ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.429 by root, Tue May 8 15:50:49 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
114 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 200# include <sys/time.h>
118# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 206# include <windows.h>
207# include <winsock2.h>
122# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
124# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
125#endif 261# endif
126 262#endif
127/**/
128 263
129#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
130# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
131#endif 270#endif
132 271
133#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
135#endif 282#endif
136 283
137#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 286#endif
140 287
141#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
142# ifdef _WIN32 289# ifdef _WIN32
143# define EV_USE_POLL 0 290# define EV_USE_POLL 0
144# else 291# else
145# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 293# endif
147#endif 294#endif
148 295
149#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
150# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
151#endif 302#endif
152 303
153#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
155#endif 306#endif
156 307
157#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 309# define EV_USE_PORT 0
159#endif 310#endif
160 311
161/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
162 383
163#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
166#endif 387#endif
168#ifndef CLOCK_REALTIME 389#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 390# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 391# define EV_USE_REALTIME 0
171#endif 392#endif
172 393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
173#if EV_SELECT_IS_WINSOCKET 416#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 417# include <winsock.h>
175#endif 418#endif
176 419
420#if EV_USE_EVENTFD
421/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
422# include <stdint.h>
423# ifndef EFD_NONBLOCK
424# define EFD_NONBLOCK O_NONBLOCK
425# endif
426# ifndef EFD_CLOEXEC
427# ifdef O_CLOEXEC
428# define EFD_CLOEXEC O_CLOEXEC
429# else
430# define EFD_CLOEXEC 02000000
431# endif
432# endif
433EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
434#endif
435
436#if EV_USE_SIGNALFD
437/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
438# include <stdint.h>
439# ifndef SFD_NONBLOCK
440# define SFD_NONBLOCK O_NONBLOCK
441# endif
442# ifndef SFD_CLOEXEC
443# ifdef O_CLOEXEC
444# define SFD_CLOEXEC O_CLOEXEC
445# else
446# define SFD_CLOEXEC 02000000
447# endif
448# endif
449EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
450
451struct signalfd_siginfo
452{
453 uint32_t ssi_signo;
454 char pad[128 - sizeof (uint32_t)];
455};
456#endif
457
177/**/ 458/**/
459
460#if EV_VERIFY >= 3
461# define EV_FREQUENT_CHECK ev_verify (EV_A)
462#else
463# define EV_FREQUENT_CHECK do { } while (0)
464#endif
465
466/*
467 * This is used to work around floating point rounding problems.
468 * This value is good at least till the year 4000.
469 */
470#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
471/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 472
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 473#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 474#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 475
476#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
477#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
478
479/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
480/* ECB.H BEGIN */
481/*
482 * libecb - http://software.schmorp.de/pkg/libecb
483 *
484 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
485 * Copyright (©) 2011 Emanuele Giaquinta
486 * All rights reserved.
487 *
488 * Redistribution and use in source and binary forms, with or without modifica-
489 * tion, are permitted provided that the following conditions are met:
490 *
491 * 1. Redistributions of source code must retain the above copyright notice,
492 * this list of conditions and the following disclaimer.
493 *
494 * 2. Redistributions in binary form must reproduce the above copyright
495 * notice, this list of conditions and the following disclaimer in the
496 * documentation and/or other materials provided with the distribution.
497 *
498 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
499 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
500 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
501 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
502 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
503 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
504 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
505 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
506 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
507 * OF THE POSSIBILITY OF SUCH DAMAGE.
508 */
509
184#ifdef EV_H 510#ifndef ECB_H
185# include EV_H 511#define ECB_H
512
513#ifdef _WIN32
514 typedef signed char int8_t;
515 typedef unsigned char uint8_t;
516 typedef signed short int16_t;
517 typedef unsigned short uint16_t;
518 typedef signed int int32_t;
519 typedef unsigned int uint32_t;
520 #if __GNUC__
521 typedef signed long long int64_t;
522 typedef unsigned long long uint64_t;
523 #else /* _MSC_VER || __BORLANDC__ */
524 typedef signed __int64 int64_t;
525 typedef unsigned __int64 uint64_t;
526 #endif
186#else 527#else
187# include "ev.h" 528 #include <inttypes.h>
529#endif
530
531/* many compilers define _GNUC_ to some versions but then only implement
532 * what their idiot authors think are the "more important" extensions,
533 * causing enormous grief in return for some better fake benchmark numbers.
534 * or so.
535 * we try to detect these and simply assume they are not gcc - if they have
536 * an issue with that they should have done it right in the first place.
537 */
538#ifndef ECB_GCC_VERSION
539 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
540 #define ECB_GCC_VERSION(major,minor) 0
541 #else
542 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
188#endif 543 #endif
544#endif
189 545
190#if __GNUC__ >= 3 546/*****************************************************************************/
191# define expect(expr,value) __builtin_expect ((expr),(value)) 547
192# define inline static inline 548/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
549/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
550
551#if ECB_NO_THREADS
552# define ECB_NO_SMP 1
553#endif
554
555#if ECB_NO_THREADS || ECB_NO_SMP
556 #define ECB_MEMORY_FENCE do { } while (0)
557#endif
558
559#ifndef ECB_MEMORY_FENCE
560 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
561 #if __i386 || __i386__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
564 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
565 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
568 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
569 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
570 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
571 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
572 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
573 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
574 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
575 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
576 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
577 #elif __sparc || __sparc__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
579 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
580 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
581 #elif defined __s390__ || defined __s390x__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
583 #elif defined __mips__
584 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
585 #elif defined __alpha__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
587 #endif
588 #endif
589#endif
590
591#ifndef ECB_MEMORY_FENCE
592 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
593 #define ECB_MEMORY_FENCE __sync_synchronize ()
594 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
595 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
596 #elif _MSC_VER >= 1400 /* VC++ 2005 */
597 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
598 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
599 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
600 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
601 #elif defined _WIN32
602 #include <WinNT.h>
603 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
604 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
605 #include <mbarrier.h>
606 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
607 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
608 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
609 #elif __xlC__
610 #define ECB_MEMORY_FENCE __sync ()
611 #endif
612#endif
613
614#ifndef ECB_MEMORY_FENCE
615 #if !ECB_AVOID_PTHREADS
616 /*
617 * if you get undefined symbol references to pthread_mutex_lock,
618 * or failure to find pthread.h, then you should implement
619 * the ECB_MEMORY_FENCE operations for your cpu/compiler
620 * OR provide pthread.h and link against the posix thread library
621 * of your system.
622 */
623 #include <pthread.h>
624 #define ECB_NEEDS_PTHREADS 1
625 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
626
627 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
628 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
629 #endif
630#endif
631
632#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
634#endif
635
636#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
637 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
638#endif
639
640/*****************************************************************************/
641
642#define ECB_C99 (__STDC_VERSION__ >= 199901L)
643
644#if __cplusplus
645 #define ecb_inline static inline
646#elif ECB_GCC_VERSION(2,5)
647 #define ecb_inline static __inline__
648#elif ECB_C99
649 #define ecb_inline static inline
193#else 650#else
651 #define ecb_inline static
652#endif
653
654#if ECB_GCC_VERSION(3,3)
655 #define ecb_restrict __restrict__
656#elif ECB_C99
657 #define ecb_restrict restrict
658#else
659 #define ecb_restrict
660#endif
661
662typedef int ecb_bool;
663
664#define ECB_CONCAT_(a, b) a ## b
665#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
666#define ECB_STRINGIFY_(a) # a
667#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
668
669#define ecb_function_ ecb_inline
670
671#if ECB_GCC_VERSION(3,1)
672 #define ecb_attribute(attrlist) __attribute__(attrlist)
673 #define ecb_is_constant(expr) __builtin_constant_p (expr)
674 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
675 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
676#else
677 #define ecb_attribute(attrlist)
678 #define ecb_is_constant(expr) 0
194# define expect(expr,value) (expr) 679 #define ecb_expect(expr,value) (expr)
195# define inline static 680 #define ecb_prefetch(addr,rw,locality)
196#endif 681#endif
197 682
683/* no emulation for ecb_decltype */
684#if ECB_GCC_VERSION(4,5)
685 #define ecb_decltype(x) __decltype(x)
686#elif ECB_GCC_VERSION(3,0)
687 #define ecb_decltype(x) __typeof(x)
688#endif
689
690#define ecb_noinline ecb_attribute ((__noinline__))
691#define ecb_noreturn ecb_attribute ((__noreturn__))
692#define ecb_unused ecb_attribute ((__unused__))
693#define ecb_const ecb_attribute ((__const__))
694#define ecb_pure ecb_attribute ((__pure__))
695
696#if ECB_GCC_VERSION(4,3)
697 #define ecb_artificial ecb_attribute ((__artificial__))
698 #define ecb_hot ecb_attribute ((__hot__))
699 #define ecb_cold ecb_attribute ((__cold__))
700#else
701 #define ecb_artificial
702 #define ecb_hot
703 #define ecb_cold
704#endif
705
706/* put around conditional expressions if you are very sure that the */
707/* expression is mostly true or mostly false. note that these return */
708/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 709#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 710#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
711/* for compatibility to the rest of the world */
712#define ecb_likely(expr) ecb_expect_true (expr)
713#define ecb_unlikely(expr) ecb_expect_false (expr)
200 714
715/* count trailing zero bits and count # of one bits */
716#if ECB_GCC_VERSION(3,4)
717 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
718 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
719 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
720 #define ecb_ctz32(x) __builtin_ctz (x)
721 #define ecb_ctz64(x) __builtin_ctzll (x)
722 #define ecb_popcount32(x) __builtin_popcount (x)
723 /* no popcountll */
724#else
725 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_ctz32 (uint32_t x)
728 {
729 int r = 0;
730
731 x &= ~x + 1; /* this isolates the lowest bit */
732
733#if ECB_branchless_on_i386
734 r += !!(x & 0xaaaaaaaa) << 0;
735 r += !!(x & 0xcccccccc) << 1;
736 r += !!(x & 0xf0f0f0f0) << 2;
737 r += !!(x & 0xff00ff00) << 3;
738 r += !!(x & 0xffff0000) << 4;
739#else
740 if (x & 0xaaaaaaaa) r += 1;
741 if (x & 0xcccccccc) r += 2;
742 if (x & 0xf0f0f0f0) r += 4;
743 if (x & 0xff00ff00) r += 8;
744 if (x & 0xffff0000) r += 16;
745#endif
746
747 return r;
748 }
749
750 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
751 ecb_function_ int
752 ecb_ctz64 (uint64_t x)
753 {
754 int shift = x & 0xffffffffU ? 0 : 32;
755 return ecb_ctz32 (x >> shift) + shift;
756 }
757
758 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
759 ecb_function_ int
760 ecb_popcount32 (uint32_t x)
761 {
762 x -= (x >> 1) & 0x55555555;
763 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
764 x = ((x >> 4) + x) & 0x0f0f0f0f;
765 x *= 0x01010101;
766
767 return x >> 24;
768 }
769
770 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
771 ecb_function_ int ecb_ld32 (uint32_t x)
772 {
773 int r = 0;
774
775 if (x >> 16) { x >>= 16; r += 16; }
776 if (x >> 8) { x >>= 8; r += 8; }
777 if (x >> 4) { x >>= 4; r += 4; }
778 if (x >> 2) { x >>= 2; r += 2; }
779 if (x >> 1) { r += 1; }
780
781 return r;
782 }
783
784 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
785 ecb_function_ int ecb_ld64 (uint64_t x)
786 {
787 int r = 0;
788
789 if (x >> 32) { x >>= 32; r += 32; }
790
791 return r + ecb_ld32 (x);
792 }
793#endif
794
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
796ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
797{
798 return ( (x * 0x0802U & 0x22110U)
799 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
800}
801
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
803ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
804{
805 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
806 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
807 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
808 x = ( x >> 8 ) | ( x << 8);
809
810 return x;
811}
812
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
814ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
815{
816 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
817 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
818 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
819 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
820 x = ( x >> 16 ) | ( x << 16);
821
822 return x;
823}
824
825/* popcount64 is only available on 64 bit cpus as gcc builtin */
826/* so for this version we are lazy */
827ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
828ecb_function_ int
829ecb_popcount64 (uint64_t x)
830{
831 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
832}
833
834ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
841ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
842
843ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
844ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
845ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
846ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
847ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
848ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
849ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
850ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
851
852#if ECB_GCC_VERSION(4,3)
853 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
854 #define ecb_bswap32(x) __builtin_bswap32 (x)
855 #define ecb_bswap64(x) __builtin_bswap64 (x)
856#else
857 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
858 ecb_function_ uint16_t
859 ecb_bswap16 (uint16_t x)
860 {
861 return ecb_rotl16 (x, 8);
862 }
863
864 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
865 ecb_function_ uint32_t
866 ecb_bswap32 (uint32_t x)
867 {
868 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
869 }
870
871 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
872 ecb_function_ uint64_t
873 ecb_bswap64 (uint64_t x)
874 {
875 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
876 }
877#endif
878
879#if ECB_GCC_VERSION(4,5)
880 #define ecb_unreachable() __builtin_unreachable ()
881#else
882 /* this seems to work fine, but gcc always emits a warning for it :/ */
883 ecb_inline void ecb_unreachable (void) ecb_noreturn;
884 ecb_inline void ecb_unreachable (void) { }
885#endif
886
887/* try to tell the compiler that some condition is definitely true */
888#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
889
890ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
891ecb_inline unsigned char
892ecb_byteorder_helper (void)
893{
894 const uint32_t u = 0x11223344;
895 return *(unsigned char *)&u;
896}
897
898ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
899ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
900ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
901ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
902
903#if ECB_GCC_VERSION(3,0) || ECB_C99
904 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
905#else
906 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
907#endif
908
909#if __cplusplus
910 template<typename T>
911 static inline T ecb_div_rd (T val, T div)
912 {
913 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
914 }
915 template<typename T>
916 static inline T ecb_div_ru (T val, T div)
917 {
918 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
919 }
920#else
921 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
922 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
923#endif
924
925#if ecb_cplusplus_does_not_suck
926 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
927 template<typename T, int N>
928 static inline int ecb_array_length (const T (&arr)[N])
929 {
930 return N;
931 }
932#else
933 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
934#endif
935
936#endif
937
938/* ECB.H END */
939
940#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
941/* if your architecture doesn't need memory fences, e.g. because it is
942 * single-cpu/core, or if you use libev in a project that doesn't use libev
943 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
944 * libev, in which cases the memory fences become nops.
945 * alternatively, you can remove this #error and link against libpthread,
946 * which will then provide the memory fences.
947 */
948# error "memory fences not defined for your architecture, please report"
949#endif
950
951#ifndef ECB_MEMORY_FENCE
952# define ECB_MEMORY_FENCE do { } while (0)
953# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
954# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
955#endif
956
957#define expect_false(cond) ecb_expect_false (cond)
958#define expect_true(cond) ecb_expect_true (cond)
959#define noinline ecb_noinline
960
961#define inline_size ecb_inline
962
963#if EV_FEATURE_CODE
964# define inline_speed ecb_inline
965#else
966# define inline_speed static noinline
967#endif
968
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 969#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
970
971#if EV_MINPRI == EV_MAXPRI
972# define ABSPRI(w) (((W)w), 0)
973#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 974# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
975#endif
203 976
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 977#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 978#define EMPTY2(a,b) /* used to suppress some warnings */
206 979
207typedef struct ev_watcher *W; 980typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 981typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 982typedef ev_watcher_time *WT;
210 983
984#define ev_active(w) ((W)(w))->active
985#define ev_at(w) ((WT)(w))->at
986
987#if EV_USE_REALTIME
988/* sig_atomic_t is used to avoid per-thread variables or locking but still */
989/* giving it a reasonably high chance of working on typical architectures */
990static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
991#endif
992
993#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 994static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
995#endif
996
997#ifndef EV_FD_TO_WIN32_HANDLE
998# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
999#endif
1000#ifndef EV_WIN32_HANDLE_TO_FD
1001# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1002#endif
1003#ifndef EV_WIN32_CLOSE_FD
1004# define EV_WIN32_CLOSE_FD(fd) close (fd)
1005#endif
212 1006
213#ifdef _WIN32 1007#ifdef _WIN32
214# include "ev_win32.c" 1008# include "ev_win32.c"
215#endif 1009#endif
216 1010
217/*****************************************************************************/ 1011/*****************************************************************************/
218 1012
1013/* define a suitable floor function (only used by periodics atm) */
1014
1015#if EV_USE_FLOOR
1016# include <math.h>
1017# define ev_floor(v) floor (v)
1018#else
1019
1020#include <float.h>
1021
1022/* a floor() replacement function, should be independent of ev_tstamp type */
1023static ev_tstamp noinline
1024ev_floor (ev_tstamp v)
1025{
1026 /* the choice of shift factor is not terribly important */
1027#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1028 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1029#else
1030 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1031#endif
1032
1033 /* argument too large for an unsigned long? */
1034 if (expect_false (v >= shift))
1035 {
1036 ev_tstamp f;
1037
1038 if (v == v - 1.)
1039 return v; /* very large number */
1040
1041 f = shift * ev_floor (v * (1. / shift));
1042 return f + ev_floor (v - f);
1043 }
1044
1045 /* special treatment for negative args? */
1046 if (expect_false (v < 0.))
1047 {
1048 ev_tstamp f = -ev_floor (-v);
1049
1050 return f - (f == v ? 0 : 1);
1051 }
1052
1053 /* fits into an unsigned long */
1054 return (unsigned long)v;
1055}
1056
1057#endif
1058
1059/*****************************************************************************/
1060
1061#ifdef __linux
1062# include <sys/utsname.h>
1063#endif
1064
1065static unsigned int noinline ecb_cold
1066ev_linux_version (void)
1067{
1068#ifdef __linux
1069 unsigned int v = 0;
1070 struct utsname buf;
1071 int i;
1072 char *p = buf.release;
1073
1074 if (uname (&buf))
1075 return 0;
1076
1077 for (i = 3+1; --i; )
1078 {
1079 unsigned int c = 0;
1080
1081 for (;;)
1082 {
1083 if (*p >= '0' && *p <= '9')
1084 c = c * 10 + *p++ - '0';
1085 else
1086 {
1087 p += *p == '.';
1088 break;
1089 }
1090 }
1091
1092 v = (v << 8) | c;
1093 }
1094
1095 return v;
1096#else
1097 return 0;
1098#endif
1099}
1100
1101/*****************************************************************************/
1102
1103#if EV_AVOID_STDIO
1104static void noinline ecb_cold
1105ev_printerr (const char *msg)
1106{
1107 write (STDERR_FILENO, msg, strlen (msg));
1108}
1109#endif
1110
219static void (*syserr_cb)(const char *msg); 1111static void (*syserr_cb)(const char *msg) EV_THROW;
220 1112
1113void ecb_cold
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1114ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
222{ 1115{
223 syserr_cb = cb; 1116 syserr_cb = cb;
224} 1117}
225 1118
226static void 1119static void noinline ecb_cold
227syserr (const char *msg) 1120ev_syserr (const char *msg)
228{ 1121{
229 if (!msg) 1122 if (!msg)
230 msg = "(libev) system error"; 1123 msg = "(libev) system error";
231 1124
232 if (syserr_cb) 1125 if (syserr_cb)
233 syserr_cb (msg); 1126 syserr_cb (msg);
234 else 1127 else
235 { 1128 {
1129#if EV_AVOID_STDIO
1130 ev_printerr (msg);
1131 ev_printerr (": ");
1132 ev_printerr (strerror (errno));
1133 ev_printerr ("\n");
1134#else
236 perror (msg); 1135 perror (msg);
1136#endif
237 abort (); 1137 abort ();
238 } 1138 }
239} 1139}
240 1140
1141static void *
1142ev_realloc_emul (void *ptr, long size)
1143{
1144#if __GLIBC__
1145 return realloc (ptr, size);
1146#else
1147 /* some systems, notably openbsd and darwin, fail to properly
1148 * implement realloc (x, 0) (as required by both ansi c-89 and
1149 * the single unix specification, so work around them here.
1150 */
1151
1152 if (size)
1153 return realloc (ptr, size);
1154
1155 free (ptr);
1156 return 0;
1157#endif
1158}
1159
241static void *(*alloc)(void *ptr, long size); 1160static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
242 1161
1162void ecb_cold
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1163ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
244{ 1164{
245 alloc = cb; 1165 alloc = cb;
246} 1166}
247 1167
248static void * 1168inline_speed void *
249ev_realloc (void *ptr, long size) 1169ev_realloc (void *ptr, long size)
250{ 1170{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1171 ptr = alloc (ptr, size);
252 1172
253 if (!ptr && size) 1173 if (!ptr && size)
254 { 1174 {
1175#if EV_AVOID_STDIO
1176 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1177#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1178 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1179#endif
256 abort (); 1180 abort ();
257 } 1181 }
258 1182
259 return ptr; 1183 return ptr;
260} 1184}
262#define ev_malloc(size) ev_realloc (0, (size)) 1186#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 1187#define ev_free(ptr) ev_realloc ((ptr), 0)
264 1188
265/*****************************************************************************/ 1189/*****************************************************************************/
266 1190
1191/* set in reify when reification needed */
1192#define EV_ANFD_REIFY 1
1193
1194/* file descriptor info structure */
267typedef struct 1195typedef struct
268{ 1196{
269 WL head; 1197 WL head;
270 unsigned char events; 1198 unsigned char events; /* the events watched for */
1199 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1200 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 1201 unsigned char unused;
1202#if EV_USE_EPOLL
1203 unsigned int egen; /* generation counter to counter epoll bugs */
1204#endif
272#if EV_SELECT_IS_WINSOCKET 1205#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 1206 SOCKET handle;
274#endif 1207#endif
1208#if EV_USE_IOCP
1209 OVERLAPPED or, ow;
1210#endif
275} ANFD; 1211} ANFD;
276 1212
1213/* stores the pending event set for a given watcher */
277typedef struct 1214typedef struct
278{ 1215{
279 W w; 1216 W w;
280 int events; 1217 int events; /* the pending event set for the given watcher */
281} ANPENDING; 1218} ANPENDING;
1219
1220#if EV_USE_INOTIFY
1221/* hash table entry per inotify-id */
1222typedef struct
1223{
1224 WL head;
1225} ANFS;
1226#endif
1227
1228/* Heap Entry */
1229#if EV_HEAP_CACHE_AT
1230 /* a heap element */
1231 typedef struct {
1232 ev_tstamp at;
1233 WT w;
1234 } ANHE;
1235
1236 #define ANHE_w(he) (he).w /* access watcher, read-write */
1237 #define ANHE_at(he) (he).at /* access cached at, read-only */
1238 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1239#else
1240 /* a heap element */
1241 typedef WT ANHE;
1242
1243 #define ANHE_w(he) (he)
1244 #define ANHE_at(he) (he)->at
1245 #define ANHE_at_cache(he)
1246#endif
282 1247
283#if EV_MULTIPLICITY 1248#if EV_MULTIPLICITY
284 1249
285 struct ev_loop 1250 struct ev_loop
286 { 1251 {
291 #undef VAR 1256 #undef VAR
292 }; 1257 };
293 #include "ev_wrap.h" 1258 #include "ev_wrap.h"
294 1259
295 static struct ev_loop default_loop_struct; 1260 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 1261 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 1262
298#else 1263#else
299 1264
300 ev_tstamp ev_rt_now; 1265 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 1266 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 1267 #include "ev_vars.h"
303 #undef VAR 1268 #undef VAR
304 1269
305 static int ev_default_loop_ptr; 1270 static int ev_default_loop_ptr;
306 1271
307#endif 1272#endif
308 1273
1274#if EV_FEATURE_API
1275# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1276# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1277# define EV_INVOKE_PENDING invoke_cb (EV_A)
1278#else
1279# define EV_RELEASE_CB (void)0
1280# define EV_ACQUIRE_CB (void)0
1281# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1282#endif
1283
1284#define EVBREAK_RECURSE 0x80
1285
309/*****************************************************************************/ 1286/*****************************************************************************/
310 1287
1288#ifndef EV_HAVE_EV_TIME
311ev_tstamp 1289ev_tstamp
312ev_time (void) 1290ev_time (void) EV_THROW
313{ 1291{
314#if EV_USE_REALTIME 1292#if EV_USE_REALTIME
1293 if (expect_true (have_realtime))
1294 {
315 struct timespec ts; 1295 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 1296 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 1297 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 1298 }
1299#endif
1300
319 struct timeval tv; 1301 struct timeval tv;
320 gettimeofday (&tv, 0); 1302 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 1303 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 1304}
1305#endif
324 1306
325inline ev_tstamp 1307inline_size ev_tstamp
326get_clock (void) 1308get_clock (void)
327{ 1309{
328#if EV_USE_MONOTONIC 1310#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 1311 if (expect_true (have_monotonic))
330 { 1312 {
337 return ev_time (); 1319 return ev_time ();
338} 1320}
339 1321
340#if EV_MULTIPLICITY 1322#if EV_MULTIPLICITY
341ev_tstamp 1323ev_tstamp
342ev_now (EV_P) 1324ev_now (EV_P) EV_THROW
343{ 1325{
344 return ev_rt_now; 1326 return ev_rt_now;
345} 1327}
346#endif 1328#endif
347 1329
348#define array_roundsize(type,n) (((n) | 4) & ~3) 1330void
1331ev_sleep (ev_tstamp delay) EV_THROW
1332{
1333 if (delay > 0.)
1334 {
1335#if EV_USE_NANOSLEEP
1336 struct timespec ts;
1337
1338 EV_TS_SET (ts, delay);
1339 nanosleep (&ts, 0);
1340#elif defined _WIN32
1341 Sleep ((unsigned long)(delay * 1e3));
1342#else
1343 struct timeval tv;
1344
1345 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1346 /* something not guaranteed by newer posix versions, but guaranteed */
1347 /* by older ones */
1348 EV_TV_SET (tv, delay);
1349 select (0, 0, 0, 0, &tv);
1350#endif
1351 }
1352}
1353
1354/*****************************************************************************/
1355
1356#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1357
1358/* find a suitable new size for the given array, */
1359/* hopefully by rounding to a nice-to-malloc size */
1360inline_size int
1361array_nextsize (int elem, int cur, int cnt)
1362{
1363 int ncur = cur + 1;
1364
1365 do
1366 ncur <<= 1;
1367 while (cnt > ncur);
1368
1369 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1370 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1371 {
1372 ncur *= elem;
1373 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1374 ncur = ncur - sizeof (void *) * 4;
1375 ncur /= elem;
1376 }
1377
1378 return ncur;
1379}
1380
1381static void * noinline ecb_cold
1382array_realloc (int elem, void *base, int *cur, int cnt)
1383{
1384 *cur = array_nextsize (elem, *cur, cnt);
1385 return ev_realloc (base, elem * *cur);
1386}
1387
1388#define array_init_zero(base,count) \
1389 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 1390
350#define array_needsize(type,base,cur,cnt,init) \ 1391#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 1392 if (expect_false ((cnt) > (cur))) \
352 { \ 1393 { \
353 int newcnt = cur; \ 1394 int ecb_unused ocur_ = (cur); \
354 do \ 1395 (base) = (type *)array_realloc \
355 { \ 1396 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 1397 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 1398 }
364 1399
1400#if 0
365#define array_slim(type,stem) \ 1401#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1402 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 1403 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1404 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1405 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1406 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 1407 }
1408#endif
372 1409
373#define array_free(stem, idx) \ 1410#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1411 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 1412
376/*****************************************************************************/ 1413/*****************************************************************************/
377 1414
378static void 1415/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 1416static void noinline
1417pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 1418{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 1419}
390 1420
391void 1421void noinline
392ev_feed_event (EV_P_ void *w, int revents) 1422ev_feed_event (EV_P_ void *w, int revents) EV_THROW
393{ 1423{
394 W w_ = (W)w; 1424 W w_ = (W)w;
1425 int pri = ABSPRI (w_);
395 1426
396 if (expect_false (w_->pending)) 1427 if (expect_false (w_->pending))
1428 pendings [pri][w_->pending - 1].events |= revents;
1429 else
397 { 1430 {
1431 w_->pending = ++pendingcnt [pri];
1432 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1433 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1434 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 1435 }
401 1436
402 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1437 pendingpri = NUMPRI - 1;
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 1438}
407 1439
408static void 1440inline_speed void
1441feed_reverse (EV_P_ W w)
1442{
1443 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1444 rfeeds [rfeedcnt++] = w;
1445}
1446
1447inline_size void
1448feed_reverse_done (EV_P_ int revents)
1449{
1450 do
1451 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1452 while (rfeedcnt);
1453}
1454
1455inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 1456queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 1457{
411 int i; 1458 int i;
412 1459
413 for (i = 0; i < eventcnt; ++i) 1460 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 1461 ev_feed_event (EV_A_ events [i], type);
415} 1462}
416 1463
1464/*****************************************************************************/
1465
417inline void 1466inline_speed void
418fd_event (EV_P_ int fd, int revents) 1467fd_event_nocheck (EV_P_ int fd, int revents)
419{ 1468{
420 ANFD *anfd = anfds + fd; 1469 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 1470 ev_io *w;
422 1471
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1472 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 1473 {
425 int ev = w->events & revents; 1474 int ev = w->events & revents;
426 1475
427 if (ev) 1476 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 1477 ev_feed_event (EV_A_ (W)w, ev);
429 } 1478 }
430} 1479}
431 1480
1481/* do not submit kernel events for fds that have reify set */
1482/* because that means they changed while we were polling for new events */
1483inline_speed void
1484fd_event (EV_P_ int fd, int revents)
1485{
1486 ANFD *anfd = anfds + fd;
1487
1488 if (expect_true (!anfd->reify))
1489 fd_event_nocheck (EV_A_ fd, revents);
1490}
1491
432void 1492void
433ev_feed_fd_event (EV_P_ int fd, int revents) 1493ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
434{ 1494{
1495 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 1496 fd_event_nocheck (EV_A_ fd, revents);
436} 1497}
437 1498
438/*****************************************************************************/ 1499/* make sure the external fd watch events are in-sync */
439 1500/* with the kernel/libev internal state */
440inline void 1501inline_size void
441fd_reify (EV_P) 1502fd_reify (EV_P)
442{ 1503{
443 int i; 1504 int i;
444 1505
1506#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
445 for (i = 0; i < fdchangecnt; ++i) 1507 for (i = 0; i < fdchangecnt; ++i)
446 { 1508 {
447 int fd = fdchanges [i]; 1509 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 1510 ANFD *anfd = anfds + fd;
449 struct ev_io *w;
450 1511
451 int events = 0; 1512 if (anfd->reify & EV__IOFDSET && anfd->head)
452
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
454 events |= w->events;
455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 { 1513 {
1514 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1515
1516 if (handle != anfd->handle)
1517 {
459 unsigned long argp; 1518 unsigned long arg;
460 anfd->handle = _get_osfhandle (fd); 1519
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1520 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1521
1522 /* handle changed, but fd didn't - we need to do it in two steps */
1523 backend_modify (EV_A_ fd, anfd->events, 0);
1524 anfd->events = 0;
1525 anfd->handle = handle;
1526 }
462 } 1527 }
1528 }
463#endif 1529#endif
464 1530
1531 for (i = 0; i < fdchangecnt; ++i)
1532 {
1533 int fd = fdchanges [i];
1534 ANFD *anfd = anfds + fd;
1535 ev_io *w;
1536
1537 unsigned char o_events = anfd->events;
1538 unsigned char o_reify = anfd->reify;
1539
465 anfd->reify = 0; 1540 anfd->reify = 0;
466 1541
1542 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1543 {
1544 anfd->events = 0;
1545
1546 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1547 anfd->events |= (unsigned char)w->events;
1548
1549 if (o_events != anfd->events)
1550 o_reify = EV__IOFDSET; /* actually |= */
1551 }
1552
1553 if (o_reify & EV__IOFDSET)
467 backend_modify (EV_A_ fd, anfd->events, events); 1554 backend_modify (EV_A_ fd, o_events, anfd->events);
468 anfd->events = events;
469 } 1555 }
470 1556
471 fdchangecnt = 0; 1557 fdchangecnt = 0;
472} 1558}
473 1559
474static void 1560/* something about the given fd changed */
1561inline_size void
475fd_change (EV_P_ int fd) 1562fd_change (EV_P_ int fd, int flags)
476{ 1563{
477 if (expect_false (anfds [fd].reify)) 1564 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 1565 anfds [fd].reify |= flags;
481 1566
1567 if (expect_true (!reify))
1568 {
482 ++fdchangecnt; 1569 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 1571 fdchanges [fdchangecnt - 1] = fd;
1572 }
485} 1573}
486 1574
487static void 1575/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1576inline_speed void ecb_cold
488fd_kill (EV_P_ int fd) 1577fd_kill (EV_P_ int fd)
489{ 1578{
490 struct ev_io *w; 1579 ev_io *w;
491 1580
492 while ((w = (struct ev_io *)anfds [fd].head)) 1581 while ((w = (ev_io *)anfds [fd].head))
493 { 1582 {
494 ev_io_stop (EV_A_ w); 1583 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1584 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 1585 }
497} 1586}
498 1587
499inline int 1588/* check whether the given fd is actually valid, for error recovery */
1589inline_size int ecb_cold
500fd_valid (int fd) 1590fd_valid (int fd)
501{ 1591{
502#ifdef _WIN32 1592#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 1593 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 1594#else
505 return fcntl (fd, F_GETFD) != -1; 1595 return fcntl (fd, F_GETFD) != -1;
506#endif 1596#endif
507} 1597}
508 1598
509/* called on EBADF to verify fds */ 1599/* called on EBADF to verify fds */
510static void 1600static void noinline ecb_cold
511fd_ebadf (EV_P) 1601fd_ebadf (EV_P)
512{ 1602{
513 int fd; 1603 int fd;
514 1604
515 for (fd = 0; fd < anfdmax; ++fd) 1605 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 1606 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 1607 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 1608 fd_kill (EV_A_ fd);
519} 1609}
520 1610
521/* called on ENOMEM in select/poll to kill some fds and retry */ 1611/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 1612static void noinline ecb_cold
523fd_enomem (EV_P) 1613fd_enomem (EV_P)
524{ 1614{
525 int fd; 1615 int fd;
526 1616
527 for (fd = anfdmax; fd--; ) 1617 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 1618 if (anfds [fd].events)
529 { 1619 {
530 fd_kill (EV_A_ fd); 1620 fd_kill (EV_A_ fd);
531 return; 1621 break;
532 } 1622 }
533} 1623}
534 1624
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 1625/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 1626static void noinline
537fd_rearm_all (EV_P) 1627fd_rearm_all (EV_P)
538{ 1628{
539 int fd; 1629 int fd;
540 1630
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 1631 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 1632 if (anfds [fd].events)
544 { 1633 {
545 anfds [fd].events = 0; 1634 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 1635 anfds [fd].emask = 0;
1636 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 1637 }
548} 1638}
549 1639
550/*****************************************************************************/ 1640/* used to prepare libev internal fd's */
551 1641/* this is not fork-safe */
552static void
553upheap (WT *heap, int k)
554{
555 WT w = heap [k];
556
557 while (k && heap [k >> 1]->at > w->at)
558 {
559 heap [k] = heap [k >> 1];
560 ((W)heap [k])->active = k + 1;
561 k >>= 1;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566
567}
568
569static void
570downheap (WT *heap, int N, int k)
571{
572 WT w = heap [k];
573
574 while (k < (N >> 1))
575 {
576 int j = k << 1;
577
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break;
583
584 heap [k] = heap [j];
585 ((W)heap [k])->active = k + 1;
586 k = j;
587 }
588
589 heap [k] = w;
590 ((W)heap [k])->active = k + 1;
591}
592
593inline void 1642inline_speed void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
600/*****************************************************************************/
601
602typedef struct
603{
604 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG;
607
608static ANSIG *signals;
609static int signalmax;
610
611static int sigpipe [2];
612static sig_atomic_t volatile gotsig;
613static struct ev_io sigev;
614
615static void
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ struct ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1643fd_intern (int fd)
680{ 1644{
681#ifdef _WIN32 1645#ifdef _WIN32
682 int arg = 1; 1646 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1647 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 1648#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1649 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1650 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1651#endif
688} 1652}
689 1653
1654/*****************************************************************************/
1655
1656/*
1657 * the heap functions want a real array index. array index 0 is guaranteed to not
1658 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1659 * the branching factor of the d-tree.
1660 */
1661
1662/*
1663 * at the moment we allow libev the luxury of two heaps,
1664 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1665 * which is more cache-efficient.
1666 * the difference is about 5% with 50000+ watchers.
1667 */
1668#if EV_USE_4HEAP
1669
1670#define DHEAP 4
1671#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1672#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1673#define UPHEAP_DONE(p,k) ((p) == (k))
1674
1675/* away from the root */
1676inline_speed void
1677downheap (ANHE *heap, int N, int k)
1678{
1679 ANHE he = heap [k];
1680 ANHE *E = heap + N + HEAP0;
1681
1682 for (;;)
1683 {
1684 ev_tstamp minat;
1685 ANHE *minpos;
1686 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1687
1688 /* find minimum child */
1689 if (expect_true (pos + DHEAP - 1 < E))
1690 {
1691 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else if (pos < E)
1697 {
1698 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1699 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1700 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1701 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1702 }
1703 else
1704 break;
1705
1706 if (ANHE_at (he) <= minat)
1707 break;
1708
1709 heap [k] = *minpos;
1710 ev_active (ANHE_w (*minpos)) = k;
1711
1712 k = minpos - heap;
1713 }
1714
1715 heap [k] = he;
1716 ev_active (ANHE_w (he)) = k;
1717}
1718
1719#else /* 4HEAP */
1720
1721#define HEAP0 1
1722#define HPARENT(k) ((k) >> 1)
1723#define UPHEAP_DONE(p,k) (!(p))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730
1731 for (;;)
1732 {
1733 int c = k << 1;
1734
1735 if (c >= N + HEAP0)
1736 break;
1737
1738 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1739 ? 1 : 0;
1740
1741 if (ANHE_at (he) <= ANHE_at (heap [c]))
1742 break;
1743
1744 heap [k] = heap [c];
1745 ev_active (ANHE_w (heap [k])) = k;
1746
1747 k = c;
1748 }
1749
1750 heap [k] = he;
1751 ev_active (ANHE_w (he)) = k;
1752}
1753#endif
1754
1755/* towards the root */
1756inline_speed void
1757upheap (ANHE *heap, int k)
1758{
1759 ANHE he = heap [k];
1760
1761 for (;;)
1762 {
1763 int p = HPARENT (k);
1764
1765 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1766 break;
1767
1768 heap [k] = heap [p];
1769 ev_active (ANHE_w (heap [k])) = k;
1770 k = p;
1771 }
1772
1773 heap [k] = he;
1774 ev_active (ANHE_w (he)) = k;
1775}
1776
1777/* move an element suitably so it is in a correct place */
1778inline_size void
1779adjustheap (ANHE *heap, int N, int k)
1780{
1781 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1782 upheap (heap, k);
1783 else
1784 downheap (heap, N, k);
1785}
1786
1787/* rebuild the heap: this function is used only once and executed rarely */
1788inline_size void
1789reheap (ANHE *heap, int N)
1790{
1791 int i;
1792
1793 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1794 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1795 for (i = 0; i < N; ++i)
1796 upheap (heap, i + HEAP0);
1797}
1798
1799/*****************************************************************************/
1800
1801/* associate signal watchers to a signal signal */
1802typedef struct
1803{
1804 EV_ATOMIC_T pending;
1805#if EV_MULTIPLICITY
1806 EV_P;
1807#endif
1808 WL head;
1809} ANSIG;
1810
1811static ANSIG signals [EV_NSIG - 1];
1812
1813/*****************************************************************************/
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816
1817static void noinline ecb_cold
1818evpipe_init (EV_P)
1819{
1820 if (!ev_is_active (&pipe_w))
1821 {
1822# if EV_USE_EVENTFD
1823 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1824 if (evfd < 0 && errno == EINVAL)
1825 evfd = eventfd (0, 0);
1826
1827 if (evfd >= 0)
1828 {
1829 evpipe [0] = -1;
1830 fd_intern (evfd); /* doing it twice doesn't hurt */
1831 ev_io_set (&pipe_w, evfd, EV_READ);
1832 }
1833 else
1834# endif
1835 {
1836 while (pipe (evpipe))
1837 ev_syserr ("(libev) error creating signal/async pipe");
1838
1839 fd_intern (evpipe [0]);
1840 fd_intern (evpipe [1]);
1841 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1842 }
1843
1844 ev_io_start (EV_A_ &pipe_w);
1845 ev_unref (EV_A); /* watcher should not keep loop alive */
1846 }
1847}
1848
1849inline_speed void
1850evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1851{
1852 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1853
1854 if (expect_true (*flag))
1855 return;
1856
1857 *flag = 1;
1858
1859 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1860
1861 pipe_write_skipped = 1;
1862
1863 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1864
1865 if (pipe_write_wanted)
1866 {
1867 int old_errno;
1868
1869 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1870
1871 old_errno = errno; /* save errno because write will clobber it */
1872
1873#if EV_USE_EVENTFD
1874 if (evfd >= 0)
1875 {
1876 uint64_t counter = 1;
1877 write (evfd, &counter, sizeof (uint64_t));
1878 }
1879 else
1880#endif
1881 {
1882#ifdef _WIN32
1883 WSABUF buf;
1884 DWORD sent;
1885 buf.buf = &buf;
1886 buf.len = 1;
1887 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1888#else
1889 write (evpipe [1], &(evpipe [1]), 1);
1890#endif
1891 }
1892
1893 errno = old_errno;
1894 }
1895}
1896
1897/* called whenever the libev signal pipe */
1898/* got some events (signal, async) */
690static void 1899static void
691siginit (EV_P) 1900pipecb (EV_P_ ev_io *iow, int revents)
692{ 1901{
693 fd_intern (sigpipe [0]); 1902 int i;
694 fd_intern (sigpipe [1]);
695 1903
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1904 if (revents & EV_READ)
697 ev_io_start (EV_A_ &sigev); 1905 {
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1906#if EV_USE_EVENTFD
1907 if (evfd >= 0)
1908 {
1909 uint64_t counter;
1910 read (evfd, &counter, sizeof (uint64_t));
1911 }
1912 else
1913#endif
1914 {
1915 char dummy[4];
1916#ifdef _WIN32
1917 WSABUF buf;
1918 DWORD recvd;
1919 buf.buf = dummy;
1920 buf.len = sizeof (dummy);
1921 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1922#else
1923 read (evpipe [0], &dummy, sizeof (dummy));
1924#endif
1925 }
1926 }
1927
1928 pipe_write_skipped = 0;
1929
1930 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1931
1932#if EV_SIGNAL_ENABLE
1933 if (sig_pending)
1934 {
1935 sig_pending = 0;
1936
1937 ECB_MEMORY_FENCE_RELEASE;
1938
1939 for (i = EV_NSIG - 1; i--; )
1940 if (expect_false (signals [i].pending))
1941 ev_feed_signal_event (EV_A_ i + 1);
1942 }
1943#endif
1944
1945#if EV_ASYNC_ENABLE
1946 if (async_pending)
1947 {
1948 async_pending = 0;
1949
1950 ECB_MEMORY_FENCE_RELEASE;
1951
1952 for (i = asynccnt; i--; )
1953 if (asyncs [i]->sent)
1954 {
1955 asyncs [i]->sent = 0;
1956 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1957 }
1958 }
1959#endif
699} 1960}
700 1961
701/*****************************************************************************/ 1962/*****************************************************************************/
702 1963
703static struct ev_child *childs [PID_HASHSIZE]; 1964void
1965ev_feed_signal (int signum) EV_THROW
1966{
1967#if EV_MULTIPLICITY
1968 EV_P = signals [signum - 1].loop;
704 1969
1970 if (!EV_A)
1971 return;
1972#endif
1973
1974 if (!ev_active (&pipe_w))
1975 return;
1976
1977 signals [signum - 1].pending = 1;
1978 evpipe_write (EV_A_ &sig_pending);
1979}
1980
1981static void
1982ev_sighandler (int signum)
1983{
705#ifndef _WIN32 1984#ifdef _WIN32
1985 signal (signum, ev_sighandler);
1986#endif
706 1987
1988 ev_feed_signal (signum);
1989}
1990
1991void noinline
1992ev_feed_signal_event (EV_P_ int signum) EV_THROW
1993{
1994 WL w;
1995
1996 if (expect_false (signum <= 0 || signum > EV_NSIG))
1997 return;
1998
1999 --signum;
2000
2001#if EV_MULTIPLICITY
2002 /* it is permissible to try to feed a signal to the wrong loop */
2003 /* or, likely more useful, feeding a signal nobody is waiting for */
2004
2005 if (expect_false (signals [signum].loop != EV_A))
2006 return;
2007#endif
2008
2009 signals [signum].pending = 0;
2010
2011 for (w = signals [signum].head; w; w = w->next)
2012 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2013}
2014
2015#if EV_USE_SIGNALFD
2016static void
2017sigfdcb (EV_P_ ev_io *iow, int revents)
2018{
2019 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2020
2021 for (;;)
2022 {
2023 ssize_t res = read (sigfd, si, sizeof (si));
2024
2025 /* not ISO-C, as res might be -1, but works with SuS */
2026 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2027 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2028
2029 if (res < (ssize_t)sizeof (si))
2030 break;
2031 }
2032}
2033#endif
2034
2035#endif
2036
2037/*****************************************************************************/
2038
2039#if EV_CHILD_ENABLE
2040static WL childs [EV_PID_HASHSIZE];
2041
707static struct ev_signal childev; 2042static ev_signal childev;
2043
2044#ifndef WIFCONTINUED
2045# define WIFCONTINUED(status) 0
2046#endif
2047
2048/* handle a single child status event */
2049inline_speed void
2050child_reap (EV_P_ int chain, int pid, int status)
2051{
2052 ev_child *w;
2053 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2054
2055 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2056 {
2057 if ((w->pid == pid || !w->pid)
2058 && (!traced || (w->flags & 1)))
2059 {
2060 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2061 w->rpid = pid;
2062 w->rstatus = status;
2063 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2064 }
2065 }
2066}
708 2067
709#ifndef WCONTINUED 2068#ifndef WCONTINUED
710# define WCONTINUED 0 2069# define WCONTINUED 0
711#endif 2070#endif
712 2071
2072/* called on sigchld etc., calls waitpid */
713static void 2073static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 2074childcb (EV_P_ ev_signal *sw, int revents)
730{ 2075{
731 int pid, status; 2076 int pid, status;
732 2077
2078 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2079 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 2080 if (!WCONTINUED
2081 || errno != EINVAL
2082 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2083 return;
2084
735 /* make sure we are called again until all childs have been reaped */ 2085 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 2086 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2087 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 2088
739 child_reap (EV_A_ sw, pid, pid, status); 2089 child_reap (EV_A_ pid, pid, status);
2090 if ((EV_PID_HASHSIZE) > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2091 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 2092}
743 2093
744#endif 2094#endif
745 2095
746/*****************************************************************************/ 2096/*****************************************************************************/
747 2097
2098#if EV_USE_IOCP
2099# include "ev_iocp.c"
2100#endif
748#if EV_USE_PORT 2101#if EV_USE_PORT
749# include "ev_port.c" 2102# include "ev_port.c"
750#endif 2103#endif
751#if EV_USE_KQUEUE 2104#if EV_USE_KQUEUE
752# include "ev_kqueue.c" 2105# include "ev_kqueue.c"
759#endif 2112#endif
760#if EV_USE_SELECT 2113#if EV_USE_SELECT
761# include "ev_select.c" 2114# include "ev_select.c"
762#endif 2115#endif
763 2116
764int 2117int ecb_cold
765ev_version_major (void) 2118ev_version_major (void) EV_THROW
766{ 2119{
767 return EV_VERSION_MAJOR; 2120 return EV_VERSION_MAJOR;
768} 2121}
769 2122
770int 2123int ecb_cold
771ev_version_minor (void) 2124ev_version_minor (void) EV_THROW
772{ 2125{
773 return EV_VERSION_MINOR; 2126 return EV_VERSION_MINOR;
774} 2127}
775 2128
776/* return true if we are running with elevated privileges and should ignore env variables */ 2129/* return true if we are running with elevated privileges and should ignore env variables */
777static int 2130int inline_size ecb_cold
778enable_secure (void) 2131enable_secure (void)
779{ 2132{
780#ifdef _WIN32 2133#ifdef _WIN32
781 return 0; 2134 return 0;
782#else 2135#else
783 return getuid () != geteuid () 2136 return getuid () != geteuid ()
784 || getgid () != getegid (); 2137 || getgid () != getegid ();
785#endif 2138#endif
786} 2139}
787 2140
788unsigned int 2141unsigned int ecb_cold
789ev_supported_backends (void) 2142ev_supported_backends (void) EV_THROW
790{ 2143{
791 unsigned int flags = 0; 2144 unsigned int flags = 0;
792 2145
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2146 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2147 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2150 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798 2151
799 return flags; 2152 return flags;
800} 2153}
801 2154
802unsigned int 2155unsigned int ecb_cold
803ev_recommended_backends (void) 2156ev_recommended_backends (void) EV_THROW
804{ 2157{
805 unsigned int flags = ev_supported_backends (); 2158 unsigned int flags = ev_supported_backends ();
806 2159
807#ifndef __NetBSD__ 2160#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 2161 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 2162 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 2163 flags &= ~EVBACKEND_KQUEUE;
811#endif 2164#endif
812#ifdef __APPLE__ 2165#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 2166 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 2167 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2168 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2169#endif
2170#ifdef __FreeBSD__
2171 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
815#endif 2172#endif
816 2173
817 return flags; 2174 return flags;
818} 2175}
819 2176
2177unsigned int ecb_cold
2178ev_embeddable_backends (void) EV_THROW
2179{
2180 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2181
2182 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2183 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2184 flags &= ~EVBACKEND_EPOLL;
2185
2186 return flags;
2187}
2188
820unsigned int 2189unsigned int
821ev_backend (EV_P) 2190ev_backend (EV_P) EV_THROW
822{ 2191{
823 return backend; 2192 return backend;
824} 2193}
825 2194
826static void 2195#if EV_FEATURE_API
2196unsigned int
2197ev_iteration (EV_P) EV_THROW
2198{
2199 return loop_count;
2200}
2201
2202unsigned int
2203ev_depth (EV_P) EV_THROW
2204{
2205 return loop_depth;
2206}
2207
2208void
2209ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2210{
2211 io_blocktime = interval;
2212}
2213
2214void
2215ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2216{
2217 timeout_blocktime = interval;
2218}
2219
2220void
2221ev_set_userdata (EV_P_ void *data) EV_THROW
2222{
2223 userdata = data;
2224}
2225
2226void *
2227ev_userdata (EV_P) EV_THROW
2228{
2229 return userdata;
2230}
2231
2232void
2233ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2234{
2235 invoke_cb = invoke_pending_cb;
2236}
2237
2238void
2239ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2240{
2241 release_cb = release;
2242 acquire_cb = acquire;
2243}
2244#endif
2245
2246/* initialise a loop structure, must be zero-initialised */
2247static void noinline ecb_cold
827loop_init (EV_P_ unsigned int flags) 2248loop_init (EV_P_ unsigned int flags) EV_THROW
828{ 2249{
829 if (!backend) 2250 if (!backend)
830 { 2251 {
2252 origflags = flags;
2253
2254#if EV_USE_REALTIME
2255 if (!have_realtime)
2256 {
2257 struct timespec ts;
2258
2259 if (!clock_gettime (CLOCK_REALTIME, &ts))
2260 have_realtime = 1;
2261 }
2262#endif
2263
831#if EV_USE_MONOTONIC 2264#if EV_USE_MONOTONIC
2265 if (!have_monotonic)
832 { 2266 {
833 struct timespec ts; 2267 struct timespec ts;
2268
834 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2269 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
835 have_monotonic = 1; 2270 have_monotonic = 1;
836 } 2271 }
837#endif 2272#endif
838 2273
839 ev_rt_now = ev_time (); 2274 /* pid check not overridable via env */
840 mn_now = get_clock (); 2275#ifndef _WIN32
841 now_floor = mn_now; 2276 if (flags & EVFLAG_FORKCHECK)
842 rtmn_diff = ev_rt_now - mn_now; 2277 curpid = getpid ();
2278#endif
843 2279
844 if (!(flags & EVFLAG_NOENV) 2280 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 2281 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 2282 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 2283 flags = atoi (getenv ("LIBEV_FLAGS"));
848 2284
849 if (!(flags & 0x0000ffffUL)) 2285 ev_rt_now = ev_time ();
2286 mn_now = get_clock ();
2287 now_floor = mn_now;
2288 rtmn_diff = ev_rt_now - mn_now;
2289#if EV_FEATURE_API
2290 invoke_cb = ev_invoke_pending;
2291#endif
2292
2293 io_blocktime = 0.;
2294 timeout_blocktime = 0.;
2295 backend = 0;
2296 backend_fd = -1;
2297 sig_pending = 0;
2298#if EV_ASYNC_ENABLE
2299 async_pending = 0;
2300#endif
2301 pipe_write_skipped = 0;
2302 pipe_write_wanted = 0;
2303#if EV_USE_INOTIFY
2304 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2305#endif
2306#if EV_USE_SIGNALFD
2307 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2308#endif
2309
2310 if (!(flags & EVBACKEND_MASK))
850 flags |= ev_recommended_backends (); 2311 flags |= ev_recommended_backends ();
851 2312
852 backend = 0; 2313#if EV_USE_IOCP
2314 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2315#endif
853#if EV_USE_PORT 2316#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 2318#endif
856#if EV_USE_KQUEUE 2319#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864#endif 2327#endif
865#if EV_USE_SELECT 2328#if EV_USE_SELECT
866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
867#endif 2330#endif
868 2331
2332 ev_prepare_init (&pending_w, pendingcb);
2333
2334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
869 ev_init (&sigev, sigcb); 2335 ev_init (&pipe_w, pipecb);
870 ev_set_priority (&sigev, EV_MAXPRI); 2336 ev_set_priority (&pipe_w, EV_MAXPRI);
2337#endif
871 } 2338 }
872} 2339}
873 2340
874static void 2341/* free up a loop structure */
2342void ecb_cold
875loop_destroy (EV_P) 2343ev_loop_destroy (EV_P)
876{ 2344{
877 int i; 2345 int i;
878 2346
2347#if EV_MULTIPLICITY
2348 /* mimic free (0) */
2349 if (!EV_A)
2350 return;
2351#endif
2352
2353#if EV_CLEANUP_ENABLE
2354 /* queue cleanup watchers (and execute them) */
2355 if (expect_false (cleanupcnt))
2356 {
2357 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2358 EV_INVOKE_PENDING;
2359 }
2360#endif
2361
2362#if EV_CHILD_ENABLE
2363 if (ev_is_active (&childev))
2364 {
2365 ev_ref (EV_A); /* child watcher */
2366 ev_signal_stop (EV_A_ &childev);
2367 }
2368#endif
2369
2370 if (ev_is_active (&pipe_w))
2371 {
2372 /*ev_ref (EV_A);*/
2373 /*ev_io_stop (EV_A_ &pipe_w);*/
2374
2375#if EV_USE_EVENTFD
2376 if (evfd >= 0)
2377 close (evfd);
2378#endif
2379
2380 if (evpipe [0] >= 0)
2381 {
2382 EV_WIN32_CLOSE_FD (evpipe [0]);
2383 EV_WIN32_CLOSE_FD (evpipe [1]);
2384 }
2385 }
2386
2387#if EV_USE_SIGNALFD
2388 if (ev_is_active (&sigfd_w))
2389 close (sigfd);
2390#endif
2391
2392#if EV_USE_INOTIFY
2393 if (fs_fd >= 0)
2394 close (fs_fd);
2395#endif
2396
2397 if (backend_fd >= 0)
2398 close (backend_fd);
2399
2400#if EV_USE_IOCP
2401 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2402#endif
879#if EV_USE_PORT 2403#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2404 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 2405#endif
882#if EV_USE_KQUEUE 2406#if EV_USE_KQUEUE
883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2407 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
891#if EV_USE_SELECT 2415#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2416 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 2417#endif
894 2418
895 for (i = NUMPRI; i--; ) 2419 for (i = NUMPRI; i--; )
2420 {
896 array_free (pending, [i]); 2421 array_free (pending, [i]);
2422#if EV_IDLE_ENABLE
2423 array_free (idle, [i]);
2424#endif
2425 }
2426
2427 ev_free (anfds); anfds = 0; anfdmax = 0;
897 2428
898 /* have to use the microsoft-never-gets-it-right macro */ 2429 /* have to use the microsoft-never-gets-it-right macro */
2430 array_free (rfeed, EMPTY);
899 array_free (fdchange, EMPTY0); 2431 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 2432 array_free (timer, EMPTY);
901#if EV_PERIODICS 2433#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 2434 array_free (periodic, EMPTY);
903#endif 2435#endif
2436#if EV_FORK_ENABLE
2437 array_free (fork, EMPTY);
2438#endif
2439#if EV_CLEANUP_ENABLE
904 array_free (idle, EMPTY0); 2440 array_free (cleanup, EMPTY);
2441#endif
905 array_free (prepare, EMPTY0); 2442 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 2443 array_free (check, EMPTY);
2444#if EV_ASYNC_ENABLE
2445 array_free (async, EMPTY);
2446#endif
907 2447
908 backend = 0; 2448 backend = 0;
909}
910 2449
911static void 2450#if EV_MULTIPLICITY
2451 if (ev_is_default_loop (EV_A))
2452#endif
2453 ev_default_loop_ptr = 0;
2454#if EV_MULTIPLICITY
2455 else
2456 ev_free (EV_A);
2457#endif
2458}
2459
2460#if EV_USE_INOTIFY
2461inline_size void infy_fork (EV_P);
2462#endif
2463
2464inline_size void
912loop_fork (EV_P) 2465loop_fork (EV_P)
913{ 2466{
914#if EV_USE_PORT 2467#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2468 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 2469#endif
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2471 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 2472#endif
920#if EV_USE_EPOLL 2473#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2474 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
922#endif 2475#endif
2476#if EV_USE_INOTIFY
2477 infy_fork (EV_A);
2478#endif
923 2479
924 if (ev_is_active (&sigev)) 2480 if (ev_is_active (&pipe_w))
925 { 2481 {
926 /* default loop */ 2482 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
927 2483
928 ev_ref (EV_A); 2484 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev); 2485 ev_io_stop (EV_A_ &pipe_w);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932 2486
933 while (pipe (sigpipe)) 2487#if EV_USE_EVENTFD
934 syserr ("(libev) error creating pipe"); 2488 if (evfd >= 0)
2489 close (evfd);
2490#endif
935 2491
2492 if (evpipe [0] >= 0)
2493 {
2494 EV_WIN32_CLOSE_FD (evpipe [0]);
2495 EV_WIN32_CLOSE_FD (evpipe [1]);
2496 }
2497
2498#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
936 siginit (EV_A); 2499 evpipe_init (EV_A);
2500 /* now iterate over everything, in case we missed something */
2501 pipecb (EV_A_ &pipe_w, EV_READ);
2502#endif
937 } 2503 }
938 2504
939 postfork = 0; 2505 postfork = 0;
940} 2506}
941 2507
942#if EV_MULTIPLICITY 2508#if EV_MULTIPLICITY
2509
943struct ev_loop * 2510struct ev_loop * ecb_cold
944ev_loop_new (unsigned int flags) 2511ev_loop_new (unsigned int flags) EV_THROW
945{ 2512{
946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2513 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
947 2514
948 memset (loop, 0, sizeof (struct ev_loop)); 2515 memset (EV_A, 0, sizeof (struct ev_loop));
949
950 loop_init (EV_A_ flags); 2516 loop_init (EV_A_ flags);
951 2517
952 if (ev_backend (EV_A)) 2518 if (ev_backend (EV_A))
953 return loop; 2519 return EV_A;
954 2520
2521 ev_free (EV_A);
955 return 0; 2522 return 0;
956} 2523}
957 2524
958void 2525#endif /* multiplicity */
959ev_loop_destroy (EV_P)
960{
961 loop_destroy (EV_A);
962 ev_free (loop);
963}
964 2526
965void 2527#if EV_VERIFY
966ev_loop_fork (EV_P) 2528static void noinline ecb_cold
2529verify_watcher (EV_P_ W w)
967{ 2530{
968 postfork = 1; 2531 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
969}
970 2532
2533 if (w->pending)
2534 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2535}
2536
2537static void noinline ecb_cold
2538verify_heap (EV_P_ ANHE *heap, int N)
2539{
2540 int i;
2541
2542 for (i = HEAP0; i < N + HEAP0; ++i)
2543 {
2544 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2545 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2546 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2547
2548 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2549 }
2550}
2551
2552static void noinline ecb_cold
2553array_verify (EV_P_ W *ws, int cnt)
2554{
2555 while (cnt--)
2556 {
2557 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2558 verify_watcher (EV_A_ ws [cnt]);
2559 }
2560}
2561#endif
2562
2563#if EV_FEATURE_API
2564void ecb_cold
2565ev_verify (EV_P) EV_THROW
2566{
2567#if EV_VERIFY
2568 int i;
2569 WL w, w2;
2570
2571 assert (activecnt >= -1);
2572
2573 assert (fdchangemax >= fdchangecnt);
2574 for (i = 0; i < fdchangecnt; ++i)
2575 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2576
2577 assert (anfdmax >= 0);
2578 for (i = 0; i < anfdmax; ++i)
2579 {
2580 int j = 0;
2581
2582 for (w = w2 = anfds [i].head; w; w = w->next)
2583 {
2584 verify_watcher (EV_A_ (W)w);
2585
2586 if (j++ & 1)
2587 {
2588 assert (("libev: io watcher list contains a loop", w != w2));
2589 w2 = w2->next;
2590 }
2591
2592 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2593 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2594 }
2595 }
2596
2597 assert (timermax >= timercnt);
2598 verify_heap (EV_A_ timers, timercnt);
2599
2600#if EV_PERIODIC_ENABLE
2601 assert (periodicmax >= periodiccnt);
2602 verify_heap (EV_A_ periodics, periodiccnt);
2603#endif
2604
2605 for (i = NUMPRI; i--; )
2606 {
2607 assert (pendingmax [i] >= pendingcnt [i]);
2608#if EV_IDLE_ENABLE
2609 assert (idleall >= 0);
2610 assert (idlemax [i] >= idlecnt [i]);
2611 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2612#endif
2613 }
2614
2615#if EV_FORK_ENABLE
2616 assert (forkmax >= forkcnt);
2617 array_verify (EV_A_ (W *)forks, forkcnt);
2618#endif
2619
2620#if EV_CLEANUP_ENABLE
2621 assert (cleanupmax >= cleanupcnt);
2622 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2623#endif
2624
2625#if EV_ASYNC_ENABLE
2626 assert (asyncmax >= asynccnt);
2627 array_verify (EV_A_ (W *)asyncs, asynccnt);
2628#endif
2629
2630#if EV_PREPARE_ENABLE
2631 assert (preparemax >= preparecnt);
2632 array_verify (EV_A_ (W *)prepares, preparecnt);
2633#endif
2634
2635#if EV_CHECK_ENABLE
2636 assert (checkmax >= checkcnt);
2637 array_verify (EV_A_ (W *)checks, checkcnt);
2638#endif
2639
2640# if 0
2641#if EV_CHILD_ENABLE
2642 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2643 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2644#endif
2645# endif
2646#endif
2647}
971#endif 2648#endif
972 2649
973#if EV_MULTIPLICITY 2650#if EV_MULTIPLICITY
974struct ev_loop * 2651struct ev_loop * ecb_cold
975ev_default_loop_init (unsigned int flags)
976#else 2652#else
977int 2653int
2654#endif
978ev_default_loop (unsigned int flags) 2655ev_default_loop (unsigned int flags) EV_THROW
979#endif
980{ 2656{
981 if (sigpipe [0] == sigpipe [1])
982 if (pipe (sigpipe))
983 return 0;
984
985 if (!ev_default_loop_ptr) 2657 if (!ev_default_loop_ptr)
986 { 2658 {
987#if EV_MULTIPLICITY 2659#if EV_MULTIPLICITY
988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2660 EV_P = ev_default_loop_ptr = &default_loop_struct;
989#else 2661#else
990 ev_default_loop_ptr = 1; 2662 ev_default_loop_ptr = 1;
991#endif 2663#endif
992 2664
993 loop_init (EV_A_ flags); 2665 loop_init (EV_A_ flags);
994 2666
995 if (ev_backend (EV_A)) 2667 if (ev_backend (EV_A))
996 { 2668 {
997 siginit (EV_A); 2669#if EV_CHILD_ENABLE
998
999#ifndef _WIN32
1000 ev_signal_init (&childev, childcb, SIGCHLD); 2670 ev_signal_init (&childev, childcb, SIGCHLD);
1001 ev_set_priority (&childev, EV_MAXPRI); 2671 ev_set_priority (&childev, EV_MAXPRI);
1002 ev_signal_start (EV_A_ &childev); 2672 ev_signal_start (EV_A_ &childev);
1003 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2673 ev_unref (EV_A); /* child watcher should not keep loop alive */
1004#endif 2674#endif
1009 2679
1010 return ev_default_loop_ptr; 2680 return ev_default_loop_ptr;
1011} 2681}
1012 2682
1013void 2683void
1014ev_default_destroy (void) 2684ev_loop_fork (EV_P) EV_THROW
1015{ 2685{
1016#if EV_MULTIPLICITY 2686 postfork = 1; /* must be in line with ev_default_fork */
1017 struct ev_loop *loop = ev_default_loop_ptr;
1018#endif
1019
1020#ifndef _WIN32
1021 ev_ref (EV_A); /* child watcher */
1022 ev_signal_stop (EV_A_ &childev);
1023#endif
1024
1025 ev_ref (EV_A); /* signal watcher */
1026 ev_io_stop (EV_A_ &sigev);
1027
1028 close (sigpipe [0]); sigpipe [0] = 0;
1029 close (sigpipe [1]); sigpipe [1] = 0;
1030
1031 loop_destroy (EV_A);
1032} 2687}
2688
2689/*****************************************************************************/
1033 2690
1034void 2691void
1035ev_default_fork (void) 2692ev_invoke (EV_P_ void *w, int revents)
1036{ 2693{
1037#if EV_MULTIPLICITY 2694 EV_CB_INVOKE ((W)w, revents);
1038 struct ev_loop *loop = ev_default_loop_ptr;
1039#endif
1040
1041 if (backend)
1042 postfork = 1;
1043} 2695}
1044 2696
1045/*****************************************************************************/ 2697unsigned int
1046 2698ev_pending_count (EV_P) EV_THROW
1047static int
1048any_pending (EV_P)
1049{ 2699{
1050 int pri; 2700 int pri;
2701 unsigned int count = 0;
1051 2702
1052 for (pri = NUMPRI; pri--; ) 2703 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri]) 2704 count += pendingcnt [pri];
1054 return 1;
1055 2705
1056 return 0; 2706 return count;
1057} 2707}
1058 2708
1059inline void 2709void noinline
1060call_pending (EV_P) 2710ev_invoke_pending (EV_P)
1061{ 2711{
1062 int pri; 2712 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1063
1064 for (pri = NUMPRI; pri--; )
1065 while (pendingcnt [pri]) 2713 while (pendingcnt [pendingpri])
1066 { 2714 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2715 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1068 2716
1069 if (expect_true (p->w))
1070 {
1071 p->w->pending = 0; 2717 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 2718 EV_CB_INVOKE (p->w, p->events);
1073 } 2719 EV_FREQUENT_CHECK;
1074 } 2720 }
1075} 2721}
1076 2722
2723#if EV_IDLE_ENABLE
2724/* make idle watchers pending. this handles the "call-idle */
2725/* only when higher priorities are idle" logic */
1077inline void 2726inline_size void
2727idle_reify (EV_P)
2728{
2729 if (expect_false (idleall))
2730 {
2731 int pri;
2732
2733 for (pri = NUMPRI; pri--; )
2734 {
2735 if (pendingcnt [pri])
2736 break;
2737
2738 if (idlecnt [pri])
2739 {
2740 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2741 break;
2742 }
2743 }
2744 }
2745}
2746#endif
2747
2748/* make timers pending */
2749inline_size void
1078timers_reify (EV_P) 2750timers_reify (EV_P)
1079{ 2751{
2752 EV_FREQUENT_CHECK;
2753
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 2754 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1081 { 2755 {
1082 struct ev_timer *w = timers [0]; 2756 do
1083
1084 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085
1086 /* first reschedule or stop timer */
1087 if (w->repeat)
1088 { 2757 {
2758 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2759
2760 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2761
2762 /* first reschedule or stop timer */
2763 if (w->repeat)
2764 {
2765 ev_at (w) += w->repeat;
2766 if (ev_at (w) < mn_now)
2767 ev_at (w) = mn_now;
2768
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2769 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 2770
1091 ((WT)w)->at += w->repeat; 2771 ANHE_at_cache (timers [HEAP0]);
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
1095 downheap ((WT *)timers, timercnt, 0); 2772 downheap (timers, timercnt, HEAP0);
2773 }
2774 else
2775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2776
2777 EV_FREQUENT_CHECK;
2778 feed_reverse (EV_A_ (W)w);
1096 } 2779 }
1097 else 2780 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 2781
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2782 feed_reverse_done (EV_A_ EV_TIMER);
2783 }
2784}
2785
2786#if EV_PERIODIC_ENABLE
2787
2788static void noinline
2789periodic_recalc (EV_P_ ev_periodic *w)
2790{
2791 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2792 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2793
2794 /* the above almost always errs on the low side */
2795 while (at <= ev_rt_now)
1101 } 2796 {
1102} 2797 ev_tstamp nat = at + w->interval;
1103 2798
1104#if EV_PERIODICS 2799 /* when resolution fails us, we use ev_rt_now */
2800 if (expect_false (nat == at))
2801 {
2802 at = ev_rt_now;
2803 break;
2804 }
2805
2806 at = nat;
2807 }
2808
2809 ev_at (w) = at;
2810}
2811
2812/* make periodics pending */
1105inline void 2813inline_size void
1106periodics_reify (EV_P) 2814periodics_reify (EV_P)
1107{ 2815{
2816 EV_FREQUENT_CHECK;
2817
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1109 { 2819 {
1110 struct ev_periodic *w = periodics [0]; 2820 int feed_count = 0;
1111 2821
2822 do
2823 {
2824 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2825
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2826 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 2827
1114 /* first reschedule or stop timer */ 2828 /* first reschedule or stop timer */
2829 if (w->reschedule_cb)
2830 {
2831 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2832
2833 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2834
2835 ANHE_at_cache (periodics [HEAP0]);
2836 downheap (periodics, periodiccnt, HEAP0);
2837 }
2838 else if (w->interval)
2839 {
2840 periodic_recalc (EV_A_ w);
2841 ANHE_at_cache (periodics [HEAP0]);
2842 downheap (periodics, periodiccnt, HEAP0);
2843 }
2844 else
2845 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2846
2847 EV_FREQUENT_CHECK;
2848 feed_reverse (EV_A_ (W)w);
2849 }
2850 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2851
2852 feed_reverse_done (EV_A_ EV_PERIODIC);
2853 }
2854}
2855
2856/* simply recalculate all periodics */
2857/* TODO: maybe ensure that at least one event happens when jumping forward? */
2858static void noinline ecb_cold
2859periodics_reschedule (EV_P)
2860{
2861 int i;
2862
2863 /* adjust periodics after time jump */
2864 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2865 {
2866 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2867
1115 if (w->reschedule_cb) 2868 if (w->reschedule_cb)
2869 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2870 else if (w->interval)
2871 periodic_recalc (EV_A_ w);
2872
2873 ANHE_at_cache (periodics [i]);
2874 }
2875
2876 reheap (periodics, periodiccnt);
2877}
2878#endif
2879
2880/* adjust all timers by a given offset */
2881static void noinline ecb_cold
2882timers_reschedule (EV_P_ ev_tstamp adjust)
2883{
2884 int i;
2885
2886 for (i = 0; i < timercnt; ++i)
2887 {
2888 ANHE *he = timers + i + HEAP0;
2889 ANHE_w (*he)->at += adjust;
2890 ANHE_at_cache (*he);
2891 }
2892}
2893
2894/* fetch new monotonic and realtime times from the kernel */
2895/* also detect if there was a timejump, and act accordingly */
2896inline_speed void
2897time_update (EV_P_ ev_tstamp max_block)
2898{
2899#if EV_USE_MONOTONIC
2900 if (expect_true (have_monotonic))
2901 {
2902 int i;
2903 ev_tstamp odiff = rtmn_diff;
2904
2905 mn_now = get_clock ();
2906
2907 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2908 /* interpolate in the meantime */
2909 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1116 { 2910 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2911 ev_rt_now = rtmn_diff + mn_now;
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2912 return;
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 } 2913 }
1121 else if (w->interval)
1122 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0);
1126 }
1127 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 2914
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 }
1132}
1133
1134static void
1135periodics_reschedule (EV_P)
1136{
1137 int i;
1138
1139 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i)
1141 {
1142 struct ev_periodic *w = periodics [i];
1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
1153}
1154#endif
1155
1156inline int
1157time_update_monotonic (EV_P)
1158{
1159 mn_now = get_clock ();
1160
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 {
1163 ev_rt_now = rtmn_diff + mn_now;
1164 return 0;
1165 }
1166 else
1167 {
1168 now_floor = mn_now; 2915 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 2917
1174inline void 2918 /* loop a few times, before making important decisions.
1175time_update (EV_P) 2919 * on the choice of "4": one iteration isn't enough,
1176{ 2920 * in case we get preempted during the calls to
1177 int i; 2921 * ev_time and get_clock. a second call is almost guaranteed
1178 2922 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 2923 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 2924 * in the unlikely event of having been preempted here.
1181 { 2925 */
1182 if (time_update_monotonic (EV_A)) 2926 for (i = 4; --i; )
1183 { 2927 {
1184 ev_tstamp odiff = rtmn_diff; 2928 ev_tstamp diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 2929 rtmn_diff = ev_rt_now - mn_now;
1189 2930
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2931 diff = odiff - rtmn_diff;
2932
2933 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1191 return; /* all is well */ 2934 return; /* all is well */
1192 2935
1193 ev_rt_now = ev_time (); 2936 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 2937 mn_now = get_clock ();
1195 now_floor = mn_now; 2938 now_floor = mn_now;
1196 } 2939 }
1197 2940
2941 /* no timer adjustment, as the monotonic clock doesn't jump */
2942 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198# if EV_PERIODICS 2943# if EV_PERIODIC_ENABLE
2944 periodics_reschedule (EV_A);
2945# endif
2946 }
2947 else
2948#endif
2949 {
2950 ev_rt_now = ev_time ();
2951
2952 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2953 {
2954 /* adjust timers. this is easy, as the offset is the same for all of them */
2955 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2956#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 2957 periodics_reschedule (EV_A);
1200# endif 2958#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 2959 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 }
1220 2960
1221 mn_now = ev_rt_now; 2961 mn_now = ev_rt_now;
1222 } 2962 }
1223} 2963}
1224 2964
1225void 2965int
1226ev_ref (EV_P)
1227{
1228 ++activecnt;
1229}
1230
1231void
1232ev_unref (EV_P)
1233{
1234 --activecnt;
1235}
1236
1237static int loop_done;
1238
1239void
1240ev_loop (EV_P_ int flags) 2966ev_run (EV_P_ int flags)
1241{ 2967{
1242 double block; 2968#if EV_FEATURE_API
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2969 ++loop_depth;
2970#endif
1244 2971
1245 while (activecnt) 2972 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2973
2974 loop_done = EVBREAK_CANCEL;
2975
2976 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2977
2978 do
1246 { 2979 {
2980#if EV_VERIFY >= 2
2981 ev_verify (EV_A);
2982#endif
2983
2984#ifndef _WIN32
2985 if (expect_false (curpid)) /* penalise the forking check even more */
2986 if (expect_false (getpid () != curpid))
2987 {
2988 curpid = getpid ();
2989 postfork = 1;
2990 }
2991#endif
2992
2993#if EV_FORK_ENABLE
2994 /* we might have forked, so queue fork handlers */
2995 if (expect_false (postfork))
2996 if (forkcnt)
2997 {
2998 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2999 EV_INVOKE_PENDING;
3000 }
3001#endif
3002
3003#if EV_PREPARE_ENABLE
1247 /* queue check watchers (and execute them) */ 3004 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 3005 if (expect_false (preparecnt))
1249 { 3006 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3007 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 3008 EV_INVOKE_PENDING;
1252 } 3009 }
3010#endif
3011
3012 if (expect_false (loop_done))
3013 break;
1253 3014
1254 /* we might have forked, so reify kernel state if necessary */ 3015 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 3016 if (expect_false (postfork))
1256 loop_fork (EV_A); 3017 loop_fork (EV_A);
1257 3018
1258 /* update fd-related kernel structures */ 3019 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 3020 fd_reify (EV_A);
1260 3021
1261 /* calculate blocking time */ 3022 /* calculate blocking time */
3023 {
3024 ev_tstamp waittime = 0.;
3025 ev_tstamp sleeptime = 0.;
1262 3026
1263 /* we only need this for !monotonic clock or timers, but as we basically 3027 /* remember old timestamp for io_blocktime calculation */
1264 always have timers, we just calculate it always */ 3028 ev_tstamp prev_mn_now = mn_now;
1265#if EV_USE_MONOTONIC 3029
1266 if (expect_true (have_monotonic)) 3030 /* update time to cancel out callback processing overhead */
1267 time_update_monotonic (EV_A); 3031 time_update (EV_A_ 1e100);
1268 else 3032
1269#endif 3033 /* from now on, we want a pipe-wake-up */
3034 pipe_write_wanted = 1;
3035
3036 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3037
3038 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1270 { 3039 {
1271 ev_rt_now = ev_time ();
1272 mn_now = ev_rt_now;
1273 }
1274
1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1276 block = 0.;
1277 else
1278 {
1279 block = MAX_BLOCKTIME; 3040 waittime = MAX_BLOCKTIME;
1280 3041
1281 if (timercnt) 3042 if (timercnt)
1282 { 3043 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3044 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1284 if (block > to) block = to; 3045 if (waittime > to) waittime = to;
1285 } 3046 }
1286 3047
1287#if EV_PERIODICS 3048#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 3049 if (periodiccnt)
1289 { 3050 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3051 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1291 if (block > to) block = to; 3052 if (waittime > to) waittime = to;
1292 } 3053 }
1293#endif 3054#endif
1294 3055
1295 if (expect_false (block < 0.)) block = 0.; 3056 /* don't let timeouts decrease the waittime below timeout_blocktime */
3057 if (expect_false (waittime < timeout_blocktime))
3058 waittime = timeout_blocktime;
3059
3060 /* at this point, we NEED to wait, so we have to ensure */
3061 /* to pass a minimum nonzero value to the backend */
3062 if (expect_false (waittime < backend_mintime))
3063 waittime = backend_mintime;
3064
3065 /* extra check because io_blocktime is commonly 0 */
3066 if (expect_false (io_blocktime))
3067 {
3068 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3069
3070 if (sleeptime > waittime - backend_mintime)
3071 sleeptime = waittime - backend_mintime;
3072
3073 if (expect_true (sleeptime > 0.))
3074 {
3075 ev_sleep (sleeptime);
3076 waittime -= sleeptime;
3077 }
3078 }
1296 } 3079 }
1297 3080
3081#if EV_FEATURE_API
3082 ++loop_count;
3083#endif
3084 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1298 backend_poll (EV_A_ block); 3085 backend_poll (EV_A_ waittime);
3086 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1299 3087
3088 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3089
3090 if (pipe_write_skipped)
3091 {
3092 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3094 }
3095
3096
1300 /* update ev_rt_now, do magic */ 3097 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 3098 time_update (EV_A_ waittime + sleeptime);
3099 }
1302 3100
1303 /* queue pending timers and reschedule them */ 3101 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 3102 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 3103#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 3104 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 3105#endif
1308 3106
3107#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 3108 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 3109 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3110#endif
1312 3111
3112#if EV_CHECK_ENABLE
1313 /* queue check watchers, to be executed first */ 3113 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 3114 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3115 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3116#endif
1316 3117
1317 call_pending (EV_A); 3118 EV_INVOKE_PENDING;
1318
1319 if (expect_false (loop_done))
1320 break;
1321 } 3119 }
3120 while (expect_true (
3121 activecnt
3122 && !loop_done
3123 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3124 ));
1322 3125
1323 if (loop_done != 2) 3126 if (loop_done == EVBREAK_ONE)
1324 loop_done = 0; 3127 loop_done = EVBREAK_CANCEL;
3128
3129#if EV_FEATURE_API
3130 --loop_depth;
3131#endif
3132
3133 return activecnt;
1325} 3134}
1326 3135
1327void 3136void
1328ev_unloop (EV_P_ int how) 3137ev_break (EV_P_ int how) EV_THROW
1329{ 3138{
1330 loop_done = how; 3139 loop_done = how;
1331} 3140}
1332 3141
3142void
3143ev_ref (EV_P) EV_THROW
3144{
3145 ++activecnt;
3146}
3147
3148void
3149ev_unref (EV_P) EV_THROW
3150{
3151 --activecnt;
3152}
3153
3154void
3155ev_now_update (EV_P) EV_THROW
3156{
3157 time_update (EV_A_ 1e100);
3158}
3159
3160void
3161ev_suspend (EV_P) EV_THROW
3162{
3163 ev_now_update (EV_A);
3164}
3165
3166void
3167ev_resume (EV_P) EV_THROW
3168{
3169 ev_tstamp mn_prev = mn_now;
3170
3171 ev_now_update (EV_A);
3172 timers_reschedule (EV_A_ mn_now - mn_prev);
3173#if EV_PERIODIC_ENABLE
3174 /* TODO: really do this? */
3175 periodics_reschedule (EV_A);
3176#endif
3177}
3178
1333/*****************************************************************************/ 3179/*****************************************************************************/
3180/* singly-linked list management, used when the expected list length is short */
1334 3181
1335inline void 3182inline_size void
1336wlist_add (WL *head, WL elem) 3183wlist_add (WL *head, WL elem)
1337{ 3184{
1338 elem->next = *head; 3185 elem->next = *head;
1339 *head = elem; 3186 *head = elem;
1340} 3187}
1341 3188
1342inline void 3189inline_size void
1343wlist_del (WL *head, WL elem) 3190wlist_del (WL *head, WL elem)
1344{ 3191{
1345 while (*head) 3192 while (*head)
1346 { 3193 {
1347 if (*head == elem) 3194 if (expect_true (*head == elem))
1348 { 3195 {
1349 *head = elem->next; 3196 *head = elem->next;
1350 return; 3197 break;
1351 } 3198 }
1352 3199
1353 head = &(*head)->next; 3200 head = &(*head)->next;
1354 } 3201 }
1355} 3202}
1356 3203
3204/* internal, faster, version of ev_clear_pending */
1357inline void 3205inline_speed void
1358ev_clear_pending (EV_P_ W w) 3206clear_pending (EV_P_ W w)
1359{ 3207{
1360 if (w->pending) 3208 if (w->pending)
1361 { 3209 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3210 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1363 w->pending = 0; 3211 w->pending = 0;
1364 } 3212 }
1365} 3213}
1366 3214
3215int
3216ev_clear_pending (EV_P_ void *w) EV_THROW
3217{
3218 W w_ = (W)w;
3219 int pending = w_->pending;
3220
3221 if (expect_true (pending))
3222 {
3223 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3224 p->w = (W)&pending_w;
3225 w_->pending = 0;
3226 return p->events;
3227 }
3228 else
3229 return 0;
3230}
3231
1367inline void 3232inline_size void
3233pri_adjust (EV_P_ W w)
3234{
3235 int pri = ev_priority (w);
3236 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3237 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3238 ev_set_priority (w, pri);
3239}
3240
3241inline_speed void
1368ev_start (EV_P_ W w, int active) 3242ev_start (EV_P_ W w, int active)
1369{ 3243{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3244 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 3245 w->active = active;
1374 ev_ref (EV_A); 3246 ev_ref (EV_A);
1375} 3247}
1376 3248
1377inline void 3249inline_size void
1378ev_stop (EV_P_ W w) 3250ev_stop (EV_P_ W w)
1379{ 3251{
1380 ev_unref (EV_A); 3252 ev_unref (EV_A);
1381 w->active = 0; 3253 w->active = 0;
1382} 3254}
1383 3255
1384/*****************************************************************************/ 3256/*****************************************************************************/
1385 3257
1386void 3258void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 3259ev_io_start (EV_P_ ev_io *w) EV_THROW
1388{ 3260{
1389 int fd = w->fd; 3261 int fd = w->fd;
1390 3262
1391 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
1392 return; 3264 return;
1393 3265
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 3266 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3267 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3268
3269 EV_FREQUENT_CHECK;
1395 3270
1396 ev_start (EV_A_ (W)w, 1); 3271 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3272 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3273 wlist_add (&anfds[fd].head, (WL)w);
1399 3274
1400 fd_change (EV_A_ fd); 3275 /* common bug, apparently */
1401} 3276 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1402 3277
1403void 3278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3279 w->events &= ~EV__IOFDSET;
3280
3281 EV_FREQUENT_CHECK;
3282}
3283
3284void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 3285ev_io_stop (EV_P_ ev_io *w) EV_THROW
1405{ 3286{
1406 ev_clear_pending (EV_A_ (W)w); 3287 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 3288 if (expect_false (!ev_is_active (w)))
1408 return; 3289 return;
1409 3290
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 3292
3293 EV_FREQUENT_CHECK;
3294
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3295 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
1414 3297
1415 fd_change (EV_A_ w->fd); 3298 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1416}
1417 3299
1418void 3300 EV_FREQUENT_CHECK;
3301}
3302
3303void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 3304ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1420{ 3305{
1421 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
1422 return; 3307 return;
1423 3308
1424 ((WT)w)->at += mn_now; 3309 ev_at (w) += mn_now;
1425 3310
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 3312
3313 EV_FREQUENT_CHECK;
3314
3315 ++timercnt;
1428 ev_start (EV_A_ (W)w, ++timercnt); 3316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1430 timers [timercnt - 1] = w; 3318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 3319 ANHE_at_cache (timers [ev_active (w)]);
3320 upheap (timers, ev_active (w));
1432 3321
3322 EV_FREQUENT_CHECK;
3323
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1434} 3325}
1435 3326
1436void 3327void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 3328ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1438{ 3329{
1439 ev_clear_pending (EV_A_ (W)w); 3330 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 3331 if (expect_false (!ev_is_active (w)))
1441 return; 3332 return;
1442 3333
3334 EV_FREQUENT_CHECK;
3335
3336 {
3337 int active = ev_active (w);
3338
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1444 3340
3341 --timercnt;
3342
1445 if (expect_true (((W)w)->active < timercnt--)) 3343 if (expect_true (active < timercnt + HEAP0))
1446 { 3344 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 3345 timers [active] = timers [timercnt + HEAP0];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3346 adjustheap (timers, timercnt, active);
1449 } 3347 }
3348 }
1450 3349
1451 ((WT)w)->at -= mn_now; 3350 ev_at (w) -= mn_now;
1452 3351
1453 ev_stop (EV_A_ (W)w); 3352 ev_stop (EV_A_ (W)w);
1454}
1455 3353
1456void 3354 EV_FREQUENT_CHECK;
3355}
3356
3357void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 3358ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1458{ 3359{
3360 EV_FREQUENT_CHECK;
3361
3362 clear_pending (EV_A_ (W)w);
3363
1459 if (ev_is_active (w)) 3364 if (ev_is_active (w))
1460 { 3365 {
1461 if (w->repeat) 3366 if (w->repeat)
1462 { 3367 {
1463 ((WT)w)->at = mn_now + w->repeat; 3368 ev_at (w) = mn_now + w->repeat;
3369 ANHE_at_cache (timers [ev_active (w)]);
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3370 adjustheap (timers, timercnt, ev_active (w));
1465 } 3371 }
1466 else 3372 else
1467 ev_timer_stop (EV_A_ w); 3373 ev_timer_stop (EV_A_ w);
1468 } 3374 }
1469 else if (w->repeat) 3375 else if (w->repeat)
1470 { 3376 {
1471 w->at = w->repeat; 3377 ev_at (w) = w->repeat;
1472 ev_timer_start (EV_A_ w); 3378 ev_timer_start (EV_A_ w);
1473 } 3379 }
1474}
1475 3380
3381 EV_FREQUENT_CHECK;
3382}
3383
3384ev_tstamp
3385ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3386{
3387 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3388}
3389
1476#if EV_PERIODICS 3390#if EV_PERIODIC_ENABLE
1477void 3391void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 3392ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1479{ 3393{
1480 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
1481 return; 3395 return;
1482 3396
1483 if (w->reschedule_cb) 3397 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3398 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 3399 else if (w->interval)
1486 { 3400 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3401 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 3402 periodic_recalc (EV_A_ w);
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 } 3403 }
3404 else
3405 ev_at (w) = w->offset;
1491 3406
3407 EV_FREQUENT_CHECK;
3408
3409 ++periodiccnt;
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 3410 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3411 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 3412 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 3413 ANHE_at_cache (periodics [ev_active (w)]);
3414 upheap (periodics, ev_active (w));
1496 3415
3416 EV_FREQUENT_CHECK;
3417
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3418 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1498} 3419}
1499 3420
1500void 3421void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 3422ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1502{ 3423{
1503 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
1505 return; 3426 return;
1506 3427
3428 EV_FREQUENT_CHECK;
3429
3430 {
3431 int active = ev_active (w);
3432
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3433 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1508 3434
3435 --periodiccnt;
3436
1509 if (expect_true (((W)w)->active < periodiccnt--)) 3437 if (expect_true (active < periodiccnt + HEAP0))
1510 { 3438 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3439 periodics [active] = periodics [periodiccnt + HEAP0];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3440 adjustheap (periodics, periodiccnt, active);
1513 } 3441 }
3442 }
1514 3443
1515 ev_stop (EV_A_ (W)w); 3444 ev_stop (EV_A_ (W)w);
1516}
1517 3445
1518void 3446 EV_FREQUENT_CHECK;
3447}
3448
3449void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 3450ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1520{ 3451{
1521 /* TODO: use adjustheap and recalculation */ 3452 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 3453 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 3454 ev_periodic_start (EV_A_ w);
1524} 3455}
1525#endif 3456#endif
1526 3457
1527void 3458#ifndef SA_RESTART
1528ev_idle_start (EV_P_ struct ev_idle *w) 3459# define SA_RESTART 0
3460#endif
3461
3462#if EV_SIGNAL_ENABLE
3463
3464void noinline
3465ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1529{ 3466{
1530 if (expect_false (ev_is_active (w))) 3467 if (expect_false (ev_is_active (w)))
1531 return; 3468 return;
1532 3469
3470 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3471
3472#if EV_MULTIPLICITY
3473 assert (("libev: a signal must not be attached to two different loops",
3474 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3475
3476 signals [w->signum - 1].loop = EV_A;
3477#endif
3478
3479 EV_FREQUENT_CHECK;
3480
3481#if EV_USE_SIGNALFD
3482 if (sigfd == -2)
3483 {
3484 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3485 if (sigfd < 0 && errno == EINVAL)
3486 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3487
3488 if (sigfd >= 0)
3489 {
3490 fd_intern (sigfd); /* doing it twice will not hurt */
3491
3492 sigemptyset (&sigfd_set);
3493
3494 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3495 ev_set_priority (&sigfd_w, EV_MAXPRI);
3496 ev_io_start (EV_A_ &sigfd_w);
3497 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3498 }
3499 }
3500
3501 if (sigfd >= 0)
3502 {
3503 /* TODO: check .head */
3504 sigaddset (&sigfd_set, w->signum);
3505 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3506
3507 signalfd (sigfd, &sigfd_set, 0);
3508 }
3509#endif
3510
1533 ev_start (EV_A_ (W)w, ++idlecnt); 3511 ev_start (EV_A_ (W)w, 1);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3512 wlist_add (&signals [w->signum - 1].head, (WL)w);
1535 idles [idlecnt - 1] = w;
1536}
1537 3513
1538void 3514 if (!((WL)w)->next)
1539ev_idle_stop (EV_P_ struct ev_idle *w) 3515# if EV_USE_SIGNALFD
3516 if (sigfd < 0) /*TODO*/
3517# endif
3518 {
3519# ifdef _WIN32
3520 evpipe_init (EV_A);
3521
3522 signal (w->signum, ev_sighandler);
3523# else
3524 struct sigaction sa;
3525
3526 evpipe_init (EV_A);
3527
3528 sa.sa_handler = ev_sighandler;
3529 sigfillset (&sa.sa_mask);
3530 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3531 sigaction (w->signum, &sa, 0);
3532
3533 if (origflags & EVFLAG_NOSIGMASK)
3534 {
3535 sigemptyset (&sa.sa_mask);
3536 sigaddset (&sa.sa_mask, w->signum);
3537 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3538 }
3539#endif
3540 }
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545void noinline
3546ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1540{ 3547{
1541 ev_clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
1543 return; 3550 return;
1544 3551
1545 idles [((W)w)->active - 1] = idles [--idlecnt]; 3552 EV_FREQUENT_CHECK;
3553
3554 wlist_del (&signals [w->signum - 1].head, (WL)w);
1546 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 if (!signals [w->signum - 1].head)
3558 {
3559#if EV_MULTIPLICITY
3560 signals [w->signum - 1].loop = 0; /* unattach from signal */
3561#endif
3562#if EV_USE_SIGNALFD
3563 if (sigfd >= 0)
3564 {
3565 sigset_t ss;
3566
3567 sigemptyset (&ss);
3568 sigaddset (&ss, w->signum);
3569 sigdelset (&sigfd_set, w->signum);
3570
3571 signalfd (sigfd, &sigfd_set, 0);
3572 sigprocmask (SIG_UNBLOCK, &ss, 0);
3573 }
3574 else
3575#endif
3576 signal (w->signum, SIG_DFL);
3577 }
3578
3579 EV_FREQUENT_CHECK;
1547} 3580}
3581
3582#endif
3583
3584#if EV_CHILD_ENABLE
1548 3585
1549void 3586void
1550ev_prepare_start (EV_P_ struct ev_prepare *w) 3587ev_child_start (EV_P_ ev_child *w) EV_THROW
1551{ 3588{
3589#if EV_MULTIPLICITY
3590 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3591#endif
1552 if (expect_false (ev_is_active (w))) 3592 if (expect_false (ev_is_active (w)))
1553 return; 3593 return;
1554 3594
3595 EV_FREQUENT_CHECK;
3596
1555 ev_start (EV_A_ (W)w, ++preparecnt); 3597 ev_start (EV_A_ (W)w, 1);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3598 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1557 prepares [preparecnt - 1] = w; 3599
3600 EV_FREQUENT_CHECK;
1558} 3601}
1559 3602
1560void 3603void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w) 3604ev_child_stop (EV_P_ ev_child *w) EV_THROW
1562{ 3605{
1563 ev_clear_pending (EV_A_ (W)w); 3606 clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w))) 3607 if (expect_false (!ev_is_active (w)))
1565 return; 3608 return;
1566 3609
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3610 EV_FREQUENT_CHECK;
3611
3612 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1568 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
3614
3615 EV_FREQUENT_CHECK;
1569} 3616}
3617
3618#endif
3619
3620#if EV_STAT_ENABLE
3621
3622# ifdef _WIN32
3623# undef lstat
3624# define lstat(a,b) _stati64 (a,b)
3625# endif
3626
3627#define DEF_STAT_INTERVAL 5.0074891
3628#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3629#define MIN_STAT_INTERVAL 0.1074891
3630
3631static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3632
3633#if EV_USE_INOTIFY
3634
3635/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3636# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3637
3638static void noinline
3639infy_add (EV_P_ ev_stat *w)
3640{
3641 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3642
3643 if (w->wd >= 0)
3644 {
3645 struct statfs sfs;
3646
3647 /* now local changes will be tracked by inotify, but remote changes won't */
3648 /* unless the filesystem is known to be local, we therefore still poll */
3649 /* also do poll on <2.6.25, but with normal frequency */
3650
3651 if (!fs_2625)
3652 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3653 else if (!statfs (w->path, &sfs)
3654 && (sfs.f_type == 0x1373 /* devfs */
3655 || sfs.f_type == 0xEF53 /* ext2/3 */
3656 || sfs.f_type == 0x3153464a /* jfs */
3657 || sfs.f_type == 0x52654973 /* reiser3 */
3658 || sfs.f_type == 0x01021994 /* tempfs */
3659 || sfs.f_type == 0x58465342 /* xfs */))
3660 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3661 else
3662 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3663 }
3664 else
3665 {
3666 /* can't use inotify, continue to stat */
3667 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3668
3669 /* if path is not there, monitor some parent directory for speedup hints */
3670 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3671 /* but an efficiency issue only */
3672 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3673 {
3674 char path [4096];
3675 strcpy (path, w->path);
3676
3677 do
3678 {
3679 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3680 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3681
3682 char *pend = strrchr (path, '/');
3683
3684 if (!pend || pend == path)
3685 break;
3686
3687 *pend = 0;
3688 w->wd = inotify_add_watch (fs_fd, path, mask);
3689 }
3690 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3691 }
3692 }
3693
3694 if (w->wd >= 0)
3695 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3696
3697 /* now re-arm timer, if required */
3698 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3699 ev_timer_again (EV_A_ &w->timer);
3700 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3701}
3702
3703static void noinline
3704infy_del (EV_P_ ev_stat *w)
3705{
3706 int slot;
3707 int wd = w->wd;
3708
3709 if (wd < 0)
3710 return;
3711
3712 w->wd = -2;
3713 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3714 wlist_del (&fs_hash [slot].head, (WL)w);
3715
3716 /* remove this watcher, if others are watching it, they will rearm */
3717 inotify_rm_watch (fs_fd, wd);
3718}
3719
3720static void noinline
3721infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3722{
3723 if (slot < 0)
3724 /* overflow, need to check for all hash slots */
3725 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3726 infy_wd (EV_A_ slot, wd, ev);
3727 else
3728 {
3729 WL w_;
3730
3731 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3732 {
3733 ev_stat *w = (ev_stat *)w_;
3734 w_ = w_->next; /* lets us remove this watcher and all before it */
3735
3736 if (w->wd == wd || wd == -1)
3737 {
3738 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3739 {
3740 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3741 w->wd = -1;
3742 infy_add (EV_A_ w); /* re-add, no matter what */
3743 }
3744
3745 stat_timer_cb (EV_A_ &w->timer, 0);
3746 }
3747 }
3748 }
3749}
3750
3751static void
3752infy_cb (EV_P_ ev_io *w, int revents)
3753{
3754 char buf [EV_INOTIFY_BUFSIZE];
3755 int ofs;
3756 int len = read (fs_fd, buf, sizeof (buf));
3757
3758 for (ofs = 0; ofs < len; )
3759 {
3760 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3761 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3762 ofs += sizeof (struct inotify_event) + ev->len;
3763 }
3764}
3765
3766inline_size void ecb_cold
3767ev_check_2625 (EV_P)
3768{
3769 /* kernels < 2.6.25 are borked
3770 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3771 */
3772 if (ev_linux_version () < 0x020619)
3773 return;
3774
3775 fs_2625 = 1;
3776}
3777
3778inline_size int
3779infy_newfd (void)
3780{
3781#if defined IN_CLOEXEC && defined IN_NONBLOCK
3782 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3783 if (fd >= 0)
3784 return fd;
3785#endif
3786 return inotify_init ();
3787}
3788
3789inline_size void
3790infy_init (EV_P)
3791{
3792 if (fs_fd != -2)
3793 return;
3794
3795 fs_fd = -1;
3796
3797 ev_check_2625 (EV_A);
3798
3799 fs_fd = infy_newfd ();
3800
3801 if (fs_fd >= 0)
3802 {
3803 fd_intern (fs_fd);
3804 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3805 ev_set_priority (&fs_w, EV_MAXPRI);
3806 ev_io_start (EV_A_ &fs_w);
3807 ev_unref (EV_A);
3808 }
3809}
3810
3811inline_size void
3812infy_fork (EV_P)
3813{
3814 int slot;
3815
3816 if (fs_fd < 0)
3817 return;
3818
3819 ev_ref (EV_A);
3820 ev_io_stop (EV_A_ &fs_w);
3821 close (fs_fd);
3822 fs_fd = infy_newfd ();
3823
3824 if (fs_fd >= 0)
3825 {
3826 fd_intern (fs_fd);
3827 ev_io_set (&fs_w, fs_fd, EV_READ);
3828 ev_io_start (EV_A_ &fs_w);
3829 ev_unref (EV_A);
3830 }
3831
3832 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3833 {
3834 WL w_ = fs_hash [slot].head;
3835 fs_hash [slot].head = 0;
3836
3837 while (w_)
3838 {
3839 ev_stat *w = (ev_stat *)w_;
3840 w_ = w_->next; /* lets us add this watcher */
3841
3842 w->wd = -1;
3843
3844 if (fs_fd >= 0)
3845 infy_add (EV_A_ w); /* re-add, no matter what */
3846 else
3847 {
3848 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3849 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3850 ev_timer_again (EV_A_ &w->timer);
3851 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3852 }
3853 }
3854 }
3855}
3856
3857#endif
3858
3859#ifdef _WIN32
3860# define EV_LSTAT(p,b) _stati64 (p, b)
3861#else
3862# define EV_LSTAT(p,b) lstat (p, b)
3863#endif
1570 3864
1571void 3865void
1572ev_check_start (EV_P_ struct ev_check *w) 3866ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3867{
3868 if (lstat (w->path, &w->attr) < 0)
3869 w->attr.st_nlink = 0;
3870 else if (!w->attr.st_nlink)
3871 w->attr.st_nlink = 1;
3872}
3873
3874static void noinline
3875stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3876{
3877 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3878
3879 ev_statdata prev = w->attr;
3880 ev_stat_stat (EV_A_ w);
3881
3882 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3883 if (
3884 prev.st_dev != w->attr.st_dev
3885 || prev.st_ino != w->attr.st_ino
3886 || prev.st_mode != w->attr.st_mode
3887 || prev.st_nlink != w->attr.st_nlink
3888 || prev.st_uid != w->attr.st_uid
3889 || prev.st_gid != w->attr.st_gid
3890 || prev.st_rdev != w->attr.st_rdev
3891 || prev.st_size != w->attr.st_size
3892 || prev.st_atime != w->attr.st_atime
3893 || prev.st_mtime != w->attr.st_mtime
3894 || prev.st_ctime != w->attr.st_ctime
3895 ) {
3896 /* we only update w->prev on actual differences */
3897 /* in case we test more often than invoke the callback, */
3898 /* to ensure that prev is always different to attr */
3899 w->prev = prev;
3900
3901 #if EV_USE_INOTIFY
3902 if (fs_fd >= 0)
3903 {
3904 infy_del (EV_A_ w);
3905 infy_add (EV_A_ w);
3906 ev_stat_stat (EV_A_ w); /* avoid race... */
3907 }
3908 #endif
3909
3910 ev_feed_event (EV_A_ w, EV_STAT);
3911 }
3912}
3913
3914void
3915ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1573{ 3916{
1574 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
1575 return; 3918 return;
1576 3919
3920 ev_stat_stat (EV_A_ w);
3921
3922 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3923 w->interval = MIN_STAT_INTERVAL;
3924
3925 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3926 ev_set_priority (&w->timer, ev_priority (w));
3927
3928#if EV_USE_INOTIFY
3929 infy_init (EV_A);
3930
3931 if (fs_fd >= 0)
3932 infy_add (EV_A_ w);
3933 else
3934#endif
3935 {
3936 ev_timer_again (EV_A_ &w->timer);
3937 ev_unref (EV_A);
3938 }
3939
1577 ev_start (EV_A_ (W)w, ++checkcnt); 3940 ev_start (EV_A_ (W)w, 1);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3941
1579 checks [checkcnt - 1] = w; 3942 EV_FREQUENT_CHECK;
1580} 3943}
1581 3944
1582void 3945void
1583ev_check_stop (EV_P_ struct ev_check *w) 3946ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1584{ 3947{
1585 ev_clear_pending (EV_A_ (W)w); 3948 clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w))) 3949 if (expect_false (!ev_is_active (w)))
1587 return; 3950 return;
1588 3951
1589 checks [((W)w)->active - 1] = checks [--checkcnt]; 3952 EV_FREQUENT_CHECK;
3953
3954#if EV_USE_INOTIFY
3955 infy_del (EV_A_ w);
3956#endif
3957
3958 if (ev_is_active (&w->timer))
3959 {
3960 ev_ref (EV_A);
3961 ev_timer_stop (EV_A_ &w->timer);
3962 }
3963
1590 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
1591}
1592 3965
1593#ifndef SA_RESTART 3966 EV_FREQUENT_CHECK;
1594# define SA_RESTART 0 3967}
1595#endif 3968#endif
1596 3969
3970#if EV_IDLE_ENABLE
1597void 3971void
1598ev_signal_start (EV_P_ struct ev_signal *w) 3972ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1599{ 3973{
1600#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3974 if (expect_false (ev_is_active (w)))
1604 return; 3975 return;
1605 3976
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3977 pri_adjust (EV_A_ (W)w);
1607 3978
3979 EV_FREQUENT_CHECK;
3980
3981 {
3982 int active = ++idlecnt [ABSPRI (w)];
3983
3984 ++idleall;
1608 ev_start (EV_A_ (W)w, 1); 3985 ev_start (EV_A_ (W)w, active);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1611 3986
1612 if (!((WL)w)->next) 3987 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1613 { 3988 idles [ABSPRI (w)][active - 1] = w;
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1617 struct sigaction sa;
1618 sa.sa_handler = sighandler;
1619 sigfillset (&sa.sa_mask);
1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1621 sigaction (w->signum, &sa, 0);
1622#endif
1623 } 3989 }
3990
3991 EV_FREQUENT_CHECK;
1624} 3992}
1625 3993
1626void 3994void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 3995ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1628{ 3996{
1629 ev_clear_pending (EV_A_ (W)w); 3997 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 3998 if (expect_false (!ev_is_active (w)))
1631 return; 3999 return;
1632 4000
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4001 EV_FREQUENT_CHECK;
4002
4003 {
4004 int active = ev_active (w);
4005
4006 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4007 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4008
1634 ev_stop (EV_A_ (W)w); 4009 ev_stop (EV_A_ (W)w);
4010 --idleall;
4011 }
1635 4012
1636 if (!signals [w->signum - 1].head) 4013 EV_FREQUENT_CHECK;
1637 signal (w->signum, SIG_DFL);
1638} 4014}
4015#endif
1639 4016
4017#if EV_PREPARE_ENABLE
1640void 4018void
1641ev_child_start (EV_P_ struct ev_child *w) 4019ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1642{ 4020{
1643#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif
1646 if (expect_false (ev_is_active (w))) 4021 if (expect_false (ev_is_active (w)))
1647 return; 4022 return;
1648 4023
4024 EV_FREQUENT_CHECK;
4025
1649 ev_start (EV_A_ (W)w, 1); 4026 ev_start (EV_A_ (W)w, ++preparecnt);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4027 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4028 prepares [preparecnt - 1] = w;
4029
4030 EV_FREQUENT_CHECK;
1651} 4031}
1652 4032
1653void 4033void
1654ev_child_stop (EV_P_ struct ev_child *w) 4034ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1655{ 4035{
1656 ev_clear_pending (EV_A_ (W)w); 4036 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 4037 if (expect_false (!ev_is_active (w)))
1658 return; 4038 return;
1659 4039
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4040 EV_FREQUENT_CHECK;
4041
4042 {
4043 int active = ev_active (w);
4044
4045 prepares [active - 1] = prepares [--preparecnt];
4046 ev_active (prepares [active - 1]) = active;
4047 }
4048
1661 ev_stop (EV_A_ (W)w); 4049 ev_stop (EV_A_ (W)w);
4050
4051 EV_FREQUENT_CHECK;
1662} 4052}
4053#endif
4054
4055#if EV_CHECK_ENABLE
4056void
4057ev_check_start (EV_P_ ev_check *w) EV_THROW
4058{
4059 if (expect_false (ev_is_active (w)))
4060 return;
4061
4062 EV_FREQUENT_CHECK;
4063
4064 ev_start (EV_A_ (W)w, ++checkcnt);
4065 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4066 checks [checkcnt - 1] = w;
4067
4068 EV_FREQUENT_CHECK;
4069}
4070
4071void
4072ev_check_stop (EV_P_ ev_check *w) EV_THROW
4073{
4074 clear_pending (EV_A_ (W)w);
4075 if (expect_false (!ev_is_active (w)))
4076 return;
4077
4078 EV_FREQUENT_CHECK;
4079
4080 {
4081 int active = ev_active (w);
4082
4083 checks [active - 1] = checks [--checkcnt];
4084 ev_active (checks [active - 1]) = active;
4085 }
4086
4087 ev_stop (EV_A_ (W)w);
4088
4089 EV_FREQUENT_CHECK;
4090}
4091#endif
4092
4093#if EV_EMBED_ENABLE
4094void noinline
4095ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4096{
4097 ev_run (w->other, EVRUN_NOWAIT);
4098}
4099
4100static void
4101embed_io_cb (EV_P_ ev_io *io, int revents)
4102{
4103 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4104
4105 if (ev_cb (w))
4106 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4107 else
4108 ev_run (w->other, EVRUN_NOWAIT);
4109}
4110
4111static void
4112embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4113{
4114 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4115
4116 {
4117 EV_P = w->other;
4118
4119 while (fdchangecnt)
4120 {
4121 fd_reify (EV_A);
4122 ev_run (EV_A_ EVRUN_NOWAIT);
4123 }
4124 }
4125}
4126
4127static void
4128embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4129{
4130 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4131
4132 ev_embed_stop (EV_A_ w);
4133
4134 {
4135 EV_P = w->other;
4136
4137 ev_loop_fork (EV_A);
4138 ev_run (EV_A_ EVRUN_NOWAIT);
4139 }
4140
4141 ev_embed_start (EV_A_ w);
4142}
4143
4144#if 0
4145static void
4146embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4147{
4148 ev_idle_stop (EV_A_ idle);
4149}
4150#endif
4151
4152void
4153ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4154{
4155 if (expect_false (ev_is_active (w)))
4156 return;
4157
4158 {
4159 EV_P = w->other;
4160 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4161 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4162 }
4163
4164 EV_FREQUENT_CHECK;
4165
4166 ev_set_priority (&w->io, ev_priority (w));
4167 ev_io_start (EV_A_ &w->io);
4168
4169 ev_prepare_init (&w->prepare, embed_prepare_cb);
4170 ev_set_priority (&w->prepare, EV_MINPRI);
4171 ev_prepare_start (EV_A_ &w->prepare);
4172
4173 ev_fork_init (&w->fork, embed_fork_cb);
4174 ev_fork_start (EV_A_ &w->fork);
4175
4176 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4177
4178 ev_start (EV_A_ (W)w, 1);
4179
4180 EV_FREQUENT_CHECK;
4181}
4182
4183void
4184ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4185{
4186 clear_pending (EV_A_ (W)w);
4187 if (expect_false (!ev_is_active (w)))
4188 return;
4189
4190 EV_FREQUENT_CHECK;
4191
4192 ev_io_stop (EV_A_ &w->io);
4193 ev_prepare_stop (EV_A_ &w->prepare);
4194 ev_fork_stop (EV_A_ &w->fork);
4195
4196 ev_stop (EV_A_ (W)w);
4197
4198 EV_FREQUENT_CHECK;
4199}
4200#endif
4201
4202#if EV_FORK_ENABLE
4203void
4204ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4205{
4206 if (expect_false (ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210
4211 ev_start (EV_A_ (W)w, ++forkcnt);
4212 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4213 forks [forkcnt - 1] = w;
4214
4215 EV_FREQUENT_CHECK;
4216}
4217
4218void
4219ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4220{
4221 clear_pending (EV_A_ (W)w);
4222 if (expect_false (!ev_is_active (w)))
4223 return;
4224
4225 EV_FREQUENT_CHECK;
4226
4227 {
4228 int active = ev_active (w);
4229
4230 forks [active - 1] = forks [--forkcnt];
4231 ev_active (forks [active - 1]) = active;
4232 }
4233
4234 ev_stop (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
4237}
4238#endif
4239
4240#if EV_CLEANUP_ENABLE
4241void
4242ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4243{
4244 if (expect_false (ev_is_active (w)))
4245 return;
4246
4247 EV_FREQUENT_CHECK;
4248
4249 ev_start (EV_A_ (W)w, ++cleanupcnt);
4250 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4251 cleanups [cleanupcnt - 1] = w;
4252
4253 /* cleanup watchers should never keep a refcount on the loop */
4254 ev_unref (EV_A);
4255 EV_FREQUENT_CHECK;
4256}
4257
4258void
4259ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4260{
4261 clear_pending (EV_A_ (W)w);
4262 if (expect_false (!ev_is_active (w)))
4263 return;
4264
4265 EV_FREQUENT_CHECK;
4266 ev_ref (EV_A);
4267
4268 {
4269 int active = ev_active (w);
4270
4271 cleanups [active - 1] = cleanups [--cleanupcnt];
4272 ev_active (cleanups [active - 1]) = active;
4273 }
4274
4275 ev_stop (EV_A_ (W)w);
4276
4277 EV_FREQUENT_CHECK;
4278}
4279#endif
4280
4281#if EV_ASYNC_ENABLE
4282void
4283ev_async_start (EV_P_ ev_async *w) EV_THROW
4284{
4285 if (expect_false (ev_is_active (w)))
4286 return;
4287
4288 w->sent = 0;
4289
4290 evpipe_init (EV_A);
4291
4292 EV_FREQUENT_CHECK;
4293
4294 ev_start (EV_A_ (W)w, ++asynccnt);
4295 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4296 asyncs [asynccnt - 1] = w;
4297
4298 EV_FREQUENT_CHECK;
4299}
4300
4301void
4302ev_async_stop (EV_P_ ev_async *w) EV_THROW
4303{
4304 clear_pending (EV_A_ (W)w);
4305 if (expect_false (!ev_is_active (w)))
4306 return;
4307
4308 EV_FREQUENT_CHECK;
4309
4310 {
4311 int active = ev_active (w);
4312
4313 asyncs [active - 1] = asyncs [--asynccnt];
4314 ev_active (asyncs [active - 1]) = active;
4315 }
4316
4317 ev_stop (EV_A_ (W)w);
4318
4319 EV_FREQUENT_CHECK;
4320}
4321
4322void
4323ev_async_send (EV_P_ ev_async *w) EV_THROW
4324{
4325 w->sent = 1;
4326 evpipe_write (EV_A_ &async_pending);
4327}
4328#endif
1663 4329
1664/*****************************************************************************/ 4330/*****************************************************************************/
1665 4331
1666struct ev_once 4332struct ev_once
1667{ 4333{
1668 struct ev_io io; 4334 ev_io io;
1669 struct ev_timer to; 4335 ev_timer to;
1670 void (*cb)(int revents, void *arg); 4336 void (*cb)(int revents, void *arg);
1671 void *arg; 4337 void *arg;
1672}; 4338};
1673 4339
1674static void 4340static void
1675once_cb (EV_P_ struct ev_once *once, int revents) 4341once_cb (EV_P_ struct ev_once *once, int revents)
1676{ 4342{
1677 void (*cb)(int revents, void *arg) = once->cb; 4343 void (*cb)(int revents, void *arg) = once->cb;
1678 void *arg = once->arg; 4344 void *arg = once->arg;
1679 4345
1680 ev_io_stop (EV_A_ &once->io); 4346 ev_io_stop (EV_A_ &once->io);
1681 ev_timer_stop (EV_A_ &once->to); 4347 ev_timer_stop (EV_A_ &once->to);
1682 ev_free (once); 4348 ev_free (once);
1683 4349
1684 cb (revents, arg); 4350 cb (revents, arg);
1685} 4351}
1686 4352
1687static void 4353static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 4354once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 4355{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4356 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4357
4358 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1691} 4359}
1692 4360
1693static void 4361static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 4362once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 4363{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4364 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4365
4366 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1697} 4367}
1698 4368
1699void 4369void
1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4370ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1701{ 4371{
1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4372 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1703 4373
1704 if (expect_false (!once)) 4374 if (expect_false (!once))
1705 { 4375 {
1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4376 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1707 return; 4377 return;
1708 } 4378 }
1709 4379
1710 once->cb = cb; 4380 once->cb = cb;
1711 once->arg = arg; 4381 once->arg = arg;
1723 ev_timer_set (&once->to, timeout, 0.); 4393 ev_timer_set (&once->to, timeout, 0.);
1724 ev_timer_start (EV_A_ &once->to); 4394 ev_timer_start (EV_A_ &once->to);
1725 } 4395 }
1726} 4396}
1727 4397
1728#ifdef __cplusplus 4398/*****************************************************************************/
1729} 4399
4400#if EV_WALK_ENABLE
4401void ecb_cold
4402ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4403{
4404 int i, j;
4405 ev_watcher_list *wl, *wn;
4406
4407 if (types & (EV_IO | EV_EMBED))
4408 for (i = 0; i < anfdmax; ++i)
4409 for (wl = anfds [i].head; wl; )
4410 {
4411 wn = wl->next;
4412
4413#if EV_EMBED_ENABLE
4414 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4415 {
4416 if (types & EV_EMBED)
4417 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4418 }
4419 else
4420#endif
4421#if EV_USE_INOTIFY
4422 if (ev_cb ((ev_io *)wl) == infy_cb)
4423 ;
4424 else
4425#endif
4426 if ((ev_io *)wl != &pipe_w)
4427 if (types & EV_IO)
4428 cb (EV_A_ EV_IO, wl);
4429
4430 wl = wn;
4431 }
4432
4433 if (types & (EV_TIMER | EV_STAT))
4434 for (i = timercnt + HEAP0; i-- > HEAP0; )
4435#if EV_STAT_ENABLE
4436 /*TODO: timer is not always active*/
4437 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4438 {
4439 if (types & EV_STAT)
4440 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4441 }
4442 else
4443#endif
4444 if (types & EV_TIMER)
4445 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4446
4447#if EV_PERIODIC_ENABLE
4448 if (types & EV_PERIODIC)
4449 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4450 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4451#endif
4452
4453#if EV_IDLE_ENABLE
4454 if (types & EV_IDLE)
4455 for (j = NUMPRI; j--; )
4456 for (i = idlecnt [j]; i--; )
4457 cb (EV_A_ EV_IDLE, idles [j][i]);
4458#endif
4459
4460#if EV_FORK_ENABLE
4461 if (types & EV_FORK)
4462 for (i = forkcnt; i--; )
4463 if (ev_cb (forks [i]) != embed_fork_cb)
4464 cb (EV_A_ EV_FORK, forks [i]);
4465#endif
4466
4467#if EV_ASYNC_ENABLE
4468 if (types & EV_ASYNC)
4469 for (i = asynccnt; i--; )
4470 cb (EV_A_ EV_ASYNC, asyncs [i]);
4471#endif
4472
4473#if EV_PREPARE_ENABLE
4474 if (types & EV_PREPARE)
4475 for (i = preparecnt; i--; )
4476# if EV_EMBED_ENABLE
4477 if (ev_cb (prepares [i]) != embed_prepare_cb)
1730#endif 4478# endif
4479 cb (EV_A_ EV_PREPARE, prepares [i]);
4480#endif
1731 4481
4482#if EV_CHECK_ENABLE
4483 if (types & EV_CHECK)
4484 for (i = checkcnt; i--; )
4485 cb (EV_A_ EV_CHECK, checks [i]);
4486#endif
4487
4488#if EV_SIGNAL_ENABLE
4489 if (types & EV_SIGNAL)
4490 for (i = 0; i < EV_NSIG - 1; ++i)
4491 for (wl = signals [i].head; wl; )
4492 {
4493 wn = wl->next;
4494 cb (EV_A_ EV_SIGNAL, wl);
4495 wl = wn;
4496 }
4497#endif
4498
4499#if EV_CHILD_ENABLE
4500 if (types & EV_CHILD)
4501 for (i = (EV_PID_HASHSIZE); i--; )
4502 for (wl = childs [i]; wl; )
4503 {
4504 wn = wl->next;
4505 cb (EV_A_ EV_CHILD, wl);
4506 wl = wn;
4507 }
4508#endif
4509/* EV_STAT 0x00001000 /* stat data changed */
4510/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4511}
4512#endif
4513
4514#if EV_MULTIPLICITY
4515 #include "ev_wrap.h"
4516#endif
4517

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines