ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
150#if WIN32 213#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 214# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 215#endif
155 216
156/*****************************************************************************/ 217/*****************************************************************************/
157 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
158typedef struct 267typedef struct
159{ 268{
160 struct ev_watcher_list *head; 269 WL head;
161 unsigned char events; 270 unsigned char events;
162 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
163} ANFD; 275} ANFD;
164 276
165typedef struct 277typedef struct
166{ 278{
167 W w; 279 W w;
168 int events; 280 int events;
169} ANPENDING; 281} ANPENDING;
170 282
171#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
172 284
173struct ev_loop 285 struct ev_loop
174{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
175# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
176# include "ev_vars.h" 290 #include "ev_vars.h"
177};
178# undef VAR 291 #undef VAR
292 };
179# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
180 297
181#else 298#else
182 299
300 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 302 #include "ev_vars.h"
185# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
186 306
187#endif 307#endif
188 308
189/*****************************************************************************/ 309/*****************************************************************************/
190 310
191inline ev_tstamp 311ev_tstamp
192ev_time (void) 312ev_time (void)
193{ 313{
194#if EV_USE_REALTIME 314#if EV_USE_REALTIME
195 struct timespec ts; 315 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 335#endif
216 336
217 return ev_time (); 337 return ev_time ();
218} 338}
219 339
340#if EV_MULTIPLICITY
220ev_tstamp 341ev_tstamp
221ev_now (EV_P) 342ev_now (EV_P)
222{ 343{
223 return rt_now; 344 return ev_rt_now;
224} 345}
346#endif
225 347
226#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
227 349
228#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
230 { \ 352 { \
231 int newcnt = cur; \ 353 int newcnt = cur; \
232 do \ 354 do \
233 { \ 355 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 357 } \
236 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
237 \ 359 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 362 cur = newcnt; \
241 } 363 }
242 364
243#define array_slim(stem) \ 365#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 367 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 371 }
250 372
251#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 375
254/*****************************************************************************/ 376/*****************************************************************************/
255 377
256static void 378static void
257anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
264 386
265 ++base; 387 ++base;
266 } 388 }
267} 389}
268 390
269static void 391void
270event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
271{ 393{
272 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
273 { 397 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 399 return;
276 } 400 }
277 401
278 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 406}
283 407
284static void 408static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 410{
287 int i; 411 int i;
288 412
289 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
291} 415}
292 416
293static void 417inline void
294fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
295{ 419{
296 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 421 struct ev_io *w;
298 422
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 424 {
301 int ev = w->events & events; 425 int ev = w->events & revents;
302 426
303 if (ev) 427 if (ev)
304 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
305 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
306} 436}
307 437
308/*****************************************************************************/ 438/*****************************************************************************/
309 439
310static void 440inline void
311fd_reify (EV_P) 441fd_reify (EV_P)
312{ 442{
313 int i; 443 int i;
314 444
315 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
321 int events = 0; 451 int events = 0;
322 452
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events; 454 events |= w->events;
325 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
326 anfd->reify = 0; 465 anfd->reify = 0;
327 466
328 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events; 468 anfd->events = events;
330 } 469 }
331 470
332 fdchangecnt = 0; 471 fdchangecnt = 0;
333} 472}
334 473
335static void 474static void
336fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
337{ 476{
338 if (anfds [fd].reify || fdchangecnt < 0) 477 if (expect_false (anfds [fd].reify))
339 return; 478 return;
340 479
341 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
342 481
343 ++fdchangecnt; 482 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
345 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
346} 485}
347 486
348static void 487static void
349fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
351 struct ev_io *w; 490 struct ev_io *w;
352 491
353 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (struct ev_io *)anfds [fd].head))
354 { 493 {
355 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 496 }
497}
498
499inline int
500fd_valid (int fd)
501{
502#ifdef _WIN32
503 return _get_osfhandle (fd) != -1;
504#else
505 return fcntl (fd, F_GETFD) != -1;
506#endif
358} 507}
359 508
360/* called on EBADF to verify fds */ 509/* called on EBADF to verify fds */
361static void 510static void
362fd_ebadf (EV_P) 511fd_ebadf (EV_P)
363{ 512{
364 int fd; 513 int fd;
365 514
366 for (fd = 0; fd < anfdmax; ++fd) 515 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 516 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 517 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 518 fd_kill (EV_A_ fd);
370} 519}
371 520
372/* called on ENOMEM in select/poll to kill some fds and retry */ 521/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 522static void
376 int fd; 525 int fd;
377 526
378 for (fd = anfdmax; fd--; ) 527 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 528 if (anfds [fd].events)
380 { 529 {
381 close (fd);
382 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
383 return; 531 return;
384 } 532 }
385} 533}
386 534
387/* susually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
388static void 536static void
389fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
390{ 538{
391 int fd; 539 int fd;
392 540
440 588
441 heap [k] = w; 589 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
443} 591}
444 592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
445/*****************************************************************************/ 600/*****************************************************************************/
446 601
447typedef struct 602typedef struct
448{ 603{
449 struct ev_watcher_list *head; 604 WL head;
450 sig_atomic_t volatile gotsig; 605 sig_atomic_t volatile gotsig;
451} ANSIG; 606} ANSIG;
452 607
453static ANSIG *signals; 608static ANSIG *signals;
454static int signalmax; 609static int signalmax;
470} 625}
471 626
472static void 627static void
473sighandler (int signum) 628sighandler (int signum)
474{ 629{
475#if WIN32 630#if _WIN32
476 signal (signum, sighandler); 631 signal (signum, sighandler);
477#endif 632#endif
478 633
479 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
480 635
485 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
486 errno = old_errno; 641 errno = old_errno;
487 } 642 }
488} 643}
489 644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
490static void 665static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ struct ev_io *iow, int revents)
492{ 667{
493 struct ev_watcher_list *w;
494 int signum; 668 int signum;
495 669
496 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
497 gotsig = 0; 671 gotsig = 0;
498 672
499 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
501 { 675 ev_feed_signal_event (EV_A_ signum + 1);
502 signals [signum].gotsig = 0; 676}
503 677
504 for (w = signals [signum].head; w; w = w->next) 678static void
505 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
506 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
507} 688}
508 689
509static void 690static void
510siginit (EV_P) 691siginit (EV_P)
511{ 692{
512#ifndef WIN32 693 fd_intern (sigpipe [0]);
513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
515
516 /* rather than sort out wether we really need nb, set it */
517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
520 695
521 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
522 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 699}
525 700
526/*****************************************************************************/ 701/*****************************************************************************/
527 702
528#ifndef WIN32
529
530static struct ev_child *childs [PID_HASHSIZE]; 703static struct ev_child *childs [PID_HASHSIZE];
704
705#ifndef _WIN32
706
531static struct ev_signal childev; 707static struct ev_signal childev;
532 708
533#ifndef WCONTINUED 709#ifndef WCONTINUED
534# define WCONTINUED 0 710# define WCONTINUED 0
535#endif 711#endif
543 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
544 { 720 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid; 722 w->rpid = pid;
547 w->rstatus = status; 723 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
549 } 725 }
550} 726}
551 727
552static void 728static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ struct ev_signal *sw, int revents)
555 int pid, status; 731 int pid, status;
556 732
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 734 {
559 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
560 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 738
562 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
564 } 741 }
565} 742}
566 743
567#endif 744#endif
568 745
569/*****************************************************************************/ 746/*****************************************************************************/
570 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
571#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
572# include "ev_kqueue.c" 752# include "ev_kqueue.c"
573#endif 753#endif
574#if EV_USE_EPOLL 754#if EV_USE_EPOLL
575# include "ev_epoll.c" 755# include "ev_epoll.c"
595 775
596/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
597static int 777static int
598enable_secure (void) 778enable_secure (void)
599{ 779{
600#ifdef WIN32 780#ifdef _WIN32
601 return 0; 781 return 0;
602#else 782#else
603 return getuid () != geteuid () 783 return getuid () != geteuid ()
604 || getgid () != getegid (); 784 || getgid () != getegid ();
605#endif 785#endif
606} 786}
607 787
608int 788unsigned int
609ev_method (EV_P) 789ev_supported_backends (void)
610{ 790{
611 return method; 791 unsigned int flags = 0;
612}
613 792
614static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
615loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
616{ 804{
617 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_backend (EV_P)
822{
823 return backend;
824}
825
826static void
827loop_init (EV_P_ unsigned int flags)
828{
829 if (!backend)
618 { 830 {
619#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
620 { 832 {
621 struct timespec ts; 833 struct timespec ts;
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 834 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 835 have_monotonic = 1;
624 } 836 }
625#endif 837#endif
626 838
627 rt_now = ev_time (); 839 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 840 mn_now = get_clock ();
629 now_floor = mn_now; 841 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 842 rtmn_diff = ev_rt_now - mn_now;
631 843
632 if (methods == EVMETHOD_AUTO) 844 if (!(flags & EVFLAG_NOENV)
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 845 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 847 flags = atoi (getenv ("LIBEV_FLAGS"));
635 else
636 methods = EVMETHOD_ANY;
637 848
638 method = 0; 849 if (!(flags & 0x0000ffffUL))
639#if EV_USE_WIN32 850 flags |= ev_recommended_backends ();
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 851
852 backend = 0;
853#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
641#endif 855#endif
642#if EV_USE_KQUEUE 856#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
644#endif 858#endif
645#if EV_USE_EPOLL 859#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 860 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
647#endif 861#endif
648#if EV_USE_POLL 862#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 863 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
650#endif 864#endif
651#if EV_USE_SELECT 865#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
653#endif 867#endif
654 }
655}
656 868
657void 869 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI);
871 }
872}
873
874static void
658loop_destroy (EV_P) 875loop_destroy (EV_P)
659{ 876{
660 int i; 877 int i;
661 878
662#if EV_USE_WIN32 879#if EV_USE_PORT
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
664#endif 881#endif
665#if EV_USE_KQUEUE 882#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
667#endif 884#endif
668#if EV_USE_EPOLL 885#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 886 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
670#endif 887#endif
671#if EV_USE_POLL 888#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 889 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
673#endif 890#endif
674#if EV_USE_SELECT 891#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
676#endif 893#endif
677 894
678 for (i = NUMPRI; i--; ) 895 for (i = NUMPRI; i--; )
679 array_free (pending, [i]); 896 array_free (pending, [i]);
680 897
898 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 899 array_free (fdchange, EMPTY0);
682 array_free (timer, ); 900 array_free (timer, EMPTY0);
901#if EV_PERIODICS
683 array_free (periodic, ); 902 array_free (periodic, EMPTY0);
903#endif
684 array_free (idle, ); 904 array_free (idle, EMPTY0);
685 array_free (prepare, ); 905 array_free (prepare, EMPTY0);
686 array_free (check, ); 906 array_free (check, EMPTY0);
687 907
688 method = 0; 908 backend = 0;
689 /*TODO*/
690} 909}
691 910
692void 911static void
693loop_fork (EV_P) 912loop_fork (EV_P)
694{ 913{
695 /*TODO*/ 914#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif
917#if EV_USE_KQUEUE
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif
696#if EV_USE_EPOLL 920#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
698#endif 922#endif
699#if EV_USE_KQUEUE 923
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 924 if (ev_is_active (&sigev))
701#endif 925 {
926 /* default loop */
927
928 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A);
937 }
938
939 postfork = 0;
702} 940}
703 941
704#if EV_MULTIPLICITY 942#if EV_MULTIPLICITY
705struct ev_loop * 943struct ev_loop *
706ev_loop_new (int methods) 944ev_loop_new (unsigned int flags)
707{ 945{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
709 947
948 memset (loop, 0, sizeof (struct ev_loop));
949
710 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
711 951
712 if (ev_method (EV_A)) 952 if (ev_backend (EV_A))
713 return loop; 953 return loop;
714 954
715 return 0; 955 return 0;
716} 956}
717 957
718void 958void
719ev_loop_destroy (EV_P) 959ev_loop_destroy (EV_P)
720{ 960{
721 loop_destroy (EV_A); 961 loop_destroy (EV_A);
722 free (loop); 962 ev_free (loop);
723} 963}
724 964
725void 965void
726ev_loop_fork (EV_P) 966ev_loop_fork (EV_P)
727{ 967{
728 loop_fork (EV_A); 968 postfork = 1;
729} 969}
730 970
731#endif 971#endif
732 972
733#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 974struct ev_loop *
975ev_default_loop_init (unsigned int flags)
738#else 976#else
739static int default_loop;
740
741int 977int
978ev_default_loop (unsigned int flags)
742#endif 979#endif
743ev_default_loop (int methods)
744{ 980{
745 if (sigpipe [0] == sigpipe [1]) 981 if (sigpipe [0] == sigpipe [1])
746 if (pipe (sigpipe)) 982 if (pipe (sigpipe))
747 return 0; 983 return 0;
748 984
749 if (!default_loop) 985 if (!ev_default_loop_ptr)
750 { 986 {
751#if EV_MULTIPLICITY 987#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct; 988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
753#else 989#else
754 default_loop = 1; 990 ev_default_loop_ptr = 1;
755#endif 991#endif
756 992
757 loop_init (EV_A_ methods); 993 loop_init (EV_A_ flags);
758 994
759 if (ev_method (EV_A)) 995 if (ev_backend (EV_A))
760 { 996 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A); 997 siginit (EV_A);
764 998
765#ifndef WIN32 999#ifndef _WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 1000 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 1001 ev_set_priority (&childev, EV_MAXPRI);
768 ev_signal_start (EV_A_ &childev); 1002 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1003 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif 1004#endif
771 } 1005 }
772 else 1006 else
773 default_loop = 0; 1007 ev_default_loop_ptr = 0;
774 } 1008 }
775 1009
776 return default_loop; 1010 return ev_default_loop_ptr;
777} 1011}
778 1012
779void 1013void
780ev_default_destroy (void) 1014ev_default_destroy (void)
781{ 1015{
782#if EV_MULTIPLICITY 1016#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 1017 struct ev_loop *loop = ev_default_loop_ptr;
784#endif 1018#endif
785 1019
1020#ifndef _WIN32
786 ev_ref (EV_A); /* child watcher */ 1021 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 1022 ev_signal_stop (EV_A_ &childev);
1023#endif
788 1024
789 ev_ref (EV_A); /* signal watcher */ 1025 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev); 1026 ev_io_stop (EV_A_ &sigev);
791 1027
792 close (sigpipe [0]); sigpipe [0] = 0; 1028 close (sigpipe [0]); sigpipe [0] = 0;
797 1033
798void 1034void
799ev_default_fork (void) 1035ev_default_fork (void)
800{ 1036{
801#if EV_MULTIPLICITY 1037#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 1038 struct ev_loop *loop = ev_default_loop_ptr;
803#endif 1039#endif
804 1040
805 loop_fork (EV_A); 1041 if (backend)
806 1042 postfork = 1;
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 1043}
815 1044
816/*****************************************************************************/ 1045/*****************************************************************************/
817 1046
818static void 1047static int
1048any_pending (EV_P)
1049{
1050 int pri;
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057}
1058
1059inline void
819call_pending (EV_P) 1060call_pending (EV_P)
820{ 1061{
821 int pri; 1062 int pri;
822 1063
823 for (pri = NUMPRI; pri--; ) 1064 for (pri = NUMPRI; pri--; )
824 while (pendingcnt [pri]) 1065 while (pendingcnt [pri])
825 { 1066 {
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 1068
828 if (p->w) 1069 if (expect_true (p->w))
829 { 1070 {
830 p->w->pending = 0; 1071 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 1072 EV_CB_INVOKE (p->w, p->events);
832 } 1073 }
833 } 1074 }
834} 1075}
835 1076
836static void 1077inline void
837timers_reify (EV_P) 1078timers_reify (EV_P)
838{ 1079{
839 while (timercnt && ((WT)timers [0])->at <= mn_now) 1080 while (timercnt && ((WT)timers [0])->at <= mn_now)
840 { 1081 {
841 struct ev_timer *w = timers [0]; 1082 struct ev_timer *w = timers [0];
844 1085
845 /* first reschedule or stop timer */ 1086 /* first reschedule or stop timer */
846 if (w->repeat) 1087 if (w->repeat)
847 { 1088 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090
849 ((WT)w)->at = mn_now + w->repeat; 1091 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
850 downheap ((WT *)timers, timercnt, 0); 1095 downheap ((WT *)timers, timercnt, 0);
851 } 1096 }
852 else 1097 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 1099
855 event (EV_A_ (W)w, EV_TIMEOUT); 1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 1101 }
857} 1102}
858 1103
859static void 1104#if EV_PERIODICS
1105inline void
860periodics_reify (EV_P) 1106periodics_reify (EV_P)
861{ 1107{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 1109 {
864 struct ev_periodic *w = periodics [0]; 1110 struct ev_periodic *w = periodics [0];
865 1111
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1112 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867 1113
868 /* first reschedule or stop timer */ 1114 /* first reschedule or stop timer */
869 if (w->interval) 1115 if (w->reschedule_cb)
870 { 1116 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else if (w->interval)
1122 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1125 downheap ((WT *)periodics, periodiccnt, 0);
874 } 1126 }
875 else 1127 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1129
878 event (EV_A_ (W)w, EV_PERIODIC); 1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1131 }
880} 1132}
881 1133
882static void 1134static void
883periodics_reschedule (EV_P) 1135periodics_reschedule (EV_P)
887 /* adjust periodics after time jump */ 1139 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1140 for (i = 0; i < periodiccnt; ++i)
889 { 1141 {
890 struct ev_periodic *w = periodics [i]; 1142 struct ev_periodic *w = periodics [i];
891 1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1146 else if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
903 }
904 } 1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
905} 1153}
1154#endif
906 1155
907inline int 1156inline int
908time_update_monotonic (EV_P) 1157time_update_monotonic (EV_P)
909{ 1158{
910 mn_now = get_clock (); 1159 mn_now = get_clock ();
911 1160
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 { 1162 {
914 rt_now = rtmn_diff + mn_now; 1163 ev_rt_now = rtmn_diff + mn_now;
915 return 0; 1164 return 0;
916 } 1165 }
917 else 1166 else
918 { 1167 {
919 now_floor = mn_now; 1168 now_floor = mn_now;
920 rt_now = ev_time (); 1169 ev_rt_now = ev_time ();
921 return 1; 1170 return 1;
922 } 1171 }
923} 1172}
924 1173
925static void 1174inline void
926time_update (EV_P) 1175time_update (EV_P)
927{ 1176{
928 int i; 1177 int i;
929 1178
930#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
934 { 1183 {
935 ev_tstamp odiff = rtmn_diff; 1184 ev_tstamp odiff = rtmn_diff;
936 1185
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 { 1187 {
939 rtmn_diff = rt_now - mn_now; 1188 rtmn_diff = ev_rt_now - mn_now;
940 1189
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1191 return; /* all is well */
943 1192
944 rt_now = ev_time (); 1193 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1194 mn_now = get_clock ();
946 now_floor = mn_now; 1195 now_floor = mn_now;
947 } 1196 }
948 1197
1198# if EV_PERIODICS
949 periodics_reschedule (EV_A); 1199 periodics_reschedule (EV_A);
1200# endif
950 /* no timer adjustment, as the monotonic clock doesn't jump */ 1201 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
952 } 1203 }
953 } 1204 }
954 else 1205 else
955#endif 1206#endif
956 { 1207 {
957 rt_now = ev_time (); 1208 ev_rt_now = ev_time ();
958 1209
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 { 1211 {
1212#if EV_PERIODICS
961 periodics_reschedule (EV_A); 1213 periodics_reschedule (EV_A);
1214#endif
962 1215
963 /* adjust timers. this is easy, as the offset is the same for all */ 1216 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i) 1217 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now; 1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
966 } 1219 }
967 1220
968 mn_now = rt_now; 1221 mn_now = ev_rt_now;
969 } 1222 }
970} 1223}
971 1224
972void 1225void
973ev_ref (EV_P) 1226ev_ref (EV_P)
987ev_loop (EV_P_ int flags) 1240ev_loop (EV_P_ int flags)
988{ 1241{
989 double block; 1242 double block;
990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
991 1244
992 do 1245 while (activecnt)
993 { 1246 {
994 /* queue check watchers (and execute them) */ 1247 /* queue check watchers (and execute them) */
995 if (expect_false (preparecnt)) 1248 if (expect_false (preparecnt))
996 { 1249 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1251 call_pending (EV_A);
999 } 1252 }
1000 1253
1254 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork))
1256 loop_fork (EV_A);
1257
1001 /* update fd-related kernel structures */ 1258 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1259 fd_reify (EV_A);
1003 1260
1004 /* calculate blocking time */ 1261 /* calculate blocking time */
1005 1262
1006 /* we only need this for !monotonic clockor timers, but as we basically 1263 /* we only need this for !monotonic clock or timers, but as we basically
1007 always have timers, we just calculate it always */ 1264 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic)) 1266 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A); 1267 time_update_monotonic (EV_A);
1011 else 1268 else
1012#endif 1269#endif
1013 { 1270 {
1014 rt_now = ev_time (); 1271 ev_rt_now = ev_time ();
1015 mn_now = rt_now; 1272 mn_now = ev_rt_now;
1016 } 1273 }
1017 1274
1018 if (flags & EVLOOP_NONBLOCK || idlecnt) 1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.; 1276 block = 0.;
1020 else 1277 else
1021 { 1278 {
1022 block = MAX_BLOCKTIME; 1279 block = MAX_BLOCKTIME;
1023 1280
1024 if (timercnt) 1281 if (timercnt)
1025 { 1282 {
1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1027 if (block > to) block = to; 1284 if (block > to) block = to;
1028 } 1285 }
1029 1286
1287#if EV_PERIODICS
1030 if (periodiccnt) 1288 if (periodiccnt)
1031 { 1289 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1033 if (block > to) block = to; 1291 if (block > to) block = to;
1034 } 1292 }
1293#endif
1035 1294
1036 if (block < 0.) block = 0.; 1295 if (expect_false (block < 0.)) block = 0.;
1037 } 1296 }
1038 1297
1039 method_poll (EV_A_ block); 1298 backend_poll (EV_A_ block);
1040 1299
1041 /* update rt_now, do magic */ 1300 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1301 time_update (EV_A);
1043 1302
1044 /* queue pending timers and reschedule them */ 1303 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1304 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS
1046 periodics_reify (EV_A); /* absolute timers called first */ 1306 periodics_reify (EV_A); /* absolute timers called first */
1307#endif
1047 1308
1048 /* queue idle watchers unless io or timers are pending */ 1309 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt) 1310 if (idlecnt && !any_pending (EV_A))
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051 1312
1052 /* queue check watchers, to be executed first */ 1313 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1314 if (expect_false (checkcnt))
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 1316
1056 call_pending (EV_A); 1317 call_pending (EV_A);
1318
1319 if (expect_false (loop_done))
1320 break;
1057 } 1321 }
1058 while (activecnt && !loop_done);
1059 1322
1060 if (loop_done != 2) 1323 if (loop_done != 2)
1061 loop_done = 0; 1324 loop_done = 0;
1062} 1325}
1063 1326
1123void 1386void
1124ev_io_start (EV_P_ struct ev_io *w) 1387ev_io_start (EV_P_ struct ev_io *w)
1125{ 1388{
1126 int fd = w->fd; 1389 int fd = w->fd;
1127 1390
1128 if (ev_is_active (w)) 1391 if (expect_false (ev_is_active (w)))
1129 return; 1392 return;
1130 1393
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1394 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1395
1133 ev_start (EV_A_ (W)w, 1); 1396 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1398 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136 1399
1137 fd_change (EV_A_ fd); 1400 fd_change (EV_A_ fd);
1138} 1401}
1139 1402
1140void 1403void
1141ev_io_stop (EV_P_ struct ev_io *w) 1404ev_io_stop (EV_P_ struct ev_io *w)
1142{ 1405{
1143 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1144 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1145 return; 1408 return;
1409
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1146 1411
1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1148 ev_stop (EV_A_ (W)w); 1413 ev_stop (EV_A_ (W)w);
1149 1414
1150 fd_change (EV_A_ w->fd); 1415 fd_change (EV_A_ w->fd);
1151} 1416}
1152 1417
1153void 1418void
1154ev_timer_start (EV_P_ struct ev_timer *w) 1419ev_timer_start (EV_P_ struct ev_timer *w)
1155{ 1420{
1156 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1157 return; 1422 return;
1158 1423
1159 ((WT)w)->at += mn_now; 1424 ((WT)w)->at += mn_now;
1160 1425
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1427
1163 ev_start (EV_A_ (W)w, ++timercnt); 1428 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1165 timers [timercnt - 1] = w; 1430 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1); 1431 upheap ((WT *)timers, timercnt - 1);
1167 1432
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169} 1434}
1170 1435
1171void 1436void
1172ev_timer_stop (EV_P_ struct ev_timer *w) 1437ev_timer_stop (EV_P_ struct ev_timer *w)
1173{ 1438{
1174 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1175 if (!ev_is_active (w)) 1440 if (expect_false (!ev_is_active (w)))
1176 return; 1441 return;
1177 1442
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179 1444
1180 if (((W)w)->active < timercnt--) 1445 if (expect_true (((W)w)->active < timercnt--))
1181 { 1446 {
1182 timers [((W)w)->active - 1] = timers [timercnt]; 1447 timers [((W)w)->active - 1] = timers [timercnt];
1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1184 } 1449 }
1185 1450
1186 ((WT)w)->at = w->repeat; 1451 ((WT)w)->at -= mn_now;
1187 1452
1188 ev_stop (EV_A_ (W)w); 1453 ev_stop (EV_A_ (W)w);
1189} 1454}
1190 1455
1191void 1456void
1194 if (ev_is_active (w)) 1459 if (ev_is_active (w))
1195 { 1460 {
1196 if (w->repeat) 1461 if (w->repeat)
1197 { 1462 {
1198 ((WT)w)->at = mn_now + w->repeat; 1463 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1200 } 1465 }
1201 else 1466 else
1202 ev_timer_stop (EV_A_ w); 1467 ev_timer_stop (EV_A_ w);
1203 } 1468 }
1204 else if (w->repeat) 1469 else if (w->repeat)
1470 {
1471 w->at = w->repeat;
1205 ev_timer_start (EV_A_ w); 1472 ev_timer_start (EV_A_ w);
1473 }
1206} 1474}
1207 1475
1476#if EV_PERIODICS
1208void 1477void
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1478ev_periodic_start (EV_P_ struct ev_periodic *w)
1210{ 1479{
1211 if (ev_is_active (w)) 1480 if (expect_false (ev_is_active (w)))
1212 return; 1481 return;
1213 1482
1483 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval)
1486 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1488 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 }
1219 1491
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1492 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1222 periodics [periodiccnt - 1] = w; 1494 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1495 upheap ((WT *)periodics, periodiccnt - 1);
1224 1496
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226} 1498}
1227 1499
1228void 1500void
1229ev_periodic_stop (EV_P_ struct ev_periodic *w) 1501ev_periodic_stop (EV_P_ struct ev_periodic *w)
1230{ 1502{
1231 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1233 return; 1505 return;
1234 1506
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236 1508
1237 if (((W)w)->active < periodiccnt--) 1509 if (expect_true (((W)w)->active < periodiccnt--))
1238 { 1510 {
1239 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1511 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1241 } 1513 }
1242 1514
1243 ev_stop (EV_A_ (W)w); 1515 ev_stop (EV_A_ (W)w);
1244} 1516}
1245 1517
1246void 1518void
1519ev_periodic_again (EV_P_ struct ev_periodic *w)
1520{
1521 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w);
1524}
1525#endif
1526
1527void
1247ev_idle_start (EV_P_ struct ev_idle *w) 1528ev_idle_start (EV_P_ struct ev_idle *w)
1248{ 1529{
1249 if (ev_is_active (w)) 1530 if (expect_false (ev_is_active (w)))
1250 return; 1531 return;
1251 1532
1252 ev_start (EV_A_ (W)w, ++idlecnt); 1533 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, ); 1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1254 idles [idlecnt - 1] = w; 1535 idles [idlecnt - 1] = w;
1255} 1536}
1256 1537
1257void 1538void
1258ev_idle_stop (EV_P_ struct ev_idle *w) 1539ev_idle_stop (EV_P_ struct ev_idle *w)
1259{ 1540{
1260 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w)) 1542 if (expect_false (!ev_is_active (w)))
1262 return; 1543 return;
1263 1544
1264 idles [((W)w)->active - 1] = idles [--idlecnt]; 1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w); 1546 ev_stop (EV_A_ (W)w);
1266} 1547}
1267 1548
1268void 1549void
1269ev_prepare_start (EV_P_ struct ev_prepare *w) 1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{ 1551{
1271 if (ev_is_active (w)) 1552 if (expect_false (ev_is_active (w)))
1272 return; 1553 return;
1273 1554
1274 ev_start (EV_A_ (W)w, ++preparecnt); 1555 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, ); 1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1276 prepares [preparecnt - 1] = w; 1557 prepares [preparecnt - 1] = w;
1277} 1558}
1278 1559
1279void 1560void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w) 1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{ 1562{
1282 ev_clear_pending (EV_A_ (W)w); 1563 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w)) 1564 if (expect_false (!ev_is_active (w)))
1284 return; 1565 return;
1285 1566
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w); 1568 ev_stop (EV_A_ (W)w);
1288} 1569}
1289 1570
1290void 1571void
1291ev_check_start (EV_P_ struct ev_check *w) 1572ev_check_start (EV_P_ struct ev_check *w)
1292{ 1573{
1293 if (ev_is_active (w)) 1574 if (expect_false (ev_is_active (w)))
1294 return; 1575 return;
1295 1576
1296 ev_start (EV_A_ (W)w, ++checkcnt); 1577 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, ); 1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1298 checks [checkcnt - 1] = w; 1579 checks [checkcnt - 1] = w;
1299} 1580}
1300 1581
1301void 1582void
1302ev_check_stop (EV_P_ struct ev_check *w) 1583ev_check_stop (EV_P_ struct ev_check *w)
1303{ 1584{
1304 ev_clear_pending (EV_A_ (W)w); 1585 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w)) 1586 if (expect_false (!ev_is_active (w)))
1306 return; 1587 return;
1307 1588
1308 checks [((W)w)->active - 1] = checks [--checkcnt]; 1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w); 1590 ev_stop (EV_A_ (W)w);
1310} 1591}
1315 1596
1316void 1597void
1317ev_signal_start (EV_P_ struct ev_signal *w) 1598ev_signal_start (EV_P_ struct ev_signal *w)
1318{ 1599{
1319#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1321#endif 1602#endif
1322 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1323 return; 1604 return;
1324 1605
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1607
1327 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init); 1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330 1611
1331 if (!((WL)w)->next) 1612 if (!((WL)w)->next)
1332 { 1613 {
1333#if WIN32 1614#if _WIN32
1334 signal (w->signum, sighandler); 1615 signal (w->signum, sighandler);
1335#else 1616#else
1336 struct sigaction sa; 1617 struct sigaction sa;
1337 sa.sa_handler = sighandler; 1618 sa.sa_handler = sighandler;
1338 sigfillset (&sa.sa_mask); 1619 sigfillset (&sa.sa_mask);
1344 1625
1345void 1626void
1346ev_signal_stop (EV_P_ struct ev_signal *w) 1627ev_signal_stop (EV_P_ struct ev_signal *w)
1347{ 1628{
1348 ev_clear_pending (EV_A_ (W)w); 1629 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w)) 1630 if (expect_false (!ev_is_active (w)))
1350 return; 1631 return;
1351 1632
1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 1634 ev_stop (EV_A_ (W)w);
1354 1635
1358 1639
1359void 1640void
1360ev_child_start (EV_P_ struct ev_child *w) 1641ev_child_start (EV_P_ struct ev_child *w)
1361{ 1642{
1362#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1364#endif 1645#endif
1365 if (ev_is_active (w)) 1646 if (expect_false (ev_is_active (w)))
1366 return; 1647 return;
1367 1648
1368 ev_start (EV_A_ (W)w, 1); 1649 ev_start (EV_A_ (W)w, 1);
1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1370} 1651}
1371 1652
1372void 1653void
1373ev_child_stop (EV_P_ struct ev_child *w) 1654ev_child_stop (EV_P_ struct ev_child *w)
1374{ 1655{
1375 ev_clear_pending (EV_A_ (W)w); 1656 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w)) 1657 if (expect_false (!ev_is_active (w)))
1377 return; 1658 return;
1378 1659
1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1380 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1381} 1662}
1396 void (*cb)(int revents, void *arg) = once->cb; 1677 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 1678 void *arg = once->arg;
1398 1679
1399 ev_io_stop (EV_A_ &once->io); 1680 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 1681 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 1682 ev_free (once);
1402 1683
1403 cb (revents, arg); 1684 cb (revents, arg);
1404} 1685}
1405 1686
1406static void 1687static void
1416} 1697}
1417 1698
1418void 1699void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 1701{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 1703
1423 if (!once) 1704 if (expect_false (!once))
1705 {
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 1707 return;
1426 { 1708 }
1709
1427 once->cb = cb; 1710 once->cb = cb;
1428 once->arg = arg; 1711 once->arg = arg;
1429 1712
1430 ev_watcher_init (&once->io, once_cb_io); 1713 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 1714 if (fd >= 0)
1432 { 1715 {
1433 ev_io_set (&once->io, fd, events); 1716 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 1717 ev_io_start (EV_A_ &once->io);
1435 } 1718 }
1436 1719
1437 ev_watcher_init (&once->to, once_cb_to); 1720 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 1721 if (timeout >= 0.)
1439 { 1722 {
1440 ev_timer_set (&once->to, timeout, 0.); 1723 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 1724 ev_timer_start (EV_A_ &once->to);
1442 }
1443 } 1725 }
1444} 1726}
1445 1727
1728#ifdef __cplusplus
1729}
1730#endif
1731

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines