ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC vs.
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
213#ifdef _WIN32
214# include "ev_win32.c"
215#endif
216
150/*****************************************************************************/ 217/*****************************************************************************/
151 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
152typedef struct 267typedef struct
153{ 268{
154 struct ev_watcher_list *head; 269 WL head;
155 unsigned char events; 270 unsigned char events;
156 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
157} ANFD; 275} ANFD;
158 276
159typedef struct 277typedef struct
160{ 278{
161 W w; 279 W w;
162 int events; 280 int events;
163} ANPENDING; 281} ANPENDING;
164 282
165#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
166 284
167struct ev_loop 285 struct ev_loop
168{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
170# include "ev_vars.h" 290 #include "ev_vars.h"
171};
172# undef VAR 291 #undef VAR
292 };
173# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
174 297
175#else 298#else
176 299
300 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 302 #include "ev_vars.h"
179# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
180 306
181#endif 307#endif
182 308
183/*****************************************************************************/ 309/*****************************************************************************/
184 310
185inline ev_tstamp 311ev_tstamp
186ev_time (void) 312ev_time (void)
187{ 313{
188#if EV_USE_REALTIME 314#if EV_USE_REALTIME
189 struct timespec ts; 315 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 335#endif
210 336
211 return ev_time (); 337 return ev_time ();
212} 338}
213 339
340#if EV_MULTIPLICITY
214ev_tstamp 341ev_tstamp
215ev_now (EV_P) 342ev_now (EV_P)
216{ 343{
217 return rt_now; 344 return ev_rt_now;
218} 345}
346#endif
219 347
220#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
221 349
222#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
224 { \ 352 { \
225 int newcnt = cur; \ 353 int newcnt = cur; \
226 do \ 354 do \
227 { \ 355 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 357 } \
230 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
231 \ 359 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 362 cur = newcnt; \
235 } 363 }
364
365#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 }
372
373#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 375
237/*****************************************************************************/ 376/*****************************************************************************/
238 377
239static void 378static void
240anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
247 386
248 ++base; 387 ++base;
249 } 388 }
250} 389}
251 390
252static void 391void
253event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
254{ 393{
255 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
256 { 397 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 399 return;
259 } 400 }
260 401
261 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 406}
266 407
267static void 408static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 410{
270 int i; 411 int i;
271 412
272 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
274} 415}
275 416
276static void 417inline void
277fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
278{ 419{
279 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 421 struct ev_io *w;
281 422
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 424 {
284 int ev = w->events & events; 425 int ev = w->events & revents;
285 426
286 if (ev) 427 if (ev)
287 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
288 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
289} 436}
290 437
291/*****************************************************************************/ 438/*****************************************************************************/
292 439
293static void 440inline void
294fd_reify (EV_P) 441fd_reify (EV_P)
295{ 442{
296 int i; 443 int i;
297 444
298 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
304 int events = 0; 451 int events = 0;
305 452
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 454 events |= w->events;
308 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
309 anfd->reify = 0; 465 anfd->reify = 0;
310 466
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 468 anfd->events = events;
315 }
316 } 469 }
317 470
318 fdchangecnt = 0; 471 fdchangecnt = 0;
319} 472}
320 473
321static void 474static void
322fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
323{ 476{
324 if (anfds [fd].reify || fdchangecnt < 0) 477 if (expect_false (anfds [fd].reify))
325 return; 478 return;
326 479
327 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
328 481
329 ++fdchangecnt; 482 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
332} 485}
333 486
334static void 487static void
335fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
337 struct ev_io *w; 490 struct ev_io *w;
338 491
339 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (struct ev_io *)anfds [fd].head))
340 { 493 {
341 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 496 }
497}
498
499inline int
500fd_valid (int fd)
501{
502#ifdef _WIN32
503 return _get_osfhandle (fd) != -1;
504#else
505 return fcntl (fd, F_GETFD) != -1;
506#endif
344} 507}
345 508
346/* called on EBADF to verify fds */ 509/* called on EBADF to verify fds */
347static void 510static void
348fd_ebadf (EV_P) 511fd_ebadf (EV_P)
349{ 512{
350 int fd; 513 int fd;
351 514
352 for (fd = 0; fd < anfdmax; ++fd) 515 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 516 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 517 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 518 fd_kill (EV_A_ fd);
356} 519}
357 520
358/* called on ENOMEM in select/poll to kill some fds and retry */ 521/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 522static void
362 int fd; 525 int fd;
363 526
364 for (fd = anfdmax; fd--; ) 527 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 528 if (anfds [fd].events)
366 { 529 {
367 close (fd);
368 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
369 return; 531 return;
370 } 532 }
371} 533}
372 534
373/* susually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 536static void
375fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
376{ 538{
377 int fd; 539 int fd;
378 540
426 588
427 heap [k] = w; 589 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
429} 591}
430 592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
431/*****************************************************************************/ 600/*****************************************************************************/
432 601
433typedef struct 602typedef struct
434{ 603{
435 struct ev_watcher_list *head; 604 WL head;
436 sig_atomic_t volatile gotsig; 605 sig_atomic_t volatile gotsig;
437} ANSIG; 606} ANSIG;
438 607
439static ANSIG *signals; 608static ANSIG *signals;
440static int signalmax; 609static int signalmax;
456} 625}
457 626
458static void 627static void
459sighandler (int signum) 628sighandler (int signum)
460{ 629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
461 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
462 635
463 if (!gotsig) 636 if (!gotsig)
464 { 637 {
465 int old_errno = errno; 638 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 641 errno = old_errno;
469 } 642 }
470} 643}
471 644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
472static void 665static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 667{
475 struct ev_watcher_list *w;
476 int signum; 668 int signum;
477 669
478 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 671 gotsig = 0;
480 672
481 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
483 { 675 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 676}
485 677
486 for (w = signals [signum].head; w; w = w->next) 678static void
487 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
488 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
489} 688}
490 689
491static void 690static void
492siginit (EV_P) 691siginit (EV_P)
493{ 692{
494#ifndef WIN32 693 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 695
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 699}
507 700
508/*****************************************************************************/ 701/*****************************************************************************/
509 702
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 703static struct ev_child *childs [PID_HASHSIZE];
704
705#ifndef _WIN32
706
513static struct ev_signal childev; 707static struct ev_signal childev;
514 708
515#ifndef WCONTINUED 709#ifndef WCONTINUED
516# define WCONTINUED 0 710# define WCONTINUED 0
517#endif 711#endif
525 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
526 { 720 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 722 w->rpid = pid;
529 w->rstatus = status; 723 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 725 }
532} 726}
533 727
534static void 728static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 731 int pid, status;
538 732
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 734 {
541 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 738
544 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 } 741 }
547} 742}
548 743
549#endif 744#endif
550 745
551/*****************************************************************************/ 746/*****************************************************************************/
552 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
553#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 752# include "ev_kqueue.c"
555#endif 753#endif
556#if EV_USE_EPOLL 754#if EV_USE_EPOLL
557# include "ev_epoll.c" 755# include "ev_epoll.c"
577 775
578/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
579static int 777static int
580enable_secure (void) 778enable_secure (void)
581{ 779{
582#ifdef WIN32 780#ifdef _WIN32
583 return 0; 781 return 0;
584#else 782#else
585 return getuid () != geteuid () 783 return getuid () != geteuid ()
586 || getgid () != getegid (); 784 || getgid () != getegid ();
587#endif 785#endif
588} 786}
589 787
590int 788unsigned int
591ev_method (EV_P) 789ev_supported_backends (void)
592{ 790{
593 return method; 791 unsigned int flags = 0;
594}
595 792
596static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
598{ 804{
599 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_backend (EV_P)
822{
823 return backend;
824}
825
826static void
827loop_init (EV_P_ unsigned int flags)
828{
829 if (!backend)
600 { 830 {
601#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
602 { 832 {
603 struct timespec ts; 833 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 834 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 835 have_monotonic = 1;
606 } 836 }
607#endif 837#endif
608 838
609 rt_now = ev_time (); 839 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 840 mn_now = get_clock ();
611 now_floor = mn_now; 841 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 842 rtmn_diff = ev_rt_now - mn_now;
613 843
614 if (methods == EVMETHOD_AUTO) 844 if (!(flags & EVFLAG_NOENV)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 845 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 847 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 848
620 method = 0; 849 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 850 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 851
852 backend = 0;
853#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 855#endif
624#if EV_USE_KQUEUE 856#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 858#endif
627#if EV_USE_EPOLL 859#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 860 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 861#endif
630#if EV_USE_POLL 862#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 863 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 864#endif
633#if EV_USE_SELECT 865#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 867#endif
636 }
637}
638 868
639void 869 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI);
871 }
872}
873
874static void
640loop_destroy (EV_P) 875loop_destroy (EV_P)
641{ 876{
642#if EV_USE_WIN32 877 int i;
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 878
879#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
644#endif 881#endif
645#if EV_USE_KQUEUE 882#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
647#endif 884#endif
648#if EV_USE_EPOLL 885#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 886 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
650#endif 887#endif
651#if EV_USE_POLL 888#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 889 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
653#endif 890#endif
654#if EV_USE_SELECT 891#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
656#endif 893#endif
657 894
658 method = 0; 895 for (i = NUMPRI; i--; )
659 /*TODO*/ 896 array_free (pending, [i]);
660}
661 897
662void 898 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0);
901#if EV_PERIODICS
902 array_free (periodic, EMPTY0);
903#endif
904 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0);
907
908 backend = 0;
909}
910
911static void
663loop_fork (EV_P) 912loop_fork (EV_P)
664{ 913{
665 /*TODO*/ 914#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif
917#if EV_USE_KQUEUE
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif
666#if EV_USE_EPOLL 920#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
668#endif 922#endif
669#if EV_USE_KQUEUE 923
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 924 if (ev_is_active (&sigev))
671#endif 925 {
926 /* default loop */
927
928 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A);
937 }
938
939 postfork = 0;
672} 940}
673 941
674#if EV_MULTIPLICITY 942#if EV_MULTIPLICITY
675struct ev_loop * 943struct ev_loop *
676ev_loop_new (int methods) 944ev_loop_new (unsigned int flags)
677{ 945{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 947
948 memset (loop, 0, sizeof (struct ev_loop));
949
680 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
681 951
682 if (ev_method (EV_A)) 952 if (ev_backend (EV_A))
683 return loop; 953 return loop;
684 954
685 return 0; 955 return 0;
686} 956}
687 957
688void 958void
689ev_loop_destroy (EV_P) 959ev_loop_destroy (EV_P)
690{ 960{
691 loop_destroy (EV_A); 961 loop_destroy (EV_A);
692 free (loop); 962 ev_free (loop);
693} 963}
694 964
695void 965void
696ev_loop_fork (EV_P) 966ev_loop_fork (EV_P)
697{ 967{
698 loop_fork (EV_A); 968 postfork = 1;
699} 969}
700 970
701#endif 971#endif
702 972
703#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 974struct ev_loop *
975ev_default_loop_init (unsigned int flags)
708#else 976#else
709static int default_loop;
710
711int 977int
978ev_default_loop (unsigned int flags)
712#endif 979#endif
713ev_default_loop (int methods)
714{ 980{
715 if (sigpipe [0] == sigpipe [1]) 981 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe)) 982 if (pipe (sigpipe))
717 return 0; 983 return 0;
718 984
719 if (!default_loop) 985 if (!ev_default_loop_ptr)
720 { 986 {
721#if EV_MULTIPLICITY 987#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 989#else
724 default_loop = 1; 990 ev_default_loop_ptr = 1;
725#endif 991#endif
726 992
727 loop_init (EV_A_ methods); 993 loop_init (EV_A_ flags);
728 994
729 if (ev_method (EV_A)) 995 if (ev_backend (EV_A))
730 { 996 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 997 siginit (EV_A);
734 998
735#ifndef WIN32 999#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 1000 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 1001 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 1002 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1003 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 1004#endif
741 } 1005 }
742 else 1006 else
743 default_loop = 0; 1007 ev_default_loop_ptr = 0;
744 } 1008 }
745 1009
746 return default_loop; 1010 return ev_default_loop_ptr;
747} 1011}
748 1012
749void 1013void
750ev_default_destroy (void) 1014ev_default_destroy (void)
751{ 1015{
752#if EV_MULTIPLICITY 1016#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 1017 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 1018#endif
755 1019
1020#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 1021 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 1022 ev_signal_stop (EV_A_ &childev);
1023#endif
758 1024
759 ev_ref (EV_A); /* signal watcher */ 1025 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 1026 ev_io_stop (EV_A_ &sigev);
761 1027
762 close (sigpipe [0]); sigpipe [0] = 0; 1028 close (sigpipe [0]); sigpipe [0] = 0;
767 1033
768void 1034void
769ev_default_fork (void) 1035ev_default_fork (void)
770{ 1036{
771#if EV_MULTIPLICITY 1037#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1038 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1039#endif
774 1040
775 loop_fork (EV_A); 1041 if (backend)
776 1042 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1043}
785 1044
786/*****************************************************************************/ 1045/*****************************************************************************/
787 1046
788static void 1047static int
1048any_pending (EV_P)
1049{
1050 int pri;
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057}
1058
1059inline void
789call_pending (EV_P) 1060call_pending (EV_P)
790{ 1061{
791 int pri; 1062 int pri;
792 1063
793 for (pri = NUMPRI; pri--; ) 1064 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1065 while (pendingcnt [pri])
795 { 1066 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1068
798 if (p->w) 1069 if (expect_true (p->w))
799 { 1070 {
800 p->w->pending = 0; 1071 p->w->pending = 0;
801 1072 EV_CB_INVOKE (p->w, p->events);
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
803 } 1073 }
804 } 1074 }
805} 1075}
806 1076
807static void 1077inline void
808timers_reify (EV_P) 1078timers_reify (EV_P)
809{ 1079{
810 while (timercnt && ((WT)timers [0])->at <= mn_now) 1080 while (timercnt && ((WT)timers [0])->at <= mn_now)
811 { 1081 {
812 struct ev_timer *w = timers [0]; 1082 struct ev_timer *w = timers [0];
815 1085
816 /* first reschedule or stop timer */ 1086 /* first reschedule or stop timer */
817 if (w->repeat) 1087 if (w->repeat)
818 { 1088 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090
820 ((WT)w)->at = mn_now + w->repeat; 1091 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
821 downheap ((WT *)timers, timercnt, 0); 1095 downheap ((WT *)timers, timercnt, 0);
822 } 1096 }
823 else 1097 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825 1099
826 event (EV_A_ (W)w, EV_TIMEOUT); 1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
827 } 1101 }
828} 1102}
829 1103
830static void 1104#if EV_PERIODICS
1105inline void
831periodics_reify (EV_P) 1106periodics_reify (EV_P)
832{ 1107{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
834 { 1109 {
835 struct ev_periodic *w = periodics [0]; 1110 struct ev_periodic *w = periodics [0];
836 1111
837 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1112 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838 1113
839 /* first reschedule or stop timer */ 1114 /* first reschedule or stop timer */
840 if (w->interval) 1115 if (w->reschedule_cb)
841 { 1116 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else if (w->interval)
1122 {
842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0); 1125 downheap ((WT *)periodics, periodiccnt, 0);
845 } 1126 }
846 else 1127 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
848 1129
849 event (EV_A_ (W)w, EV_PERIODIC); 1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
850 } 1131 }
851} 1132}
852 1133
853static void 1134static void
854periodics_reschedule (EV_P) 1135periodics_reschedule (EV_P)
858 /* adjust periodics after time jump */ 1139 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i) 1140 for (i = 0; i < periodiccnt; ++i)
860 { 1141 {
861 struct ev_periodic *w = periodics [i]; 1142 struct ev_periodic *w = periodics [i];
862 1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
863 if (w->interval) 1146 else if (w->interval)
864 {
865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
866
867 if (fabs (diff) >= 1e-4)
868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
871
872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
874 }
875 } 1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
876} 1153}
1154#endif
877 1155
878inline int 1156inline int
879time_update_monotonic (EV_P) 1157time_update_monotonic (EV_P)
880{ 1158{
881 mn_now = get_clock (); 1159 mn_now = get_clock ();
882 1160
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 { 1162 {
885 rt_now = rtmn_diff + mn_now; 1163 ev_rt_now = rtmn_diff + mn_now;
886 return 0; 1164 return 0;
887 } 1165 }
888 else 1166 else
889 { 1167 {
890 now_floor = mn_now; 1168 now_floor = mn_now;
891 rt_now = ev_time (); 1169 ev_rt_now = ev_time ();
892 return 1; 1170 return 1;
893 } 1171 }
894} 1172}
895 1173
896static void 1174inline void
897time_update (EV_P) 1175time_update (EV_P)
898{ 1176{
899 int i; 1177 int i;
900 1178
901#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
905 { 1183 {
906 ev_tstamp odiff = rtmn_diff; 1184 ev_tstamp odiff = rtmn_diff;
907 1185
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 { 1187 {
910 rtmn_diff = rt_now - mn_now; 1188 rtmn_diff = ev_rt_now - mn_now;
911 1189
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */ 1191 return; /* all is well */
914 1192
915 rt_now = ev_time (); 1193 ev_rt_now = ev_time ();
916 mn_now = get_clock (); 1194 mn_now = get_clock ();
917 now_floor = mn_now; 1195 now_floor = mn_now;
918 } 1196 }
919 1197
1198# if EV_PERIODICS
920 periodics_reschedule (EV_A); 1199 periodics_reschedule (EV_A);
1200# endif
921 /* no timer adjustment, as the monotonic clock doesn't jump */ 1201 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
923 } 1203 }
924 } 1204 }
925 else 1205 else
926#endif 1206#endif
927 { 1207 {
928 rt_now = ev_time (); 1208 ev_rt_now = ev_time ();
929 1209
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 { 1211 {
1212#if EV_PERIODICS
932 periodics_reschedule (EV_A); 1213 periodics_reschedule (EV_A);
1214#endif
933 1215
934 /* adjust timers. this is easy, as the offset is the same for all */ 1216 /* adjust timers. this is easy, as the offset is the same for all */
935 for (i = 0; i < timercnt; ++i) 1217 for (i = 0; i < timercnt; ++i)
936 ((WT)timers [i])->at += rt_now - mn_now; 1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
937 } 1219 }
938 1220
939 mn_now = rt_now; 1221 mn_now = ev_rt_now;
940 } 1222 }
941} 1223}
942 1224
943void 1225void
944ev_ref (EV_P) 1226ev_ref (EV_P)
958ev_loop (EV_P_ int flags) 1240ev_loop (EV_P_ int flags)
959{ 1241{
960 double block; 1242 double block;
961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
962 1244
963 do 1245 while (activecnt)
964 { 1246 {
965 /* queue check watchers (and execute them) */ 1247 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt)) 1248 if (expect_false (preparecnt))
967 { 1249 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A); 1251 call_pending (EV_A);
970 } 1252 }
971 1253
1254 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork))
1256 loop_fork (EV_A);
1257
972 /* update fd-related kernel structures */ 1258 /* update fd-related kernel structures */
973 fd_reify (EV_A); 1259 fd_reify (EV_A);
974 1260
975 /* calculate blocking time */ 1261 /* calculate blocking time */
976 1262
977 /* we only need this for !monotonic clockor timers, but as we basically 1263 /* we only need this for !monotonic clock or timers, but as we basically
978 always have timers, we just calculate it always */ 1264 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic)) 1266 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A); 1267 time_update_monotonic (EV_A);
982 else 1268 else
983#endif 1269#endif
984 { 1270 {
985 rt_now = ev_time (); 1271 ev_rt_now = ev_time ();
986 mn_now = rt_now; 1272 mn_now = ev_rt_now;
987 } 1273 }
988 1274
989 if (flags & EVLOOP_NONBLOCK || idlecnt) 1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 block = 0.; 1276 block = 0.;
991 else 1277 else
992 { 1278 {
993 block = MAX_BLOCKTIME; 1279 block = MAX_BLOCKTIME;
994 1280
995 if (timercnt) 1281 if (timercnt)
996 { 1282 {
997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
998 if (block > to) block = to; 1284 if (block > to) block = to;
999 } 1285 }
1000 1286
1287#if EV_PERIODICS
1001 if (periodiccnt) 1288 if (periodiccnt)
1002 { 1289 {
1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1004 if (block > to) block = to; 1291 if (block > to) block = to;
1005 } 1292 }
1293#endif
1006 1294
1007 if (block < 0.) block = 0.; 1295 if (expect_false (block < 0.)) block = 0.;
1008 } 1296 }
1009 1297
1010 method_poll (EV_A_ block); 1298 backend_poll (EV_A_ block);
1011 1299
1012 /* update rt_now, do magic */ 1300 /* update ev_rt_now, do magic */
1013 time_update (EV_A); 1301 time_update (EV_A);
1014 1302
1015 /* queue pending timers and reschedule them */ 1303 /* queue pending timers and reschedule them */
1016 timers_reify (EV_A); /* relative timers called last */ 1304 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS
1017 periodics_reify (EV_A); /* absolute timers called first */ 1306 periodics_reify (EV_A); /* absolute timers called first */
1307#endif
1018 1308
1019 /* queue idle watchers unless io or timers are pending */ 1309 /* queue idle watchers unless io or timers are pending */
1020 if (!pendingcnt) 1310 if (idlecnt && !any_pending (EV_A))
1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1022 1312
1023 /* queue check watchers, to be executed first */ 1313 /* queue check watchers, to be executed first */
1024 if (checkcnt) 1314 if (expect_false (checkcnt))
1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1026 1316
1027 call_pending (EV_A); 1317 call_pending (EV_A);
1318
1319 if (expect_false (loop_done))
1320 break;
1028 } 1321 }
1029 while (activecnt && !loop_done);
1030 1322
1031 if (loop_done != 2) 1323 if (loop_done != 2)
1032 loop_done = 0; 1324 loop_done = 0;
1033} 1325}
1034 1326
1094void 1386void
1095ev_io_start (EV_P_ struct ev_io *w) 1387ev_io_start (EV_P_ struct ev_io *w)
1096{ 1388{
1097 int fd = w->fd; 1389 int fd = w->fd;
1098 1390
1099 if (ev_is_active (w)) 1391 if (expect_false (ev_is_active (w)))
1100 return; 1392 return;
1101 1393
1102 assert (("ev_io_start called with negative fd", fd >= 0)); 1394 assert (("ev_io_start called with negative fd", fd >= 0));
1103 1395
1104 ev_start (EV_A_ (W)w, 1); 1396 ev_start (EV_A_ (W)w, 1);
1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1106 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1398 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1107 1399
1108 fd_change (EV_A_ fd); 1400 fd_change (EV_A_ fd);
1109} 1401}
1110 1402
1111void 1403void
1112ev_io_stop (EV_P_ struct ev_io *w) 1404ev_io_stop (EV_P_ struct ev_io *w)
1113{ 1405{
1114 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1116 return; 1408 return;
1409
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1117 1411
1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1119 ev_stop (EV_A_ (W)w); 1413 ev_stop (EV_A_ (W)w);
1120 1414
1121 fd_change (EV_A_ w->fd); 1415 fd_change (EV_A_ w->fd);
1122} 1416}
1123 1417
1124void 1418void
1125ev_timer_start (EV_P_ struct ev_timer *w) 1419ev_timer_start (EV_P_ struct ev_timer *w)
1126{ 1420{
1127 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1128 return; 1422 return;
1129 1423
1130 ((WT)w)->at += mn_now; 1424 ((WT)w)->at += mn_now;
1131 1425
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133 1427
1134 ev_start (EV_A_ (W)w, ++timercnt); 1428 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, ); 1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1136 timers [timercnt - 1] = w; 1430 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1); 1431 upheap ((WT *)timers, timercnt - 1);
1138 1432
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140} 1434}
1141 1435
1142void 1436void
1143ev_timer_stop (EV_P_ struct ev_timer *w) 1437ev_timer_stop (EV_P_ struct ev_timer *w)
1144{ 1438{
1145 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 1440 if (expect_false (!ev_is_active (w)))
1147 return; 1441 return;
1148 1442
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150 1444
1151 if (((W)w)->active < timercnt--) 1445 if (expect_true (((W)w)->active < timercnt--))
1152 { 1446 {
1153 timers [((W)w)->active - 1] = timers [timercnt]; 1447 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1155 } 1449 }
1156 1450
1157 ((WT)w)->at = w->repeat; 1451 ((WT)w)->at -= mn_now;
1158 1452
1159 ev_stop (EV_A_ (W)w); 1453 ev_stop (EV_A_ (W)w);
1160} 1454}
1161 1455
1162void 1456void
1165 if (ev_is_active (w)) 1459 if (ev_is_active (w))
1166 { 1460 {
1167 if (w->repeat) 1461 if (w->repeat)
1168 { 1462 {
1169 ((WT)w)->at = mn_now + w->repeat; 1463 ((WT)w)->at = mn_now + w->repeat;
1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1171 } 1465 }
1172 else 1466 else
1173 ev_timer_stop (EV_A_ w); 1467 ev_timer_stop (EV_A_ w);
1174 } 1468 }
1175 else if (w->repeat) 1469 else if (w->repeat)
1470 {
1471 w->at = w->repeat;
1176 ev_timer_start (EV_A_ w); 1472 ev_timer_start (EV_A_ w);
1473 }
1177} 1474}
1178 1475
1476#if EV_PERIODICS
1179void 1477void
1180ev_periodic_start (EV_P_ struct ev_periodic *w) 1478ev_periodic_start (EV_P_ struct ev_periodic *w)
1181{ 1479{
1182 if (ev_is_active (w)) 1480 if (expect_false (ev_is_active (w)))
1183 return; 1481 return;
1184 1482
1483 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval)
1486 {
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */ 1488 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 }
1190 1491
1191 ev_start (EV_A_ (W)w, ++periodiccnt); 1492 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 array_needsize (periodics, periodicmax, periodiccnt, ); 1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1193 periodics [periodiccnt - 1] = w; 1494 periodics [periodiccnt - 1] = w;
1194 upheap ((WT *)periodics, periodiccnt - 1); 1495 upheap ((WT *)periodics, periodiccnt - 1);
1195 1496
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197} 1498}
1198 1499
1199void 1500void
1200ev_periodic_stop (EV_P_ struct ev_periodic *w) 1501ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201{ 1502{
1202 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1203 if (!ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1204 return; 1505 return;
1205 1506
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207 1508
1208 if (((W)w)->active < periodiccnt--) 1509 if (expect_true (((W)w)->active < periodiccnt--))
1209 { 1510 {
1210 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1511 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1212 } 1513 }
1213 1514
1214 ev_stop (EV_A_ (W)w); 1515 ev_stop (EV_A_ (W)w);
1215} 1516}
1216 1517
1217void 1518void
1519ev_periodic_again (EV_P_ struct ev_periodic *w)
1520{
1521 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w);
1524}
1525#endif
1526
1527void
1218ev_idle_start (EV_P_ struct ev_idle *w) 1528ev_idle_start (EV_P_ struct ev_idle *w)
1219{ 1529{
1220 if (ev_is_active (w)) 1530 if (expect_false (ev_is_active (w)))
1221 return; 1531 return;
1222 1532
1223 ev_start (EV_A_ (W)w, ++idlecnt); 1533 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, ); 1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1225 idles [idlecnt - 1] = w; 1535 idles [idlecnt - 1] = w;
1226} 1536}
1227 1537
1228void 1538void
1229ev_idle_stop (EV_P_ struct ev_idle *w) 1539ev_idle_stop (EV_P_ struct ev_idle *w)
1230{ 1540{
1231 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w)) 1542 if (expect_false (!ev_is_active (w)))
1233 return; 1543 return;
1234 1544
1235 idles [((W)w)->active - 1] = idles [--idlecnt]; 1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w); 1546 ev_stop (EV_A_ (W)w);
1237} 1547}
1238 1548
1239void 1549void
1240ev_prepare_start (EV_P_ struct ev_prepare *w) 1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{ 1551{
1242 if (ev_is_active (w)) 1552 if (expect_false (ev_is_active (w)))
1243 return; 1553 return;
1244 1554
1245 ev_start (EV_A_ (W)w, ++preparecnt); 1555 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, ); 1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1247 prepares [preparecnt - 1] = w; 1557 prepares [preparecnt - 1] = w;
1248} 1558}
1249 1559
1250void 1560void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w) 1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{ 1562{
1253 ev_clear_pending (EV_A_ (W)w); 1563 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w)) 1564 if (expect_false (!ev_is_active (w)))
1255 return; 1565 return;
1256 1566
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w); 1568 ev_stop (EV_A_ (W)w);
1259} 1569}
1260 1570
1261void 1571void
1262ev_check_start (EV_P_ struct ev_check *w) 1572ev_check_start (EV_P_ struct ev_check *w)
1263{ 1573{
1264 if (ev_is_active (w)) 1574 if (expect_false (ev_is_active (w)))
1265 return; 1575 return;
1266 1576
1267 ev_start (EV_A_ (W)w, ++checkcnt); 1577 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, ); 1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1269 checks [checkcnt - 1] = w; 1579 checks [checkcnt - 1] = w;
1270} 1580}
1271 1581
1272void 1582void
1273ev_check_stop (EV_P_ struct ev_check *w) 1583ev_check_stop (EV_P_ struct ev_check *w)
1274{ 1584{
1275 ev_clear_pending (EV_A_ (W)w); 1585 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w)) 1586 if (expect_false (!ev_is_active (w)))
1277 return; 1587 return;
1278 1588
1279 checks [((W)w)->active - 1] = checks [--checkcnt]; 1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w); 1590 ev_stop (EV_A_ (W)w);
1281} 1591}
1286 1596
1287void 1597void
1288ev_signal_start (EV_P_ struct ev_signal *w) 1598ev_signal_start (EV_P_ struct ev_signal *w)
1289{ 1599{
1290#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1292#endif 1602#endif
1293 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1294 return; 1604 return;
1295 1605
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297 1607
1298 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1299 array_needsize (signals, signalmax, w->signum, signals_init); 1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1301 1611
1302 if (!((WL)w)->next) 1612 if (!((WL)w)->next)
1303 { 1613 {
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1304 struct sigaction sa; 1617 struct sigaction sa;
1305 sa.sa_handler = sighandler; 1618 sa.sa_handler = sighandler;
1306 sigfillset (&sa.sa_mask); 1619 sigfillset (&sa.sa_mask);
1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1308 sigaction (w->signum, &sa, 0); 1621 sigaction (w->signum, &sa, 0);
1622#endif
1309 } 1623 }
1310} 1624}
1311 1625
1312void 1626void
1313ev_signal_stop (EV_P_ struct ev_signal *w) 1627ev_signal_stop (EV_P_ struct ev_signal *w)
1314{ 1628{
1315 ev_clear_pending (EV_A_ (W)w); 1629 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1630 if (expect_false (!ev_is_active (w)))
1317 return; 1631 return;
1318 1632
1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1320 ev_stop (EV_A_ (W)w); 1634 ev_stop (EV_A_ (W)w);
1321 1635
1325 1639
1326void 1640void
1327ev_child_start (EV_P_ struct ev_child *w) 1641ev_child_start (EV_P_ struct ev_child *w)
1328{ 1642{
1329#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1331#endif 1645#endif
1332 if (ev_is_active (w)) 1646 if (expect_false (ev_is_active (w)))
1333 return; 1647 return;
1334 1648
1335 ev_start (EV_A_ (W)w, 1); 1649 ev_start (EV_A_ (W)w, 1);
1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1337} 1651}
1338 1652
1339void 1653void
1340ev_child_stop (EV_P_ struct ev_child *w) 1654ev_child_stop (EV_P_ struct ev_child *w)
1341{ 1655{
1342 ev_clear_pending (EV_A_ (W)w); 1656 ev_clear_pending (EV_A_ (W)w);
1343 if (ev_is_active (w)) 1657 if (expect_false (!ev_is_active (w)))
1344 return; 1658 return;
1345 1659
1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1347 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1348} 1662}
1363 void (*cb)(int revents, void *arg) = once->cb; 1677 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg; 1678 void *arg = once->arg;
1365 1679
1366 ev_io_stop (EV_A_ &once->io); 1680 ev_io_stop (EV_A_ &once->io);
1367 ev_timer_stop (EV_A_ &once->to); 1681 ev_timer_stop (EV_A_ &once->to);
1368 free (once); 1682 ev_free (once);
1369 1683
1370 cb (revents, arg); 1684 cb (revents, arg);
1371} 1685}
1372 1686
1373static void 1687static void
1383} 1697}
1384 1698
1385void 1699void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387{ 1701{
1388 struct ev_once *once = malloc (sizeof (struct ev_once)); 1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1389 1703
1390 if (!once) 1704 if (expect_false (!once))
1705 {
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else 1707 return;
1393 { 1708 }
1709
1394 once->cb = cb; 1710 once->cb = cb;
1395 once->arg = arg; 1711 once->arg = arg;
1396 1712
1397 ev_watcher_init (&once->io, once_cb_io); 1713 ev_init (&once->io, once_cb_io);
1398 if (fd >= 0) 1714 if (fd >= 0)
1399 { 1715 {
1400 ev_io_set (&once->io, fd, events); 1716 ev_io_set (&once->io, fd, events);
1401 ev_io_start (EV_A_ &once->io); 1717 ev_io_start (EV_A_ &once->io);
1402 } 1718 }
1403 1719
1404 ev_watcher_init (&once->to, once_cb_to); 1720 ev_init (&once->to, once_cb_to);
1405 if (timeout >= 0.) 1721 if (timeout >= 0.)
1406 { 1722 {
1407 ev_timer_set (&once->to, timeout, 0.); 1723 ev_timer_set (&once->to, timeout, 0.);
1408 ev_timer_start (EV_A_ &once->to); 1724 ev_timer_start (EV_A_ &once->to);
1409 }
1410 } 1725 }
1411} 1726}
1412 1727
1728#ifdef __cplusplus
1729}
1730#endif
1731

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines