_stat (EV_A_ w);
3290
3291 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3292 w->interval = MIN_STAT_INTERVAL;
3293
3294 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3295 ev_set_priority (&w->timer, ev_priority (w));
3296
3297#if EV_USE_INOTIFY
3298 infy_init (EV_A);
3299
3300 if (fs_fd >= 0)
3301 infy_add (EV_A_ w);
3302 else
3303#endif
3304 {
3305 ev_timer_again (EV_A_ &w->timer);
3306 ev_unref (EV_A);
3307 }
3308
1577 ev_start (EV_A_ (W)w, ++checkcnt); 3309 ev_start (EV_A_ (W)w, 1);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581 3310
3311 EV_FREQUENT_CHECK;
3312}
3313
1582void 3314void
1583ev_check_stop (EV_P_ struct ev_check *w) 3315ev_stat_stop (EV_P_ ev_stat *w)
1584{ 3316{
1585 ev_clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
1587 return; 3319 return;
1588 3320
1589 checks [((W)w)->active - 1] = checks [--checkcnt]; 3321 EV_FREQUENT_CHECK;
3322
3323#if EV_USE_INOTIFY
3324 infy_del (EV_A_ w);
3325#endif
3326
3327 if (ev_is_active (&w->timer))
3328 {
3329 ev_ref (EV_A);
3330 ev_timer_stop (EV_A_ &w->timer);
3331 }
3332
1590 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
1591}
1592 3334
1593#ifndef SA_RESTART 3335 EV_FREQUENT_CHECK;
1594# define SA_RESTART 0 3336}
1595#endif 3337#endif
1596 3338
3339#if EV_IDLE_ENABLE
1597void 3340void
1598ev_signal_start (EV_P_ struct ev_signal *w) 3341ev_idle_start (EV_P_ ev_idle *w)
1599{ 3342{
1600#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3343 if (expect_false (ev_is_active (w)))
1604 return; 3344 return;
1605 3345
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3346 pri_adjust (EV_A_ (W)w);
1607 3347
3348 EV_FREQUENT_CHECK;
3349
3350 {
3351 int active = ++idlecnt [ABSPRI (w)];
3352
3353 ++idleall;
1608 ev_start (EV_A_ (W)w, 1); 3354 ev_start (EV_A_ (W)w, active);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1611 3355
1612 if (!((WL)w)->next) 3356 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1613 { 3357 idles [ABSPRI (w)][active - 1] = w;
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1617 struct sigaction sa;
1618 sa.sa_handler = sighandler;
1619 sigfillset (&sa.sa_mask);
1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1621 sigaction (w->signum, &sa, 0);
1622#endif
1623 } 3358 }
1624}
1625 3359
3360 EV_FREQUENT_CHECK;
3361}
3362
1626void 3363void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 3364ev_idle_stop (EV_P_ ev_idle *w)
1628{ 3365{
1629 ev_clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
1631 return; 3368 return;
1632 3369
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3370 EV_FREQUENT_CHECK;
3371
3372 {
3373 int active = ev_active (w);
3374
3375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3377
1634 ev_stop (EV_A_ (W)w); 3378 ev_stop (EV_A_ (W)w);
3379 --idleall;
3380 }
1635 3381
1636 if (!signals [w->signum - 1].head) 3382 EV_FREQUENT_CHECK;
1637 signal (w->signum, SIG_DFL);
1638} 3383}
1639
1640void
1641ev_child_start (EV_P_ struct ev_child *w)
1642{
1643#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 3384#endif
3385
3386#if EV_PREPARE_ENABLE
3387void
3388ev_prepare_start (EV_P_ ev_prepare *w)
3389{
1646 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
1647 return; 3391 return;
1648 3392
3393 EV_FREQUENT_CHECK;
3394
1649 ev_start (EV_A_ (W)w, 1); 3395 ev_start (EV_A_ (W)w, ++preparecnt);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3396 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1651} 3397 prepares [preparecnt - 1] = w;
1652 3398
3399 EV_FREQUENT_CHECK;
3400}
3401
1653void 3402void
1654ev_child_stop (EV_P_ struct ev_child *w) 3403ev_prepare_stop (EV_P_ ev_prepare *w)
1655{ 3404{
1656 ev_clear_pending (EV_A_ (W)w); 3405 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 3406 if (expect_false (!ev_is_active (w)))
1658 return; 3407 return;
1659 3408
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3409 EV_FREQUENT_CHECK;
3410
3411 {
3412 int active = ev_active (w);
3413
3414 prepares [active - 1] = prepares [--preparecnt];
3415 ev_active (prepares [active - 1]) = active;
3416 }
3417
1661 ev_stop (EV_A_ (W)w); 3418 ev_stop (EV_A_ (W)w);
3419
3420 EV_FREQUENT_CHECK;
1662} 3421}
3422#endif
3423
3424#if EV_CHECK_ENABLE
3425void
3426ev_check_start (EV_P_ ev_check *w)
3427{
3428 if (expect_false (ev_is_active (w)))
3429 return;
3430
3431 EV_FREQUENT_CHECK;
3432
3433 ev_start (EV_A_ (W)w, ++checkcnt);
3434 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3435 checks [checkcnt - 1] = w;
3436
3437 EV_FREQUENT_CHECK;
3438}
3439
3440void
3441ev_check_stop (EV_P_ ev_check *w)
3442{
3443 clear_pending (EV_A_ (W)w);
3444 if (expect_false (!ev_is_active (w)))
3445 return;
3446
3447 EV_FREQUENT_CHECK;
3448
3449 {
3450 int active = ev_active (w);
3451
3452 checks [active - 1] = checks [--checkcnt];
3453 ev_active (checks [active - 1]) = active;
3454 }
3455
3456 ev_stop (EV_A_ (W)w);
3457
3458 EV_FREQUENT_CHECK;
3459}
3460#endif
3461
3462#if EV_EMBED_ENABLE
3463void noinline
3464ev_embed_sweep (EV_P_ ev_embed *w)
3465{
3466 ev_run (w->other, EVRUN_NOWAIT);
3467}
3468
3469static void
3470embed_io_cb (EV_P_ ev_io *io, int revents)
3471{
3472 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3473
3474 if (ev_cb (w))
3475 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3476 else
3477 ev_run (w->other, EVRUN_NOWAIT);
3478}
3479
3480static void
3481embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3482{
3483 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3484
3485 {
3486 EV_P = w->other;
3487
3488 while (fdchangecnt)
3489 {
3490 fd_reify (EV_A);
3491 ev_run (EV_A_ EVRUN_NOWAIT);
3492 }
3493 }
3494}
3495
3496static void
3497embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3498{
3499 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3500
3501 ev_embed_stop (EV_A_ w);
3502
3503 {
3504 EV_P = w->other;
3505
3506 ev_loop_fork (EV_A);
3507 ev_run (EV_A_ EVRUN_NOWAIT);
3508 }
3509
3510 ev_embed_start (EV_A_ w);
3511}
3512
3513#if 0
3514static void
3515embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3516{
3517 ev_idle_stop (EV_A_ idle);
3518}
3519#endif
3520
3521void
3522ev_embed_start (EV_P_ ev_embed *w)
3523{
3524 if (expect_false (ev_is_active (w)))
3525 return;
3526
3527 {
3528 EV_P = w->other;
3529 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3530 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3531 }
3532
3533 EV_FREQUENT_CHECK;
3534
3535 ev_set_priority (&w->io, ev_priority (w));
3536 ev_io_start (EV_A_ &w->io);
3537
3538 ev_prepare_init (&w->prepare, embed_prepare_cb);
3539 ev_set_priority (&w->prepare, EV_MINPRI);
3540 ev_prepare_start (EV_A_ &w->prepare);
3541
3542 ev_fork_init (&w->fork, embed_fork_cb);
3543 ev_fork_start (EV_A_ &w->fork);
3544
3545 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3546
3547 ev_start (EV_A_ (W)w, 1);
3548
3549 EV_FREQUENT_CHECK;
3550}
3551
3552void
3553ev_embed_stop (EV_P_ ev_embed *w)
3554{
3555 clear_pending (EV_A_ (W)w);
3556 if (expect_false (!ev_is_active (w)))
3557 return;
3558
3559 EV_FREQUENT_CHECK;
3560
3561 ev_io_stop (EV_A_ &w->io);
3562 ev_prepare_stop (EV_A_ &w->prepare);
3563 ev_fork_stop (EV_A_ &w->fork);
3564
3565 ev_stop (EV_A_ (W)w);
3566
3567 EV_FREQUENT_CHECK;
3568}
3569#endif
3570
3571#if EV_FORK_ENABLE
3572void
3573ev_fork_start (EV_P_ ev_fork *w)
3574{
3575 if (expect_false (ev_is_active (w)))
3576 return;
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++forkcnt);
3581 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3582 forks [forkcnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_fork_stop (EV_P_ ev_fork *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 forks [active - 1] = forks [--forkcnt];
3600 ev_active (forks [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607#endif
3608
3609#if EV_CLEANUP_ENABLE
3610void
3611ev_cleanup_start (EV_P_ ev_cleanup *w)
3612{
3613 if (expect_false (ev_is_active (w)))
3614 return;
3615
3616 EV_FREQUENT_CHECK;
3617
3618 ev_start (EV_A_ (W)w, ++cleanupcnt);
3619 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3620 cleanups [cleanupcnt - 1] = w;
3621
3622 /* cleanup watchers should never keep a refcount on the loop */
3623 ev_unref (EV_A);
3624 EV_FREQUENT_CHECK;
3625}
3626
3627void
3628ev_cleanup_stop (EV_P_ ev_cleanup *w)
3629{
3630 clear_pending (EV_A_ (W)w);
3631 if (expect_false (!ev_is_active (w)))
3632 return;
3633
3634 EV_FREQUENT_CHECK;
3635 ev_ref (EV_A);
3636
3637 {
3638 int active = ev_active (w);
3639
3640 cleanups [active - 1] = cleanups [--cleanupcnt];
3641 ev_active (cleanups [active - 1]) = active;
3642 }
3643
3644 ev_stop (EV_A_ (W)w);
3645
3646 EV_FREQUENT_CHECK;
3647}
3648#endif
3649
3650#if EV_ASYNC_ENABLE
3651void
3652ev_async_start (EV_P_ ev_async *w)
3653{
3654 if (expect_false (ev_is_active (w)))
3655 return;
3656
3657 w->sent = 0;
3658
3659 evpipe_init (EV_A);
3660
3661 EV_FREQUENT_CHECK;
3662
3663 ev_start (EV_A_ (W)w, ++asynccnt);
3664 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3665 asyncs [asynccnt - 1] = w;
3666
3667 EV_FREQUENT_CHECK;
3668}
3669
3670void
3671ev_async_stop (EV_P_ ev_async *w)
3672{
3673 clear_pending (EV_A_ (W)w);
3674 if (expect_false (!ev_is_active (w)))
3675 return;
3676
3677 EV_FREQUENT_CHECK;
3678
3679 {
3680 int active = ev_active (w);
3681
3682 asyncs [active - 1] = asyncs [--asynccnt];
3683 ev_active (asyncs [active - 1]) = active;
3684 }
3685
3686 ev_stop (EV_A_ (W)w);
3687
3688 EV_FREQUENT_CHECK;
3689}
3690
3691void
3692ev_async_send (EV_P_ ev_async *w)
3693{
3694 w->sent = 1;
3695 evpipe_write (EV_A_ &async_pending);
3696}
3697#endif
1663 3698
1664/*****************************************************************************/ 3699/*****************************************************************************/
1665 3700
1666struct ev_once 3701struct ev_once
1667{ 3702{
1668 struct ev_io io; 3703 ev_io io;
1669 struct ev_timer to; 3704 ev_timer to;
1670 void (*cb)(int revents, void *arg); 3705 void (*cb)(int revents, void *arg);
1671 void *arg; 3706 void *arg;
1672}; 3707};
1673 3708
1674static void 3709static void
1675once_cb (EV_P_ struct ev_once *once, int revents) 3710once_cb (EV_P_ struct ev_once *once, int revents)
1676{ 3711{
1677 void (*cb)(int revents, void *arg) = once->cb; 3712 void (*cb)(int revents, void *arg) = once->cb;
1678 void *arg = once->arg; 3713 void *arg = once->arg;
1679 3714
1680 ev_io_stop (EV_A_ &once->io); 3715 ev_io_stop (EV_A_ &once->io);
1681 ev_timer_stop (EV_A_ &once->to); 3716 ev_timer_stop (EV_A_ &once->to);
1682 ev_free (once); 3717 ev_free (once);
1683 3718
1684 cb (revents, arg); 3719 cb (revents, arg);
1685} 3720}
1686 3721
1687static void 3722static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 3723once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 3724{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3725 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3726
3727 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1691} 3728}
1692 3729
1693static void 3730static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 3731once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 3732{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3733 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3734
3735 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1697} 3736}
1698 3737
1699void 3738void
1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3739ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1701{ 3740{
1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3741 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1703 3742
1704 if (expect_false (!once)) 3743 if (expect_false (!once))
1705 { 3744 {
1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3745 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1707 return; 3746 return;
1708 } 3747 }
1709 3748
1710 once->cb = cb; 3749 once->cb = cb;
1711 once->arg = arg; 3750 once->arg = arg;
1723 ev_timer_set (&once->to, timeout, 0.); 3762 ev_timer_set (&once->to, timeout, 0.);
1724 ev_timer_start (EV_A_ &once->to); 3763 ev_timer_start (EV_A_ &once->to);
1725 } 3764 }
1726} 3765}
1727 3766
1728#ifdef __cplusplus 3767/*****************************************************************************/
1729} 3768
3769#if EV_WALK_ENABLE
3770void
3771ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3772{
3773 int i, j;
3774 ev_watcher_list *wl, *wn;
3775
3776 if (types & (EV_IO | EV_EMBED))
3777 for (i = 0; i < anfdmax; ++i)
3778 for (wl = anfds [i].head; wl; )
3779 {
3780 wn = wl->next;
3781
3782#if EV_EMBED_ENABLE
3783 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3784 {
3785 if (types & EV_EMBED)
3786 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3787 }
3788 else
3789#endif
3790#if EV_USE_INOTIFY
3791 if (ev_cb ((ev_io *)wl) == infy_cb)
3792 ;
3793 else
3794#endif
3795 if ((ev_io *)wl != &pipe_w)
3796 if (types & EV_IO)
3797 cb (EV_A_ EV_IO, wl);
3798
3799 wl = wn;
3800 }
3801
3802 if (types & (EV_TIMER | EV_STAT))
3803 for (i = timercnt + HEAP0; i-- > HEAP0; )
3804#if EV_STAT_ENABLE
3805 /*TODO: timer is not always active*/
3806 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3807 {
3808 if (types & EV_STAT)
3809 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3810 }
3811 else
3812#endif
3813 if (types & EV_TIMER)
3814 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3815
3816#if EV_PERIODIC_ENABLE
3817 if (types & EV_PERIODIC)
3818 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3819 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3820#endif
3821
3822#if EV_IDLE_ENABLE
3823 if (types & EV_IDLE)
3824 for (j = NUMPRI; i--; )
3825 for (i = idlecnt [j]; i--; )
3826 cb (EV_A_ EV_IDLE, idles [j][i]);
3827#endif
3828
3829#if EV_FORK_ENABLE
3830 if (types & EV_FORK)
3831 for (i = forkcnt; i--; )
3832 if (ev_cb (forks [i]) != embed_fork_cb)
3833 cb (EV_A_ EV_FORK, forks [i]);
3834#endif
3835
3836#if EV_ASYNC_ENABLE
3837 if (types & EV_ASYNC)
3838 for (i = asynccnt; i--; )
3839 cb (EV_A_ EV_ASYNC, asyncs [i]);
3840#endif
3841
3842#if EV_PREPARE_ENABLE
3843 if (types & EV_PREPARE)
3844 for (i = preparecnt; i--; )
3845# if EV_EMBED_ENABLE
3846 if (ev_cb (prepares [i]) != embed_prepare_cb)
1730#endif 3847# endif
3848 cb (EV_A_ EV_PREPARE, prepares [i]);
3849#endif
1731 3850
3851#if EV_CHECK_ENABLE
3852 if (types & EV_CHECK)
3853 for (i = checkcnt; i--; )
3854 cb (EV_A_ EV_CHECK, checks [i]);
3855#endif
3856
3857#if EV_SIGNAL_ENABLE
3858 if (types & EV_SIGNAL)
3859 for (i = 0; i < EV_NSIG - 1; ++i)
3860 for (wl = signals [i].head; wl; )
3861 {
3862 wn = wl->next;
3863 cb (EV_A_ EV_SIGNAL, wl);
3864 wl = wn;
3865 }
3866#endif
3867
3868#if EV_CHILD_ENABLE
3869 if (types & EV_CHILD)
3870 for (i = (EV_PID_HASHSIZE); i--; )
3871 for (wl = childs [i]; wl; )
3872 {
3873 wn = wl->next;
3874 cb (EV_A_ EV_CHILD, wl);
3875 wl = wn;
3876 }
3877#endif
3878/* EV_STAT 0x00001000 /* stat data changed */
3879/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3880}
3881#endif
3882
3883#if EV_MULTIPLICITY
3884 #include "ev_wrap.h"
3885#endif
3886
3887EV_CPP(})
3888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines