ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
150#if WIN32 213#ifdef _WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 214# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 215#endif
155 216
156/*****************************************************************************/ 217/*****************************************************************************/
157 218
158static void (*syserr_cb)(void); 219static void (*syserr_cb)(const char *msg);
159 220
160void ev_set_syserr_cb (void (*cb)(void)) 221void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 222{
162 syserr_cb = cb; 223 syserr_cb = cb;
163} 224}
164 225
165static void 226static void
166syserr (void) 227syserr (const char *msg)
167{ 228{
229 if (!msg)
230 msg = "(libev) system error";
231
168 if (syserr_cb) 232 if (syserr_cb)
169 syserr_cb (); 233 syserr_cb (msg);
170 else 234 else
171 { 235 {
172 perror ("libev"); 236 perror (msg);
173 abort (); 237 abort ();
174 } 238 }
175} 239}
176 240
177static void *(*alloc)(void *ptr, long size); 241static void *(*alloc)(void *ptr, long size);
203typedef struct 267typedef struct
204{ 268{
205 WL head; 269 WL head;
206 unsigned char events; 270 unsigned char events;
207 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
208} ANFD; 275} ANFD;
209 276
210typedef struct 277typedef struct
211{ 278{
212 W w; 279 W w;
213 int events; 280 int events;
214} ANPENDING; 281} ANPENDING;
215 282
216#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
217 284
218struct ev_loop 285 struct ev_loop
219{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
221# include "ev_vars.h" 290 #include "ev_vars.h"
222};
223# undef VAR 291 #undef VAR
292 };
224# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
225 297
226#else 298#else
227 299
300 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 302 #include "ev_vars.h"
230# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
231 306
232#endif 307#endif
233 308
234/*****************************************************************************/ 309/*****************************************************************************/
235 310
236inline ev_tstamp 311ev_tstamp
237ev_time (void) 312ev_time (void)
238{ 313{
239#if EV_USE_REALTIME 314#if EV_USE_REALTIME
240 struct timespec ts; 315 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 335#endif
261 336
262 return ev_time (); 337 return ev_time ();
263} 338}
264 339
340#if EV_MULTIPLICITY
265ev_tstamp 341ev_tstamp
266ev_now (EV_P) 342ev_now (EV_P)
267{ 343{
268 return rt_now; 344 return ev_rt_now;
269} 345}
346#endif
270 347
271#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
272 349
273#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
275 { \ 352 { \
276 int newcnt = cur; \ 353 int newcnt = cur; \
277 do \ 354 do \
278 { \ 355 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 357 } \
281 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
282 \ 359 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 362 cur = newcnt; \
286 } 363 }
287 364
288#define array_slim(stem) \ 365#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 367 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 371 }
295 372
296#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
309 386
310 ++base; 387 ++base;
311 } 388 }
312} 389}
313 390
314static void 391void
315event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
316{ 393{
317 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
318 { 397 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 399 return;
321 } 400 }
322 401
323 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 406}
328 407
329static void 408static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 410{
332 int i; 411 int i;
333 412
334 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
336} 415}
337 416
338static void 417inline void
339fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
340{ 419{
341 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 421 struct ev_io *w;
343 422
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 424 {
346 int ev = w->events & events; 425 int ev = w->events & revents;
347 426
348 if (ev) 427 if (ev)
349 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
350 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
351} 436}
352 437
353/*****************************************************************************/ 438/*****************************************************************************/
354 439
355static void 440inline void
356fd_reify (EV_P) 441fd_reify (EV_P)
357{ 442{
358 int i; 443 int i;
359 444
360 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
366 int events = 0; 451 int events = 0;
367 452
368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
369 events |= w->events; 454 events |= w->events;
370 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
371 anfd->reify = 0; 465 anfd->reify = 0;
372 466
373 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
374 anfd->events = events; 468 anfd->events = events;
375 } 469 }
376 470
377 fdchangecnt = 0; 471 fdchangecnt = 0;
378} 472}
379 473
380static void 474static void
381fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
382{ 476{
383 if (anfds [fd].reify || fdchangecnt < 0) 477 if (expect_false (anfds [fd].reify))
384 return; 478 return;
385 479
386 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
387 481
388 ++fdchangecnt; 482 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
390 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
391} 485}
392 486
393static void 487static void
394fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
396 struct ev_io *w; 490 struct ev_io *w;
397 491
398 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (struct ev_io *)anfds [fd].head))
399 { 493 {
400 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 496 }
497}
498
499inline int
500fd_valid (int fd)
501{
502#ifdef _WIN32
503 return _get_osfhandle (fd) != -1;
504#else
505 return fcntl (fd, F_GETFD) != -1;
506#endif
403} 507}
404 508
405/* called on EBADF to verify fds */ 509/* called on EBADF to verify fds */
406static void 510static void
407fd_ebadf (EV_P) 511fd_ebadf (EV_P)
408{ 512{
409 int fd; 513 int fd;
410 514
411 for (fd = 0; fd < anfdmax; ++fd) 515 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 516 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 517 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 518 fd_kill (EV_A_ fd);
415} 519}
416 520
417/* called on ENOMEM in select/poll to kill some fds and retry */ 521/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 522static void
426 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
427 return; 531 return;
428 } 532 }
429} 533}
430 534
431/* susually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
432static void 536static void
433fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
434{ 538{
435 int fd; 539 int fd;
436 540
484 588
485 heap [k] = w; 589 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
487} 591}
488 592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
489/*****************************************************************************/ 600/*****************************************************************************/
490 601
491typedef struct 602typedef struct
492{ 603{
493 WL head; 604 WL head;
514} 625}
515 626
516static void 627static void
517sighandler (int signum) 628sighandler (int signum)
518{ 629{
519#if WIN32 630#if _WIN32
520 signal (signum, sighandler); 631 signal (signum, sighandler);
521#endif 632#endif
522 633
523 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
524 635
529 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
530 errno = old_errno; 641 errno = old_errno;
531 } 642 }
532} 643}
533 644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
534static void 665static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 667{
537 WL w;
538 int signum; 668 int signum;
539 669
540 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
541 gotsig = 0; 671 gotsig = 0;
542 672
543 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
545 { 675 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0; 676}
547 677
548 for (w = signals [signum].head; w; w = w->next) 678static void
549 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
550 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
551} 688}
552 689
553static void 690static void
554siginit (EV_P) 691siginit (EV_P)
555{ 692{
556#ifndef WIN32 693 fd_intern (sigpipe [0]);
557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
559
560 /* rather than sort out wether we really need nb, set it */
561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
564 695
565 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
566 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 699}
569 700
570/*****************************************************************************/ 701/*****************************************************************************/
571 702
572#ifndef WIN32
573
574static struct ev_child *childs [PID_HASHSIZE]; 703static struct ev_child *childs [PID_HASHSIZE];
704
705#ifndef _WIN32
706
575static struct ev_signal childev; 707static struct ev_signal childev;
576 708
577#ifndef WCONTINUED 709#ifndef WCONTINUED
578# define WCONTINUED 0 710# define WCONTINUED 0
579#endif 711#endif
587 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
588 { 720 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 722 w->rpid = pid;
591 w->rstatus = status; 723 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 725 }
594} 726}
595 727
596static void 728static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 731 int pid, status;
600 732
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 734 {
603 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
604 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 738
606 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
608 } 741 }
609} 742}
610 743
611#endif 744#endif
612 745
613/*****************************************************************************/ 746/*****************************************************************************/
614 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
615#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
616# include "ev_kqueue.c" 752# include "ev_kqueue.c"
617#endif 753#endif
618#if EV_USE_EPOLL 754#if EV_USE_EPOLL
619# include "ev_epoll.c" 755# include "ev_epoll.c"
639 775
640/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
641static int 777static int
642enable_secure (void) 778enable_secure (void)
643{ 779{
644#ifdef WIN32 780#ifdef _WIN32
645 return 0; 781 return 0;
646#else 782#else
647 return getuid () != geteuid () 783 return getuid () != geteuid ()
648 || getgid () != getegid (); 784 || getgid () != getegid ();
649#endif 785#endif
650} 786}
651 787
652int 788unsigned int
653ev_method (EV_P) 789ev_supported_backends (void)
654{ 790{
655 return method; 791 unsigned int flags = 0;
656}
657 792
658static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
659loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
660{ 804{
661 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_backend (EV_P)
822{
823 return backend;
824}
825
826static void
827loop_init (EV_P_ unsigned int flags)
828{
829 if (!backend)
662 { 830 {
663#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
664 { 832 {
665 struct timespec ts; 833 struct timespec ts;
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 834 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 835 have_monotonic = 1;
668 } 836 }
669#endif 837#endif
670 838
671 rt_now = ev_time (); 839 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 840 mn_now = get_clock ();
673 now_floor = mn_now; 841 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 842 rtmn_diff = ev_rt_now - mn_now;
675 843
676 if (methods == EVMETHOD_AUTO) 844 if (!(flags & EVFLAG_NOENV)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 845 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 847 flags = atoi (getenv ("LIBEV_FLAGS"));
679 else
680 methods = EVMETHOD_ANY;
681 848
682 method = 0; 849 if (!(flags & 0x0000ffffUL))
683#if EV_USE_WIN32 850 flags |= ev_recommended_backends ();
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 851
852 backend = 0;
853#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
685#endif 855#endif
686#if EV_USE_KQUEUE 856#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
688#endif 858#endif
689#if EV_USE_EPOLL 859#if EV_USE_EPOLL
690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 860 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
691#endif 861#endif
692#if EV_USE_POLL 862#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 863 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
694#endif 864#endif
695#if EV_USE_SELECT 865#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
697#endif 867#endif
698 }
699}
700 868
701void 869 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI);
871 }
872}
873
874static void
702loop_destroy (EV_P) 875loop_destroy (EV_P)
703{ 876{
704 int i; 877 int i;
705 878
706#if EV_USE_WIN32 879#if EV_USE_PORT
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
708#endif 881#endif
709#if EV_USE_KQUEUE 882#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
711#endif 884#endif
712#if EV_USE_EPOLL 885#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 886 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
714#endif 887#endif
715#if EV_USE_POLL 888#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 889 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
717#endif 890#endif
718#if EV_USE_SELECT 891#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
720#endif 893#endif
721 894
722 for (i = NUMPRI; i--; ) 895 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 896 array_free (pending, [i]);
724 897
898 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 899 array_free (fdchange, EMPTY0);
726 array_free (timer, ); 900 array_free (timer, EMPTY0);
901#if EV_PERIODICS
727 array_free (periodic, ); 902 array_free (periodic, EMPTY0);
903#endif
728 array_free (idle, ); 904 array_free (idle, EMPTY0);
729 array_free (prepare, ); 905 array_free (prepare, EMPTY0);
730 array_free (check, ); 906 array_free (check, EMPTY0);
731 907
732 method = 0; 908 backend = 0;
733 /*TODO*/
734} 909}
735 910
736void 911static void
737loop_fork (EV_P) 912loop_fork (EV_P)
738{ 913{
739 /*TODO*/ 914#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif
917#if EV_USE_KQUEUE
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif
740#if EV_USE_EPOLL 920#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
742#endif 922#endif
743#if EV_USE_KQUEUE 923
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 924 if (ev_is_active (&sigev))
745#endif 925 {
926 /* default loop */
927
928 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A);
937 }
938
939 postfork = 0;
746} 940}
747 941
748#if EV_MULTIPLICITY 942#if EV_MULTIPLICITY
749struct ev_loop * 943struct ev_loop *
750ev_loop_new (int methods) 944ev_loop_new (unsigned int flags)
751{ 945{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753 947
754 memset (loop, 0, sizeof (struct ev_loop)); 948 memset (loop, 0, sizeof (struct ev_loop));
755 949
756 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
757 951
758 if (ev_method (EV_A)) 952 if (ev_backend (EV_A))
759 return loop; 953 return loop;
760 954
761 return 0; 955 return 0;
762} 956}
763 957
769} 963}
770 964
771void 965void
772ev_loop_fork (EV_P) 966ev_loop_fork (EV_P)
773{ 967{
774 loop_fork (EV_A); 968 postfork = 1;
775} 969}
776 970
777#endif 971#endif
778 972
779#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 974struct ev_loop *
975ev_default_loop_init (unsigned int flags)
784#else 976#else
785static int default_loop;
786
787int 977int
978ev_default_loop (unsigned int flags)
788#endif 979#endif
789ev_default_loop (int methods)
790{ 980{
791 if (sigpipe [0] == sigpipe [1]) 981 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe)) 982 if (pipe (sigpipe))
793 return 0; 983 return 0;
794 984
795 if (!default_loop) 985 if (!ev_default_loop_ptr)
796 { 986 {
797#if EV_MULTIPLICITY 987#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct; 988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
799#else 989#else
800 default_loop = 1; 990 ev_default_loop_ptr = 1;
801#endif 991#endif
802 992
803 loop_init (EV_A_ methods); 993 loop_init (EV_A_ flags);
804 994
805 if (ev_method (EV_A)) 995 if (ev_backend (EV_A))
806 { 996 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 997 siginit (EV_A);
810 998
811#ifndef WIN32 999#ifndef _WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 1000 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 1001 ev_set_priority (&childev, EV_MAXPRI);
814 ev_signal_start (EV_A_ &childev); 1002 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1003 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif 1004#endif
817 } 1005 }
818 else 1006 else
819 default_loop = 0; 1007 ev_default_loop_ptr = 0;
820 } 1008 }
821 1009
822 return default_loop; 1010 return ev_default_loop_ptr;
823} 1011}
824 1012
825void 1013void
826ev_default_destroy (void) 1014ev_default_destroy (void)
827{ 1015{
828#if EV_MULTIPLICITY 1016#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 1017 struct ev_loop *loop = ev_default_loop_ptr;
830#endif 1018#endif
831 1019
1020#ifndef _WIN32
832 ev_ref (EV_A); /* child watcher */ 1021 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 1022 ev_signal_stop (EV_A_ &childev);
1023#endif
834 1024
835 ev_ref (EV_A); /* signal watcher */ 1025 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 1026 ev_io_stop (EV_A_ &sigev);
837 1027
838 close (sigpipe [0]); sigpipe [0] = 0; 1028 close (sigpipe [0]); sigpipe [0] = 0;
843 1033
844void 1034void
845ev_default_fork (void) 1035ev_default_fork (void)
846{ 1036{
847#if EV_MULTIPLICITY 1037#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 1038 struct ev_loop *loop = ev_default_loop_ptr;
849#endif 1039#endif
850 1040
851 loop_fork (EV_A); 1041 if (backend)
852 1042 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 1043}
861 1044
862/*****************************************************************************/ 1045/*****************************************************************************/
863 1046
864static void 1047static int
1048any_pending (EV_P)
1049{
1050 int pri;
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057}
1058
1059inline void
865call_pending (EV_P) 1060call_pending (EV_P)
866{ 1061{
867 int pri; 1062 int pri;
868 1063
869 for (pri = NUMPRI; pri--; ) 1064 for (pri = NUMPRI; pri--; )
870 while (pendingcnt [pri]) 1065 while (pendingcnt [pri])
871 { 1066 {
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 1068
874 if (p->w) 1069 if (expect_true (p->w))
875 { 1070 {
876 p->w->pending = 0; 1071 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 1072 EV_CB_INVOKE (p->w, p->events);
878 } 1073 }
879 } 1074 }
880} 1075}
881 1076
882static void 1077inline void
883timers_reify (EV_P) 1078timers_reify (EV_P)
884{ 1079{
885 while (timercnt && ((WT)timers [0])->at <= mn_now) 1080 while (timercnt && ((WT)timers [0])->at <= mn_now)
886 { 1081 {
887 struct ev_timer *w = timers [0]; 1082 struct ev_timer *w = timers [0];
890 1085
891 /* first reschedule or stop timer */ 1086 /* first reschedule or stop timer */
892 if (w->repeat) 1087 if (w->repeat)
893 { 1088 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090
895 ((WT)w)->at = mn_now + w->repeat; 1091 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
896 downheap ((WT *)timers, timercnt, 0); 1095 downheap ((WT *)timers, timercnt, 0);
897 } 1096 }
898 else 1097 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1099
901 event (EV_A_ (W)w, EV_TIMEOUT); 1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1101 }
903} 1102}
904 1103
905static void 1104#if EV_PERIODICS
1105inline void
906periodics_reify (EV_P) 1106periodics_reify (EV_P)
907{ 1107{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1109 {
910 struct ev_periodic *w = periodics [0]; 1110 struct ev_periodic *w = periodics [0];
911 1111
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1112 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1113
914 /* first reschedule or stop timer */ 1114 /* first reschedule or stop timer */
915 if (w->interval) 1115 if (w->reschedule_cb)
916 { 1116 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else if (w->interval)
1122 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1125 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1126 }
921 else 1127 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1129
924 event (EV_A_ (W)w, EV_PERIODIC); 1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1131 }
926} 1132}
927 1133
928static void 1134static void
929periodics_reschedule (EV_P) 1135periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1139 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1140 for (i = 0; i < periodiccnt; ++i)
935 { 1141 {
936 struct ev_periodic *w = periodics [i]; 1142 struct ev_periodic *w = periodics [i];
937 1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1146 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
951} 1153}
1154#endif
952 1155
953inline int 1156inline int
954time_update_monotonic (EV_P) 1157time_update_monotonic (EV_P)
955{ 1158{
956 mn_now = get_clock (); 1159 mn_now = get_clock ();
957 1160
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1162 {
960 rt_now = rtmn_diff + mn_now; 1163 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1164 return 0;
962 } 1165 }
963 else 1166 else
964 { 1167 {
965 now_floor = mn_now; 1168 now_floor = mn_now;
966 rt_now = ev_time (); 1169 ev_rt_now = ev_time ();
967 return 1; 1170 return 1;
968 } 1171 }
969} 1172}
970 1173
971static void 1174inline void
972time_update (EV_P) 1175time_update (EV_P)
973{ 1176{
974 int i; 1177 int i;
975 1178
976#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
980 { 1183 {
981 ev_tstamp odiff = rtmn_diff; 1184 ev_tstamp odiff = rtmn_diff;
982 1185
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1187 {
985 rtmn_diff = rt_now - mn_now; 1188 rtmn_diff = ev_rt_now - mn_now;
986 1189
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1191 return; /* all is well */
989 1192
990 rt_now = ev_time (); 1193 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1194 mn_now = get_clock ();
992 now_floor = mn_now; 1195 now_floor = mn_now;
993 } 1196 }
994 1197
1198# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1199 periodics_reschedule (EV_A);
1200# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1201 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1203 }
999 } 1204 }
1000 else 1205 else
1001#endif 1206#endif
1002 { 1207 {
1003 rt_now = ev_time (); 1208 ev_rt_now = ev_time ();
1004 1209
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1211 {
1212#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1213 periodics_reschedule (EV_A);
1214#endif
1008 1215
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1216 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1217 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1219 }
1013 1220
1014 mn_now = rt_now; 1221 mn_now = ev_rt_now;
1015 } 1222 }
1016} 1223}
1017 1224
1018void 1225void
1019ev_ref (EV_P) 1226ev_ref (EV_P)
1033ev_loop (EV_P_ int flags) 1240ev_loop (EV_P_ int flags)
1034{ 1241{
1035 double block; 1242 double block;
1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1037 1244
1038 do 1245 while (activecnt)
1039 { 1246 {
1040 /* queue check watchers (and execute them) */ 1247 /* queue check watchers (and execute them) */
1041 if (expect_false (preparecnt)) 1248 if (expect_false (preparecnt))
1042 { 1249 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1251 call_pending (EV_A);
1045 } 1252 }
1046 1253
1254 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork))
1256 loop_fork (EV_A);
1257
1047 /* update fd-related kernel structures */ 1258 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1259 fd_reify (EV_A);
1049 1260
1050 /* calculate blocking time */ 1261 /* calculate blocking time */
1051 1262
1052 /* we only need this for !monotonic clockor timers, but as we basically 1263 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1264 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1266 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1267 time_update_monotonic (EV_A);
1057 else 1268 else
1058#endif 1269#endif
1059 { 1270 {
1060 rt_now = ev_time (); 1271 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1272 mn_now = ev_rt_now;
1062 } 1273 }
1063 1274
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1276 block = 0.;
1066 else 1277 else
1067 { 1278 {
1068 block = MAX_BLOCKTIME; 1279 block = MAX_BLOCKTIME;
1069 1280
1070 if (timercnt) 1281 if (timercnt)
1071 { 1282 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1073 if (block > to) block = to; 1284 if (block > to) block = to;
1074 } 1285 }
1075 1286
1287#if EV_PERIODICS
1076 if (periodiccnt) 1288 if (periodiccnt)
1077 { 1289 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1079 if (block > to) block = to; 1291 if (block > to) block = to;
1080 } 1292 }
1293#endif
1081 1294
1082 if (block < 0.) block = 0.; 1295 if (expect_false (block < 0.)) block = 0.;
1083 } 1296 }
1084 1297
1085 method_poll (EV_A_ block); 1298 backend_poll (EV_A_ block);
1086 1299
1087 /* update rt_now, do magic */ 1300 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1301 time_update (EV_A);
1089 1302
1090 /* queue pending timers and reschedule them */ 1303 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1304 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1306 periodics_reify (EV_A); /* absolute timers called first */
1307#endif
1093 1308
1094 /* queue idle watchers unless io or timers are pending */ 1309 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1310 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1312
1098 /* queue check watchers, to be executed first */ 1313 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1314 if (expect_false (checkcnt))
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1101 1316
1102 call_pending (EV_A); 1317 call_pending (EV_A);
1318
1319 if (expect_false (loop_done))
1320 break;
1103 } 1321 }
1104 while (activecnt && !loop_done);
1105 1322
1106 if (loop_done != 2) 1323 if (loop_done != 2)
1107 loop_done = 0; 1324 loop_done = 0;
1108} 1325}
1109 1326
1169void 1386void
1170ev_io_start (EV_P_ struct ev_io *w) 1387ev_io_start (EV_P_ struct ev_io *w)
1171{ 1388{
1172 int fd = w->fd; 1389 int fd = w->fd;
1173 1390
1174 if (ev_is_active (w)) 1391 if (expect_false (ev_is_active (w)))
1175 return; 1392 return;
1176 1393
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1394 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1395
1179 ev_start (EV_A_ (W)w, 1); 1396 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1398 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1399
1183 fd_change (EV_A_ fd); 1400 fd_change (EV_A_ fd);
1184} 1401}
1185 1402
1186void 1403void
1187ev_io_stop (EV_P_ struct ev_io *w) 1404ev_io_stop (EV_P_ struct ev_io *w)
1188{ 1405{
1189 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1191 return; 1408 return;
1409
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1192 1411
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1413 ev_stop (EV_A_ (W)w);
1195 1414
1196 fd_change (EV_A_ w->fd); 1415 fd_change (EV_A_ w->fd);
1197} 1416}
1198 1417
1199void 1418void
1200ev_timer_start (EV_P_ struct ev_timer *w) 1419ev_timer_start (EV_P_ struct ev_timer *w)
1201{ 1420{
1202 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1203 return; 1422 return;
1204 1423
1205 ((WT)w)->at += mn_now; 1424 ((WT)w)->at += mn_now;
1206 1425
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1427
1209 ev_start (EV_A_ (W)w, ++timercnt); 1428 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1211 timers [timercnt - 1] = w; 1430 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1431 upheap ((WT *)timers, timercnt - 1);
1213 1432
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1434}
1216 1435
1217void 1436void
1218ev_timer_stop (EV_P_ struct ev_timer *w) 1437ev_timer_stop (EV_P_ struct ev_timer *w)
1219{ 1438{
1220 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1221 if (!ev_is_active (w)) 1440 if (expect_false (!ev_is_active (w)))
1222 return; 1441 return;
1223 1442
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225 1444
1226 if (((W)w)->active < timercnt--) 1445 if (expect_true (((W)w)->active < timercnt--))
1227 { 1446 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1447 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1449 }
1231 1450
1232 ((WT)w)->at = w->repeat; 1451 ((WT)w)->at -= mn_now;
1233 1452
1234 ev_stop (EV_A_ (W)w); 1453 ev_stop (EV_A_ (W)w);
1235} 1454}
1236 1455
1237void 1456void
1240 if (ev_is_active (w)) 1459 if (ev_is_active (w))
1241 { 1460 {
1242 if (w->repeat) 1461 if (w->repeat)
1243 { 1462 {
1244 ((WT)w)->at = mn_now + w->repeat; 1463 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1465 }
1247 else 1466 else
1248 ev_timer_stop (EV_A_ w); 1467 ev_timer_stop (EV_A_ w);
1249 } 1468 }
1250 else if (w->repeat) 1469 else if (w->repeat)
1470 {
1471 w->at = w->repeat;
1251 ev_timer_start (EV_A_ w); 1472 ev_timer_start (EV_A_ w);
1473 }
1252} 1474}
1253 1475
1476#if EV_PERIODICS
1254void 1477void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1478ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1479{
1257 if (ev_is_active (w)) 1480 if (expect_false (ev_is_active (w)))
1258 return; 1481 return;
1259 1482
1483 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval)
1486 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1488 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 }
1265 1491
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1492 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1268 periodics [periodiccnt - 1] = w; 1494 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1495 upheap ((WT *)periodics, periodiccnt - 1);
1270 1496
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1498}
1273 1499
1274void 1500void
1275ev_periodic_stop (EV_P_ struct ev_periodic *w) 1501ev_periodic_stop (EV_P_ struct ev_periodic *w)
1276{ 1502{
1277 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1278 if (!ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1279 return; 1505 return;
1280 1506
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282 1508
1283 if (((W)w)->active < periodiccnt--) 1509 if (expect_true (((W)w)->active < periodiccnt--))
1284 { 1510 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1511 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 } 1513 }
1288 1514
1289 ev_stop (EV_A_ (W)w); 1515 ev_stop (EV_A_ (W)w);
1290} 1516}
1291 1517
1292void 1518void
1519ev_periodic_again (EV_P_ struct ev_periodic *w)
1520{
1521 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w);
1524}
1525#endif
1526
1527void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1528ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1529{
1295 if (ev_is_active (w)) 1530 if (expect_false (ev_is_active (w)))
1296 return; 1531 return;
1297 1532
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1533 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1300 idles [idlecnt - 1] = w; 1535 idles [idlecnt - 1] = w;
1301} 1536}
1302 1537
1303void 1538void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1539ev_idle_stop (EV_P_ struct ev_idle *w)
1305{ 1540{
1306 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w)) 1542 if (expect_false (!ev_is_active (w)))
1308 return; 1543 return;
1309 1544
1310 idles [((W)w)->active - 1] = idles [--idlecnt]; 1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w); 1546 ev_stop (EV_A_ (W)w);
1312} 1547}
1313 1548
1314void 1549void
1315ev_prepare_start (EV_P_ struct ev_prepare *w) 1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{ 1551{
1317 if (ev_is_active (w)) 1552 if (expect_false (ev_is_active (w)))
1318 return; 1553 return;
1319 1554
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1555 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1322 prepares [preparecnt - 1] = w; 1557 prepares [preparecnt - 1] = w;
1323} 1558}
1324 1559
1325void 1560void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{ 1562{
1328 ev_clear_pending (EV_A_ (W)w); 1563 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w)) 1564 if (expect_false (!ev_is_active (w)))
1330 return; 1565 return;
1331 1566
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w); 1568 ev_stop (EV_A_ (W)w);
1334} 1569}
1335 1570
1336void 1571void
1337ev_check_start (EV_P_ struct ev_check *w) 1572ev_check_start (EV_P_ struct ev_check *w)
1338{ 1573{
1339 if (ev_is_active (w)) 1574 if (expect_false (ev_is_active (w)))
1340 return; 1575 return;
1341 1576
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1577 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1344 checks [checkcnt - 1] = w; 1579 checks [checkcnt - 1] = w;
1345} 1580}
1346 1581
1347void 1582void
1348ev_check_stop (EV_P_ struct ev_check *w) 1583ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1584{
1350 ev_clear_pending (EV_A_ (W)w); 1585 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1586 if (expect_false (!ev_is_active (w)))
1352 return; 1587 return;
1353 1588
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1590 ev_stop (EV_A_ (W)w);
1356} 1591}
1361 1596
1362void 1597void
1363ev_signal_start (EV_P_ struct ev_signal *w) 1598ev_signal_start (EV_P_ struct ev_signal *w)
1364{ 1599{
1365#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1367#endif 1602#endif
1368 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1369 return; 1604 return;
1370 1605
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1607
1373 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1611
1377 if (!((WL)w)->next) 1612 if (!((WL)w)->next)
1378 { 1613 {
1379#if WIN32 1614#if _WIN32
1380 signal (w->signum, sighandler); 1615 signal (w->signum, sighandler);
1381#else 1616#else
1382 struct sigaction sa; 1617 struct sigaction sa;
1383 sa.sa_handler = sighandler; 1618 sa.sa_handler = sighandler;
1384 sigfillset (&sa.sa_mask); 1619 sigfillset (&sa.sa_mask);
1390 1625
1391void 1626void
1392ev_signal_stop (EV_P_ struct ev_signal *w) 1627ev_signal_stop (EV_P_ struct ev_signal *w)
1393{ 1628{
1394 ev_clear_pending (EV_A_ (W)w); 1629 ev_clear_pending (EV_A_ (W)w);
1395 if (!ev_is_active (w)) 1630 if (expect_false (!ev_is_active (w)))
1396 return; 1631 return;
1397 1632
1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1399 ev_stop (EV_A_ (W)w); 1634 ev_stop (EV_A_ (W)w);
1400 1635
1404 1639
1405void 1640void
1406ev_child_start (EV_P_ struct ev_child *w) 1641ev_child_start (EV_P_ struct ev_child *w)
1407{ 1642{
1408#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1410#endif 1645#endif
1411 if (ev_is_active (w)) 1646 if (expect_false (ev_is_active (w)))
1412 return; 1647 return;
1413 1648
1414 ev_start (EV_A_ (W)w, 1); 1649 ev_start (EV_A_ (W)w, 1);
1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1416} 1651}
1417 1652
1418void 1653void
1419ev_child_stop (EV_P_ struct ev_child *w) 1654ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1655{
1421 ev_clear_pending (EV_A_ (W)w); 1656 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1657 if (expect_false (!ev_is_active (w)))
1423 return; 1658 return;
1424 1659
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1427} 1662}
1462} 1697}
1463 1698
1464void 1699void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1701{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1703
1469 if (!once) 1704 if (expect_false (!once))
1705 {
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1707 return;
1472 { 1708 }
1709
1473 once->cb = cb; 1710 once->cb = cb;
1474 once->arg = arg; 1711 once->arg = arg;
1475 1712
1476 ev_watcher_init (&once->io, once_cb_io); 1713 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1714 if (fd >= 0)
1478 { 1715 {
1479 ev_io_set (&once->io, fd, events); 1716 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1717 ev_io_start (EV_A_ &once->io);
1481 } 1718 }
1482 1719
1483 ev_watcher_init (&once->to, once_cb_to); 1720 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1721 if (timeout >= 0.)
1485 { 1722 {
1486 ev_timer_set (&once->to, timeout, 0.); 1723 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1724 ev_timer_start (EV_A_ &once->to);
1488 }
1489 } 1725 }
1490} 1726}
1491 1727
1728#ifdef __cplusplus
1729}
1730#endif
1731

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines