ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.342 by root, Mon Mar 29 12:40:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
64# endif 95# endif
65# endif 96# endif
66 97
67# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
70# else 101# else
71# define EV_USE_POLL 0 102# define EV_USE_POLL 0
72# endif 103# endif
73# endif 104# endif
74 105
75# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
78# else 109# else
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
90 121
91# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY EV_FEATURE_OS
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD EV_FEATURE_OS
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
103#include <fcntl.h> 159#include <fcntl.h>
104#include <stddef.h> 160#include <stddef.h>
105 161
106#include <stdio.h> 162#include <stdio.h>
107 163
108#include <assert.h> 164#include <assert.h>
109#include <errno.h> 165#include <errno.h>
110#include <sys/types.h> 166#include <sys/types.h>
111#include <time.h> 167#include <time.h>
168#include <limits.h>
112 169
113#include <signal.h> 170#include <signal.h>
114 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
115#ifndef _WIN32 178#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 179# include <sys/time.h>
118# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
119#else 182#else
183# include <io.h>
120# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 185# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
124# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
125#endif 227# endif
126 228#endif
127/**/
128 229
129#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
130# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
131#endif 236#endif
132 237
133#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
135#endif 248#endif
136 249
137#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 252#endif
140 253
141#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
142# ifdef _WIN32 255# ifdef _WIN32
143# define EV_USE_POLL 0 256# define EV_USE_POLL 0
144# else 257# else
145# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 259# endif
147#endif 260#endif
148 261
149#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
150# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
151#endif 268#endif
152 269
153#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
155#endif 272#endif
156 273
157#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 275# define EV_USE_PORT 0
159#endif 276#endif
160 277
161/**/ 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
282# define EV_USE_INOTIFY 0
283# endif
284#endif
285
286#ifndef EV_PID_HASHSIZE
287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
297# else
298# define EV_USE_EVENTFD 0
299# endif
300#endif
301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
162 349
163#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
166#endif 353#endif
168#ifndef CLOCK_REALTIME 355#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 356# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 357# define EV_USE_REALTIME 0
171#endif 358#endif
172 359
360#if !EV_STAT_ENABLE
361# undef EV_USE_INOTIFY
362# define EV_USE_INOTIFY 0
363#endif
364
365#if !EV_USE_NANOSLEEP
366# ifndef _WIN32
367# include <sys/select.h>
368# endif
369#endif
370
371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
380#endif
381
173#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 383# include <winsock.h>
175#endif 384#endif
176 385
386#if EV_USE_EVENTFD
387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
177/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
444
445/*
446 * This is used to avoid floating point rounding problems.
447 * It is added to ev_rt_now when scheduling periodics
448 * to ensure progress, time-wise, even when rounding
449 * errors are against us.
450 * This value is good at least till the year 4000.
451 * Better solutions welcome.
452 */
453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 454
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 457
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 458#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 460# define noinline __attribute__ ((noinline))
193#else 461#else
194# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
195# define inline static 463# define noinline
464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
465# define inline
466# endif
196#endif 467#endif
197 468
198#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
471#define inline_size static inline
200 472
473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
476# define inline_speed static noinline
477#endif
478
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
483#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
203 486
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
206 489
207typedef struct ev_watcher *W; 490typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
210 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
212 516
213#ifdef _WIN32 517#ifdef _WIN32
214# include "ev_win32.c" 518# include "ev_win32.c"
215#endif 519#endif
216 520
217/*****************************************************************************/ 521/*****************************************************************************/
218 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
219static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
220 532
533void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 535{
223 syserr_cb = cb; 536 syserr_cb = cb;
224} 537}
225 538
226static void 539static void noinline
227syserr (const char *msg) 540ev_syserr (const char *msg)
228{ 541{
229 if (!msg) 542 if (!msg)
230 msg = "(libev) system error"; 543 msg = "(libev) system error";
231 544
232 if (syserr_cb) 545 if (syserr_cb)
233 syserr_cb (msg); 546 syserr_cb (msg);
234 else 547 else
235 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
236 perror (msg); 557 perror (msg);
558#endif
237 abort (); 559 abort ();
238 } 560 }
239} 561}
240 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
241static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 583
584void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 586{
245 alloc = cb; 587 alloc = cb;
246} 588}
247 589
248static void * 590inline_speed void *
249ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
250{ 592{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
252 594
253 if (!ptr && size) 595 if (!ptr && size)
254 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
256 abort (); 602 abort ();
257 } 603 }
258 604
259 return ptr; 605 return ptr;
260} 606}
262#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
264 610
265/*****************************************************************************/ 611/*****************************************************************************/
266 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
267typedef struct 617typedef struct
268{ 618{
269 WL head; 619 WL head;
270 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
272#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 628 SOCKET handle;
274#endif 629#endif
275} ANFD; 630} ANFD;
276 631
632/* stores the pending event set for a given watcher */
277typedef struct 633typedef struct
278{ 634{
279 W w; 635 W w;
280 int events; 636 int events; /* the pending event set for the given watcher */
281} ANPENDING; 637} ANPENDING;
638
639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
641typedef struct
642{
643 WL head;
644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
665#endif
282 666
283#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
284 668
285 struct ev_loop 669 struct ev_loop
286 { 670 {
304 688
305 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
306 690
307#endif 691#endif
308 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
309/*****************************************************************************/ 705/*****************************************************************************/
310 706
707#ifndef EV_HAVE_EV_TIME
311ev_tstamp 708ev_tstamp
312ev_time (void) 709ev_time (void)
313{ 710{
314#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
315 struct timespec ts; 714 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 717 }
718#endif
719
319 struct timeval tv; 720 struct timeval tv;
320 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 723}
724#endif
324 725
325inline ev_tstamp 726inline_size ev_tstamp
326get_clock (void) 727get_clock (void)
327{ 728{
328#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
330 { 731 {
343{ 744{
344 return ev_rt_now; 745 return ev_rt_now;
345} 746}
346#endif 747#endif
347 748
348#define array_roundsize(type,n) (((n) | 4) & ~3) 749void
750ev_sleep (ev_tstamp delay)
751{
752 if (delay > 0.)
753 {
754#if EV_USE_NANOSLEEP
755 struct timespec ts;
756
757 ts.tv_sec = (time_t)delay;
758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759
760 nanosleep (&ts, 0);
761#elif defined(_WIN32)
762 Sleep ((unsigned long)(delay * 1e3));
763#else
764 struct timeval tv;
765
766 tv.tv_sec = (time_t)delay;
767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 select (0, 0, 0, 0, &tv);
773#endif
774 }
775}
776
777/*****************************************************************************/
778
779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
784array_nextsize (int elem, int cur, int cnt)
785{
786 int ncur = cur + 1;
787
788 do
789 ncur <<= 1;
790 while (cnt > ncur);
791
792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
794 {
795 ncur *= elem;
796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
797 ncur = ncur - sizeof (void *) * 4;
798 ncur /= elem;
799 }
800
801 return ncur;
802}
803
804static noinline void *
805array_realloc (int elem, void *base, int *cur, int cnt)
806{
807 *cur = array_nextsize (elem, *cur, cnt);
808 return ev_realloc (base, elem * *cur);
809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 813
350#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 815 if (expect_false ((cnt) > (cur))) \
352 { \ 816 { \
353 int newcnt = cur; \ 817 int ocur_ = (cur); \
354 do \ 818 (base) = (type *)array_realloc \
355 { \ 819 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 820 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 821 }
364 822
823#if 0
365#define array_slim(type,stem) \ 824#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 825 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 826 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 827 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 828 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 830 }
831#endif
372 832
373#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 835
376/*****************************************************************************/ 836/*****************************************************************************/
377 837
378static void 838/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 841{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 842}
390 843
391void 844void noinline
392ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
393{ 846{
394 W w_ = (W)w; 847 W w_ = (W)w;
848 int pri = ABSPRI (w_);
395 849
396 if (expect_false (w_->pending)) 850 if (expect_false (w_->pending))
851 pendings [pri][w_->pending - 1].events |= revents;
852 else
397 { 853 {
854 w_->pending = ++pendingcnt [pri];
855 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
856 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 857 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 858 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 859}
410 860
411static void 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 878{
414 int i; 879 int i;
415 880
416 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
418} 883}
419 884
885/*****************************************************************************/
886
420inline void 887inline_speed void
421fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
422{ 889{
423 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 891 ev_io *w;
425 892
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 894 {
428 int ev = w->events & revents; 895 int ev = w->events & revents;
429 896
430 if (ev) 897 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
432 } 899 }
433} 900}
434 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
435void 913void
436ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 915{
916 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
439} 918}
440 919
441/*****************************************************************************/ 920/* make sure the external fd watch events are in-sync */
442 921/* with the kernel/libev internal state */
443inline void 922inline_size void
444fd_reify (EV_P) 923fd_reify (EV_P)
445{ 924{
446 int i; 925 int i;
447 926
448 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
449 { 928 {
450 int fd = fdchanges [i]; 929 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 930 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 931 ev_io *w;
453 932
454 int events = 0; 933 unsigned char events = 0;
455 934
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 936 events |= (unsigned char)w->events;
458 937
459#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
460 if (events) 939 if (events)
461 { 940 {
462 unsigned long argp; 941 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
465 } 944 }
466#endif 945#endif
467 946
947 {
948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
950
468 anfd->reify = 0; 951 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 952 anfd->events = events;
953
954 if (o_events != events || o_reify & EV__IOFDSET)
955 backend_modify (EV_A_ fd, o_events, events);
956 }
472 } 957 }
473 958
474 fdchangecnt = 0; 959 fdchangecnt = 0;
475} 960}
476 961
477static void 962/* something about the given fd changed */
963inline_size void
478fd_change (EV_P_ int fd) 964fd_change (EV_P_ int fd, int flags)
479{ 965{
480 if (expect_false (anfds [fd].reify)) 966 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 967 anfds [fd].reify |= flags;
484 968
969 if (expect_true (!reify))
970 {
485 ++fdchangecnt; 971 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
974 }
488} 975}
489 976
490static void 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
491fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
492{ 980{
493 struct ev_io *w; 981 ev_io *w;
494 982
495 while ((w = (struct ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
496 { 984 {
497 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 987 }
500} 988}
501 989
990/* check whether the given fd is actually valid, for error recovery */
502inline int 991inline_size int
503fd_valid (int fd) 992fd_valid (int fd)
504{ 993{
505#ifdef _WIN32 994#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 996#else
508 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
509#endif 998#endif
510} 999}
511 1000
512/* called on EBADF to verify fds */ 1001/* called on EBADF to verify fds */
513static void 1002static void noinline
514fd_ebadf (EV_P) 1003fd_ebadf (EV_P)
515{ 1004{
516 int fd; 1005 int fd;
517 1006
518 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1008 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
522} 1011}
523 1012
524/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 1014static void noinline
526fd_enomem (EV_P) 1015fd_enomem (EV_P)
527{ 1016{
528 int fd; 1017 int fd;
529 1018
530 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 1020 if (anfds [fd].events)
532 { 1021 {
533 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
534 return; 1023 break;
535 } 1024 }
536} 1025}
537 1026
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1028static void noinline
540fd_rearm_all (EV_P) 1029fd_rearm_all (EV_P)
541{ 1030{
542 int fd; 1031 int fd;
543 1032
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1034 if (anfds [fd].events)
547 { 1035 {
548 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1037 anfds [fd].emask = 0;
1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 1039 }
551} 1040}
552 1041
553/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
554 1043/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 1044inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1045fd_intern (int fd)
683{ 1046{
684#ifdef _WIN32 1047#ifdef _WIN32
685 int arg = 1; 1048 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 1050#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1053#endif
691} 1054}
692 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
1219static void noinline
1220evpipe_init (EV_P)
1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
1241 fd_intern (evpipe [0]);
1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
1245
1246 ev_io_start (EV_A_ &pipe_w);
1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
693static void 1277static void
694siginit (EV_P) 1278pipecb (EV_P_ ev_io *iow, int revents)
695{ 1279{
696 fd_intern (sigpipe [0]); 1280 int i;
697 fd_intern (sigpipe [1]);
698 1281
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1282#if EV_USE_EVENTFD
700 ev_io_start (EV_A_ &sigev); 1283 if (evfd >= 0)
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
702} 1317}
703 1318
704/*****************************************************************************/ 1319/*****************************************************************************/
705 1320
706static struct ev_child *childs [PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
707 1327
708#ifndef _WIN32 1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
709 1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
1385static WL childs [EV_PID_HASHSIZE];
1386
710static struct ev_signal childev; 1387static ev_signal childev;
1388
1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
1395child_reap (EV_P_ int chain, int pid, int status)
1396{
1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1399
1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
1404 {
1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1406 w->rpid = pid;
1407 w->rstatus = status;
1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1409 }
1410 }
1411}
711 1412
712#ifndef WCONTINUED 1413#ifndef WCONTINUED
713# define WCONTINUED 0 1414# define WCONTINUED 0
714#endif 1415#endif
715 1416
1417/* called on sigchld etc., calls waitpid */
716static void 1418static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
733{ 1420{
734 int pid, status; 1421 int pid, status;
735 1422
1423 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1424 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1425 if (!WCONTINUED
1426 || errno != EINVAL
1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1428 return;
1429
738 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1433
742 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1435 if ((EV_PID_HASHSIZE) > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1437}
746 1438
747#endif 1439#endif
748 1440
749/*****************************************************************************/ 1441/*****************************************************************************/
775{ 1467{
776 return EV_VERSION_MINOR; 1468 return EV_VERSION_MINOR;
777} 1469}
778 1470
779/* return true if we are running with elevated privileges and should ignore env variables */ 1471/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1472int inline_size
781enable_secure (void) 1473enable_secure (void)
782{ 1474{
783#ifdef _WIN32 1475#ifdef _WIN32
784 return 0; 1476 return 0;
785#else 1477#else
811 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
814#endif 1506#endif
815#ifdef __APPLE__ 1507#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1511#endif
1512#ifdef __FreeBSD__
1513 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
818#endif 1514#endif
819 1515
820 return flags; 1516 return flags;
821} 1517}
822 1518
823unsigned int 1519unsigned int
824ev_embeddable_backends (void) 1520ev_embeddable_backends (void)
825{ 1521{
826 return EVBACKEND_EPOLL 1522 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1523
828 | EVBACKEND_PORT; 1524 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1525 /* please fix it and tell me how to detect the fix */
1526 flags &= ~EVBACKEND_EPOLL;
1527
1528 return flags;
829} 1529}
830 1530
831unsigned int 1531unsigned int
832ev_backend (EV_P) 1532ev_backend (EV_P)
833{ 1533{
834 return backend; 1534 return backend;
835} 1535}
836 1536
837static void 1537#if EV_FEATURE_API
1538unsigned int
1539ev_iteration (EV_P)
1540{
1541 return loop_count;
1542}
1543
1544unsigned int
1545ev_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1550void
1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1552{
1553 io_blocktime = interval;
1554}
1555
1556void
1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1558{
1559 timeout_blocktime = interval;
1560}
1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1587static void noinline
838loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
839{ 1589{
840 if (!backend) 1590 if (!backend)
841 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
842#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
843 { 1604 {
844 struct timespec ts; 1605 struct timespec ts;
1606
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1608 have_monotonic = 1;
847 } 1609 }
848#endif 1610#endif
849 1611
850 ev_rt_now = ev_time (); 1612 /* pid check not overridable via env */
851 mn_now = get_clock (); 1613#ifndef _WIN32
852 now_floor = mn_now; 1614 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 1615 curpid = getpid ();
1616#endif
854 1617
855 if (!(flags & EVFLAG_NOENV) 1618 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1619 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1620 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1621 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1622
1623 ev_rt_now = ev_time ();
1624 mn_now = get_clock ();
1625 now_floor = mn_now;
1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_FEATURE_API
1628 invoke_cb = ev_invoke_pending;
1629#endif
1630
1631 io_blocktime = 0.;
1632 timeout_blocktime = 0.;
1633 backend = 0;
1634 backend_fd = -1;
1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1639#if EV_USE_INOTIFY
1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1641#endif
1642#if EV_USE_SIGNALFD
1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1644#endif
1645
860 if (!(flags & 0x0000ffffUL)) 1646 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
862 1648
863 backend = 0;
864#if EV_USE_PORT 1649#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1650 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1651#endif
867#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1653 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1660#endif
876#if EV_USE_SELECT 1661#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1663#endif
879 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1667#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 1668 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1669 ev_set_priority (&pipe_w, EV_MAXPRI);
1670#endif
882 } 1671 }
883} 1672}
884 1673
885static void 1674/* free up a loop structure */
1675static void noinline
886loop_destroy (EV_P) 1676loop_destroy (EV_P)
887{ 1677{
888 int i; 1678 int i;
1679
1680 if (ev_is_active (&pipe_w))
1681 {
1682 /*ev_ref (EV_A);*/
1683 /*ev_io_stop (EV_A_ &pipe_w);*/
1684
1685#if EV_USE_EVENTFD
1686 if (evfd >= 0)
1687 close (evfd);
1688#endif
1689
1690 if (evpipe [0] >= 0)
1691 {
1692 EV_WIN32_CLOSE_FD (evpipe [0]);
1693 EV_WIN32_CLOSE_FD (evpipe [1]);
1694 }
1695 }
1696
1697#if EV_USE_SIGNALFD
1698 if (ev_is_active (&sigfd_w))
1699 close (sigfd);
1700#endif
1701
1702#if EV_USE_INOTIFY
1703 if (fs_fd >= 0)
1704 close (fs_fd);
1705#endif
1706
1707 if (backend_fd >= 0)
1708 close (backend_fd);
889 1709
890#if EV_USE_PORT 1710#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1711 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1712#endif
893#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1722#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1723 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1724#endif
905 1725
906 for (i = NUMPRI; i--; ) 1726 for (i = NUMPRI; i--; )
1727 {
907 array_free (pending, [i]); 1728 array_free (pending, [i]);
1729#if EV_IDLE_ENABLE
1730 array_free (idle, [i]);
1731#endif
1732 }
1733
1734 ev_free (anfds); anfds = 0; anfdmax = 0;
908 1735
909 /* have to use the microsoft-never-gets-it-right macro */ 1736 /* have to use the microsoft-never-gets-it-right macro */
1737 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 1738 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1739 array_free (timer, EMPTY);
912#if EV_PERIODICS 1740#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1741 array_free (periodic, EMPTY);
914#endif 1742#endif
1743#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1744 array_free (fork, EMPTY);
1745#endif
916 array_free (prepare, EMPTY0); 1746 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1747 array_free (check, EMPTY);
1748#if EV_ASYNC_ENABLE
1749 array_free (async, EMPTY);
1750#endif
918 1751
919 backend = 0; 1752 backend = 0;
920} 1753}
921 1754
922static void 1755#if EV_USE_INOTIFY
1756inline_size void infy_fork (EV_P);
1757#endif
1758
1759inline_size void
923loop_fork (EV_P) 1760loop_fork (EV_P)
924{ 1761{
925#if EV_USE_PORT 1762#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1763 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1764#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1766 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1767#endif
931#if EV_USE_EPOLL 1768#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1769 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1770#endif
1771#if EV_USE_INOTIFY
1772 infy_fork (EV_A);
1773#endif
934 1774
935 if (ev_is_active (&sigev)) 1775 if (ev_is_active (&pipe_w))
936 { 1776 {
937 /* default loop */ 1777 /* this "locks" the handlers against writing to the pipe */
1778 /* while we modify the fd vars */
1779 sig_pending = 1;
1780#if EV_ASYNC_ENABLE
1781 async_pending = 1;
1782#endif
938 1783
939 ev_ref (EV_A); 1784 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1785 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 1786
944 while (pipe (sigpipe)) 1787#if EV_USE_EVENTFD
945 syserr ("(libev) error creating pipe"); 1788 if (evfd >= 0)
1789 close (evfd);
1790#endif
946 1791
1792 if (evpipe [0] >= 0)
1793 {
1794 EV_WIN32_CLOSE_FD (evpipe [0]);
1795 EV_WIN32_CLOSE_FD (evpipe [1]);
1796 }
1797
1798#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
947 siginit (EV_A); 1799 evpipe_init (EV_A);
1800 /* now iterate over everything, in case we missed something */
1801 pipecb (EV_A_ &pipe_w, EV_READ);
1802#endif
948 } 1803 }
949 1804
950 postfork = 0; 1805 postfork = 0;
951} 1806}
952 1807
953#if EV_MULTIPLICITY 1808#if EV_MULTIPLICITY
1809
954struct ev_loop * 1810struct ev_loop *
955ev_loop_new (unsigned int flags) 1811ev_loop_new (unsigned int flags)
956{ 1812{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1813 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 1814
959 memset (loop, 0, sizeof (struct ev_loop)); 1815 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 1816 loop_init (EV_A_ flags);
962 1817
963 if (ev_backend (EV_A)) 1818 if (ev_backend (EV_A))
964 return loop; 1819 return EV_A;
965 1820
966 return 0; 1821 return 0;
967} 1822}
968 1823
969void 1824void
974} 1829}
975 1830
976void 1831void
977ev_loop_fork (EV_P) 1832ev_loop_fork (EV_P)
978{ 1833{
979 postfork = 1; 1834 postfork = 1; /* must be in line with ev_default_fork */
980} 1835}
1836#endif /* multiplicity */
981 1837
1838#if EV_VERIFY
1839static void noinline
1840verify_watcher (EV_P_ W w)
1841{
1842 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1843
1844 if (w->pending)
1845 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1846}
1847
1848static void noinline
1849verify_heap (EV_P_ ANHE *heap, int N)
1850{
1851 int i;
1852
1853 for (i = HEAP0; i < N + HEAP0; ++i)
1854 {
1855 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1856 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1857 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1858
1859 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1860 }
1861}
1862
1863static void noinline
1864array_verify (EV_P_ W *ws, int cnt)
1865{
1866 while (cnt--)
1867 {
1868 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1869 verify_watcher (EV_A_ ws [cnt]);
1870 }
1871}
1872#endif
1873
1874#if EV_FEATURE_API
1875void
1876ev_verify (EV_P)
1877{
1878#if EV_VERIFY
1879 int i;
1880 WL w;
1881
1882 assert (activecnt >= -1);
1883
1884 assert (fdchangemax >= fdchangecnt);
1885 for (i = 0; i < fdchangecnt; ++i)
1886 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1887
1888 assert (anfdmax >= 0);
1889 for (i = 0; i < anfdmax; ++i)
1890 for (w = anfds [i].head; w; w = w->next)
1891 {
1892 verify_watcher (EV_A_ (W)w);
1893 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1894 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1895 }
1896
1897 assert (timermax >= timercnt);
1898 verify_heap (EV_A_ timers, timercnt);
1899
1900#if EV_PERIODIC_ENABLE
1901 assert (periodicmax >= periodiccnt);
1902 verify_heap (EV_A_ periodics, periodiccnt);
1903#endif
1904
1905 for (i = NUMPRI; i--; )
1906 {
1907 assert (pendingmax [i] >= pendingcnt [i]);
1908#if EV_IDLE_ENABLE
1909 assert (idleall >= 0);
1910 assert (idlemax [i] >= idlecnt [i]);
1911 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1912#endif
1913 }
1914
1915#if EV_FORK_ENABLE
1916 assert (forkmax >= forkcnt);
1917 array_verify (EV_A_ (W *)forks, forkcnt);
1918#endif
1919
1920#if EV_ASYNC_ENABLE
1921 assert (asyncmax >= asynccnt);
1922 array_verify (EV_A_ (W *)asyncs, asynccnt);
1923#endif
1924
1925#if EV_PREPARE_ENABLE
1926 assert (preparemax >= preparecnt);
1927 array_verify (EV_A_ (W *)prepares, preparecnt);
1928#endif
1929
1930#if EV_CHECK_ENABLE
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933#endif
1934
1935# if 0
1936#if EV_CHILD_ENABLE
1937 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1938 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1939#endif
1940# endif
1941#endif
1942}
982#endif 1943#endif
983 1944
984#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
985struct ev_loop * 1946struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1947ev_default_loop_init (unsigned int flags)
987#else 1948#else
988int 1949int
989ev_default_loop (unsigned int flags) 1950ev_default_loop (unsigned int flags)
990#endif 1951#endif
991{ 1952{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1953 if (!ev_default_loop_ptr)
997 { 1954 {
998#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1956 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 1957#else
1001 ev_default_loop_ptr = 1; 1958 ev_default_loop_ptr = 1;
1002#endif 1959#endif
1003 1960
1004 loop_init (EV_A_ flags); 1961 loop_init (EV_A_ flags);
1005 1962
1006 if (ev_backend (EV_A)) 1963 if (ev_backend (EV_A))
1007 { 1964 {
1008 siginit (EV_A); 1965#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1966 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1967 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1968 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1969 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 1970#endif
1023 1978
1024void 1979void
1025ev_default_destroy (void) 1980ev_default_destroy (void)
1026{ 1981{
1027#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1028 struct ev_loop *loop = ev_default_loop_ptr; 1983 EV_P = ev_default_loop_ptr;
1029#endif 1984#endif
1030 1985
1031#ifndef _WIN32 1986 ev_default_loop_ptr = 0;
1987
1988#if EV_CHILD_ENABLE
1032 ev_ref (EV_A); /* child watcher */ 1989 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1990 ev_signal_stop (EV_A_ &childev);
1034#endif 1991#endif
1035 1992
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1993 loop_destroy (EV_A);
1043} 1994}
1044 1995
1045void 1996void
1046ev_default_fork (void) 1997ev_default_fork (void)
1047{ 1998{
1048#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1050#endif 2001#endif
1051 2002
1052 if (backend) 2003 postfork = 1; /* must be in line with ev_loop_fork */
1053 postfork = 1;
1054} 2004}
1055 2005
1056/*****************************************************************************/ 2006/*****************************************************************************/
1057 2007
1058static int 2008void
1059any_pending (EV_P) 2009ev_invoke (EV_P_ void *w, int revents)
2010{
2011 EV_CB_INVOKE ((W)w, revents);
2012}
2013
2014unsigned int
2015ev_pending_count (EV_P)
1060{ 2016{
1061 int pri; 2017 int pri;
2018 unsigned int count = 0;
1062 2019
1063 for (pri = NUMPRI; pri--; ) 2020 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 2021 count += pendingcnt [pri];
1065 return 1;
1066 2022
1067 return 0; 2023 return count;
1068} 2024}
1069 2025
1070inline void 2026void noinline
1071call_pending (EV_P) 2027ev_invoke_pending (EV_P)
1072{ 2028{
1073 int pri; 2029 int pri;
1074 2030
1075 for (pri = NUMPRI; pri--; ) 2031 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 2032 while (pendingcnt [pri])
1077 { 2033 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 2035
1080 if (expect_true (p->w)) 2036 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1081 { 2037 /* ^ this is no longer true, as pending_w could be here */
2038
1082 p->w->pending = 0; 2039 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 2040 EV_CB_INVOKE (p->w, p->events);
1084 } 2041 EV_FREQUENT_CHECK;
1085 } 2042 }
1086} 2043}
1087 2044
2045#if EV_IDLE_ENABLE
2046/* make idle watchers pending. this handles the "call-idle */
2047/* only when higher priorities are idle" logic */
1088inline void 2048inline_size void
2049idle_reify (EV_P)
2050{
2051 if (expect_false (idleall))
2052 {
2053 int pri;
2054
2055 for (pri = NUMPRI; pri--; )
2056 {
2057 if (pendingcnt [pri])
2058 break;
2059
2060 if (idlecnt [pri])
2061 {
2062 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2063 break;
2064 }
2065 }
2066 }
2067}
2068#endif
2069
2070/* make timers pending */
2071inline_size void
1089timers_reify (EV_P) 2072timers_reify (EV_P)
1090{ 2073{
2074 EV_FREQUENT_CHECK;
2075
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 2076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 2077 {
1093 struct ev_timer *w = timers [0]; 2078 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 2079 {
2080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2081
2082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2083
2084 /* first reschedule or stop timer */
2085 if (w->repeat)
2086 {
2087 ev_at (w) += w->repeat;
2088 if (ev_at (w) < mn_now)
2089 ev_at (w) = mn_now;
2090
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 2092
1102 ((WT)w)->at += w->repeat; 2093 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 2094 downheap (timers, timercnt, HEAP0);
2095 }
2096 else
2097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2098
2099 EV_FREQUENT_CHECK;
2100 feed_reverse (EV_A_ (W)w);
1107 } 2101 }
1108 else 2102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 2103
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2104 feed_reverse_done (EV_A_ EV_TIMER);
1112 } 2105 }
1113} 2106}
1114 2107
1115#if EV_PERIODICS 2108#if EV_PERIODIC_ENABLE
2109/* make periodics pending */
1116inline void 2110inline_size void
1117periodics_reify (EV_P) 2111periodics_reify (EV_P)
1118{ 2112{
2113 EV_FREQUENT_CHECK;
2114
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 2116 {
1121 struct ev_periodic *w = periodics [0]; 2117 int feed_count = 0;
1122 2118
2119 do
2120 {
2121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2122
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2123 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 2124
1125 /* first reschedule or stop timer */ 2125 /* first reschedule or stop timer */
2126 if (w->reschedule_cb)
2127 {
2128 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2129
2130 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2131
2132 ANHE_at_cache (periodics [HEAP0]);
2133 downheap (periodics, periodiccnt, HEAP0);
2134 }
2135 else if (w->interval)
2136 {
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138 /* if next trigger time is not sufficiently in the future, put it there */
2139 /* this might happen because of floating point inexactness */
2140 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2141 {
2142 ev_at (w) += w->interval;
2143
2144 /* if interval is unreasonably low we might still have a time in the past */
2145 /* so correct this. this will make the periodic very inexact, but the user */
2146 /* has effectively asked to get triggered more often than possible */
2147 if (ev_at (w) < ev_rt_now)
2148 ev_at (w) = ev_rt_now;
2149 }
2150
2151 ANHE_at_cache (periodics [HEAP0]);
2152 downheap (periodics, periodiccnt, HEAP0);
2153 }
2154 else
2155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2156
2157 EV_FREQUENT_CHECK;
2158 feed_reverse (EV_A_ (W)w);
2159 }
2160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2161
2162 feed_reverse_done (EV_A_ EV_PERIODIC);
2163 }
2164}
2165
2166/* simply recalculate all periodics */
2167/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2168static void noinline
2169periodics_reschedule (EV_P)
2170{
2171 int i;
2172
2173 /* adjust periodics after time jump */
2174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2175 {
2176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2177
1126 if (w->reschedule_cb) 2178 if (w->reschedule_cb)
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180 else if (w->interval)
2181 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2182
2183 ANHE_at_cache (periodics [i]);
2184 }
2185
2186 reheap (periodics, periodiccnt);
2187}
2188#endif
2189
2190/* adjust all timers by a given offset */
2191static void noinline
2192timers_reschedule (EV_P_ ev_tstamp adjust)
2193{
2194 int i;
2195
2196 for (i = 0; i < timercnt; ++i)
2197 {
2198 ANHE *he = timers + i + HEAP0;
2199 ANHE_w (*he)->at += adjust;
2200 ANHE_at_cache (*he);
2201 }
2202}
2203
2204/* fetch new monotonic and realtime times from the kernel */
2205/* also detect if there was a timejump, and act accordingly */
2206inline_speed void
2207time_update (EV_P_ ev_tstamp max_block)
2208{
2209#if EV_USE_MONOTONIC
2210 if (expect_true (have_monotonic))
2211 {
2212 int i;
2213 ev_tstamp odiff = rtmn_diff;
2214
2215 mn_now = get_clock ();
2216
2217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2218 /* interpolate in the meantime */
2219 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 2220 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2221 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2222 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 2223 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 2224
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 2225 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 2226 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 2227
1185inline void 2228 /* loop a few times, before making important decisions.
1186time_update (EV_P) 2229 * on the choice of "4": one iteration isn't enough,
1187{ 2230 * in case we get preempted during the calls to
1188 int i; 2231 * ev_time and get_clock. a second call is almost guaranteed
1189 2232 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 2233 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 2234 * in the unlikely event of having been preempted here.
1192 { 2235 */
1193 if (time_update_monotonic (EV_A)) 2236 for (i = 4; --i; )
1194 { 2237 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 2238 rtmn_diff = ev_rt_now - mn_now;
1200 2239
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2240 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 2241 return; /* all is well */
1203 2242
1204 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 2244 mn_now = get_clock ();
1206 now_floor = mn_now; 2245 now_floor = mn_now;
1207 } 2246 }
1208 2247
2248 /* no timer adjustment, as the monotonic clock doesn't jump */
2249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2250# if EV_PERIODIC_ENABLE
2251 periodics_reschedule (EV_A);
2252# endif
2253 }
2254 else
2255#endif
2256 {
2257 ev_rt_now = ev_time ();
2258
2259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2260 {
2261 /* adjust timers. this is easy, as the offset is the same for all of them */
2262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2263#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2264 periodics_reschedule (EV_A);
1211# endif 2265#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2266 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2267
1232 mn_now = ev_rt_now; 2268 mn_now = ev_rt_now;
1233 } 2269 }
1234} 2270}
1235 2271
1236void 2272void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 2273ev_loop (EV_P_ int flags)
1252{ 2274{
1253 double block; 2275#if EV_FEATURE_API
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2276 ++loop_depth;
2277#endif
1255 2278
1256 while (activecnt) 2279 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2280
2281 loop_done = EVUNLOOP_CANCEL;
2282
2283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2284
2285 do
1257 { 2286 {
2287#if EV_VERIFY >= 2
2288 ev_verify (EV_A);
2289#endif
2290
2291#ifndef _WIN32
2292 if (expect_false (curpid)) /* penalise the forking check even more */
2293 if (expect_false (getpid () != curpid))
2294 {
2295 curpid = getpid ();
2296 postfork = 1;
2297 }
2298#endif
2299
2300#if EV_FORK_ENABLE
2301 /* we might have forked, so queue fork handlers */
2302 if (expect_false (postfork))
2303 if (forkcnt)
2304 {
2305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2306 EV_INVOKE_PENDING;
2307 }
2308#endif
2309
2310#if EV_PREPARE_ENABLE
1258 /* queue check watchers (and execute them) */ 2311 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 2312 if (expect_false (preparecnt))
1260 { 2313 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1263 } 2316 }
2317#endif
2318
2319 if (expect_false (loop_done))
2320 break;
1264 2321
1265 /* we might have forked, so reify kernel state if necessary */ 2322 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1267 loop_fork (EV_A); 2324 loop_fork (EV_A);
1268 2325
1269 /* update fd-related kernel structures */ 2326 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 2327 fd_reify (EV_A);
1271 2328
1272 /* calculate blocking time */ 2329 /* calculate blocking time */
2330 {
2331 ev_tstamp waittime = 0.;
2332 ev_tstamp sleeptime = 0.;
1273 2333
1274 /* we only need this for !monotonic clock or timers, but as we basically 2334 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1275 always have timers, we just calculate it always */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else
1280#endif
1281 { 2335 {
1282 ev_rt_now = ev_time (); 2336 /* remember old timestamp for io_blocktime calculation */
1283 mn_now = ev_rt_now; 2337 ev_tstamp prev_mn_now = mn_now;
1284 }
1285 2338
1286 if (flags & EVLOOP_NONBLOCK || idlecnt) 2339 /* update time to cancel out callback processing overhead */
1287 block = 0.; 2340 time_update (EV_A_ 1e100);
1288 else 2341
1289 {
1290 block = MAX_BLOCKTIME; 2342 waittime = MAX_BLOCKTIME;
1291 2343
1292 if (timercnt) 2344 if (timercnt)
1293 { 2345 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2346 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1295 if (block > to) block = to; 2347 if (waittime > to) waittime = to;
1296 } 2348 }
1297 2349
1298#if EV_PERIODICS 2350#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 2351 if (periodiccnt)
1300 { 2352 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2353 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 2354 if (waittime > to) waittime = to;
1303 } 2355 }
1304#endif 2356#endif
1305 2357
1306 if (expect_false (block < 0.)) block = 0.; 2358 /* don't let timeouts decrease the waittime below timeout_blocktime */
2359 if (expect_false (waittime < timeout_blocktime))
2360 waittime = timeout_blocktime;
2361
2362 /* extra check because io_blocktime is commonly 0 */
2363 if (expect_false (io_blocktime))
2364 {
2365 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2366
2367 if (sleeptime > waittime - backend_fudge)
2368 sleeptime = waittime - backend_fudge;
2369
2370 if (expect_true (sleeptime > 0.))
2371 {
2372 ev_sleep (sleeptime);
2373 waittime -= sleeptime;
2374 }
2375 }
1307 } 2376 }
1308 2377
2378#if EV_FEATURE_API
2379 ++loop_count;
2380#endif
2381 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1309 backend_poll (EV_A_ block); 2382 backend_poll (EV_A_ waittime);
2383 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1310 2384
1311 /* update ev_rt_now, do magic */ 2385 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 2386 time_update (EV_A_ waittime + sleeptime);
2387 }
1313 2388
1314 /* queue pending timers and reschedule them */ 2389 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 2390 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 2391#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 2392 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 2393#endif
1319 2394
2395#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 2396 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 2397 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2398#endif
1323 2399
2400#if EV_CHECK_ENABLE
1324 /* queue check watchers, to be executed first */ 2401 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 2402 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2403 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2404#endif
1327 2405
1328 call_pending (EV_A); 2406 EV_INVOKE_PENDING;
1329
1330 if (expect_false (loop_done))
1331 break;
1332 } 2407 }
2408 while (expect_true (
2409 activecnt
2410 && !loop_done
2411 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2412 ));
1333 2413
1334 if (loop_done != 2) 2414 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 2415 loop_done = EVUNLOOP_CANCEL;
2416
2417#if EV_FEATURE_API
2418 --loop_depth;
2419#endif
1336} 2420}
1337 2421
1338void 2422void
1339ev_unloop (EV_P_ int how) 2423ev_unloop (EV_P_ int how)
1340{ 2424{
1341 loop_done = how; 2425 loop_done = how;
1342} 2426}
1343 2427
2428void
2429ev_ref (EV_P)
2430{
2431 ++activecnt;
2432}
2433
2434void
2435ev_unref (EV_P)
2436{
2437 --activecnt;
2438}
2439
2440void
2441ev_now_update (EV_P)
2442{
2443 time_update (EV_A_ 1e100);
2444}
2445
2446void
2447ev_suspend (EV_P)
2448{
2449 ev_now_update (EV_A);
2450}
2451
2452void
2453ev_resume (EV_P)
2454{
2455 ev_tstamp mn_prev = mn_now;
2456
2457 ev_now_update (EV_A);
2458 timers_reschedule (EV_A_ mn_now - mn_prev);
2459#if EV_PERIODIC_ENABLE
2460 /* TODO: really do this? */
2461 periodics_reschedule (EV_A);
2462#endif
2463}
2464
1344/*****************************************************************************/ 2465/*****************************************************************************/
2466/* singly-linked list management, used when the expected list length is short */
1345 2467
1346inline void 2468inline_size void
1347wlist_add (WL *head, WL elem) 2469wlist_add (WL *head, WL elem)
1348{ 2470{
1349 elem->next = *head; 2471 elem->next = *head;
1350 *head = elem; 2472 *head = elem;
1351} 2473}
1352 2474
1353inline void 2475inline_size void
1354wlist_del (WL *head, WL elem) 2476wlist_del (WL *head, WL elem)
1355{ 2477{
1356 while (*head) 2478 while (*head)
1357 { 2479 {
1358 if (*head == elem) 2480 if (expect_true (*head == elem))
1359 { 2481 {
1360 *head = elem->next; 2482 *head = elem->next;
1361 return; 2483 break;
1362 } 2484 }
1363 2485
1364 head = &(*head)->next; 2486 head = &(*head)->next;
1365 } 2487 }
1366} 2488}
1367 2489
2490/* internal, faster, version of ev_clear_pending */
1368inline void 2491inline_speed void
1369ev_clear_pending (EV_P_ W w) 2492clear_pending (EV_P_ W w)
1370{ 2493{
1371 if (w->pending) 2494 if (w->pending)
1372 { 2495 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2496 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1374 w->pending = 0; 2497 w->pending = 0;
1375 } 2498 }
1376} 2499}
1377 2500
2501int
2502ev_clear_pending (EV_P_ void *w)
2503{
2504 W w_ = (W)w;
2505 int pending = w_->pending;
2506
2507 if (expect_true (pending))
2508 {
2509 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2510 p->w = (W)&pending_w;
2511 w_->pending = 0;
2512 return p->events;
2513 }
2514 else
2515 return 0;
2516}
2517
1378inline void 2518inline_size void
2519pri_adjust (EV_P_ W w)
2520{
2521 int pri = ev_priority (w);
2522 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2523 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2524 ev_set_priority (w, pri);
2525}
2526
2527inline_speed void
1379ev_start (EV_P_ W w, int active) 2528ev_start (EV_P_ W w, int active)
1380{ 2529{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2530 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 2531 w->active = active;
1385 ev_ref (EV_A); 2532 ev_ref (EV_A);
1386} 2533}
1387 2534
1388inline void 2535inline_size void
1389ev_stop (EV_P_ W w) 2536ev_stop (EV_P_ W w)
1390{ 2537{
1391 ev_unref (EV_A); 2538 ev_unref (EV_A);
1392 w->active = 0; 2539 w->active = 0;
1393} 2540}
1394 2541
1395/*****************************************************************************/ 2542/*****************************************************************************/
1396 2543
1397void 2544void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 2545ev_io_start (EV_P_ ev_io *w)
1399{ 2546{
1400 int fd = w->fd; 2547 int fd = w->fd;
1401 2548
1402 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1403 return; 2550 return;
1404 2551
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 2552 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2553 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2554
2555 EV_FREQUENT_CHECK;
1406 2556
1407 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2558 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2559 wlist_add (&anfds[fd].head, (WL)w);
1410 2560
1411 fd_change (EV_A_ fd); 2561 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1412} 2562 w->events &= ~EV__IOFDSET;
1413 2563
1414void 2564 EV_FREQUENT_CHECK;
2565}
2566
2567void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 2568ev_io_stop (EV_P_ ev_io *w)
1416{ 2569{
1417 ev_clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1419 return; 2572 return;
1420 2573
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2574 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 2575
2576 EV_FREQUENT_CHECK;
2577
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2578 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
1425 2580
1426 fd_change (EV_A_ w->fd); 2581 fd_change (EV_A_ w->fd, 1);
1427}
1428 2582
1429void 2583 EV_FREQUENT_CHECK;
2584}
2585
2586void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 2587ev_timer_start (EV_P_ ev_timer *w)
1431{ 2588{
1432 if (expect_false (ev_is_active (w))) 2589 if (expect_false (ev_is_active (w)))
1433 return; 2590 return;
1434 2591
1435 ((WT)w)->at += mn_now; 2592 ev_at (w) += mn_now;
1436 2593
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2594 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 2595
2596 EV_FREQUENT_CHECK;
2597
2598 ++timercnt;
1439 ev_start (EV_A_ (W)w, ++timercnt); 2599 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2600 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1441 timers [timercnt - 1] = w; 2601 ANHE_w (timers [ev_active (w)]) = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 2602 ANHE_at_cache (timers [ev_active (w)]);
2603 upheap (timers, ev_active (w));
1443 2604
2605 EV_FREQUENT_CHECK;
2606
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2607 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1445} 2608}
1446 2609
1447void 2610void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 2611ev_timer_stop (EV_P_ ev_timer *w)
1449{ 2612{
1450 ev_clear_pending (EV_A_ (W)w); 2613 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 2614 if (expect_false (!ev_is_active (w)))
1452 return; 2615 return;
1453 2616
2617 EV_FREQUENT_CHECK;
2618
2619 {
2620 int active = ev_active (w);
2621
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2622 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1455 2623
2624 --timercnt;
2625
1456 if (expect_true (((W)w)->active < timercnt--)) 2626 if (expect_true (active < timercnt + HEAP0))
1457 { 2627 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 2628 timers [active] = timers [timercnt + HEAP0];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2629 adjustheap (timers, timercnt, active);
1460 } 2630 }
2631 }
1461 2632
1462 ((WT)w)->at -= mn_now; 2633 ev_at (w) -= mn_now;
1463 2634
1464 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
1465}
1466 2636
1467void 2637 EV_FREQUENT_CHECK;
2638}
2639
2640void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 2641ev_timer_again (EV_P_ ev_timer *w)
1469{ 2642{
2643 EV_FREQUENT_CHECK;
2644
1470 if (ev_is_active (w)) 2645 if (ev_is_active (w))
1471 { 2646 {
1472 if (w->repeat) 2647 if (w->repeat)
1473 { 2648 {
1474 ((WT)w)->at = mn_now + w->repeat; 2649 ev_at (w) = mn_now + w->repeat;
2650 ANHE_at_cache (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2651 adjustheap (timers, timercnt, ev_active (w));
1476 } 2652 }
1477 else 2653 else
1478 ev_timer_stop (EV_A_ w); 2654 ev_timer_stop (EV_A_ w);
1479 } 2655 }
1480 else if (w->repeat) 2656 else if (w->repeat)
1481 { 2657 {
1482 w->at = w->repeat; 2658 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 2659 ev_timer_start (EV_A_ w);
1484 } 2660 }
1485}
1486 2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665ev_tstamp
2666ev_timer_remaining (EV_P_ ev_timer *w)
2667{
2668 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2669}
2670
1487#if EV_PERIODICS 2671#if EV_PERIODIC_ENABLE
1488void 2672void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 2673ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 2674{
1491 if (expect_false (ev_is_active (w))) 2675 if (expect_false (ev_is_active (w)))
1492 return; 2676 return;
1493 2677
1494 if (w->reschedule_cb) 2678 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 2680 else if (w->interval)
1497 { 2681 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2682 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 2683 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2684 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 2685 }
2686 else
2687 ev_at (w) = w->offset;
1502 2688
2689 EV_FREQUENT_CHECK;
2690
2691 ++periodiccnt;
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 2692 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2693 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 2694 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 2695 ANHE_at_cache (periodics [ev_active (w)]);
2696 upheap (periodics, ev_active (w));
1507 2697
2698 EV_FREQUENT_CHECK;
2699
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2700 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 2701}
1510 2702
1511void 2703void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 2704ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 2705{
1514 ev_clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
1516 return; 2708 return;
1517 2709
2710 EV_FREQUENT_CHECK;
2711
2712 {
2713 int active = ev_active (w);
2714
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2715 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 2716
2717 --periodiccnt;
2718
1520 if (expect_true (((W)w)->active < periodiccnt--)) 2719 if (expect_true (active < periodiccnt + HEAP0))
1521 { 2720 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2721 periodics [active] = periodics [periodiccnt + HEAP0];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2722 adjustheap (periodics, periodiccnt, active);
1524 } 2723 }
2724 }
1525 2725
1526 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
1527}
1528 2727
1529void 2728 EV_FREQUENT_CHECK;
2729}
2730
2731void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 2732ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 2733{
1532 /* TODO: use adjustheap and recalculation */ 2734 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 2735 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 2736 ev_periodic_start (EV_A_ w);
1535} 2737}
1536#endif 2738#endif
1537 2739
1538void 2740#ifndef SA_RESTART
1539ev_idle_start (EV_P_ struct ev_idle *w) 2741# define SA_RESTART 0
2742#endif
2743
2744#if EV_SIGNAL_ENABLE
2745
2746void noinline
2747ev_signal_start (EV_P_ ev_signal *w)
1540{ 2748{
1541 if (expect_false (ev_is_active (w))) 2749 if (expect_false (ev_is_active (w)))
1542 return; 2750 return;
1543 2751
2752 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2753
2754#if EV_MULTIPLICITY
2755 assert (("libev: a signal must not be attached to two different loops",
2756 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2757
2758 signals [w->signum - 1].loop = EV_A;
2759#endif
2760
2761 EV_FREQUENT_CHECK;
2762
2763#if EV_USE_SIGNALFD
2764 if (sigfd == -2)
2765 {
2766 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2767 if (sigfd < 0 && errno == EINVAL)
2768 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2769
2770 if (sigfd >= 0)
2771 {
2772 fd_intern (sigfd); /* doing it twice will not hurt */
2773
2774 sigemptyset (&sigfd_set);
2775
2776 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2777 ev_set_priority (&sigfd_w, EV_MAXPRI);
2778 ev_io_start (EV_A_ &sigfd_w);
2779 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2780 }
2781 }
2782
2783 if (sigfd >= 0)
2784 {
2785 /* TODO: check .head */
2786 sigaddset (&sigfd_set, w->signum);
2787 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2788
2789 signalfd (sigfd, &sigfd_set, 0);
2790 }
2791#endif
2792
1544 ev_start (EV_A_ (W)w, ++idlecnt); 2793 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2794 wlist_add (&signals [w->signum - 1].head, (WL)w);
1546 idles [idlecnt - 1] = w;
1547}
1548 2795
1549void 2796 if (!((WL)w)->next)
1550ev_idle_stop (EV_P_ struct ev_idle *w) 2797# if EV_USE_SIGNALFD
2798 if (sigfd < 0) /*TODO*/
2799# endif
2800 {
2801# ifdef _WIN32
2802 evpipe_init (EV_A);
2803
2804 signal (w->signum, ev_sighandler);
2805# else
2806 struct sigaction sa;
2807
2808 evpipe_init (EV_A);
2809
2810 sa.sa_handler = ev_sighandler;
2811 sigfillset (&sa.sa_mask);
2812 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2813 sigaction (w->signum, &sa, 0);
2814
2815 sigemptyset (&sa.sa_mask);
2816 sigaddset (&sa.sa_mask, w->signum);
2817 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2818#endif
2819 }
2820
2821 EV_FREQUENT_CHECK;
2822}
2823
2824void noinline
2825ev_signal_stop (EV_P_ ev_signal *w)
1551{ 2826{
1552 ev_clear_pending (EV_A_ (W)w); 2827 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 2828 if (expect_false (!ev_is_active (w)))
1554 return; 2829 return;
1555 2830
1556 idles [((W)w)->active - 1] = idles [--idlecnt]; 2831 EV_FREQUENT_CHECK;
2832
2833 wlist_del (&signals [w->signum - 1].head, (WL)w);
1557 ev_stop (EV_A_ (W)w); 2834 ev_stop (EV_A_ (W)w);
1558}
1559 2835
2836 if (!signals [w->signum - 1].head)
2837 {
2838#if EV_MULTIPLICITY
2839 signals [w->signum - 1].loop = 0; /* unattach from signal */
2840#endif
2841#if EV_USE_SIGNALFD
2842 if (sigfd >= 0)
2843 {
2844 sigset_t ss;
2845
2846 sigemptyset (&ss);
2847 sigaddset (&ss, w->signum);
2848 sigdelset (&sigfd_set, w->signum);
2849
2850 signalfd (sigfd, &sigfd_set, 0);
2851 sigprocmask (SIG_UNBLOCK, &ss, 0);
2852 }
2853 else
2854#endif
2855 signal (w->signum, SIG_DFL);
2856 }
2857
2858 EV_FREQUENT_CHECK;
2859}
2860
2861#endif
2862
2863#if EV_CHILD_ENABLE
2864
1560void 2865void
1561ev_prepare_start (EV_P_ struct ev_prepare *w) 2866ev_child_start (EV_P_ ev_child *w)
1562{ 2867{
2868#if EV_MULTIPLICITY
2869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2870#endif
1563 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
1564 return; 2872 return;
1565 2873
2874 EV_FREQUENT_CHECK;
2875
1566 ev_start (EV_A_ (W)w, ++preparecnt); 2876 ev_start (EV_A_ (W)w, 1);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1568 prepares [preparecnt - 1] = w;
1569}
1570 2878
2879 EV_FREQUENT_CHECK;
2880}
2881
1571void 2882void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w) 2883ev_child_stop (EV_P_ ev_child *w)
1573{ 2884{
1574 ev_clear_pending (EV_A_ (W)w); 2885 clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w))) 2886 if (expect_false (!ev_is_active (w)))
1576 return; 2887 return;
1577 2888
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2889 EV_FREQUENT_CHECK;
2890
2891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1579 ev_stop (EV_A_ (W)w); 2892 ev_stop (EV_A_ (W)w);
1580}
1581 2893
2894 EV_FREQUENT_CHECK;
2895}
2896
2897#endif
2898
2899#if EV_STAT_ENABLE
2900
2901# ifdef _WIN32
2902# undef lstat
2903# define lstat(a,b) _stati64 (a,b)
2904# endif
2905
2906#define DEF_STAT_INTERVAL 5.0074891
2907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2908#define MIN_STAT_INTERVAL 0.1074891
2909
2910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2911
2912#if EV_USE_INOTIFY
2913
2914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2916
2917static void noinline
2918infy_add (EV_P_ ev_stat *w)
2919{
2920 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2921
2922 if (w->wd >= 0)
2923 {
2924 struct statfs sfs;
2925
2926 /* now local changes will be tracked by inotify, but remote changes won't */
2927 /* unless the filesystem is known to be local, we therefore still poll */
2928 /* also do poll on <2.6.25, but with normal frequency */
2929
2930 if (!fs_2625)
2931 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2932 else if (!statfs (w->path, &sfs)
2933 && (sfs.f_type == 0x1373 /* devfs */
2934 || sfs.f_type == 0xEF53 /* ext2/3 */
2935 || sfs.f_type == 0x3153464a /* jfs */
2936 || sfs.f_type == 0x52654973 /* reiser3 */
2937 || sfs.f_type == 0x01021994 /* tempfs */
2938 || sfs.f_type == 0x58465342 /* xfs */))
2939 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2940 else
2941 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2942 }
2943 else
2944 {
2945 /* can't use inotify, continue to stat */
2946 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2947
2948 /* if path is not there, monitor some parent directory for speedup hints */
2949 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2950 /* but an efficiency issue only */
2951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2952 {
2953 char path [4096];
2954 strcpy (path, w->path);
2955
2956 do
2957 {
2958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2960
2961 char *pend = strrchr (path, '/');
2962
2963 if (!pend || pend == path)
2964 break;
2965
2966 *pend = 0;
2967 w->wd = inotify_add_watch (fs_fd, path, mask);
2968 }
2969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2970 }
2971 }
2972
2973 if (w->wd >= 0)
2974 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2975
2976 /* now re-arm timer, if required */
2977 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2978 ev_timer_again (EV_A_ &w->timer);
2979 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2980}
2981
2982static void noinline
2983infy_del (EV_P_ ev_stat *w)
2984{
2985 int slot;
2986 int wd = w->wd;
2987
2988 if (wd < 0)
2989 return;
2990
2991 w->wd = -2;
2992 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2993 wlist_del (&fs_hash [slot].head, (WL)w);
2994
2995 /* remove this watcher, if others are watching it, they will rearm */
2996 inotify_rm_watch (fs_fd, wd);
2997}
2998
2999static void noinline
3000infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3001{
3002 if (slot < 0)
3003 /* overflow, need to check for all hash slots */
3004 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3005 infy_wd (EV_A_ slot, wd, ev);
3006 else
3007 {
3008 WL w_;
3009
3010 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3011 {
3012 ev_stat *w = (ev_stat *)w_;
3013 w_ = w_->next; /* lets us remove this watcher and all before it */
3014
3015 if (w->wd == wd || wd == -1)
3016 {
3017 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3018 {
3019 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3020 w->wd = -1;
3021 infy_add (EV_A_ w); /* re-add, no matter what */
3022 }
3023
3024 stat_timer_cb (EV_A_ &w->timer, 0);
3025 }
3026 }
3027 }
3028}
3029
3030static void
3031infy_cb (EV_P_ ev_io *w, int revents)
3032{
3033 char buf [EV_INOTIFY_BUFSIZE];
3034 int ofs;
3035 int len = read (fs_fd, buf, sizeof (buf));
3036
3037 for (ofs = 0; ofs < len; )
3038 {
3039 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3041 ofs += sizeof (struct inotify_event) + ev->len;
3042 }
3043}
3044
3045inline_size unsigned int
3046ev_linux_version (void)
3047{
3048 struct utsname buf;
3049 unsigned int v;
3050 int i;
3051 char *p = buf.release;
3052
3053 if (uname (&buf))
3054 return 0;
3055
3056 for (i = 3+1; --i; )
3057 {
3058 unsigned int c = 0;
3059
3060 for (;;)
3061 {
3062 if (*p >= '0' && *p <= '9')
3063 c = c * 10 + *p++ - '0';
3064 else
3065 {
3066 p += *p == '.';
3067 break;
3068 }
3069 }
3070
3071 v = (v << 8) | c;
3072 }
3073
3074 return v;
3075}
3076
3077inline_size void
3078ev_check_2625 (EV_P)
3079{
3080 /* kernels < 2.6.25 are borked
3081 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3082 */
3083 if (ev_linux_version () < 0x020619)
3084 return;
3085
3086 fs_2625 = 1;
3087}
3088
3089inline_size int
3090infy_newfd (void)
3091{
3092#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3093 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3094 if (fd >= 0)
3095 return fd;
3096#endif
3097 return inotify_init ();
3098}
3099
3100inline_size void
3101infy_init (EV_P)
3102{
3103 if (fs_fd != -2)
3104 return;
3105
3106 fs_fd = -1;
3107
3108 ev_check_2625 (EV_A);
3109
3110 fs_fd = infy_newfd ();
3111
3112 if (fs_fd >= 0)
3113 {
3114 fd_intern (fs_fd);
3115 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3116 ev_set_priority (&fs_w, EV_MAXPRI);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
3120}
3121
3122inline_size void
3123infy_fork (EV_P)
3124{
3125 int slot;
3126
3127 if (fs_fd < 0)
3128 return;
3129
3130 ev_ref (EV_A);
3131 ev_io_stop (EV_A_ &fs_w);
3132 close (fs_fd);
3133 fs_fd = infy_newfd ();
3134
3135 if (fs_fd >= 0)
3136 {
3137 fd_intern (fs_fd);
3138 ev_io_set (&fs_w, fs_fd, EV_READ);
3139 ev_io_start (EV_A_ &fs_w);
3140 ev_unref (EV_A);
3141 }
3142
3143 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3144 {
3145 WL w_ = fs_hash [slot].head;
3146 fs_hash [slot].head = 0;
3147
3148 while (w_)
3149 {
3150 ev_stat *w = (ev_stat *)w_;
3151 w_ = w_->next; /* lets us add this watcher */
3152
3153 w->wd = -1;
3154
3155 if (fs_fd >= 0)
3156 infy_add (EV_A_ w); /* re-add, no matter what */
3157 else
3158 {
3159 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3160 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3161 ev_timer_again (EV_A_ &w->timer);
3162 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3163 }
3164 }
3165 }
3166}
3167
3168#endif
3169
3170#ifdef _WIN32
3171# define EV_LSTAT(p,b) _stati64 (p, b)
3172#else
3173# define EV_LSTAT(p,b) lstat (p, b)
3174#endif
3175
1582void 3176void
1583ev_check_start (EV_P_ struct ev_check *w) 3177ev_stat_stat (EV_P_ ev_stat *w)
3178{
3179 if (lstat (w->path, &w->attr) < 0)
3180 w->attr.st_nlink = 0;
3181 else if (!w->attr.st_nlink)
3182 w->attr.st_nlink = 1;
3183}
3184
3185static void noinline
3186stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3187{
3188 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3189
3190 ev_statdata prev = w->attr;
3191 ev_stat_stat (EV_A_ w);
3192
3193 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3194 if (
3195 prev.st_dev != w->attr.st_dev
3196 || prev.st_ino != w->attr.st_ino
3197 || prev.st_mode != w->attr.st_mode
3198 || prev.st_nlink != w->attr.st_nlink
3199 || prev.st_uid != w->attr.st_uid
3200 || prev.st_gid != w->attr.st_gid
3201 || prev.st_rdev != w->attr.st_rdev
3202 || prev.st_size != w->attr.st_size
3203 || prev.st_atime != w->attr.st_atime
3204 || prev.st_mtime != w->attr.st_mtime
3205 || prev.st_ctime != w->attr.st_ctime
3206 ) {
3207 /* we only update w->prev on actual differences */
3208 /* in case we test more often than invoke the callback, */
3209 /* to ensure that prev is always different to attr */
3210 w->prev = prev;
3211
3212 #if EV_USE_INOTIFY
3213 if (fs_fd >= 0)
3214 {
3215 infy_del (EV_A_ w);
3216 infy_add (EV_A_ w);
3217 ev_stat_stat (EV_A_ w); /* avoid race... */
3218 }
3219 #endif
3220
3221 ev_feed_event (EV_A_ w, EV_STAT);
3222 }
3223}
3224
3225void
3226ev_stat_start (EV_P_ ev_stat *w)
1584{ 3227{
1585 if (expect_false (ev_is_active (w))) 3228 if (expect_false (ev_is_active (w)))
1586 return; 3229 return;
1587 3230
3231 ev_stat_stat (EV_A_ w);
3232
3233 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3234 w->interval = MIN_STAT_INTERVAL;
3235
3236 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3237 ev_set_priority (&w->timer, ev_priority (w));
3238
3239#if EV_USE_INOTIFY
3240 infy_init (EV_A);
3241
3242 if (fs_fd >= 0)
3243 infy_add (EV_A_ w);
3244 else
3245#endif
3246 {
3247 ev_timer_again (EV_A_ &w->timer);
3248 ev_unref (EV_A);
3249 }
3250
1588 ev_start (EV_A_ (W)w, ++checkcnt); 3251 ev_start (EV_A_ (W)w, 1);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592 3252
3253 EV_FREQUENT_CHECK;
3254}
3255
1593void 3256void
1594ev_check_stop (EV_P_ struct ev_check *w) 3257ev_stat_stop (EV_P_ ev_stat *w)
1595{ 3258{
1596 ev_clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
1598 return; 3261 return;
1599 3262
1600 checks [((W)w)->active - 1] = checks [--checkcnt]; 3263 EV_FREQUENT_CHECK;
3264
3265#if EV_USE_INOTIFY
3266 infy_del (EV_A_ w);
3267#endif
3268
3269 if (ev_is_active (&w->timer))
3270 {
3271 ev_ref (EV_A);
3272 ev_timer_stop (EV_A_ &w->timer);
3273 }
3274
1601 ev_stop (EV_A_ (W)w); 3275 ev_stop (EV_A_ (W)w);
1602}
1603 3276
1604#ifndef SA_RESTART 3277 EV_FREQUENT_CHECK;
1605# define SA_RESTART 0 3278}
1606#endif 3279#endif
1607 3280
3281#if EV_IDLE_ENABLE
1608void 3282void
1609ev_signal_start (EV_P_ struct ev_signal *w) 3283ev_idle_start (EV_P_ ev_idle *w)
1610{ 3284{
1611#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif
1614 if (expect_false (ev_is_active (w))) 3285 if (expect_false (ev_is_active (w)))
1615 return; 3286 return;
1616 3287
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3288 pri_adjust (EV_A_ (W)w);
1618 3289
3290 EV_FREQUENT_CHECK;
3291
3292 {
3293 int active = ++idlecnt [ABSPRI (w)];
3294
3295 ++idleall;
1619 ev_start (EV_A_ (W)w, 1); 3296 ev_start (EV_A_ (W)w, active);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1622 3297
1623 if (!((WL)w)->next) 3298 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1624 { 3299 idles [ABSPRI (w)][active - 1] = w;
1625#if _WIN32
1626 signal (w->signum, sighandler);
1627#else
1628 struct sigaction sa;
1629 sa.sa_handler = sighandler;
1630 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0);
1633#endif
1634 } 3300 }
1635}
1636 3301
3302 EV_FREQUENT_CHECK;
3303}
3304
1637void 3305void
1638ev_signal_stop (EV_P_ struct ev_signal *w) 3306ev_idle_stop (EV_P_ ev_idle *w)
1639{ 3307{
1640 ev_clear_pending (EV_A_ (W)w); 3308 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 3309 if (expect_false (!ev_is_active (w)))
1642 return; 3310 return;
1643 3311
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3312 EV_FREQUENT_CHECK;
3313
3314 {
3315 int active = ev_active (w);
3316
3317 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3318 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3319
1645 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321 --idleall;
3322 }
1646 3323
1647 if (!signals [w->signum - 1].head) 3324 EV_FREQUENT_CHECK;
1648 signal (w->signum, SIG_DFL);
1649} 3325}
1650
1651void
1652ev_child_start (EV_P_ struct ev_child *w)
1653{
1654#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 3326#endif
3327
3328#if EV_PREPARE_ENABLE
3329void
3330ev_prepare_start (EV_P_ ev_prepare *w)
3331{
1657 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
1658 return; 3333 return;
1659 3334
3335 EV_FREQUENT_CHECK;
3336
1660 ev_start (EV_A_ (W)w, 1); 3337 ev_start (EV_A_ (W)w, ++preparecnt);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3338 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1662} 3339 prepares [preparecnt - 1] = w;
1663 3340
3341 EV_FREQUENT_CHECK;
3342}
3343
1664void 3344void
1665ev_child_stop (EV_P_ struct ev_child *w) 3345ev_prepare_stop (EV_P_ ev_prepare *w)
1666{ 3346{
1667 ev_clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
1669 return; 3349 return;
1670 3350
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3351 EV_FREQUENT_CHECK;
3352
3353 {
3354 int active = ev_active (w);
3355
3356 prepares [active - 1] = prepares [--preparecnt];
3357 ev_active (prepares [active - 1]) = active;
3358 }
3359
1672 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
1673}
1674 3361
1675#if EV_MULTIPLICITY 3362 EV_FREQUENT_CHECK;
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 3363}
3364#endif
1684 3365
3366#if EV_CHECK_ENABLE
1685void 3367void
1686ev_embed_start (EV_P_ struct ev_embed *w) 3368ev_check_start (EV_P_ ev_check *w)
1687{ 3369{
1688 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
1689 return; 3371 return;
1690 3372
1691 { 3373 EV_FREQUENT_CHECK;
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696 3374
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1); 3375 ev_start (EV_A_ (W)w, ++checkcnt);
1699} 3376 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3377 checks [checkcnt - 1] = w;
1700 3378
3379 EV_FREQUENT_CHECK;
3380}
3381
1701void 3382void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 3383ev_check_stop (EV_P_ ev_check *w)
1703{ 3384{
1704 ev_clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
1706 return; 3387 return;
1707 3388
1708 ev_io_stop (EV_A_ &w->io); 3389 EV_FREQUENT_CHECK;
3390
3391 {
3392 int active = ev_active (w);
3393
3394 checks [active - 1] = checks [--checkcnt];
3395 ev_active (checks [active - 1]) = active;
3396 }
3397
1709 ev_stop (EV_A_ (W)w); 3398 ev_stop (EV_A_ (W)w);
3399
3400 EV_FREQUENT_CHECK;
3401}
3402#endif
3403
3404#if EV_EMBED_ENABLE
3405void noinline
3406ev_embed_sweep (EV_P_ ev_embed *w)
3407{
3408 ev_loop (w->other, EVLOOP_NONBLOCK);
3409}
3410
3411static void
3412embed_io_cb (EV_P_ ev_io *io, int revents)
3413{
3414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3415
3416 if (ev_cb (w))
3417 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3418 else
3419 ev_loop (w->other, EVLOOP_NONBLOCK);
3420}
3421
3422static void
3423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3424{
3425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3426
3427 {
3428 EV_P = w->other;
3429
3430 while (fdchangecnt)
3431 {
3432 fd_reify (EV_A);
3433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3434 }
3435 }
3436}
3437
3438static void
3439embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3442
3443 ev_embed_stop (EV_A_ w);
3444
3445 {
3446 EV_P = w->other;
3447
3448 ev_loop_fork (EV_A);
3449 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3450 }
3451
3452 ev_embed_start (EV_A_ w);
3453}
3454
3455#if 0
3456static void
3457embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3458{
3459 ev_idle_stop (EV_A_ idle);
3460}
3461#endif
3462
3463void
3464ev_embed_start (EV_P_ ev_embed *w)
3465{
3466 if (expect_false (ev_is_active (w)))
3467 return;
3468
3469 {
3470 EV_P = w->other;
3471 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3472 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3473 }
3474
3475 EV_FREQUENT_CHECK;
3476
3477 ev_set_priority (&w->io, ev_priority (w));
3478 ev_io_start (EV_A_ &w->io);
3479
3480 ev_prepare_init (&w->prepare, embed_prepare_cb);
3481 ev_set_priority (&w->prepare, EV_MINPRI);
3482 ev_prepare_start (EV_A_ &w->prepare);
3483
3484 ev_fork_init (&w->fork, embed_fork_cb);
3485 ev_fork_start (EV_A_ &w->fork);
3486
3487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3488
3489 ev_start (EV_A_ (W)w, 1);
3490
3491 EV_FREQUENT_CHECK;
3492}
3493
3494void
3495ev_embed_stop (EV_P_ ev_embed *w)
3496{
3497 clear_pending (EV_A_ (W)w);
3498 if (expect_false (!ev_is_active (w)))
3499 return;
3500
3501 EV_FREQUENT_CHECK;
3502
3503 ev_io_stop (EV_A_ &w->io);
3504 ev_prepare_stop (EV_A_ &w->prepare);
3505 ev_fork_stop (EV_A_ &w->fork);
3506
3507 ev_stop (EV_A_ (W)w);
3508
3509 EV_FREQUENT_CHECK;
3510}
3511#endif
3512
3513#if EV_FORK_ENABLE
3514void
3515ev_fork_start (EV_P_ ev_fork *w)
3516{
3517 if (expect_false (ev_is_active (w)))
3518 return;
3519
3520 EV_FREQUENT_CHECK;
3521
3522 ev_start (EV_A_ (W)w, ++forkcnt);
3523 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3524 forks [forkcnt - 1] = w;
3525
3526 EV_FREQUENT_CHECK;
3527}
3528
3529void
3530ev_fork_stop (EV_P_ ev_fork *w)
3531{
3532 clear_pending (EV_A_ (W)w);
3533 if (expect_false (!ev_is_active (w)))
3534 return;
3535
3536 EV_FREQUENT_CHECK;
3537
3538 {
3539 int active = ev_active (w);
3540
3541 forks [active - 1] = forks [--forkcnt];
3542 ev_active (forks [active - 1]) = active;
3543 }
3544
3545 ev_stop (EV_A_ (W)w);
3546
3547 EV_FREQUENT_CHECK;
3548}
3549#endif
3550
3551#if EV_ASYNC_ENABLE
3552void
3553ev_async_start (EV_P_ ev_async *w)
3554{
3555 if (expect_false (ev_is_active (w)))
3556 return;
3557
3558 evpipe_init (EV_A);
3559
3560 EV_FREQUENT_CHECK;
3561
3562 ev_start (EV_A_ (W)w, ++asynccnt);
3563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3564 asyncs [asynccnt - 1] = w;
3565
3566 EV_FREQUENT_CHECK;
3567}
3568
3569void
3570ev_async_stop (EV_P_ ev_async *w)
3571{
3572 clear_pending (EV_A_ (W)w);
3573 if (expect_false (!ev_is_active (w)))
3574 return;
3575
3576 EV_FREQUENT_CHECK;
3577
3578 {
3579 int active = ev_active (w);
3580
3581 asyncs [active - 1] = asyncs [--asynccnt];
3582 ev_active (asyncs [active - 1]) = active;
3583 }
3584
3585 ev_stop (EV_A_ (W)w);
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_send (EV_P_ ev_async *w)
3592{
3593 w->sent = 1;
3594 evpipe_write (EV_A_ &async_pending);
1710} 3595}
1711#endif 3596#endif
1712 3597
1713/*****************************************************************************/ 3598/*****************************************************************************/
1714 3599
1715struct ev_once 3600struct ev_once
1716{ 3601{
1717 struct ev_io io; 3602 ev_io io;
1718 struct ev_timer to; 3603 ev_timer to;
1719 void (*cb)(int revents, void *arg); 3604 void (*cb)(int revents, void *arg);
1720 void *arg; 3605 void *arg;
1721}; 3606};
1722 3607
1723static void 3608static void
1724once_cb (EV_P_ struct ev_once *once, int revents) 3609once_cb (EV_P_ struct ev_once *once, int revents)
1725{ 3610{
1726 void (*cb)(int revents, void *arg) = once->cb; 3611 void (*cb)(int revents, void *arg) = once->cb;
1727 void *arg = once->arg; 3612 void *arg = once->arg;
1728 3613
1729 ev_io_stop (EV_A_ &once->io); 3614 ev_io_stop (EV_A_ &once->io);
1730 ev_timer_stop (EV_A_ &once->to); 3615 ev_timer_stop (EV_A_ &once->to);
1731 ev_free (once); 3616 ev_free (once);
1732 3617
1733 cb (revents, arg); 3618 cb (revents, arg);
1734} 3619}
1735 3620
1736static void 3621static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 3622once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 3623{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3624 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3625
3626 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1740} 3627}
1741 3628
1742static void 3629static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 3630once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 3631{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3633
3634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1746} 3635}
1747 3636
1748void 3637void
1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3638ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1750{ 3639{
1751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3640 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1752 3641
1753 if (expect_false (!once)) 3642 if (expect_false (!once))
1754 { 3643 {
1755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3644 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1756 return; 3645 return;
1757 } 3646 }
1758 3647
1759 once->cb = cb; 3648 once->cb = cb;
1760 once->arg = arg; 3649 once->arg = arg;
1772 ev_timer_set (&once->to, timeout, 0.); 3661 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 3662 ev_timer_start (EV_A_ &once->to);
1774 } 3663 }
1775} 3664}
1776 3665
3666/*****************************************************************************/
3667
3668#if EV_WALK_ENABLE
3669void
3670ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3671{
3672 int i, j;
3673 ev_watcher_list *wl, *wn;
3674
3675 if (types & (EV_IO | EV_EMBED))
3676 for (i = 0; i < anfdmax; ++i)
3677 for (wl = anfds [i].head; wl; )
3678 {
3679 wn = wl->next;
3680
3681#if EV_EMBED_ENABLE
3682 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3683 {
3684 if (types & EV_EMBED)
3685 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3686 }
3687 else
3688#endif
3689#if EV_USE_INOTIFY
3690 if (ev_cb ((ev_io *)wl) == infy_cb)
3691 ;
3692 else
3693#endif
3694 if ((ev_io *)wl != &pipe_w)
3695 if (types & EV_IO)
3696 cb (EV_A_ EV_IO, wl);
3697
3698 wl = wn;
3699 }
3700
3701 if (types & (EV_TIMER | EV_STAT))
3702 for (i = timercnt + HEAP0; i-- > HEAP0; )
3703#if EV_STAT_ENABLE
3704 /*TODO: timer is not always active*/
3705 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3706 {
3707 if (types & EV_STAT)
3708 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3709 }
3710 else
3711#endif
3712 if (types & EV_TIMER)
3713 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3714
3715#if EV_PERIODIC_ENABLE
3716 if (types & EV_PERIODIC)
3717 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3718 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3719#endif
3720
3721#if EV_IDLE_ENABLE
3722 if (types & EV_IDLE)
3723 for (j = NUMPRI; i--; )
3724 for (i = idlecnt [j]; i--; )
3725 cb (EV_A_ EV_IDLE, idles [j][i]);
3726#endif
3727
3728#if EV_FORK_ENABLE
3729 if (types & EV_FORK)
3730 for (i = forkcnt; i--; )
3731 if (ev_cb (forks [i]) != embed_fork_cb)
3732 cb (EV_A_ EV_FORK, forks [i]);
3733#endif
3734
3735#if EV_ASYNC_ENABLE
3736 if (types & EV_ASYNC)
3737 for (i = asynccnt; i--; )
3738 cb (EV_A_ EV_ASYNC, asyncs [i]);
3739#endif
3740
3741#if EV_PREPARE_ENABLE
3742 if (types & EV_PREPARE)
3743 for (i = preparecnt; i--; )
3744# if EV_EMBED_ENABLE
3745 if (ev_cb (prepares [i]) != embed_prepare_cb)
3746# endif
3747 cb (EV_A_ EV_PREPARE, prepares [i]);
3748#endif
3749
3750#if EV_CHECK_ENABLE
3751 if (types & EV_CHECK)
3752 for (i = checkcnt; i--; )
3753 cb (EV_A_ EV_CHECK, checks [i]);
3754#endif
3755
3756#if EV_SIGNAL_ENABLE
3757 if (types & EV_SIGNAL)
3758 for (i = 0; i < EV_NSIG - 1; ++i)
3759 for (wl = signals [i].head; wl; )
3760 {
3761 wn = wl->next;
3762 cb (EV_A_ EV_SIGNAL, wl);
3763 wl = wn;
3764 }
3765#endif
3766
3767#if EV_CHILD_ENABLE
3768 if (types & EV_CHILD)
3769 for (i = (EV_PID_HASHSIZE); i--; )
3770 for (wl = childs [i]; wl; )
3771 {
3772 wn = wl->next;
3773 cb (EV_A_ EV_CHILD, wl);
3774 wl = wn;
3775 }
3776#endif
3777/* EV_STAT 0x00001000 /* stat data changed */
3778/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3779}
3780#endif
3781
3782#if EV_MULTIPLICITY
3783 #include "ev_wrap.h"
3784#endif
3785
1777#ifdef __cplusplus 3786#ifdef __cplusplus
1778} 3787}
1779#endif 3788#endif
1780 3789

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines