ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.185 by root, Fri Dec 14 18:22:30 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
171#endif 205#endif
172 206
207#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0
210#endif
211
212#if EV_USE_INOTIFY
213# include <sys/inotify.h>
214#endif
215
173#if EV_SELECT_IS_WINSOCKET 216#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 217# include <winsock.h>
175#endif 218#endif
176 219
177/**/ 220/**/
178 221
222/*
223 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding
226 * errors are against us.
227 * This value is good at least till the year 4000.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 235
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 236#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 238# define noinline __attribute__ ((noinline))
193#else 239#else
194# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
195# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
196#endif 245#endif
197 246
198#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
200 256
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 259
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
206 262
207typedef struct ev_watcher *W; 263typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
210 266
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 268
213#ifdef _WIN32 269#ifdef _WIN32
214# include "ev_win32.c" 270# include "ev_win32.c"
216 272
217/*****************************************************************************/ 273/*****************************************************************************/
218 274
219static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
220 276
277void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 279{
223 syserr_cb = cb; 280 syserr_cb = cb;
224} 281}
225 282
226static void 283static void noinline
227syserr (const char *msg) 284syserr (const char *msg)
228{ 285{
229 if (!msg) 286 if (!msg)
230 msg = "(libev) system error"; 287 msg = "(libev) system error";
231 288
238 } 295 }
239} 296}
240 297
241static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
242 299
300void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 302{
245 alloc = cb; 303 alloc = cb;
246} 304}
247 305
248static void * 306inline_speed void *
249ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
250{ 308{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 310
253 if (!ptr && size) 311 if (!ptr && size)
277typedef struct 335typedef struct
278{ 336{
279 W w; 337 W w;
280 int events; 338 int events;
281} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
282 347
283#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
284 349
285 struct ev_loop 350 struct ev_loop
286 { 351 {
320 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 387#endif
323} 388}
324 389
325inline ev_tstamp 390ev_tstamp inline_size
326get_clock (void) 391get_clock (void)
327{ 392{
328#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
330 { 395 {
343{ 408{
344 return ev_rt_now; 409 return ev_rt_now;
345} 410}
346#endif 411#endif
347 412
348#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
349 440
350#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
352 { \ 443 { \
353 int newcnt = cur; \ 444 int ocur_ = (cur); \
354 do \ 445 (base) = (type *)array_realloc \
355 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 448 }
364 449
450#if 0
365#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 453 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 457 }
458#endif
372 459
373#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 462
376/*****************************************************************************/ 463/*****************************************************************************/
377 464
378static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
379anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
380{ 495{
381 while (count--) 496 while (count--)
382 { 497 {
383 base->head = 0; 498 base->head = 0;
386 501
387 ++base; 502 ++base;
388 } 503 }
389} 504}
390 505
391void 506void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
422{ 508{
423 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 510 ev_io *w;
425 511
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 513 {
428 int ev = w->events & revents; 514 int ev = w->events & revents;
429 515
430 if (ev) 516 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
433} 519}
434 520
435void 521void
436ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 523{
524 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
439} 526}
440 527
441/*****************************************************************************/ 528void inline_size
442
443inline void
444fd_reify (EV_P) 529fd_reify (EV_P)
445{ 530{
446 int i; 531 int i;
447 532
448 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
449 { 534 {
450 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 537 ev_io *w;
453 538
454 int events = 0; 539 unsigned char events = 0;
455 540
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 542 events |= (unsigned char)w->events;
458 543
459#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
460 if (events) 545 if (events)
461 { 546 {
462 unsigned long argp; 547 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd); 548 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 550 }
466#endif 551#endif
467 552
553 {
554 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify;
556
468 anfd->reify = 0; 557 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 558 anfd->events = events;
559
560 if (o_events != events || o_reify & EV_IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events);
562 }
472 } 563 }
473 564
474 fdchangecnt = 0; 565 fdchangecnt = 0;
475} 566}
476 567
477static void 568void inline_size
478fd_change (EV_P_ int fd) 569fd_change (EV_P_ int fd, int flags)
479{ 570{
480 if (expect_false (anfds [fd].reify)) 571 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 572 anfds [fd].reify |= flags;
484 573
574 if (expect_true (!reify))
575 {
485 ++fdchangecnt; 576 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 578 fdchanges [fdchangecnt - 1] = fd;
579 }
488} 580}
489 581
490static void 582void inline_speed
491fd_kill (EV_P_ int fd) 583fd_kill (EV_P_ int fd)
492{ 584{
493 struct ev_io *w; 585 ev_io *w;
494 586
495 while ((w = (struct ev_io *)anfds [fd].head)) 587 while ((w = (ev_io *)anfds [fd].head))
496 { 588 {
497 ev_io_stop (EV_A_ w); 589 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 591 }
500} 592}
501 593
502inline int 594int inline_size
503fd_valid (int fd) 595fd_valid (int fd)
504{ 596{
505#ifdef _WIN32 597#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 598 return _get_osfhandle (fd) != -1;
507#else 599#else
508 return fcntl (fd, F_GETFD) != -1; 600 return fcntl (fd, F_GETFD) != -1;
509#endif 601#endif
510} 602}
511 603
512/* called on EBADF to verify fds */ 604/* called on EBADF to verify fds */
513static void 605static void noinline
514fd_ebadf (EV_P) 606fd_ebadf (EV_P)
515{ 607{
516 int fd; 608 int fd;
517 609
518 for (fd = 0; fd < anfdmax; ++fd) 610 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 612 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 613 fd_kill (EV_A_ fd);
522} 614}
523 615
524/* called on ENOMEM in select/poll to kill some fds and retry */ 616/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 617static void noinline
526fd_enomem (EV_P) 618fd_enomem (EV_P)
527{ 619{
528 int fd; 620 int fd;
529 621
530 for (fd = anfdmax; fd--; ) 622 for (fd = anfdmax; fd--; )
534 return; 626 return;
535 } 627 }
536} 628}
537 629
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 630/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 631static void noinline
540fd_rearm_all (EV_P) 632fd_rearm_all (EV_P)
541{ 633{
542 int fd; 634 int fd;
543 635
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 636 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 637 if (anfds [fd].events)
547 { 638 {
548 anfds [fd].events = 0; 639 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 640 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 641 }
551} 642}
552 643
553/*****************************************************************************/ 644/*****************************************************************************/
554 645
555static void 646void inline_speed
556upheap (WT *heap, int k) 647upheap (WT *heap, int k)
557{ 648{
558 WT w = heap [k]; 649 WT w = heap [k];
559 650
560 while (k && heap [k >> 1]->at > w->at) 651 while (k)
561 { 652 {
653 int p = (k - 1) >> 1;
654
655 if (heap [p]->at <= w->at)
656 break;
657
562 heap [k] = heap [k >> 1]; 658 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 659 ((W)heap [k])->active = k + 1;
564 k >>= 1; 660 k = p;
565 } 661 }
566 662
567 heap [k] = w; 663 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
569
570} 665}
571 666
572static void 667void inline_speed
573downheap (WT *heap, int N, int k) 668downheap (WT *heap, int N, int k)
574{ 669{
575 WT w = heap [k]; 670 WT w = heap [k];
576 671
577 while (k < (N >> 1)) 672 for (;;)
578 { 673 {
579 int j = k << 1; 674 int c = (k << 1) + 1;
580 675
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 676 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 677 break;
586 678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
587 heap [k] = heap [j]; 685 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 686 ((W)heap [k])->active = k + 1;
687
589 k = j; 688 k = c;
590 } 689 }
591 690
592 heap [k] = w; 691 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 692 ((W)heap [k])->active = k + 1;
594} 693}
595 694
596inline void 695void inline_size
597adjustheap (WT *heap, int N, int k) 696adjustheap (WT *heap, int N, int k)
598{ 697{
599 upheap (heap, k); 698 upheap (heap, k);
600 downheap (heap, N, k); 699 downheap (heap, N, k);
601} 700}
611static ANSIG *signals; 710static ANSIG *signals;
612static int signalmax; 711static int signalmax;
613 712
614static int sigpipe [2]; 713static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 714static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 715static ev_io sigev;
617 716
618static void 717void inline_size
619signals_init (ANSIG *base, int count) 718signals_init (ANSIG *base, int count)
620{ 719{
621 while (count--) 720 while (count--)
622 { 721 {
623 base->head = 0; 722 base->head = 0;
643 write (sigpipe [1], &signum, 1); 742 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 743 errno = old_errno;
645 } 744 }
646} 745}
647 746
648void 747void noinline
649ev_feed_signal_event (EV_P_ int signum) 748ev_feed_signal_event (EV_P_ int signum)
650{ 749{
651 WL w; 750 WL w;
652 751
653#if EV_MULTIPLICITY 752#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 763 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 765}
667 766
668static void 767static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 768sigcb (EV_P_ ev_io *iow, int revents)
670{ 769{
671 int signum; 770 int signum;
672 771
673 read (sigpipe [0], &revents, 1); 772 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 773 gotsig = 0;
676 for (signum = signalmax; signum--; ) 775 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 776 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 777 ev_feed_signal_event (EV_A_ signum + 1);
679} 778}
680 779
681static void 780void inline_speed
682fd_intern (int fd) 781fd_intern (int fd)
683{ 782{
684#ifdef _WIN32 783#ifdef _WIN32
685 int arg = 1; 784 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 787 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 788 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 789#endif
691} 790}
692 791
693static void 792static void noinline
694siginit (EV_P) 793siginit (EV_P)
695{ 794{
696 fd_intern (sigpipe [0]); 795 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 796 fd_intern (sigpipe [1]);
698 797
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 800 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 801}
703 802
704/*****************************************************************************/ 803/*****************************************************************************/
705 804
706static struct ev_child *childs [PID_HASHSIZE]; 805static WL childs [EV_PID_HASHSIZE];
707 806
708#ifndef _WIN32 807#ifndef _WIN32
709 808
710static struct ev_signal childev; 809static ev_signal childev;
810
811void inline_speed
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
813{
814 ev_child *w;
815
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
817 if (w->pid == pid || !w->pid)
818 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
820 w->rpid = pid;
821 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 }
824}
711 825
712#ifndef WCONTINUED 826#ifndef WCONTINUED
713# define WCONTINUED 0 827# define WCONTINUED 0
714#endif 828#endif
715 829
716static void 830static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 831childcb (EV_P_ ev_signal *sw, int revents)
733{ 832{
734 int pid, status; 833 int pid, status;
735 834
835 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 836 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 837 if (!WCONTINUED
838 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return;
841
738 /* make sure we are called again until all childs have been reaped */ 842 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 843 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 845
742 child_reap (EV_A_ sw, pid, pid, status); 846 child_reap (EV_A_ sw, pid, pid, status);
847 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 849}
746 850
747#endif 851#endif
748 852
749/*****************************************************************************/ 853/*****************************************************************************/
775{ 879{
776 return EV_VERSION_MINOR; 880 return EV_VERSION_MINOR;
777} 881}
778 882
779/* return true if we are running with elevated privileges and should ignore env variables */ 883/* return true if we are running with elevated privileges and should ignore env variables */
780static int 884int inline_size
781enable_secure (void) 885enable_secure (void)
782{ 886{
783#ifdef _WIN32 887#ifdef _WIN32
784 return 0; 888 return 0;
785#else 889#else
832ev_backend (EV_P) 936ev_backend (EV_P)
833{ 937{
834 return backend; 938 return backend;
835} 939}
836 940
837static void 941unsigned int
942ev_loop_count (EV_P)
943{
944 return loop_count;
945}
946
947static void noinline
838loop_init (EV_P_ unsigned int flags) 948loop_init (EV_P_ unsigned int flags)
839{ 949{
840 if (!backend) 950 if (!backend)
841 { 951 {
842#if EV_USE_MONOTONIC 952#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 960 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 961 mn_now = get_clock ();
852 now_floor = mn_now; 962 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 963 rtmn_diff = ev_rt_now - mn_now;
854 964
965 /* pid check not overridable via env */
966#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid ();
969#endif
970
855 if (!(flags & EVFLAG_NOENV) 971 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 972 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 973 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 974 flags = atoi (getenv ("LIBEV_FLAGS"));
859 975
860 if (!(flags & 0x0000ffffUL)) 976 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 977 flags |= ev_recommended_backends ();
862 978
863 backend = 0; 979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984
864#if EV_USE_PORT 985#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 987#endif
867#if EV_USE_KQUEUE 988#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 989 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 1001 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1002 ev_set_priority (&sigev, EV_MAXPRI);
882 } 1003 }
883} 1004}
884 1005
885static void 1006static void noinline
886loop_destroy (EV_P) 1007loop_destroy (EV_P)
887{ 1008{
888 int i; 1009 int i;
1010
1011#if EV_USE_INOTIFY
1012 if (fs_fd >= 0)
1013 close (fs_fd);
1014#endif
1015
1016 if (backend_fd >= 0)
1017 close (backend_fd);
889 1018
890#if EV_USE_PORT 1019#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1020 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1021#endif
893#if EV_USE_KQUEUE 1022#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1031#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1032 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1033#endif
905 1034
906 for (i = NUMPRI; i--; ) 1035 for (i = NUMPRI; i--; )
1036 {
907 array_free (pending, [i]); 1037 array_free (pending, [i]);
1038#if EV_IDLE_ENABLE
1039 array_free (idle, [i]);
1040#endif
1041 }
908 1042
909 /* have to use the microsoft-never-gets-it-right macro */ 1043 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1044 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1045 array_free (timer, EMPTY);
912#if EV_PERIODICS 1046#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1047 array_free (periodic, EMPTY);
914#endif 1048#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1049 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1050 array_free (check, EMPTY);
918 1051
919 backend = 0; 1052 backend = 0;
920} 1053}
921 1054
922static void 1055void inline_size infy_fork (EV_P);
1056
1057void inline_size
923loop_fork (EV_P) 1058loop_fork (EV_P)
924{ 1059{
925#if EV_USE_PORT 1060#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1061 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1062#endif
928#if EV_USE_KQUEUE 1063#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1064 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1065#endif
931#if EV_USE_EPOLL 1066#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1067 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1068#endif
1069#if EV_USE_INOTIFY
1070 infy_fork (EV_A);
933#endif 1071#endif
934 1072
935 if (ev_is_active (&sigev)) 1073 if (ev_is_active (&sigev))
936 { 1074 {
937 /* default loop */ 1075 /* default loop */
1053 postfork = 1; 1191 postfork = 1;
1054} 1192}
1055 1193
1056/*****************************************************************************/ 1194/*****************************************************************************/
1057 1195
1058static int 1196void
1059any_pending (EV_P) 1197ev_invoke (EV_P_ void *w, int revents)
1060{ 1198{
1061 int pri; 1199 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1200}
1069 1201
1070inline void 1202void inline_speed
1071call_pending (EV_P) 1203call_pending (EV_P)
1072{ 1204{
1073 int pri; 1205 int pri;
1074 1206
1075 for (pri = NUMPRI; pri--; ) 1207 for (pri = NUMPRI; pri--; )
1077 { 1209 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1210 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1211
1080 if (expect_true (p->w)) 1212 if (expect_true (p->w))
1081 { 1213 {
1214 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1215
1082 p->w->pending = 0; 1216 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1217 EV_CB_INVOKE (p->w, p->events);
1084 } 1218 }
1085 } 1219 }
1086} 1220}
1087 1221
1088inline void 1222void inline_size
1089timers_reify (EV_P) 1223timers_reify (EV_P)
1090{ 1224{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1225 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1226 {
1093 struct ev_timer *w = timers [0]; 1227 ev_timer *w = (ev_timer *)timers [0];
1094 1228
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1229 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1230
1097 /* first reschedule or stop timer */ 1231 /* first reschedule or stop timer */
1098 if (w->repeat) 1232 if (w->repeat)
1099 { 1233 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1234 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1235
1102 ((WT)w)->at += w->repeat; 1236 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1237 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1238 ((WT)w)->at = mn_now;
1105 1239
1106 downheap ((WT *)timers, timercnt, 0); 1240 downheap (timers, timercnt, 0);
1107 } 1241 }
1108 else 1242 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1243 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1244
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1245 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1246 }
1113} 1247}
1114 1248
1115#if EV_PERIODICS 1249#if EV_PERIODIC_ENABLE
1116inline void 1250void inline_size
1117periodics_reify (EV_P) 1251periodics_reify (EV_P)
1118{ 1252{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1253 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1254 {
1121 struct ev_periodic *w = periodics [0]; 1255 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1256
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1257 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1258
1125 /* first reschedule or stop timer */ 1259 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1260 if (w->reschedule_cb)
1127 { 1261 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1262 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap (periodics, periodiccnt, 0);
1131 } 1265 }
1132 else if (w->interval) 1266 else if (w->interval)
1133 { 1267 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1268 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1269 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1270 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1271 downheap (periodics, periodiccnt, 0);
1137 } 1272 }
1138 else 1273 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1274 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1275
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1276 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1277 }
1143} 1278}
1144 1279
1145static void 1280static void noinline
1146periodics_reschedule (EV_P) 1281periodics_reschedule (EV_P)
1147{ 1282{
1148 int i; 1283 int i;
1149 1284
1150 /* adjust periodics after time jump */ 1285 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1286 for (i = 0; i < periodiccnt; ++i)
1152 { 1287 {
1153 struct ev_periodic *w = periodics [i]; 1288 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1289
1155 if (w->reschedule_cb) 1290 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1291 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1292 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1293 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1294 }
1160 1295
1161 /* now rebuild the heap */ 1296 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1297 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1298 downheap (periodics, periodiccnt, i);
1164} 1299}
1165#endif 1300#endif
1166 1301
1167inline int 1302#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1303void inline_size
1304idle_reify (EV_P)
1169{ 1305{
1306 if (expect_false (idleall))
1307 {
1308 int pri;
1309
1310 for (pri = NUMPRI; pri--; )
1311 {
1312 if (pendingcnt [pri])
1313 break;
1314
1315 if (idlecnt [pri])
1316 {
1317 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1318 break;
1319 }
1320 }
1321 }
1322}
1323#endif
1324
1325void inline_speed
1326time_update (EV_P_ ev_tstamp max_block)
1327{
1328 int i;
1329
1330#if EV_USE_MONOTONIC
1331 if (expect_true (have_monotonic))
1332 {
1333 ev_tstamp odiff = rtmn_diff;
1334
1170 mn_now = get_clock (); 1335 mn_now = get_clock ();
1171 1336
1337 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1338 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1339 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1340 {
1174 ev_rt_now = rtmn_diff + mn_now; 1341 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1342 return;
1176 } 1343 }
1177 else 1344
1178 {
1179 now_floor = mn_now; 1345 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1346 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1347
1185inline void 1348 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1349 * on the choice of "4": one iteration isn't enough,
1187{ 1350 * in case we get preempted during the calls to
1188 int i; 1351 * ev_time and get_clock. a second call is almost guaranteed
1189 1352 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1353 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1354 * in the unlikely event of having been preempted here.
1192 { 1355 */
1193 if (time_update_monotonic (EV_A)) 1356 for (i = 4; --i; )
1194 { 1357 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1358 rtmn_diff = ev_rt_now - mn_now;
1200 1359
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1360 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1361 return; /* all is well */
1203 1362
1204 ev_rt_now = ev_time (); 1363 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1364 mn_now = get_clock ();
1206 now_floor = mn_now; 1365 now_floor = mn_now;
1207 } 1366 }
1208 1367
1209# if EV_PERIODICS 1368# if EV_PERIODIC_ENABLE
1369 periodics_reschedule (EV_A);
1370# endif
1371 /* no timer adjustment, as the monotonic clock doesn't jump */
1372 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373 }
1374 else
1375#endif
1376 {
1377 ev_rt_now = ev_time ();
1378
1379 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1380 {
1381#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1382 periodics_reschedule (EV_A);
1211# endif 1383#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1384 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1385 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1386 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1387 }
1231 1388
1232 mn_now = ev_rt_now; 1389 mn_now = ev_rt_now;
1248static int loop_done; 1405static int loop_done;
1249 1406
1250void 1407void
1251ev_loop (EV_P_ int flags) 1408ev_loop (EV_P_ int flags)
1252{ 1409{
1253 double block;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1410 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1411 ? EVUNLOOP_ONE
1412 : EVUNLOOP_CANCEL;
1255 1413
1256 while (activecnt) 1414 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1415
1416 do
1257 { 1417 {
1418#ifndef _WIN32
1419 if (expect_false (curpid)) /* penalise the forking check even more */
1420 if (expect_false (getpid () != curpid))
1421 {
1422 curpid = getpid ();
1423 postfork = 1;
1424 }
1425#endif
1426
1427#if EV_FORK_ENABLE
1428 /* we might have forked, so queue fork handlers */
1429 if (expect_false (postfork))
1430 if (forkcnt)
1431 {
1432 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1433 call_pending (EV_A);
1434 }
1435#endif
1436
1258 /* queue check watchers (and execute them) */ 1437 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 1438 if (expect_false (preparecnt))
1260 { 1439 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1440 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 1441 call_pending (EV_A);
1263 } 1442 }
1264 1443
1444 if (expect_false (!activecnt))
1445 break;
1446
1265 /* we might have forked, so reify kernel state if necessary */ 1447 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 1448 if (expect_false (postfork))
1267 loop_fork (EV_A); 1449 loop_fork (EV_A);
1268 1450
1269 /* update fd-related kernel structures */ 1451 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 1452 fd_reify (EV_A);
1271 1453
1272 /* calculate blocking time */ 1454 /* calculate blocking time */
1455 {
1456 ev_tstamp block;
1273 1457
1274 /* we only need this for !monotonic clock or timers, but as we basically 1458 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1275 always have timers, we just calculate it always */ 1459 block = 0.; /* do not block at all */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else 1460 else
1280#endif
1281 { 1461 {
1282 ev_rt_now = ev_time (); 1462 /* update time to cancel out callback processing overhead */
1283 mn_now = ev_rt_now; 1463 time_update (EV_A_ 1e100);
1284 }
1285 1464
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
1291 1466
1292 if (timercnt) 1467 if (timercnt)
1293 { 1468 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1295 if (block > to) block = to; 1470 if (block > to) block = to;
1296 } 1471 }
1297 1472
1298#if EV_PERIODICS 1473#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 1474 if (periodiccnt)
1300 { 1475 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 1477 if (block > to) block = to;
1303 } 1478 }
1304#endif 1479#endif
1305 1480
1306 if (expect_false (block < 0.)) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1307 } 1482 }
1308 1483
1484 ++loop_count;
1309 backend_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1310 1486
1311 /* update ev_rt_now, do magic */ 1487 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 1488 time_update (EV_A_ block);
1489 }
1313 1490
1314 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 1493#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 1495#endif
1319 1496
1497#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 1498 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1323 1501
1324 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 1503 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 1505
1328 call_pending (EV_A); 1506 call_pending (EV_A);
1329 1507
1330 if (expect_false (loop_done))
1331 break;
1332 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1333 1510
1334 if (loop_done != 2) 1511 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 1512 loop_done = EVUNLOOP_CANCEL;
1336} 1513}
1337 1514
1338void 1515void
1339ev_unloop (EV_P_ int how) 1516ev_unloop (EV_P_ int how)
1340{ 1517{
1341 loop_done = how; 1518 loop_done = how;
1342} 1519}
1343 1520
1344/*****************************************************************************/ 1521/*****************************************************************************/
1345 1522
1346inline void 1523void inline_size
1347wlist_add (WL *head, WL elem) 1524wlist_add (WL *head, WL elem)
1348{ 1525{
1349 elem->next = *head; 1526 elem->next = *head;
1350 *head = elem; 1527 *head = elem;
1351} 1528}
1352 1529
1353inline void 1530void inline_size
1354wlist_del (WL *head, WL elem) 1531wlist_del (WL *head, WL elem)
1355{ 1532{
1356 while (*head) 1533 while (*head)
1357 { 1534 {
1358 if (*head == elem) 1535 if (*head == elem)
1363 1540
1364 head = &(*head)->next; 1541 head = &(*head)->next;
1365 } 1542 }
1366} 1543}
1367 1544
1368inline void 1545void inline_speed
1369ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1370{ 1547{
1371 if (w->pending) 1548 if (w->pending)
1372 { 1549 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0; 1551 w->pending = 0;
1375 } 1552 }
1376} 1553}
1377 1554
1378inline void 1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1581void inline_speed
1379ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1380{ 1583{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 1585 w->active = active;
1385 ev_ref (EV_A); 1586 ev_ref (EV_A);
1386} 1587}
1387 1588
1388inline void 1589void inline_size
1389ev_stop (EV_P_ W w) 1590ev_stop (EV_P_ W w)
1390{ 1591{
1391 ev_unref (EV_A); 1592 ev_unref (EV_A);
1392 w->active = 0; 1593 w->active = 0;
1393} 1594}
1394 1595
1395/*****************************************************************************/ 1596/*****************************************************************************/
1396 1597
1397void 1598void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1399{ 1600{
1400 int fd = w->fd; 1601 int fd = w->fd;
1401 1602
1402 if (expect_false (ev_is_active (w))) 1603 if (expect_false (ev_is_active (w)))
1403 return; 1604 return;
1404 1605
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1406 1607
1407 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add (&anfds[fd].head, (WL)w);
1410 1611
1411 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1613 w->events &= ~EV_IOFDSET;
1412} 1614}
1413 1615
1414void 1616void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1416{ 1618{
1417 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1419 return; 1621 return;
1420 1622
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 1624
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1425 1627
1426 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd, 1);
1427} 1629}
1428 1630
1429void 1631void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1431{ 1633{
1432 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1433 return; 1635 return;
1434 1636
1435 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1436 1638
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 1640
1439 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1441 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 1644 upheap (timers, timercnt - 1);
1443 1645
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1445} 1647}
1446 1648
1447void 1649void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 1650ev_timer_stop (EV_P_ ev_timer *w)
1449{ 1651{
1450 ev_clear_pending (EV_A_ (W)w); 1652 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 1653 if (expect_false (!ev_is_active (w)))
1452 return; 1654 return;
1453 1655
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1455 1657
1658 {
1659 int active = ((W)w)->active;
1660
1456 if (expect_true (((W)w)->active < timercnt--)) 1661 if (expect_true (--active < --timercnt))
1457 { 1662 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap (timers, timercnt, active);
1460 } 1665 }
1666 }
1461 1667
1462 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1463 1669
1464 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1465} 1671}
1466 1672
1467void 1673void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1469{ 1675{
1470 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1471 { 1677 {
1472 if (w->repeat) 1678 if (w->repeat)
1473 { 1679 {
1474 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap (timers, timercnt, ((W)w)->active - 1);
1476 } 1682 }
1477 else 1683 else
1478 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1479 } 1685 }
1480 else if (w->repeat) 1686 else if (w->repeat)
1482 w->at = w->repeat; 1688 w->at = w->repeat;
1483 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1484 } 1690 }
1485} 1691}
1486 1692
1487#if EV_PERIODICS 1693#if EV_PERIODIC_ENABLE
1488void 1694void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 1696{
1491 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1492 return; 1698 return;
1493 1699
1494 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 1702 else if (w->interval)
1497 { 1703 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1502 1710
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap (periodics, periodiccnt - 1);
1507 1715
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1509} 1717}
1510 1718
1511void 1719void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 1720ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 1721{
1514 ev_clear_pending (EV_A_ (W)w); 1722 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 1723 if (expect_false (!ev_is_active (w)))
1516 return; 1724 return;
1517 1725
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1519 1727
1728 {
1729 int active = ((W)w)->active;
1730
1520 if (expect_true (((W)w)->active < periodiccnt--)) 1731 if (expect_true (--active < --periodiccnt))
1521 { 1732 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap (periodics, periodiccnt, active);
1524 } 1735 }
1736 }
1525 1737
1526 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1527} 1739}
1528 1740
1529void 1741void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 1743{
1532 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1535} 1747}
1536#endif 1748#endif
1537 1749
1538void
1539ev_idle_start (EV_P_ struct ev_idle *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART 1750#ifndef SA_RESTART
1605# define SA_RESTART 0 1751# define SA_RESTART 0
1606#endif 1752#endif
1607 1753
1608void 1754void noinline
1609ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1610{ 1756{
1611#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif 1759#endif
1614 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1615 return; 1761 return;
1616 1762
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1618 1764
1765 {
1766#ifndef _WIN32
1767 sigset_t full, prev;
1768 sigfillset (&full);
1769 sigprocmask (SIG_SETMASK, &full, &prev);
1770#endif
1771
1772 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1773
1774#ifndef _WIN32
1775 sigprocmask (SIG_SETMASK, &prev, 0);
1776#endif
1777 }
1778
1619 ev_start (EV_A_ (W)w, 1); 1779 ev_start (EV_A_ (W)w, 1);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1622 1781
1623 if (!((WL)w)->next) 1782 if (!((WL)w)->next)
1624 { 1783 {
1625#if _WIN32 1784#if _WIN32
1626 signal (w->signum, sighandler); 1785 signal (w->signum, sighandler);
1632 sigaction (w->signum, &sa, 0); 1791 sigaction (w->signum, &sa, 0);
1633#endif 1792#endif
1634 } 1793 }
1635} 1794}
1636 1795
1637void 1796void noinline
1638ev_signal_stop (EV_P_ struct ev_signal *w) 1797ev_signal_stop (EV_P_ ev_signal *w)
1639{ 1798{
1640 ev_clear_pending (EV_A_ (W)w); 1799 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1800 if (expect_false (!ev_is_active (w)))
1642 return; 1801 return;
1643 1802
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1803 wlist_del (&signals [w->signum - 1].head, (WL)w);
1645 ev_stop (EV_A_ (W)w); 1804 ev_stop (EV_A_ (W)w);
1646 1805
1647 if (!signals [w->signum - 1].head) 1806 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 1807 signal (w->signum, SIG_DFL);
1649} 1808}
1650 1809
1651void 1810void
1652ev_child_start (EV_P_ struct ev_child *w) 1811ev_child_start (EV_P_ ev_child *w)
1653{ 1812{
1654#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1814 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 1815#endif
1657 if (expect_false (ev_is_active (w))) 1816 if (expect_false (ev_is_active (w)))
1658 return; 1817 return;
1659 1818
1660 ev_start (EV_A_ (W)w, 1); 1819 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1662} 1821}
1663 1822
1664void 1823void
1665ev_child_stop (EV_P_ struct ev_child *w) 1824ev_child_stop (EV_P_ ev_child *w)
1666{ 1825{
1667 ev_clear_pending (EV_A_ (W)w); 1826 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 1827 if (expect_false (!ev_is_active (w)))
1669 return; 1828 return;
1670 1829
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1830 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 1831 ev_stop (EV_A_ (W)w);
1673} 1832}
1674 1833
1675#if EV_MULTIPLICITY 1834#if EV_STAT_ENABLE
1835
1836# ifdef _WIN32
1837# undef lstat
1838# define lstat(a,b) _stati64 (a,b)
1839# endif
1840
1841#define DEF_STAT_INTERVAL 5.0074891
1842#define MIN_STAT_INTERVAL 0.1074891
1843
1844static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1845
1846#if EV_USE_INOTIFY
1847# define EV_INOTIFY_BUFSIZE 8192
1848
1849static void noinline
1850infy_add (EV_P_ ev_stat *w)
1851{
1852 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1853
1854 if (w->wd < 0)
1855 {
1856 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1857
1858 /* monitor some parent directory for speedup hints */
1859 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1860 {
1861 char path [4096];
1862 strcpy (path, w->path);
1863
1864 do
1865 {
1866 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1867 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1868
1869 char *pend = strrchr (path, '/');
1870
1871 if (!pend)
1872 break; /* whoops, no '/', complain to your admin */
1873
1874 *pend = 0;
1875 w->wd = inotify_add_watch (fs_fd, path, mask);
1876 }
1877 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1878 }
1879 }
1880 else
1881 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1882
1883 if (w->wd >= 0)
1884 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1885}
1886
1887static void noinline
1888infy_del (EV_P_ ev_stat *w)
1889{
1890 int slot;
1891 int wd = w->wd;
1892
1893 if (wd < 0)
1894 return;
1895
1896 w->wd = -2;
1897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1898 wlist_del (&fs_hash [slot].head, (WL)w);
1899
1900 /* remove this watcher, if others are watching it, they will rearm */
1901 inotify_rm_watch (fs_fd, wd);
1902}
1903
1904static void noinline
1905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1906{
1907 if (slot < 0)
1908 /* overflow, need to check for all hahs slots */
1909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1910 infy_wd (EV_A_ slot, wd, ev);
1911 else
1912 {
1913 WL w_;
1914
1915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1916 {
1917 ev_stat *w = (ev_stat *)w_;
1918 w_ = w_->next; /* lets us remove this watcher and all before it */
1919
1920 if (w->wd == wd || wd == -1)
1921 {
1922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1923 {
1924 w->wd = -1;
1925 infy_add (EV_A_ w); /* re-add, no matter what */
1926 }
1927
1928 stat_timer_cb (EV_A_ &w->timer, 0);
1929 }
1930 }
1931 }
1932}
1933
1676static void 1934static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 1935infy_cb (EV_P_ ev_io *w, int revents)
1678{ 1936{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1937 char buf [EV_INOTIFY_BUFSIZE];
1938 struct inotify_event *ev = (struct inotify_event *)buf;
1939 int ofs;
1940 int len = read (fs_fd, buf, sizeof (buf));
1680 1941
1942 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1943 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1944}
1945
1946void inline_size
1947infy_init (EV_P)
1948{
1949 if (fs_fd != -2)
1950 return;
1951
1952 fs_fd = inotify_init ();
1953
1954 if (fs_fd >= 0)
1955 {
1956 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1957 ev_set_priority (&fs_w, EV_MAXPRI);
1958 ev_io_start (EV_A_ &fs_w);
1959 }
1960}
1961
1962void inline_size
1963infy_fork (EV_P)
1964{
1965 int slot;
1966
1967 if (fs_fd < 0)
1968 return;
1969
1970 close (fs_fd);
1971 fs_fd = inotify_init ();
1972
1973 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1974 {
1975 WL w_ = fs_hash [slot].head;
1976 fs_hash [slot].head = 0;
1977
1978 while (w_)
1979 {
1980 ev_stat *w = (ev_stat *)w_;
1981 w_ = w_->next; /* lets us add this watcher */
1982
1983 w->wd = -1;
1984
1985 if (fs_fd >= 0)
1986 infy_add (EV_A_ w); /* re-add, no matter what */
1987 else
1988 ev_timer_start (EV_A_ &w->timer);
1989 }
1990
1991 }
1992}
1993
1994#endif
1995
1996void
1997ev_stat_stat (EV_P_ ev_stat *w)
1998{
1999 if (lstat (w->path, &w->attr) < 0)
2000 w->attr.st_nlink = 0;
2001 else if (!w->attr.st_nlink)
2002 w->attr.st_nlink = 1;
2003}
2004
2005static void noinline
2006stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2007{
2008 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2009
2010 /* we copy this here each the time so that */
2011 /* prev has the old value when the callback gets invoked */
2012 w->prev = w->attr;
2013 ev_stat_stat (EV_A_ w);
2014
2015 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2016 if (
2017 w->prev.st_dev != w->attr.st_dev
2018 || w->prev.st_ino != w->attr.st_ino
2019 || w->prev.st_mode != w->attr.st_mode
2020 || w->prev.st_nlink != w->attr.st_nlink
2021 || w->prev.st_uid != w->attr.st_uid
2022 || w->prev.st_gid != w->attr.st_gid
2023 || w->prev.st_rdev != w->attr.st_rdev
2024 || w->prev.st_size != w->attr.st_size
2025 || w->prev.st_atime != w->attr.st_atime
2026 || w->prev.st_mtime != w->attr.st_mtime
2027 || w->prev.st_ctime != w->attr.st_ctime
2028 ) {
2029 #if EV_USE_INOTIFY
2030 infy_del (EV_A_ w);
2031 infy_add (EV_A_ w);
2032 ev_stat_stat (EV_A_ w); /* avoid race... */
2033 #endif
2034
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2035 ev_feed_event (EV_A_ w, EV_STAT);
2036 }
2037}
2038
2039void
2040ev_stat_start (EV_P_ ev_stat *w)
2041{
2042 if (expect_false (ev_is_active (w)))
2043 return;
2044
2045 /* since we use memcmp, we need to clear any padding data etc. */
2046 memset (&w->prev, 0, sizeof (ev_statdata));
2047 memset (&w->attr, 0, sizeof (ev_statdata));
2048
2049 ev_stat_stat (EV_A_ w);
2050
2051 if (w->interval < MIN_STAT_INTERVAL)
2052 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2053
2054 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2055 ev_set_priority (&w->timer, ev_priority (w));
2056
2057#if EV_USE_INOTIFY
2058 infy_init (EV_A);
2059
2060 if (fs_fd >= 0)
2061 infy_add (EV_A_ w);
2062 else
2063#endif
2064 ev_timer_start (EV_A_ &w->timer);
2065
2066 ev_start (EV_A_ (W)w, 1);
2067}
2068
2069void
2070ev_stat_stop (EV_P_ ev_stat *w)
2071{
2072 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w)))
2074 return;
2075
2076#if EV_USE_INOTIFY
2077 infy_del (EV_A_ w);
2078#endif
2079 ev_timer_stop (EV_A_ &w->timer);
2080
2081 ev_stop (EV_A_ (W)w);
2082}
2083#endif
2084
2085#if EV_IDLE_ENABLE
2086void
2087ev_idle_start (EV_P_ ev_idle *w)
2088{
2089 if (expect_false (ev_is_active (w)))
2090 return;
2091
2092 pri_adjust (EV_A_ (W)w);
2093
2094 {
2095 int active = ++idlecnt [ABSPRI (w)];
2096
2097 ++idleall;
2098 ev_start (EV_A_ (W)w, active);
2099
2100 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2101 idles [ABSPRI (w)][active - 1] = w;
2102 }
2103}
2104
2105void
2106ev_idle_stop (EV_P_ ev_idle *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114
2115 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2116 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2117
2118 ev_stop (EV_A_ (W)w);
2119 --idleall;
2120 }
2121}
2122#endif
2123
2124void
2125ev_prepare_start (EV_P_ ev_prepare *w)
2126{
2127 if (expect_false (ev_is_active (w)))
2128 return;
2129
2130 ev_start (EV_A_ (W)w, ++preparecnt);
2131 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2132 prepares [preparecnt - 1] = w;
2133}
2134
2135void
2136ev_prepare_stop (EV_P_ ev_prepare *w)
2137{
2138 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w)))
2140 return;
2141
2142 {
2143 int active = ((W)w)->active;
2144 prepares [active - 1] = prepares [--preparecnt];
2145 ((W)prepares [active - 1])->active = active;
2146 }
2147
2148 ev_stop (EV_A_ (W)w);
2149}
2150
2151void
2152ev_check_start (EV_P_ ev_check *w)
2153{
2154 if (expect_false (ev_is_active (w)))
2155 return;
2156
2157 ev_start (EV_A_ (W)w, ++checkcnt);
2158 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2159 checks [checkcnt - 1] = w;
2160}
2161
2162void
2163ev_check_stop (EV_P_ ev_check *w)
2164{
2165 clear_pending (EV_A_ (W)w);
2166 if (expect_false (!ev_is_active (w)))
2167 return;
2168
2169 {
2170 int active = ((W)w)->active;
2171 checks [active - 1] = checks [--checkcnt];
2172 ((W)checks [active - 1])->active = active;
2173 }
2174
2175 ev_stop (EV_A_ (W)w);
2176}
2177
2178#if EV_EMBED_ENABLE
2179void noinline
2180ev_embed_sweep (EV_P_ ev_embed *w)
2181{
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 2182 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 2183}
1684 2184
2185static void
2186embed_cb (EV_P_ ev_io *io, int revents)
2187{
2188 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2189
2190 if (ev_cb (w))
2191 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2192 else
2193 ev_embed_sweep (loop, w);
2194}
2195
1685void 2196void
1686ev_embed_start (EV_P_ struct ev_embed *w) 2197ev_embed_start (EV_P_ ev_embed *w)
1687{ 2198{
1688 if (expect_false (ev_is_active (w))) 2199 if (expect_false (ev_is_active (w)))
1689 return; 2200 return;
1690 2201
1691 { 2202 {
1692 struct ev_loop *loop = w->loop; 2203 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2204 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2205 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 } 2206 }
1696 2207
2208 ev_set_priority (&w->io, ev_priority (w));
1697 ev_io_start (EV_A_ &w->io); 2209 ev_io_start (EV_A_ &w->io);
2210
1698 ev_start (EV_A_ (W)w, 1); 2211 ev_start (EV_A_ (W)w, 1);
1699} 2212}
1700 2213
1701void 2214void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 2215ev_embed_stop (EV_P_ ev_embed *w)
1703{ 2216{
1704 ev_clear_pending (EV_A_ (W)w); 2217 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2218 if (expect_false (!ev_is_active (w)))
1706 return; 2219 return;
1707 2220
1708 ev_io_stop (EV_A_ &w->io); 2221 ev_io_stop (EV_A_ &w->io);
2222
1709 ev_stop (EV_A_ (W)w); 2223 ev_stop (EV_A_ (W)w);
1710} 2224}
1711#endif 2225#endif
1712 2226
2227#if EV_FORK_ENABLE
2228void
2229ev_fork_start (EV_P_ ev_fork *w)
2230{
2231 if (expect_false (ev_is_active (w)))
2232 return;
2233
2234 ev_start (EV_A_ (W)w, ++forkcnt);
2235 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2236 forks [forkcnt - 1] = w;
2237}
2238
2239void
2240ev_fork_stop (EV_P_ ev_fork *w)
2241{
2242 clear_pending (EV_A_ (W)w);
2243 if (expect_false (!ev_is_active (w)))
2244 return;
2245
2246 {
2247 int active = ((W)w)->active;
2248 forks [active - 1] = forks [--forkcnt];
2249 ((W)forks [active - 1])->active = active;
2250 }
2251
2252 ev_stop (EV_A_ (W)w);
2253}
2254#endif
2255
1713/*****************************************************************************/ 2256/*****************************************************************************/
1714 2257
1715struct ev_once 2258struct ev_once
1716{ 2259{
1717 struct ev_io io; 2260 ev_io io;
1718 struct ev_timer to; 2261 ev_timer to;
1719 void (*cb)(int revents, void *arg); 2262 void (*cb)(int revents, void *arg);
1720 void *arg; 2263 void *arg;
1721}; 2264};
1722 2265
1723static void 2266static void
1732 2275
1733 cb (revents, arg); 2276 cb (revents, arg);
1734} 2277}
1735 2278
1736static void 2279static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 2280once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 2281{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2282 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1740} 2283}
1741 2284
1742static void 2285static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 2286once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 2287{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2288 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1746} 2289}
1747 2290
1748void 2291void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines