ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.453 by root, Thu Feb 28 00:33:25 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
114 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 200# include <sys/time.h>
118# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
121# include <windows.h> 207# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
124# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
125#endif 261# endif
126 262#endif
127/**/
128 263
129#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
130# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
131#endif 270#endif
132 271
133#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
135#endif 282#endif
136 283
137#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 286#endif
140 287
141#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
142# ifdef _WIN32 289# ifdef _WIN32
143# define EV_USE_POLL 0 290# define EV_USE_POLL 0
144# else 291# else
145# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 293# endif
147#endif 294#endif
148 295
149#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
150# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
151#endif 302#endif
152 303
153#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
155#endif 306#endif
156 307
157#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 309# define EV_USE_PORT 0
159#endif 310#endif
160 311
161/**/ 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 393
163#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
166#endif 397#endif
168#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
171#endif 402#endif
172 403
173#if EV_SELECT_IS_WINSOCKET 404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
406# define EV_USE_INOTIFY 0
407#endif
408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
174# include <winsock.h> 428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
175#endif 462#endif
176 463
177/**/ 464/**/
465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 478
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
184#ifdef EV_H 516#ifndef ECB_H
185# include EV_H 517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
186#else 545#else
187# include "ev.h" 546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
188#endif 551 #endif
552#endif
189 553
190#if __GNUC__ >= 3 554/* many compilers define _GNUC_ to some versions but then only implement
191# define expect(expr,value) __builtin_expect ((expr),(value)) 555 * what their idiot authors think are the "more important" extensions,
192# define inline static inline 556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566 #endif
567#endif
568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
193#else 579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
194# define expect(expr,value) (expr) 747 #define ecb_expect(expr,value) (expr)
195# define inline static 748 #define ecb_prefetch(addr,rw,locality)
196#endif 749#endif
197 750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
200 787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
1224#define inline_size ecb_inline
1225
1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
1229# define inline_speed static noinline
1230#endif
1231
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
1236#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
203 1239
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
206 1242
207typedef struct ev_watcher *W; 1243typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 1244typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
210 1246
1247#define ev_active(w) ((W)(w))->active
1248#define ev_at(w) ((WT)(w))->at
1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
1256#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
1268#endif
212 1269
213#ifdef _WIN32 1270#ifdef _WIN32
214# include "ev_win32.c" 1271# include "ev_win32.c"
215#endif 1272#endif
216 1273
217/*****************************************************************************/ 1274/*****************************************************************************/
218 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
219static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
220 1375
1376void ecb_cold
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
222{ 1378{
223 syserr_cb = cb; 1379 syserr_cb = cb;
224} 1380}
225 1381
226static void 1382static void noinline ecb_cold
227syserr (const char *msg) 1383ev_syserr (const char *msg)
228{ 1384{
229 if (!msg) 1385 if (!msg)
230 msg = "(libev) system error"; 1386 msg = "(libev) system error";
231 1387
232 if (syserr_cb) 1388 if (syserr_cb)
233 syserr_cb (msg); 1389 syserr_cb (msg);
234 else 1390 else
235 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
236 perror (msg); 1398 perror (msg);
1399#endif
237 abort (); 1400 abort ();
238 } 1401 }
239} 1402}
240 1403
1404static void *
1405ev_realloc_emul (void *ptr, long size) EV_THROW
1406{
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419}
1420
241static void *(*alloc)(void *ptr, long size); 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
242 1422
1423void ecb_cold
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
244{ 1425{
245 alloc = cb; 1426 alloc = cb;
246} 1427}
247 1428
248static void * 1429inline_speed void *
249ev_realloc (void *ptr, long size) 1430ev_realloc (void *ptr, long size)
250{ 1431{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1432 ptr = alloc (ptr, size);
252 1433
253 if (!ptr && size) 1434 if (!ptr && size)
254 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
256 abort (); 1441 abort ();
257 } 1442 }
258 1443
259 return ptr; 1444 return ptr;
260} 1445}
262#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
264 1449
265/*****************************************************************************/ 1450/*****************************************************************************/
266 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
267typedef struct 1456typedef struct
268{ 1457{
269 WL head; 1458 WL head;
270 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
272#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 1467 SOCKET handle;
274#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
275} ANFD; 1472} ANFD;
276 1473
1474/* stores the pending event set for a given watcher */
277typedef struct 1475typedef struct
278{ 1476{
279 W w; 1477 W w;
280 int events; 1478 int events; /* the pending event set for the given watcher */
281} ANPENDING; 1479} ANPENDING;
1480
1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
1483typedef struct
1484{
1485 WL head;
1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
1507#endif
282 1508
283#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
284 1510
285 struct ev_loop 1511 struct ev_loop
286 { 1512 {
291 #undef VAR 1517 #undef VAR
292 }; 1518 };
293 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
294 1520
295 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 1523
298#else 1524#else
299 1525
300 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 1528 #include "ev_vars.h"
303 #undef VAR 1529 #undef VAR
304 1530
305 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
306 1532
307#endif 1533#endif
308 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
309/*****************************************************************************/ 1547/*****************************************************************************/
310 1548
1549#ifndef EV_HAVE_EV_TIME
311ev_tstamp 1550ev_tstamp
312ev_time (void) 1551ev_time (void) EV_THROW
313{ 1552{
314#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
315 struct timespec ts; 1556 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 1559 }
1560#endif
1561
319 struct timeval tv; 1562 struct timeval tv;
320 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 1565}
1566#endif
324 1567
325inline ev_tstamp 1568inline_size ev_tstamp
326get_clock (void) 1569get_clock (void)
327{ 1570{
328#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
330 { 1573 {
337 return ev_time (); 1580 return ev_time ();
338} 1581}
339 1582
340#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
341ev_tstamp 1584ev_tstamp
342ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
343{ 1586{
344 return ev_rt_now; 1587 return ev_rt_now;
345} 1588}
346#endif 1589#endif
347 1590
348#define array_roundsize(type,n) (((n) | 4) & ~3) 1591void
1592ev_sleep (ev_tstamp delay) EV_THROW
1593{
1594 if (delay > 0.)
1595 {
1596#if EV_USE_NANOSLEEP
1597 struct timespec ts;
1598
1599 EV_TS_SET (ts, delay);
1600 nanosleep (&ts, 0);
1601#elif defined _WIN32
1602 Sleep ((unsigned long)(delay * 1e3));
1603#else
1604 struct timeval tv;
1605
1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 /* something not guaranteed by newer posix versions, but guaranteed */
1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
1610 select (0, 0, 0, 0, &tv);
1611#endif
1612 }
1613}
1614
1615/*****************************************************************************/
1616
1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
1622array_nextsize (int elem, int cur, int cnt)
1623{
1624 int ncur = cur + 1;
1625
1626 do
1627 ncur <<= 1;
1628 while (cnt > ncur);
1629
1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632 {
1633 ncur *= elem;
1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635 ncur = ncur - sizeof (void *) * 4;
1636 ncur /= elem;
1637 }
1638
1639 return ncur;
1640}
1641
1642static void * noinline ecb_cold
1643array_realloc (int elem, void *base, int *cur, int cnt)
1644{
1645 *cur = array_nextsize (elem, *cur, cnt);
1646 return ev_realloc (base, elem * *cur);
1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 1651
350#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 1653 if (expect_false ((cnt) > (cur))) \
352 { \ 1654 { \
353 int newcnt = cur; \ 1655 int ecb_unused ocur_ = (cur); \
354 do \ 1656 (base) = (type *)array_realloc \
355 { \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 1659 }
364 1660
1661#if 0
365#define array_slim(type,stem) \ 1662#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1663 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 1664 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1665 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1666 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 1668 }
1669#endif
372 1670
373#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 1673
376/*****************************************************************************/ 1674/*****************************************************************************/
377 1675
378static void 1676/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 1679{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 1680}
390 1681
391void 1682void noinline
392ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
393{ 1684{
394 W w_ = (W)w; 1685 W w_ = (W)w;
1686 int pri = ABSPRI (w_);
395 1687
396 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
1689 pendings [pri][w_->pending - 1].events |= revents;
1690 else
397 { 1691 {
1692 w_->pending = ++pendingcnt [pri];
1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1695 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 1696 }
401 1697
402 if (expect_false (!w_->cb)) 1698 pendingpri = NUMPRI - 1;
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 1699}
410 1700
411static void 1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 1718{
414 int i; 1719 int i;
415 1720
416 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
418} 1723}
419 1724
1725/*****************************************************************************/
1726
420inline void 1727inline_speed void
421fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
422{ 1729{
423 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 1731 ev_io *w;
425 1732
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 1734 {
428 int ev = w->events & revents; 1735 int ev = w->events & revents;
429 1736
430 if (ev) 1737 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
432 } 1739 }
433} 1740}
434 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
435void 1753void
436ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
437{ 1755{
1756 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
439} 1758}
440 1759
441/*****************************************************************************/ 1760/* make sure the external fd watch events are in-sync */
442 1761/* with the kernel/libev internal state */
443inline void 1762inline_size void
444fd_reify (EV_P) 1763fd_reify (EV_P)
445{ 1764{
446 int i; 1765 int i;
447 1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 for (i = 0; i < fdchangecnt; ++i) 1768 for (i = 0; i < fdchangecnt; ++i)
449 { 1769 {
450 int fd = fdchanges [i]; 1770 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 1771 ANFD *anfd = anfds + fd;
452 struct ev_io *w;
453 1772
454 int events = 0; 1773 if (anfd->reify & EV__IOFDSET && anfd->head)
455
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
457 events |= w->events;
458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 { 1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
462 unsigned long argp; 1779 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 1780
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
465 } 1788 }
1789 }
466#endif 1790#endif
467 1791
1792 for (i = 0; i < fdchangecnt; ++i)
1793 {
1794 int fd = fdchanges [i];
1795 ANFD *anfd = anfds + fd;
1796 ev_io *w;
1797
1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
1800
468 anfd->reify = 0; 1801 anfd->reify = 0;
469 1802
1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804 {
1805 anfd->events = 0;
1806
1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808 anfd->events |= (unsigned char)w->events;
1809
1810 if (o_events != anfd->events)
1811 o_reify = EV__IOFDSET; /* actually |= */
1812 }
1813
1814 if (o_reify & EV__IOFDSET)
470 backend_modify (EV_A_ fd, anfd->events, events); 1815 backend_modify (EV_A_ fd, o_events, anfd->events);
471 anfd->events = events;
472 } 1816 }
473 1817
474 fdchangecnt = 0; 1818 fdchangecnt = 0;
475} 1819}
476 1820
477static void 1821/* something about the given fd changed */
1822inline_size void
478fd_change (EV_P_ int fd) 1823fd_change (EV_P_ int fd, int flags)
479{ 1824{
480 if (expect_false (anfds [fd].reify)) 1825 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 1826 anfds [fd].reify |= flags;
484 1827
1828 if (expect_true (!reify))
1829 {
485 ++fdchangecnt; 1830 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
1833 }
488} 1834}
489 1835
490static void 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
491fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
492{ 1839{
493 struct ev_io *w; 1840 ev_io *w;
494 1841
495 while ((w = (struct ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
496 { 1843 {
497 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 1846 }
500} 1847}
501 1848
502inline int 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
503fd_valid (int fd) 1851fd_valid (int fd)
504{ 1852{
505#ifdef _WIN32 1853#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 1855#else
508 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
509#endif 1857#endif
510} 1858}
511 1859
512/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
513static void 1861static void noinline ecb_cold
514fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
515{ 1863{
516 int fd; 1864 int fd;
517 1865
518 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1867 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
522} 1870}
523 1871
524/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 1873static void noinline ecb_cold
526fd_enomem (EV_P) 1874fd_enomem (EV_P)
527{ 1875{
528 int fd; 1876 int fd;
529 1877
530 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 1879 if (anfds [fd].events)
532 { 1880 {
533 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
534 return; 1882 break;
535 } 1883 }
536} 1884}
537 1885
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1887static void noinline
540fd_rearm_all (EV_P) 1888fd_rearm_all (EV_P)
541{ 1889{
542 int fd; 1890 int fd;
543 1891
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1893 if (anfds [fd].events)
547 { 1894 {
548 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1896 anfds [fd].emask = 0;
1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 1898 }
551} 1899}
552 1900
553/*****************************************************************************/ 1901/* used to prepare libev internal fd's */
554 1902/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 1903inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1904fd_intern (int fd)
683{ 1905{
684#ifdef _WIN32 1906#ifdef _WIN32
685 int arg = 1; 1907 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 1909#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1911 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1912#endif
691} 1913}
692 1914
1915/*****************************************************************************/
1916
1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
1939{
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078static void noinline ecb_cold
2079evpipe_init (EV_P)
2080{
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 }
2121}
2122
2123inline_speed void
2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125{
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
2147#if EV_USE_EVENTFD
2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154#endif
2155 {
2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
2166
2167 errno = old_errno;
2168 }
2169}
2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
693static void 2173static void
694siginit (EV_P) 2174pipecb (EV_P_ ev_io *iow, int revents)
695{ 2175{
696 fd_intern (sigpipe [0]); 2176 int i;
697 fd_intern (sigpipe [1]);
698 2177
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 2178 if (revents & EV_READ)
700 ev_io_start (EV_A_ &sigev); 2179 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2180#if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187#endif
2188 {
2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
2216 ev_feed_signal_event (EV_A_ i + 1);
2217 }
2218#endif
2219
2220#if EV_ASYNC_ENABLE
2221 if (async_pending)
2222 {
2223 async_pending = 0;
2224
2225 ECB_MEMORY_FENCE;
2226
2227 for (i = asynccnt; i--; )
2228 if (asyncs [i]->sent)
2229 {
2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233 }
2234 }
2235#endif
702} 2236}
703 2237
704/*****************************************************************************/ 2238/*****************************************************************************/
705 2239
706static struct ev_child *childs [PID_HASHSIZE]; 2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 EV_P;
2245 ECB_MEMORY_FENCE_ACQUIRE;
2246 EV_A = signals [signum - 1].loop;
707 2247
2248 if (!EV_A)
2249 return;
2250#endif
2251
2252 signals [signum - 1].pending = 1;
2253 evpipe_write (EV_A_ &sig_pending);
2254}
2255
2256static void
2257ev_sighandler (int signum)
2258{
708#ifndef _WIN32 2259#ifdef _WIN32
2260 signal (signum, ev_sighandler);
2261#endif
709 2262
2263 ev_feed_signal (signum);
2264}
2265
2266void noinline
2267ev_feed_signal_event (EV_P_ int signum) EV_THROW
2268{
2269 WL w;
2270
2271 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2272 return;
2273
2274 --signum;
2275
2276#if EV_MULTIPLICITY
2277 /* it is permissible to try to feed a signal to the wrong loop */
2278 /* or, likely more useful, feeding a signal nobody is waiting for */
2279
2280 if (expect_false (signals [signum].loop != EV_A))
2281 return;
2282#endif
2283
2284 signals [signum].pending = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
2286
2287 for (w = signals [signum].head; w; w = w->next)
2288 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2289}
2290
2291#if EV_USE_SIGNALFD
2292static void
2293sigfdcb (EV_P_ ev_io *iow, int revents)
2294{
2295 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2296
2297 for (;;)
2298 {
2299 ssize_t res = read (sigfd, si, sizeof (si));
2300
2301 /* not ISO-C, as res might be -1, but works with SuS */
2302 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2303 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2304
2305 if (res < (ssize_t)sizeof (si))
2306 break;
2307 }
2308}
2309#endif
2310
2311#endif
2312
2313/*****************************************************************************/
2314
2315#if EV_CHILD_ENABLE
2316static WL childs [EV_PID_HASHSIZE];
2317
710static struct ev_signal childev; 2318static ev_signal childev;
2319
2320#ifndef WIFCONTINUED
2321# define WIFCONTINUED(status) 0
2322#endif
2323
2324/* handle a single child status event */
2325inline_speed void
2326child_reap (EV_P_ int chain, int pid, int status)
2327{
2328 ev_child *w;
2329 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2330
2331 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2332 {
2333 if ((w->pid == pid || !w->pid)
2334 && (!traced || (w->flags & 1)))
2335 {
2336 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2337 w->rpid = pid;
2338 w->rstatus = status;
2339 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2340 }
2341 }
2342}
711 2343
712#ifndef WCONTINUED 2344#ifndef WCONTINUED
713# define WCONTINUED 0 2345# define WCONTINUED 0
714#endif 2346#endif
715 2347
2348/* called on sigchld etc., calls waitpid */
716static void 2349static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 2350childcb (EV_P_ ev_signal *sw, int revents)
733{ 2351{
734 int pid, status; 2352 int pid, status;
735 2353
2354 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2355 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 2356 if (!WCONTINUED
2357 || errno != EINVAL
2358 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2359 return;
2360
738 /* make sure we are called again until all childs have been reaped */ 2361 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 2362 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2363 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 2364
742 child_reap (EV_A_ sw, pid, pid, status); 2365 child_reap (EV_A_ pid, pid, status);
2366 if ((EV_PID_HASHSIZE) > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2367 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 2368}
746 2369
747#endif 2370#endif
748 2371
749/*****************************************************************************/ 2372/*****************************************************************************/
750 2373
2374#if EV_USE_IOCP
2375# include "ev_iocp.c"
2376#endif
751#if EV_USE_PORT 2377#if EV_USE_PORT
752# include "ev_port.c" 2378# include "ev_port.c"
753#endif 2379#endif
754#if EV_USE_KQUEUE 2380#if EV_USE_KQUEUE
755# include "ev_kqueue.c" 2381# include "ev_kqueue.c"
762#endif 2388#endif
763#if EV_USE_SELECT 2389#if EV_USE_SELECT
764# include "ev_select.c" 2390# include "ev_select.c"
765#endif 2391#endif
766 2392
767int 2393int ecb_cold
768ev_version_major (void) 2394ev_version_major (void) EV_THROW
769{ 2395{
770 return EV_VERSION_MAJOR; 2396 return EV_VERSION_MAJOR;
771} 2397}
772 2398
773int 2399int ecb_cold
774ev_version_minor (void) 2400ev_version_minor (void) EV_THROW
775{ 2401{
776 return EV_VERSION_MINOR; 2402 return EV_VERSION_MINOR;
777} 2403}
778 2404
779/* return true if we are running with elevated privileges and should ignore env variables */ 2405/* return true if we are running with elevated privileges and should ignore env variables */
780static int 2406int inline_size ecb_cold
781enable_secure (void) 2407enable_secure (void)
782{ 2408{
783#ifdef _WIN32 2409#ifdef _WIN32
784 return 0; 2410 return 0;
785#else 2411#else
786 return getuid () != geteuid () 2412 return getuid () != geteuid ()
787 || getgid () != getegid (); 2413 || getgid () != getegid ();
788#endif 2414#endif
789} 2415}
790 2416
791unsigned int 2417unsigned int ecb_cold
792ev_supported_backends (void) 2418ev_supported_backends (void) EV_THROW
793{ 2419{
794 unsigned int flags = 0; 2420 unsigned int flags = 0;
795 2421
796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2422 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2423 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2426 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801 2427
802 return flags; 2428 return flags;
803} 2429}
804 2430
805unsigned int 2431unsigned int ecb_cold
806ev_recommended_backends (void) 2432ev_recommended_backends (void) EV_THROW
807{ 2433{
808 unsigned int flags = ev_supported_backends (); 2434 unsigned int flags = ev_supported_backends ();
809 2435
810#ifndef __NetBSD__ 2436#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */ 2437 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 2438 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 2439 flags &= ~EVBACKEND_KQUEUE;
814#endif 2440#endif
815#ifdef __APPLE__ 2441#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 2442 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 2443 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2444 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2445#endif
2446#ifdef __FreeBSD__
2447 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
818#endif 2448#endif
819 2449
820 return flags; 2450 return flags;
821} 2451}
822 2452
2453unsigned int ecb_cold
2454ev_embeddable_backends (void) EV_THROW
2455{
2456 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2457
2458 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2459 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2460 flags &= ~EVBACKEND_EPOLL;
2461
2462 return flags;
2463}
2464
823unsigned int 2465unsigned int
824ev_embeddable_backends (void) 2466ev_backend (EV_P) EV_THROW
825{ 2467{
826 return EVBACKEND_EPOLL 2468 return backend;
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829} 2469}
830 2470
2471#if EV_FEATURE_API
831unsigned int 2472unsigned int
832ev_backend (EV_P) 2473ev_iteration (EV_P) EV_THROW
833{ 2474{
834 return backend; 2475 return loop_count;
835} 2476}
836 2477
837static void 2478unsigned int
2479ev_depth (EV_P) EV_THROW
2480{
2481 return loop_depth;
2482}
2483
2484void
2485ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2486{
2487 io_blocktime = interval;
2488}
2489
2490void
2491ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2492{
2493 timeout_blocktime = interval;
2494}
2495
2496void
2497ev_set_userdata (EV_P_ void *data) EV_THROW
2498{
2499 userdata = data;
2500}
2501
2502void *
2503ev_userdata (EV_P) EV_THROW
2504{
2505 return userdata;
2506}
2507
2508void
2509ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2510{
2511 invoke_cb = invoke_pending_cb;
2512}
2513
2514void
2515ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2516{
2517 release_cb = release;
2518 acquire_cb = acquire;
2519}
2520#endif
2521
2522/* initialise a loop structure, must be zero-initialised */
2523static void noinline ecb_cold
838loop_init (EV_P_ unsigned int flags) 2524loop_init (EV_P_ unsigned int flags) EV_THROW
839{ 2525{
840 if (!backend) 2526 if (!backend)
841 { 2527 {
2528 origflags = flags;
2529
2530#if EV_USE_REALTIME
2531 if (!have_realtime)
2532 {
2533 struct timespec ts;
2534
2535 if (!clock_gettime (CLOCK_REALTIME, &ts))
2536 have_realtime = 1;
2537 }
2538#endif
2539
842#if EV_USE_MONOTONIC 2540#if EV_USE_MONOTONIC
2541 if (!have_monotonic)
843 { 2542 {
844 struct timespec ts; 2543 struct timespec ts;
2544
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2545 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 2546 have_monotonic = 1;
847 } 2547 }
848#endif 2548#endif
849 2549
850 ev_rt_now = ev_time (); 2550 /* pid check not overridable via env */
851 mn_now = get_clock (); 2551#ifndef _WIN32
852 now_floor = mn_now; 2552 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 2553 curpid = getpid ();
2554#endif
854 2555
855 if (!(flags & EVFLAG_NOENV) 2556 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 2557 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 2558 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 2559 flags = atoi (getenv ("LIBEV_FLAGS"));
859 2560
860 if (!(flags & 0x0000ffffUL)) 2561 ev_rt_now = ev_time ();
2562 mn_now = get_clock ();
2563 now_floor = mn_now;
2564 rtmn_diff = ev_rt_now - mn_now;
2565#if EV_FEATURE_API
2566 invoke_cb = ev_invoke_pending;
2567#endif
2568
2569 io_blocktime = 0.;
2570 timeout_blocktime = 0.;
2571 backend = 0;
2572 backend_fd = -1;
2573 sig_pending = 0;
2574#if EV_ASYNC_ENABLE
2575 async_pending = 0;
2576#endif
2577 pipe_write_skipped = 0;
2578 pipe_write_wanted = 0;
2579 evpipe [0] = -1;
2580 evpipe [1] = -1;
2581#if EV_USE_INOTIFY
2582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2583#endif
2584#if EV_USE_SIGNALFD
2585 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2586#endif
2587
2588 if (!(flags & EVBACKEND_MASK))
861 flags |= ev_recommended_backends (); 2589 flags |= ev_recommended_backends ();
862 2590
863 backend = 0; 2591#if EV_USE_IOCP
2592 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2593#endif
864#if EV_USE_PORT 2594#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2595 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 2596#endif
867#if EV_USE_KQUEUE 2597#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2598 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 2605#endif
876#if EV_USE_SELECT 2606#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2607 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 2608#endif
879 2609
2610 ev_prepare_init (&pending_w, pendingcb);
2611
2612#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 2613 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 2614 ev_set_priority (&pipe_w, EV_MAXPRI);
2615#endif
882 } 2616 }
883} 2617}
884 2618
885static void 2619/* free up a loop structure */
2620void ecb_cold
886loop_destroy (EV_P) 2621ev_loop_destroy (EV_P)
887{ 2622{
888 int i; 2623 int i;
889 2624
2625#if EV_MULTIPLICITY
2626 /* mimic free (0) */
2627 if (!EV_A)
2628 return;
2629#endif
2630
2631#if EV_CLEANUP_ENABLE
2632 /* queue cleanup watchers (and execute them) */
2633 if (expect_false (cleanupcnt))
2634 {
2635 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2636 EV_INVOKE_PENDING;
2637 }
2638#endif
2639
2640#if EV_CHILD_ENABLE
2641 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2642 {
2643 ev_ref (EV_A); /* child watcher */
2644 ev_signal_stop (EV_A_ &childev);
2645 }
2646#endif
2647
2648 if (ev_is_active (&pipe_w))
2649 {
2650 /*ev_ref (EV_A);*/
2651 /*ev_io_stop (EV_A_ &pipe_w);*/
2652
2653 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2654 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2655 }
2656
2657#if EV_USE_SIGNALFD
2658 if (ev_is_active (&sigfd_w))
2659 close (sigfd);
2660#endif
2661
2662#if EV_USE_INOTIFY
2663 if (fs_fd >= 0)
2664 close (fs_fd);
2665#endif
2666
2667 if (backend_fd >= 0)
2668 close (backend_fd);
2669
2670#if EV_USE_IOCP
2671 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2672#endif
890#if EV_USE_PORT 2673#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2674 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 2675#endif
893#if EV_USE_KQUEUE 2676#if EV_USE_KQUEUE
894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2677 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
902#if EV_USE_SELECT 2685#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2686 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 2687#endif
905 2688
906 for (i = NUMPRI; i--; ) 2689 for (i = NUMPRI; i--; )
2690 {
907 array_free (pending, [i]); 2691 array_free (pending, [i]);
2692#if EV_IDLE_ENABLE
2693 array_free (idle, [i]);
2694#endif
2695 }
2696
2697 ev_free (anfds); anfds = 0; anfdmax = 0;
908 2698
909 /* have to use the microsoft-never-gets-it-right macro */ 2699 /* have to use the microsoft-never-gets-it-right macro */
2700 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 2701 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 2702 array_free (timer, EMPTY);
912#if EV_PERIODICS 2703#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 2704 array_free (periodic, EMPTY);
914#endif 2705#endif
2706#if EV_FORK_ENABLE
2707 array_free (fork, EMPTY);
2708#endif
2709#if EV_CLEANUP_ENABLE
915 array_free (idle, EMPTY0); 2710 array_free (cleanup, EMPTY);
2711#endif
916 array_free (prepare, EMPTY0); 2712 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 2713 array_free (check, EMPTY);
2714#if EV_ASYNC_ENABLE
2715 array_free (async, EMPTY);
2716#endif
918 2717
919 backend = 0; 2718 backend = 0;
920}
921 2719
922static void 2720#if EV_MULTIPLICITY
2721 if (ev_is_default_loop (EV_A))
2722#endif
2723 ev_default_loop_ptr = 0;
2724#if EV_MULTIPLICITY
2725 else
2726 ev_free (EV_A);
2727#endif
2728}
2729
2730#if EV_USE_INOTIFY
2731inline_size void infy_fork (EV_P);
2732#endif
2733
2734inline_size void
923loop_fork (EV_P) 2735loop_fork (EV_P)
924{ 2736{
925#if EV_USE_PORT 2737#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2738 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 2739#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2741 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 2742#endif
931#if EV_USE_EPOLL 2743#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2744 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 2745#endif
2746#if EV_USE_INOTIFY
2747 infy_fork (EV_A);
2748#endif
934 2749
2750#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
935 if (ev_is_active (&sigev)) 2751 if (ev_is_active (&pipe_w))
936 { 2752 {
937 /* default loop */ 2753 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
938 2754
939 ev_ref (EV_A); 2755 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 2756 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 2757
944 while (pipe (sigpipe)) 2758 if (evpipe [0] >= 0)
945 syserr ("(libev) error creating pipe"); 2759 EV_WIN32_CLOSE_FD (evpipe [0]);
946 2760
947 siginit (EV_A); 2761 evpipe_init (EV_A);
2762 /* iterate over everything, in case we missed something before */
2763 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
948 } 2764 }
2765#endif
949 2766
950 postfork = 0; 2767 postfork = 0;
951} 2768}
952 2769
953#if EV_MULTIPLICITY 2770#if EV_MULTIPLICITY
2771
954struct ev_loop * 2772struct ev_loop * ecb_cold
955ev_loop_new (unsigned int flags) 2773ev_loop_new (unsigned int flags) EV_THROW
956{ 2774{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 2776
959 memset (loop, 0, sizeof (struct ev_loop)); 2777 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 2778 loop_init (EV_A_ flags);
962 2779
963 if (ev_backend (EV_A)) 2780 if (ev_backend (EV_A))
964 return loop; 2781 return EV_A;
965 2782
2783 ev_free (EV_A);
966 return 0; 2784 return 0;
967} 2785}
968 2786
969void 2787#endif /* multiplicity */
970ev_loop_destroy (EV_P)
971{
972 loop_destroy (EV_A);
973 ev_free (loop);
974}
975 2788
976void 2789#if EV_VERIFY
977ev_loop_fork (EV_P) 2790static void noinline ecb_cold
2791verify_watcher (EV_P_ W w)
978{ 2792{
979 postfork = 1; 2793 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
980}
981 2794
2795 if (w->pending)
2796 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2797}
2798
2799static void noinline ecb_cold
2800verify_heap (EV_P_ ANHE *heap, int N)
2801{
2802 int i;
2803
2804 for (i = HEAP0; i < N + HEAP0; ++i)
2805 {
2806 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2807 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2808 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2809
2810 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2811 }
2812}
2813
2814static void noinline ecb_cold
2815array_verify (EV_P_ W *ws, int cnt)
2816{
2817 while (cnt--)
2818 {
2819 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2820 verify_watcher (EV_A_ ws [cnt]);
2821 }
2822}
2823#endif
2824
2825#if EV_FEATURE_API
2826void ecb_cold
2827ev_verify (EV_P) EV_THROW
2828{
2829#if EV_VERIFY
2830 int i;
2831 WL w, w2;
2832
2833 assert (activecnt >= -1);
2834
2835 assert (fdchangemax >= fdchangecnt);
2836 for (i = 0; i < fdchangecnt; ++i)
2837 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2838
2839 assert (anfdmax >= 0);
2840 for (i = 0; i < anfdmax; ++i)
2841 {
2842 int j = 0;
2843
2844 for (w = w2 = anfds [i].head; w; w = w->next)
2845 {
2846 verify_watcher (EV_A_ (W)w);
2847
2848 if (j++ & 1)
2849 {
2850 assert (("libev: io watcher list contains a loop", w != w2));
2851 w2 = w2->next;
2852 }
2853
2854 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2855 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2856 }
2857 }
2858
2859 assert (timermax >= timercnt);
2860 verify_heap (EV_A_ timers, timercnt);
2861
2862#if EV_PERIODIC_ENABLE
2863 assert (periodicmax >= periodiccnt);
2864 verify_heap (EV_A_ periodics, periodiccnt);
2865#endif
2866
2867 for (i = NUMPRI; i--; )
2868 {
2869 assert (pendingmax [i] >= pendingcnt [i]);
2870#if EV_IDLE_ENABLE
2871 assert (idleall >= 0);
2872 assert (idlemax [i] >= idlecnt [i]);
2873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2874#endif
2875 }
2876
2877#if EV_FORK_ENABLE
2878 assert (forkmax >= forkcnt);
2879 array_verify (EV_A_ (W *)forks, forkcnt);
2880#endif
2881
2882#if EV_CLEANUP_ENABLE
2883 assert (cleanupmax >= cleanupcnt);
2884 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2885#endif
2886
2887#if EV_ASYNC_ENABLE
2888 assert (asyncmax >= asynccnt);
2889 array_verify (EV_A_ (W *)asyncs, asynccnt);
2890#endif
2891
2892#if EV_PREPARE_ENABLE
2893 assert (preparemax >= preparecnt);
2894 array_verify (EV_A_ (W *)prepares, preparecnt);
2895#endif
2896
2897#if EV_CHECK_ENABLE
2898 assert (checkmax >= checkcnt);
2899 array_verify (EV_A_ (W *)checks, checkcnt);
2900#endif
2901
2902# if 0
2903#if EV_CHILD_ENABLE
2904 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2905 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2906#endif
2907# endif
2908#endif
2909}
982#endif 2910#endif
983 2911
984#if EV_MULTIPLICITY 2912#if EV_MULTIPLICITY
985struct ev_loop * 2913struct ev_loop * ecb_cold
986ev_default_loop_init (unsigned int flags)
987#else 2914#else
988int 2915int
2916#endif
989ev_default_loop (unsigned int flags) 2917ev_default_loop (unsigned int flags) EV_THROW
990#endif
991{ 2918{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 2919 if (!ev_default_loop_ptr)
997 { 2920 {
998#if EV_MULTIPLICITY 2921#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2922 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 2923#else
1001 ev_default_loop_ptr = 1; 2924 ev_default_loop_ptr = 1;
1002#endif 2925#endif
1003 2926
1004 loop_init (EV_A_ flags); 2927 loop_init (EV_A_ flags);
1005 2928
1006 if (ev_backend (EV_A)) 2929 if (ev_backend (EV_A))
1007 { 2930 {
1008 siginit (EV_A); 2931#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 2932 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 2933 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 2934 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2935 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 2936#endif
1020 2941
1021 return ev_default_loop_ptr; 2942 return ev_default_loop_ptr;
1022} 2943}
1023 2944
1024void 2945void
1025ev_default_destroy (void) 2946ev_loop_fork (EV_P) EV_THROW
1026{ 2947{
1027#if EV_MULTIPLICITY 2948 postfork = 1;
1028 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif
1030
1031#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev);
1034#endif
1035
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A);
1043} 2949}
2950
2951/*****************************************************************************/
1044 2952
1045void 2953void
1046ev_default_fork (void) 2954ev_invoke (EV_P_ void *w, int revents)
1047{ 2955{
1048#if EV_MULTIPLICITY 2956 EV_CB_INVOKE ((W)w, revents);
1049 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif
1051
1052 if (backend)
1053 postfork = 1;
1054} 2957}
1055 2958
1056/*****************************************************************************/ 2959unsigned int
1057 2960ev_pending_count (EV_P) EV_THROW
1058static int
1059any_pending (EV_P)
1060{ 2961{
1061 int pri; 2962 int pri;
2963 unsigned int count = 0;
1062 2964
1063 for (pri = NUMPRI; pri--; ) 2965 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 2966 count += pendingcnt [pri];
1065 return 1;
1066 2967
1067 return 0; 2968 return count;
1068} 2969}
1069 2970
1070inline void 2971void noinline
1071call_pending (EV_P) 2972ev_invoke_pending (EV_P)
1072{ 2973{
1073 int pri; 2974 pendingpri = NUMPRI;
1074 2975
1075 for (pri = NUMPRI; pri--; ) 2976 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2977 {
2978 --pendingpri;
2979
1076 while (pendingcnt [pri]) 2980 while (pendingcnt [pendingpri])
1077 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079
1080 if (expect_true (p->w))
1081 { 2981 {
2982 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2983
1082 p->w->pending = 0; 2984 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 2985 EV_CB_INVOKE (p->w, p->events);
2986 EV_FREQUENT_CHECK;
2987 }
2988 }
2989}
2990
2991#if EV_IDLE_ENABLE
2992/* make idle watchers pending. this handles the "call-idle */
2993/* only when higher priorities are idle" logic */
2994inline_size void
2995idle_reify (EV_P)
2996{
2997 if (expect_false (idleall))
2998 {
2999 int pri;
3000
3001 for (pri = NUMPRI; pri--; )
3002 {
3003 if (pendingcnt [pri])
3004 break;
3005
3006 if (idlecnt [pri])
3007 {
3008 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3009 break;
1084 } 3010 }
1085 } 3011 }
3012 }
1086} 3013}
3014#endif
1087 3015
3016/* make timers pending */
1088inline void 3017inline_size void
1089timers_reify (EV_P) 3018timers_reify (EV_P)
1090{ 3019{
3020 EV_FREQUENT_CHECK;
3021
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 3022 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 3023 {
1093 struct ev_timer *w = timers [0]; 3024 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 3025 {
3026 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3027
3028 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3029
3030 /* first reschedule or stop timer */
3031 if (w->repeat)
3032 {
3033 ev_at (w) += w->repeat;
3034 if (ev_at (w) < mn_now)
3035 ev_at (w) = mn_now;
3036
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3037 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 3038
1102 ((WT)w)->at += w->repeat; 3039 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 3040 downheap (timers, timercnt, HEAP0);
3041 }
3042 else
3043 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3044
3045 EV_FREQUENT_CHECK;
3046 feed_reverse (EV_A_ (W)w);
1107 } 3047 }
1108 else 3048 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 3049
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3050 feed_reverse_done (EV_A_ EV_TIMER);
3051 }
3052}
3053
3054#if EV_PERIODIC_ENABLE
3055
3056static void noinline
3057periodic_recalc (EV_P_ ev_periodic *w)
3058{
3059 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3060 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3061
3062 /* the above almost always errs on the low side */
3063 while (at <= ev_rt_now)
1112 } 3064 {
1113} 3065 ev_tstamp nat = at + w->interval;
1114 3066
1115#if EV_PERIODICS 3067 /* when resolution fails us, we use ev_rt_now */
3068 if (expect_false (nat == at))
3069 {
3070 at = ev_rt_now;
3071 break;
3072 }
3073
3074 at = nat;
3075 }
3076
3077 ev_at (w) = at;
3078}
3079
3080/* make periodics pending */
1116inline void 3081inline_size void
1117periodics_reify (EV_P) 3082periodics_reify (EV_P)
1118{ 3083{
3084 EV_FREQUENT_CHECK;
3085
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3086 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 3087 {
1121 struct ev_periodic *w = periodics [0]; 3088 do
3089 {
3090 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 3091
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3092 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 3093
1125 /* first reschedule or stop timer */ 3094 /* first reschedule or stop timer */
3095 if (w->reschedule_cb)
3096 {
3097 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3098
3099 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3100
3101 ANHE_at_cache (periodics [HEAP0]);
3102 downheap (periodics, periodiccnt, HEAP0);
3103 }
3104 else if (w->interval)
3105 {
3106 periodic_recalc (EV_A_ w);
3107 ANHE_at_cache (periodics [HEAP0]);
3108 downheap (periodics, periodiccnt, HEAP0);
3109 }
3110 else
3111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3112
3113 EV_FREQUENT_CHECK;
3114 feed_reverse (EV_A_ (W)w);
3115 }
3116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3117
3118 feed_reverse_done (EV_A_ EV_PERIODIC);
3119 }
3120}
3121
3122/* simply recalculate all periodics */
3123/* TODO: maybe ensure that at least one event happens when jumping forward? */
3124static void noinline ecb_cold
3125periodics_reschedule (EV_P)
3126{
3127 int i;
3128
3129 /* adjust periodics after time jump */
3130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3131 {
3132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3133
1126 if (w->reschedule_cb) 3134 if (w->reschedule_cb)
3135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3136 else if (w->interval)
3137 periodic_recalc (EV_A_ w);
3138
3139 ANHE_at_cache (periodics [i]);
3140 }
3141
3142 reheap (periodics, periodiccnt);
3143}
3144#endif
3145
3146/* adjust all timers by a given offset */
3147static void noinline ecb_cold
3148timers_reschedule (EV_P_ ev_tstamp adjust)
3149{
3150 int i;
3151
3152 for (i = 0; i < timercnt; ++i)
3153 {
3154 ANHE *he = timers + i + HEAP0;
3155 ANHE_w (*he)->at += adjust;
3156 ANHE_at_cache (*he);
3157 }
3158}
3159
3160/* fetch new monotonic and realtime times from the kernel */
3161/* also detect if there was a timejump, and act accordingly */
3162inline_speed void
3163time_update (EV_P_ ev_tstamp max_block)
3164{
3165#if EV_USE_MONOTONIC
3166 if (expect_true (have_monotonic))
3167 {
3168 int i;
3169 ev_tstamp odiff = rtmn_diff;
3170
3171 mn_now = get_clock ();
3172
3173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3174 /* interpolate in the meantime */
3175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 3176 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3177 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 3178 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 3179 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 3180
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 3181 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 3182 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 3183
1185inline void 3184 /* loop a few times, before making important decisions.
1186time_update (EV_P) 3185 * on the choice of "4": one iteration isn't enough,
1187{ 3186 * in case we get preempted during the calls to
1188 int i; 3187 * ev_time and get_clock. a second call is almost guaranteed
1189 3188 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 3189 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 3190 * in the unlikely event of having been preempted here.
1192 { 3191 */
1193 if (time_update_monotonic (EV_A)) 3192 for (i = 4; --i; )
1194 { 3193 {
1195 ev_tstamp odiff = rtmn_diff; 3194 ev_tstamp diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 3195 rtmn_diff = ev_rt_now - mn_now;
1200 3196
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3197 diff = odiff - rtmn_diff;
3198
3199 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 3200 return; /* all is well */
1203 3201
1204 ev_rt_now = ev_time (); 3202 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 3203 mn_now = get_clock ();
1206 now_floor = mn_now; 3204 now_floor = mn_now;
1207 } 3205 }
1208 3206
3207 /* no timer adjustment, as the monotonic clock doesn't jump */
3208 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 3209# if EV_PERIODIC_ENABLE
3210 periodics_reschedule (EV_A);
3211# endif
3212 }
3213 else
3214#endif
3215 {
3216 ev_rt_now = ev_time ();
3217
3218 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3219 {
3220 /* adjust timers. this is easy, as the offset is the same for all of them */
3221 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3222#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 3223 periodics_reschedule (EV_A);
1211# endif 3224#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 3225 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 3226
1232 mn_now = ev_rt_now; 3227 mn_now = ev_rt_now;
1233 } 3228 }
1234} 3229}
1235 3230
1236void 3231int
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 3232ev_run (EV_P_ int flags)
1252{ 3233{
1253 double block; 3234#if EV_FEATURE_API
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3235 ++loop_depth;
3236#endif
1255 3237
1256 while (activecnt) 3238 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3239
3240 loop_done = EVBREAK_CANCEL;
3241
3242 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3243
3244 do
1257 { 3245 {
3246#if EV_VERIFY >= 2
3247 ev_verify (EV_A);
3248#endif
3249
3250#ifndef _WIN32
3251 if (expect_false (curpid)) /* penalise the forking check even more */
3252 if (expect_false (getpid () != curpid))
3253 {
3254 curpid = getpid ();
3255 postfork = 1;
3256 }
3257#endif
3258
3259#if EV_FORK_ENABLE
3260 /* we might have forked, so queue fork handlers */
3261 if (expect_false (postfork))
3262 if (forkcnt)
3263 {
3264 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3265 EV_INVOKE_PENDING;
3266 }
3267#endif
3268
3269#if EV_PREPARE_ENABLE
1258 /* queue check watchers (and execute them) */ 3270 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 3271 if (expect_false (preparecnt))
1260 { 3272 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3273 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 3274 EV_INVOKE_PENDING;
1263 } 3275 }
3276#endif
3277
3278 if (expect_false (loop_done))
3279 break;
1264 3280
1265 /* we might have forked, so reify kernel state if necessary */ 3281 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 3282 if (expect_false (postfork))
1267 loop_fork (EV_A); 3283 loop_fork (EV_A);
1268 3284
1269 /* update fd-related kernel structures */ 3285 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 3286 fd_reify (EV_A);
1271 3287
1272 /* calculate blocking time */ 3288 /* calculate blocking time */
3289 {
3290 ev_tstamp waittime = 0.;
3291 ev_tstamp sleeptime = 0.;
1273 3292
1274 /* we only need this for !monotonic clock or timers, but as we basically 3293 /* remember old timestamp for io_blocktime calculation */
1275 always have timers, we just calculate it always */ 3294 ev_tstamp prev_mn_now = mn_now;
1276#if EV_USE_MONOTONIC 3295
1277 if (expect_true (have_monotonic)) 3296 /* update time to cancel out callback processing overhead */
1278 time_update_monotonic (EV_A); 3297 time_update (EV_A_ 1e100);
1279 else 3298
1280#endif 3299 /* from now on, we want a pipe-wake-up */
3300 pipe_write_wanted = 1;
3301
3302 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3303
3304 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1281 { 3305 {
1282 ev_rt_now = ev_time ();
1283 mn_now = ev_rt_now;
1284 }
1285
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 3306 waittime = MAX_BLOCKTIME;
1291 3307
1292 if (timercnt) 3308 if (timercnt)
1293 { 3309 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3310 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1295 if (block > to) block = to; 3311 if (waittime > to) waittime = to;
1296 } 3312 }
1297 3313
1298#if EV_PERIODICS 3314#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 3315 if (periodiccnt)
1300 { 3316 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3317 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1302 if (block > to) block = to; 3318 if (waittime > to) waittime = to;
1303 } 3319 }
1304#endif 3320#endif
1305 3321
1306 if (expect_false (block < 0.)) block = 0.; 3322 /* don't let timeouts decrease the waittime below timeout_blocktime */
3323 if (expect_false (waittime < timeout_blocktime))
3324 waittime = timeout_blocktime;
3325
3326 /* at this point, we NEED to wait, so we have to ensure */
3327 /* to pass a minimum nonzero value to the backend */
3328 if (expect_false (waittime < backend_mintime))
3329 waittime = backend_mintime;
3330
3331 /* extra check because io_blocktime is commonly 0 */
3332 if (expect_false (io_blocktime))
3333 {
3334 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3335
3336 if (sleeptime > waittime - backend_mintime)
3337 sleeptime = waittime - backend_mintime;
3338
3339 if (expect_true (sleeptime > 0.))
3340 {
3341 ev_sleep (sleeptime);
3342 waittime -= sleeptime;
3343 }
3344 }
1307 } 3345 }
1308 3346
3347#if EV_FEATURE_API
3348 ++loop_count;
3349#endif
3350 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1309 backend_poll (EV_A_ block); 3351 backend_poll (EV_A_ waittime);
3352 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1310 3353
3354 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3355
3356 ECB_MEMORY_FENCE_ACQUIRE;
3357 if (pipe_write_skipped)
3358 {
3359 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3360 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3361 }
3362
3363
1311 /* update ev_rt_now, do magic */ 3364 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 3365 time_update (EV_A_ waittime + sleeptime);
3366 }
1313 3367
1314 /* queue pending timers and reschedule them */ 3368 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 3369 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 3370#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 3371 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 3372#endif
1319 3373
3374#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 3375 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 3376 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3377#endif
1323 3378
3379#if EV_CHECK_ENABLE
1324 /* queue check watchers, to be executed first */ 3380 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 3381 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3382 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3383#endif
1327 3384
1328 call_pending (EV_A); 3385 EV_INVOKE_PENDING;
1329
1330 if (expect_false (loop_done))
1331 break;
1332 } 3386 }
3387 while (expect_true (
3388 activecnt
3389 && !loop_done
3390 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3391 ));
1333 3392
1334 if (loop_done != 2) 3393 if (loop_done == EVBREAK_ONE)
1335 loop_done = 0; 3394 loop_done = EVBREAK_CANCEL;
3395
3396#if EV_FEATURE_API
3397 --loop_depth;
3398#endif
3399
3400 return activecnt;
1336} 3401}
1337 3402
1338void 3403void
1339ev_unloop (EV_P_ int how) 3404ev_break (EV_P_ int how) EV_THROW
1340{ 3405{
1341 loop_done = how; 3406 loop_done = how;
1342} 3407}
1343 3408
3409void
3410ev_ref (EV_P) EV_THROW
3411{
3412 ++activecnt;
3413}
3414
3415void
3416ev_unref (EV_P) EV_THROW
3417{
3418 --activecnt;
3419}
3420
3421void
3422ev_now_update (EV_P) EV_THROW
3423{
3424 time_update (EV_A_ 1e100);
3425}
3426
3427void
3428ev_suspend (EV_P) EV_THROW
3429{
3430 ev_now_update (EV_A);
3431}
3432
3433void
3434ev_resume (EV_P) EV_THROW
3435{
3436 ev_tstamp mn_prev = mn_now;
3437
3438 ev_now_update (EV_A);
3439 timers_reschedule (EV_A_ mn_now - mn_prev);
3440#if EV_PERIODIC_ENABLE
3441 /* TODO: really do this? */
3442 periodics_reschedule (EV_A);
3443#endif
3444}
3445
1344/*****************************************************************************/ 3446/*****************************************************************************/
3447/* singly-linked list management, used when the expected list length is short */
1345 3448
1346inline void 3449inline_size void
1347wlist_add (WL *head, WL elem) 3450wlist_add (WL *head, WL elem)
1348{ 3451{
1349 elem->next = *head; 3452 elem->next = *head;
1350 *head = elem; 3453 *head = elem;
1351} 3454}
1352 3455
1353inline void 3456inline_size void
1354wlist_del (WL *head, WL elem) 3457wlist_del (WL *head, WL elem)
1355{ 3458{
1356 while (*head) 3459 while (*head)
1357 { 3460 {
1358 if (*head == elem) 3461 if (expect_true (*head == elem))
1359 { 3462 {
1360 *head = elem->next; 3463 *head = elem->next;
1361 return; 3464 break;
1362 } 3465 }
1363 3466
1364 head = &(*head)->next; 3467 head = &(*head)->next;
1365 } 3468 }
1366} 3469}
1367 3470
3471/* internal, faster, version of ev_clear_pending */
1368inline void 3472inline_speed void
1369ev_clear_pending (EV_P_ W w) 3473clear_pending (EV_P_ W w)
1370{ 3474{
1371 if (w->pending) 3475 if (w->pending)
1372 { 3476 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1374 w->pending = 0; 3478 w->pending = 0;
1375 } 3479 }
1376} 3480}
1377 3481
3482int
3483ev_clear_pending (EV_P_ void *w) EV_THROW
3484{
3485 W w_ = (W)w;
3486 int pending = w_->pending;
3487
3488 if (expect_true (pending))
3489 {
3490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3491 p->w = (W)&pending_w;
3492 w_->pending = 0;
3493 return p->events;
3494 }
3495 else
3496 return 0;
3497}
3498
1378inline void 3499inline_size void
3500pri_adjust (EV_P_ W w)
3501{
3502 int pri = ev_priority (w);
3503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3505 ev_set_priority (w, pri);
3506}
3507
3508inline_speed void
1379ev_start (EV_P_ W w, int active) 3509ev_start (EV_P_ W w, int active)
1380{ 3510{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3511 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 3512 w->active = active;
1385 ev_ref (EV_A); 3513 ev_ref (EV_A);
1386} 3514}
1387 3515
1388inline void 3516inline_size void
1389ev_stop (EV_P_ W w) 3517ev_stop (EV_P_ W w)
1390{ 3518{
1391 ev_unref (EV_A); 3519 ev_unref (EV_A);
1392 w->active = 0; 3520 w->active = 0;
1393} 3521}
1394 3522
1395/*****************************************************************************/ 3523/*****************************************************************************/
1396 3524
1397void 3525void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 3526ev_io_start (EV_P_ ev_io *w) EV_THROW
1399{ 3527{
1400 int fd = w->fd; 3528 int fd = w->fd;
1401 3529
1402 if (expect_false (ev_is_active (w))) 3530 if (expect_false (ev_is_active (w)))
1403 return; 3531 return;
1404 3532
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 3533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3535
3536 EV_FREQUENT_CHECK;
1406 3537
1407 ev_start (EV_A_ (W)w, 1); 3538 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3540 wlist_add (&anfds[fd].head, (WL)w);
1410 3541
1411 fd_change (EV_A_ fd); 3542 /* common bug, apparently */
1412} 3543 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1413 3544
1414void 3545 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3546 w->events &= ~EV__IOFDSET;
3547
3548 EV_FREQUENT_CHECK;
3549}
3550
3551void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 3552ev_io_stop (EV_P_ ev_io *w) EV_THROW
1416{ 3553{
1417 ev_clear_pending (EV_A_ (W)w); 3554 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 3555 if (expect_false (!ev_is_active (w)))
1419 return; 3556 return;
1420 3557
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3558 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 3559
3560 EV_FREQUENT_CHECK;
3561
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3562 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
1425 3564
1426 fd_change (EV_A_ w->fd); 3565 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1427}
1428 3566
1429void 3567 EV_FREQUENT_CHECK;
3568}
3569
3570void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 3571ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1431{ 3572{
1432 if (expect_false (ev_is_active (w))) 3573 if (expect_false (ev_is_active (w)))
1433 return; 3574 return;
1434 3575
1435 ((WT)w)->at += mn_now; 3576 ev_at (w) += mn_now;
1436 3577
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3578 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 3579
3580 EV_FREQUENT_CHECK;
3581
3582 ++timercnt;
1439 ev_start (EV_A_ (W)w, ++timercnt); 3583 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3584 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1441 timers [timercnt - 1] = w; 3585 ANHE_w (timers [ev_active (w)]) = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 3586 ANHE_at_cache (timers [ev_active (w)]);
3587 upheap (timers, ev_active (w));
1443 3588
3589 EV_FREQUENT_CHECK;
3590
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3591 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1445} 3592}
1446 3593
1447void 3594void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 3595ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1449{ 3596{
1450 ev_clear_pending (EV_A_ (W)w); 3597 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 3598 if (expect_false (!ev_is_active (w)))
1452 return; 3599 return;
1453 3600
3601 EV_FREQUENT_CHECK;
3602
3603 {
3604 int active = ev_active (w);
3605
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3606 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1455 3607
3608 --timercnt;
3609
1456 if (expect_true (((W)w)->active < timercnt--)) 3610 if (expect_true (active < timercnt + HEAP0))
1457 { 3611 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 3612 timers [active] = timers [timercnt + HEAP0];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3613 adjustheap (timers, timercnt, active);
1460 } 3614 }
3615 }
1461 3616
1462 ((WT)w)->at -= mn_now; 3617 ev_at (w) -= mn_now;
1463 3618
1464 ev_stop (EV_A_ (W)w); 3619 ev_stop (EV_A_ (W)w);
1465}
1466 3620
1467void 3621 EV_FREQUENT_CHECK;
3622}
3623
3624void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 3625ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1469{ 3626{
3627 EV_FREQUENT_CHECK;
3628
3629 clear_pending (EV_A_ (W)w);
3630
1470 if (ev_is_active (w)) 3631 if (ev_is_active (w))
1471 { 3632 {
1472 if (w->repeat) 3633 if (w->repeat)
1473 { 3634 {
1474 ((WT)w)->at = mn_now + w->repeat; 3635 ev_at (w) = mn_now + w->repeat;
3636 ANHE_at_cache (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3637 adjustheap (timers, timercnt, ev_active (w));
1476 } 3638 }
1477 else 3639 else
1478 ev_timer_stop (EV_A_ w); 3640 ev_timer_stop (EV_A_ w);
1479 } 3641 }
1480 else if (w->repeat) 3642 else if (w->repeat)
1481 { 3643 {
1482 w->at = w->repeat; 3644 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 3645 ev_timer_start (EV_A_ w);
1484 } 3646 }
1485}
1486 3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651ev_tstamp
3652ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3653{
3654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3655}
3656
1487#if EV_PERIODICS 3657#if EV_PERIODIC_ENABLE
1488void 3658void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 3659ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1490{ 3660{
1491 if (expect_false (ev_is_active (w))) 3661 if (expect_false (ev_is_active (w)))
1492 return; 3662 return;
1493 3663
1494 if (w->reschedule_cb) 3664 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 3666 else if (w->interval)
1497 { 3667 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 3669 periodic_recalc (EV_A_ w);
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 } 3670 }
3671 else
3672 ev_at (w) = w->offset;
1502 3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++periodiccnt;
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 3677 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3678 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 3679 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 3680 ANHE_at_cache (periodics [ev_active (w)]);
3681 upheap (periodics, ev_active (w));
1507 3682
3683 EV_FREQUENT_CHECK;
3684
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3685 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 3686}
1510 3687
1511void 3688void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 3689ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1513{ 3690{
1514 ev_clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 3692 if (expect_false (!ev_is_active (w)))
1516 return; 3693 return;
1517 3694
3695 EV_FREQUENT_CHECK;
3696
3697 {
3698 int active = ev_active (w);
3699
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3700 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 3701
3702 --periodiccnt;
3703
1520 if (expect_true (((W)w)->active < periodiccnt--)) 3704 if (expect_true (active < periodiccnt + HEAP0))
1521 { 3705 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3706 periodics [active] = periodics [periodiccnt + HEAP0];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3707 adjustheap (periodics, periodiccnt, active);
1524 } 3708 }
3709 }
1525 3710
1526 ev_stop (EV_A_ (W)w); 3711 ev_stop (EV_A_ (W)w);
1527}
1528 3712
1529void 3713 EV_FREQUENT_CHECK;
3714}
3715
3716void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 3717ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1531{ 3718{
1532 /* TODO: use adjustheap and recalculation */ 3719 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 3720 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 3721 ev_periodic_start (EV_A_ w);
1535} 3722}
1536#endif 3723#endif
1537 3724
1538void 3725#ifndef SA_RESTART
1539ev_idle_start (EV_P_ struct ev_idle *w) 3726# define SA_RESTART 0
3727#endif
3728
3729#if EV_SIGNAL_ENABLE
3730
3731void noinline
3732ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1540{ 3733{
1541 if (expect_false (ev_is_active (w))) 3734 if (expect_false (ev_is_active (w)))
1542 return; 3735 return;
1543 3736
3737 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3738
3739#if EV_MULTIPLICITY
3740 assert (("libev: a signal must not be attached to two different loops",
3741 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3742
3743 signals [w->signum - 1].loop = EV_A;
3744 ECB_MEMORY_FENCE_RELEASE;
3745#endif
3746
3747 EV_FREQUENT_CHECK;
3748
3749#if EV_USE_SIGNALFD
3750 if (sigfd == -2)
3751 {
3752 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3753 if (sigfd < 0 && errno == EINVAL)
3754 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3755
3756 if (sigfd >= 0)
3757 {
3758 fd_intern (sigfd); /* doing it twice will not hurt */
3759
3760 sigemptyset (&sigfd_set);
3761
3762 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3763 ev_set_priority (&sigfd_w, EV_MAXPRI);
3764 ev_io_start (EV_A_ &sigfd_w);
3765 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3766 }
3767 }
3768
3769 if (sigfd >= 0)
3770 {
3771 /* TODO: check .head */
3772 sigaddset (&sigfd_set, w->signum);
3773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3774
3775 signalfd (sigfd, &sigfd_set, 0);
3776 }
3777#endif
3778
1544 ev_start (EV_A_ (W)w, ++idlecnt); 3779 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3780 wlist_add (&signals [w->signum - 1].head, (WL)w);
1546 idles [idlecnt - 1] = w;
1547}
1548 3781
1549void 3782 if (!((WL)w)->next)
1550ev_idle_stop (EV_P_ struct ev_idle *w) 3783# if EV_USE_SIGNALFD
3784 if (sigfd < 0) /*TODO*/
3785# endif
3786 {
3787# ifdef _WIN32
3788 evpipe_init (EV_A);
3789
3790 signal (w->signum, ev_sighandler);
3791# else
3792 struct sigaction sa;
3793
3794 evpipe_init (EV_A);
3795
3796 sa.sa_handler = ev_sighandler;
3797 sigfillset (&sa.sa_mask);
3798 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3799 sigaction (w->signum, &sa, 0);
3800
3801 if (origflags & EVFLAG_NOSIGMASK)
3802 {
3803 sigemptyset (&sa.sa_mask);
3804 sigaddset (&sa.sa_mask, w->signum);
3805 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3806 }
3807#endif
3808 }
3809
3810 EV_FREQUENT_CHECK;
3811}
3812
3813void noinline
3814ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1551{ 3815{
1552 ev_clear_pending (EV_A_ (W)w); 3816 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 3817 if (expect_false (!ev_is_active (w)))
1554 return; 3818 return;
1555 3819
1556 idles [((W)w)->active - 1] = idles [--idlecnt]; 3820 EV_FREQUENT_CHECK;
3821
3822 wlist_del (&signals [w->signum - 1].head, (WL)w);
1557 ev_stop (EV_A_ (W)w); 3823 ev_stop (EV_A_ (W)w);
3824
3825 if (!signals [w->signum - 1].head)
3826 {
3827#if EV_MULTIPLICITY
3828 signals [w->signum - 1].loop = 0; /* unattach from signal */
3829#endif
3830#if EV_USE_SIGNALFD
3831 if (sigfd >= 0)
3832 {
3833 sigset_t ss;
3834
3835 sigemptyset (&ss);
3836 sigaddset (&ss, w->signum);
3837 sigdelset (&sigfd_set, w->signum);
3838
3839 signalfd (sigfd, &sigfd_set, 0);
3840 sigprocmask (SIG_UNBLOCK, &ss, 0);
3841 }
3842 else
3843#endif
3844 signal (w->signum, SIG_DFL);
3845 }
3846
3847 EV_FREQUENT_CHECK;
1558} 3848}
3849
3850#endif
3851
3852#if EV_CHILD_ENABLE
1559 3853
1560void 3854void
1561ev_prepare_start (EV_P_ struct ev_prepare *w) 3855ev_child_start (EV_P_ ev_child *w) EV_THROW
1562{ 3856{
3857#if EV_MULTIPLICITY
3858 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3859#endif
1563 if (expect_false (ev_is_active (w))) 3860 if (expect_false (ev_is_active (w)))
1564 return; 3861 return;
1565 3862
3863 EV_FREQUENT_CHECK;
3864
1566 ev_start (EV_A_ (W)w, ++preparecnt); 3865 ev_start (EV_A_ (W)w, 1);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3866 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1568 prepares [preparecnt - 1] = w; 3867
3868 EV_FREQUENT_CHECK;
1569} 3869}
1570 3870
1571void 3871void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w) 3872ev_child_stop (EV_P_ ev_child *w) EV_THROW
1573{ 3873{
1574 ev_clear_pending (EV_A_ (W)w); 3874 clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w))) 3875 if (expect_false (!ev_is_active (w)))
1576 return; 3876 return;
1577 3877
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3878 EV_FREQUENT_CHECK;
3879
3880 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1579 ev_stop (EV_A_ (W)w); 3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
1580} 3884}
3885
3886#endif
3887
3888#if EV_STAT_ENABLE
3889
3890# ifdef _WIN32
3891# undef lstat
3892# define lstat(a,b) _stati64 (a,b)
3893# endif
3894
3895#define DEF_STAT_INTERVAL 5.0074891
3896#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3897#define MIN_STAT_INTERVAL 0.1074891
3898
3899static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3900
3901#if EV_USE_INOTIFY
3902
3903/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3904# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3905
3906static void noinline
3907infy_add (EV_P_ ev_stat *w)
3908{
3909 w->wd = inotify_add_watch (fs_fd, w->path,
3910 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3911 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3912 | IN_DONT_FOLLOW | IN_MASK_ADD);
3913
3914 if (w->wd >= 0)
3915 {
3916 struct statfs sfs;
3917
3918 /* now local changes will be tracked by inotify, but remote changes won't */
3919 /* unless the filesystem is known to be local, we therefore still poll */
3920 /* also do poll on <2.6.25, but with normal frequency */
3921
3922 if (!fs_2625)
3923 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3924 else if (!statfs (w->path, &sfs)
3925 && (sfs.f_type == 0x1373 /* devfs */
3926 || sfs.f_type == 0x4006 /* fat */
3927 || sfs.f_type == 0x4d44 /* msdos */
3928 || sfs.f_type == 0xEF53 /* ext2/3 */
3929 || sfs.f_type == 0x72b6 /* jffs2 */
3930 || sfs.f_type == 0x858458f6 /* ramfs */
3931 || sfs.f_type == 0x5346544e /* ntfs */
3932 || sfs.f_type == 0x3153464a /* jfs */
3933 || sfs.f_type == 0x9123683e /* btrfs */
3934 || sfs.f_type == 0x52654973 /* reiser3 */
3935 || sfs.f_type == 0x01021994 /* tmpfs */
3936 || sfs.f_type == 0x58465342 /* xfs */))
3937 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3938 else
3939 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3940 }
3941 else
3942 {
3943 /* can't use inotify, continue to stat */
3944 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3945
3946 /* if path is not there, monitor some parent directory for speedup hints */
3947 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3948 /* but an efficiency issue only */
3949 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3950 {
3951 char path [4096];
3952 strcpy (path, w->path);
3953
3954 do
3955 {
3956 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3957 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3958
3959 char *pend = strrchr (path, '/');
3960
3961 if (!pend || pend == path)
3962 break;
3963
3964 *pend = 0;
3965 w->wd = inotify_add_watch (fs_fd, path, mask);
3966 }
3967 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3968 }
3969 }
3970
3971 if (w->wd >= 0)
3972 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3973
3974 /* now re-arm timer, if required */
3975 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3976 ev_timer_again (EV_A_ &w->timer);
3977 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3978}
3979
3980static void noinline
3981infy_del (EV_P_ ev_stat *w)
3982{
3983 int slot;
3984 int wd = w->wd;
3985
3986 if (wd < 0)
3987 return;
3988
3989 w->wd = -2;
3990 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3991 wlist_del (&fs_hash [slot].head, (WL)w);
3992
3993 /* remove this watcher, if others are watching it, they will rearm */
3994 inotify_rm_watch (fs_fd, wd);
3995}
3996
3997static void noinline
3998infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3999{
4000 if (slot < 0)
4001 /* overflow, need to check for all hash slots */
4002 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4003 infy_wd (EV_A_ slot, wd, ev);
4004 else
4005 {
4006 WL w_;
4007
4008 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4009 {
4010 ev_stat *w = (ev_stat *)w_;
4011 w_ = w_->next; /* lets us remove this watcher and all before it */
4012
4013 if (w->wd == wd || wd == -1)
4014 {
4015 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4016 {
4017 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4018 w->wd = -1;
4019 infy_add (EV_A_ w); /* re-add, no matter what */
4020 }
4021
4022 stat_timer_cb (EV_A_ &w->timer, 0);
4023 }
4024 }
4025 }
4026}
4027
4028static void
4029infy_cb (EV_P_ ev_io *w, int revents)
4030{
4031 char buf [EV_INOTIFY_BUFSIZE];
4032 int ofs;
4033 int len = read (fs_fd, buf, sizeof (buf));
4034
4035 for (ofs = 0; ofs < len; )
4036 {
4037 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4038 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4039 ofs += sizeof (struct inotify_event) + ev->len;
4040 }
4041}
4042
4043inline_size void ecb_cold
4044ev_check_2625 (EV_P)
4045{
4046 /* kernels < 2.6.25 are borked
4047 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4048 */
4049 if (ev_linux_version () < 0x020619)
4050 return;
4051
4052 fs_2625 = 1;
4053}
4054
4055inline_size int
4056infy_newfd (void)
4057{
4058#if defined IN_CLOEXEC && defined IN_NONBLOCK
4059 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4060 if (fd >= 0)
4061 return fd;
4062#endif
4063 return inotify_init ();
4064}
4065
4066inline_size void
4067infy_init (EV_P)
4068{
4069 if (fs_fd != -2)
4070 return;
4071
4072 fs_fd = -1;
4073
4074 ev_check_2625 (EV_A);
4075
4076 fs_fd = infy_newfd ();
4077
4078 if (fs_fd >= 0)
4079 {
4080 fd_intern (fs_fd);
4081 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4082 ev_set_priority (&fs_w, EV_MAXPRI);
4083 ev_io_start (EV_A_ &fs_w);
4084 ev_unref (EV_A);
4085 }
4086}
4087
4088inline_size void
4089infy_fork (EV_P)
4090{
4091 int slot;
4092
4093 if (fs_fd < 0)
4094 return;
4095
4096 ev_ref (EV_A);
4097 ev_io_stop (EV_A_ &fs_w);
4098 close (fs_fd);
4099 fs_fd = infy_newfd ();
4100
4101 if (fs_fd >= 0)
4102 {
4103 fd_intern (fs_fd);
4104 ev_io_set (&fs_w, fs_fd, EV_READ);
4105 ev_io_start (EV_A_ &fs_w);
4106 ev_unref (EV_A);
4107 }
4108
4109 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4110 {
4111 WL w_ = fs_hash [slot].head;
4112 fs_hash [slot].head = 0;
4113
4114 while (w_)
4115 {
4116 ev_stat *w = (ev_stat *)w_;
4117 w_ = w_->next; /* lets us add this watcher */
4118
4119 w->wd = -1;
4120
4121 if (fs_fd >= 0)
4122 infy_add (EV_A_ w); /* re-add, no matter what */
4123 else
4124 {
4125 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4126 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4127 ev_timer_again (EV_A_ &w->timer);
4128 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4129 }
4130 }
4131 }
4132}
4133
4134#endif
4135
4136#ifdef _WIN32
4137# define EV_LSTAT(p,b) _stati64 (p, b)
4138#else
4139# define EV_LSTAT(p,b) lstat (p, b)
4140#endif
1581 4141
1582void 4142void
1583ev_check_start (EV_P_ struct ev_check *w) 4143ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4144{
4145 if (lstat (w->path, &w->attr) < 0)
4146 w->attr.st_nlink = 0;
4147 else if (!w->attr.st_nlink)
4148 w->attr.st_nlink = 1;
4149}
4150
4151static void noinline
4152stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4153{
4154 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4155
4156 ev_statdata prev = w->attr;
4157 ev_stat_stat (EV_A_ w);
4158
4159 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4160 if (
4161 prev.st_dev != w->attr.st_dev
4162 || prev.st_ino != w->attr.st_ino
4163 || prev.st_mode != w->attr.st_mode
4164 || prev.st_nlink != w->attr.st_nlink
4165 || prev.st_uid != w->attr.st_uid
4166 || prev.st_gid != w->attr.st_gid
4167 || prev.st_rdev != w->attr.st_rdev
4168 || prev.st_size != w->attr.st_size
4169 || prev.st_atime != w->attr.st_atime
4170 || prev.st_mtime != w->attr.st_mtime
4171 || prev.st_ctime != w->attr.st_ctime
4172 ) {
4173 /* we only update w->prev on actual differences */
4174 /* in case we test more often than invoke the callback, */
4175 /* to ensure that prev is always different to attr */
4176 w->prev = prev;
4177
4178 #if EV_USE_INOTIFY
4179 if (fs_fd >= 0)
4180 {
4181 infy_del (EV_A_ w);
4182 infy_add (EV_A_ w);
4183 ev_stat_stat (EV_A_ w); /* avoid race... */
4184 }
4185 #endif
4186
4187 ev_feed_event (EV_A_ w, EV_STAT);
4188 }
4189}
4190
4191void
4192ev_stat_start (EV_P_ ev_stat *w) EV_THROW
1584{ 4193{
1585 if (expect_false (ev_is_active (w))) 4194 if (expect_false (ev_is_active (w)))
1586 return; 4195 return;
1587 4196
4197 ev_stat_stat (EV_A_ w);
4198
4199 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4200 w->interval = MIN_STAT_INTERVAL;
4201
4202 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4203 ev_set_priority (&w->timer, ev_priority (w));
4204
4205#if EV_USE_INOTIFY
4206 infy_init (EV_A);
4207
4208 if (fs_fd >= 0)
4209 infy_add (EV_A_ w);
4210 else
4211#endif
4212 {
4213 ev_timer_again (EV_A_ &w->timer);
4214 ev_unref (EV_A);
4215 }
4216
1588 ev_start (EV_A_ (W)w, ++checkcnt); 4217 ev_start (EV_A_ (W)w, 1);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 4218
1590 checks [checkcnt - 1] = w; 4219 EV_FREQUENT_CHECK;
1591} 4220}
1592 4221
1593void 4222void
1594ev_check_stop (EV_P_ struct ev_check *w) 4223ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1595{ 4224{
1596 ev_clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 4226 if (expect_false (!ev_is_active (w)))
1598 return; 4227 return;
1599 4228
1600 checks [((W)w)->active - 1] = checks [--checkcnt]; 4229 EV_FREQUENT_CHECK;
4230
4231#if EV_USE_INOTIFY
4232 infy_del (EV_A_ w);
4233#endif
4234
4235 if (ev_is_active (&w->timer))
4236 {
4237 ev_ref (EV_A);
4238 ev_timer_stop (EV_A_ &w->timer);
4239 }
4240
1601 ev_stop (EV_A_ (W)w); 4241 ev_stop (EV_A_ (W)w);
1602}
1603 4242
1604#ifndef SA_RESTART 4243 EV_FREQUENT_CHECK;
1605# define SA_RESTART 0 4244}
1606#endif 4245#endif
1607 4246
4247#if EV_IDLE_ENABLE
1608void 4248void
1609ev_signal_start (EV_P_ struct ev_signal *w) 4249ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1610{ 4250{
1611#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif
1614 if (expect_false (ev_is_active (w))) 4251 if (expect_false (ev_is_active (w)))
1615 return; 4252 return;
1616 4253
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4254 pri_adjust (EV_A_ (W)w);
1618 4255
4256 EV_FREQUENT_CHECK;
4257
4258 {
4259 int active = ++idlecnt [ABSPRI (w)];
4260
4261 ++idleall;
1619 ev_start (EV_A_ (W)w, 1); 4262 ev_start (EV_A_ (W)w, active);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1622 4263
1623 if (!((WL)w)->next) 4264 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1624 { 4265 idles [ABSPRI (w)][active - 1] = w;
1625#if _WIN32
1626 signal (w->signum, sighandler);
1627#else
1628 struct sigaction sa;
1629 sa.sa_handler = sighandler;
1630 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0);
1633#endif
1634 } 4266 }
4267
4268 EV_FREQUENT_CHECK;
1635} 4269}
1636 4270
1637void 4271void
1638ev_signal_stop (EV_P_ struct ev_signal *w) 4272ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
1639{ 4273{
1640 ev_clear_pending (EV_A_ (W)w); 4274 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 4275 if (expect_false (!ev_is_active (w)))
1642 return; 4276 return;
1643 4277
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4278 EV_FREQUENT_CHECK;
4279
4280 {
4281 int active = ev_active (w);
4282
4283 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4284 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4285
1645 ev_stop (EV_A_ (W)w); 4286 ev_stop (EV_A_ (W)w);
4287 --idleall;
4288 }
1646 4289
1647 if (!signals [w->signum - 1].head) 4290 EV_FREQUENT_CHECK;
1648 signal (w->signum, SIG_DFL);
1649} 4291}
4292#endif
1650 4293
4294#if EV_PREPARE_ENABLE
1651void 4295void
1652ev_child_start (EV_P_ struct ev_child *w) 4296ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
1653{ 4297{
1654#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif
1657 if (expect_false (ev_is_active (w))) 4298 if (expect_false (ev_is_active (w)))
1658 return; 4299 return;
1659 4300
4301 EV_FREQUENT_CHECK;
4302
1660 ev_start (EV_A_ (W)w, 1); 4303 ev_start (EV_A_ (W)w, ++preparecnt);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4304 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4305 prepares [preparecnt - 1] = w;
4306
4307 EV_FREQUENT_CHECK;
1662} 4308}
1663 4309
1664void 4310void
1665ev_child_stop (EV_P_ struct ev_child *w) 4311ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
1666{ 4312{
1667 ev_clear_pending (EV_A_ (W)w); 4313 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 4314 if (expect_false (!ev_is_active (w)))
1669 return; 4315 return;
1670 4316
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4317 EV_FREQUENT_CHECK;
4318
4319 {
4320 int active = ev_active (w);
4321
4322 prepares [active - 1] = prepares [--preparecnt];
4323 ev_active (prepares [active - 1]) = active;
4324 }
4325
1672 ev_stop (EV_A_ (W)w); 4326 ev_stop (EV_A_ (W)w);
1673}
1674 4327
1675#if EV_MULTIPLICITY 4328 EV_FREQUENT_CHECK;
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 4329}
4330#endif
1684 4331
4332#if EV_CHECK_ENABLE
1685void 4333void
1686ev_embed_start (EV_P_ struct ev_embed *w) 4334ev_check_start (EV_P_ ev_check *w) EV_THROW
1687{ 4335{
1688 if (expect_false (ev_is_active (w))) 4336 if (expect_false (ev_is_active (w)))
1689 return; 4337 return;
1690 4338
1691 { 4339 EV_FREQUENT_CHECK;
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696 4340
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1); 4341 ev_start (EV_A_ (W)w, ++checkcnt);
4342 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4343 checks [checkcnt - 1] = w;
4344
4345 EV_FREQUENT_CHECK;
1699} 4346}
1700 4347
1701void 4348void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 4349ev_check_stop (EV_P_ ev_check *w) EV_THROW
1703{ 4350{
1704 ev_clear_pending (EV_A_ (W)w); 4351 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 4352 if (expect_false (!ev_is_active (w)))
1706 return; 4353 return;
1707 4354
1708 ev_io_stop (EV_A_ &w->io); 4355 EV_FREQUENT_CHECK;
4356
4357 {
4358 int active = ev_active (w);
4359
4360 checks [active - 1] = checks [--checkcnt];
4361 ev_active (checks [active - 1]) = active;
4362 }
4363
1709 ev_stop (EV_A_ (W)w); 4364 ev_stop (EV_A_ (W)w);
4365
4366 EV_FREQUENT_CHECK;
4367}
4368#endif
4369
4370#if EV_EMBED_ENABLE
4371void noinline
4372ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4373{
4374 ev_run (w->other, EVRUN_NOWAIT);
4375}
4376
4377static void
4378embed_io_cb (EV_P_ ev_io *io, int revents)
4379{
4380 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4381
4382 if (ev_cb (w))
4383 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4384 else
4385 ev_run (w->other, EVRUN_NOWAIT);
4386}
4387
4388static void
4389embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4390{
4391 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4392
4393 {
4394 EV_P = w->other;
4395
4396 while (fdchangecnt)
4397 {
4398 fd_reify (EV_A);
4399 ev_run (EV_A_ EVRUN_NOWAIT);
4400 }
4401 }
4402}
4403
4404static void
4405embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4406{
4407 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4408
4409 ev_embed_stop (EV_A_ w);
4410
4411 {
4412 EV_P = w->other;
4413
4414 ev_loop_fork (EV_A);
4415 ev_run (EV_A_ EVRUN_NOWAIT);
4416 }
4417
4418 ev_embed_start (EV_A_ w);
4419}
4420
4421#if 0
4422static void
4423embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4424{
4425 ev_idle_stop (EV_A_ idle);
4426}
4427#endif
4428
4429void
4430ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4431{
4432 if (expect_false (ev_is_active (w)))
4433 return;
4434
4435 {
4436 EV_P = w->other;
4437 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4438 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4439 }
4440
4441 EV_FREQUENT_CHECK;
4442
4443 ev_set_priority (&w->io, ev_priority (w));
4444 ev_io_start (EV_A_ &w->io);
4445
4446 ev_prepare_init (&w->prepare, embed_prepare_cb);
4447 ev_set_priority (&w->prepare, EV_MINPRI);
4448 ev_prepare_start (EV_A_ &w->prepare);
4449
4450 ev_fork_init (&w->fork, embed_fork_cb);
4451 ev_fork_start (EV_A_ &w->fork);
4452
4453 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4454
4455 ev_start (EV_A_ (W)w, 1);
4456
4457 EV_FREQUENT_CHECK;
4458}
4459
4460void
4461ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4462{
4463 clear_pending (EV_A_ (W)w);
4464 if (expect_false (!ev_is_active (w)))
4465 return;
4466
4467 EV_FREQUENT_CHECK;
4468
4469 ev_io_stop (EV_A_ &w->io);
4470 ev_prepare_stop (EV_A_ &w->prepare);
4471 ev_fork_stop (EV_A_ &w->fork);
4472
4473 ev_stop (EV_A_ (W)w);
4474
4475 EV_FREQUENT_CHECK;
4476}
4477#endif
4478
4479#if EV_FORK_ENABLE
4480void
4481ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4482{
4483 if (expect_false (ev_is_active (w)))
4484 return;
4485
4486 EV_FREQUENT_CHECK;
4487
4488 ev_start (EV_A_ (W)w, ++forkcnt);
4489 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4490 forks [forkcnt - 1] = w;
4491
4492 EV_FREQUENT_CHECK;
4493}
4494
4495void
4496ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4497{
4498 clear_pending (EV_A_ (W)w);
4499 if (expect_false (!ev_is_active (w)))
4500 return;
4501
4502 EV_FREQUENT_CHECK;
4503
4504 {
4505 int active = ev_active (w);
4506
4507 forks [active - 1] = forks [--forkcnt];
4508 ev_active (forks [active - 1]) = active;
4509 }
4510
4511 ev_stop (EV_A_ (W)w);
4512
4513 EV_FREQUENT_CHECK;
4514}
4515#endif
4516
4517#if EV_CLEANUP_ENABLE
4518void
4519ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4520{
4521 if (expect_false (ev_is_active (w)))
4522 return;
4523
4524 EV_FREQUENT_CHECK;
4525
4526 ev_start (EV_A_ (W)w, ++cleanupcnt);
4527 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4528 cleanups [cleanupcnt - 1] = w;
4529
4530 /* cleanup watchers should never keep a refcount on the loop */
4531 ev_unref (EV_A);
4532 EV_FREQUENT_CHECK;
4533}
4534
4535void
4536ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4537{
4538 clear_pending (EV_A_ (W)w);
4539 if (expect_false (!ev_is_active (w)))
4540 return;
4541
4542 EV_FREQUENT_CHECK;
4543 ev_ref (EV_A);
4544
4545 {
4546 int active = ev_active (w);
4547
4548 cleanups [active - 1] = cleanups [--cleanupcnt];
4549 ev_active (cleanups [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555}
4556#endif
4557
4558#if EV_ASYNC_ENABLE
4559void
4560ev_async_start (EV_P_ ev_async *w) EV_THROW
4561{
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 w->sent = 0;
4566
4567 evpipe_init (EV_A);
4568
4569 EV_FREQUENT_CHECK;
4570
4571 ev_start (EV_A_ (W)w, ++asynccnt);
4572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4573 asyncs [asynccnt - 1] = w;
4574
4575 EV_FREQUENT_CHECK;
4576}
4577
4578void
4579ev_async_stop (EV_P_ ev_async *w) EV_THROW
4580{
4581 clear_pending (EV_A_ (W)w);
4582 if (expect_false (!ev_is_active (w)))
4583 return;
4584
4585 EV_FREQUENT_CHECK;
4586
4587 {
4588 int active = ev_active (w);
4589
4590 asyncs [active - 1] = asyncs [--asynccnt];
4591 ev_active (asyncs [active - 1]) = active;
4592 }
4593
4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
4597}
4598
4599void
4600ev_async_send (EV_P_ ev_async *w) EV_THROW
4601{
4602 w->sent = 1;
4603 evpipe_write (EV_A_ &async_pending);
1710} 4604}
1711#endif 4605#endif
1712 4606
1713/*****************************************************************************/ 4607/*****************************************************************************/
1714 4608
1715struct ev_once 4609struct ev_once
1716{ 4610{
1717 struct ev_io io; 4611 ev_io io;
1718 struct ev_timer to; 4612 ev_timer to;
1719 void (*cb)(int revents, void *arg); 4613 void (*cb)(int revents, void *arg);
1720 void *arg; 4614 void *arg;
1721}; 4615};
1722 4616
1723static void 4617static void
1724once_cb (EV_P_ struct ev_once *once, int revents) 4618once_cb (EV_P_ struct ev_once *once, int revents)
1725{ 4619{
1726 void (*cb)(int revents, void *arg) = once->cb; 4620 void (*cb)(int revents, void *arg) = once->cb;
1727 void *arg = once->arg; 4621 void *arg = once->arg;
1728 4622
1729 ev_io_stop (EV_A_ &once->io); 4623 ev_io_stop (EV_A_ &once->io);
1730 ev_timer_stop (EV_A_ &once->to); 4624 ev_timer_stop (EV_A_ &once->to);
1731 ev_free (once); 4625 ev_free (once);
1732 4626
1733 cb (revents, arg); 4627 cb (revents, arg);
1734} 4628}
1735 4629
1736static void 4630static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 4631once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 4632{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4634
4635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1740} 4636}
1741 4637
1742static void 4638static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 4639once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 4640{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4642
4643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1746} 4644}
1747 4645
1748void 4646void
1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1750{ 4648{
1751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1752 4650
1753 if (expect_false (!once)) 4651 if (expect_false (!once))
1754 { 4652 {
1755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1756 return; 4654 return;
1757 } 4655 }
1758 4656
1759 once->cb = cb; 4657 once->cb = cb;
1760 once->arg = arg; 4658 once->arg = arg;
1772 ev_timer_set (&once->to, timeout, 0.); 4670 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 4671 ev_timer_start (EV_A_ &once->to);
1774 } 4672 }
1775} 4673}
1776 4674
1777#ifdef __cplusplus 4675/*****************************************************************************/
1778} 4676
4677#if EV_WALK_ENABLE
4678void ecb_cold
4679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4680{
4681 int i, j;
4682 ev_watcher_list *wl, *wn;
4683
4684 if (types & (EV_IO | EV_EMBED))
4685 for (i = 0; i < anfdmax; ++i)
4686 for (wl = anfds [i].head; wl; )
4687 {
4688 wn = wl->next;
4689
4690#if EV_EMBED_ENABLE
4691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4692 {
4693 if (types & EV_EMBED)
4694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4695 }
4696 else
4697#endif
4698#if EV_USE_INOTIFY
4699 if (ev_cb ((ev_io *)wl) == infy_cb)
4700 ;
4701 else
4702#endif
4703 if ((ev_io *)wl != &pipe_w)
4704 if (types & EV_IO)
4705 cb (EV_A_ EV_IO, wl);
4706
4707 wl = wn;
4708 }
4709
4710 if (types & (EV_TIMER | EV_STAT))
4711 for (i = timercnt + HEAP0; i-- > HEAP0; )
4712#if EV_STAT_ENABLE
4713 /*TODO: timer is not always active*/
4714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4715 {
4716 if (types & EV_STAT)
4717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4718 }
4719 else
4720#endif
4721 if (types & EV_TIMER)
4722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4723
4724#if EV_PERIODIC_ENABLE
4725 if (types & EV_PERIODIC)
4726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4728#endif
4729
4730#if EV_IDLE_ENABLE
4731 if (types & EV_IDLE)
4732 for (j = NUMPRI; j--; )
4733 for (i = idlecnt [j]; i--; )
4734 cb (EV_A_ EV_IDLE, idles [j][i]);
4735#endif
4736
4737#if EV_FORK_ENABLE
4738 if (types & EV_FORK)
4739 for (i = forkcnt; i--; )
4740 if (ev_cb (forks [i]) != embed_fork_cb)
4741 cb (EV_A_ EV_FORK, forks [i]);
4742#endif
4743
4744#if EV_ASYNC_ENABLE
4745 if (types & EV_ASYNC)
4746 for (i = asynccnt; i--; )
4747 cb (EV_A_ EV_ASYNC, asyncs [i]);
4748#endif
4749
4750#if EV_PREPARE_ENABLE
4751 if (types & EV_PREPARE)
4752 for (i = preparecnt; i--; )
4753# if EV_EMBED_ENABLE
4754 if (ev_cb (prepares [i]) != embed_prepare_cb)
1779#endif 4755# endif
4756 cb (EV_A_ EV_PREPARE, prepares [i]);
4757#endif
1780 4758
4759#if EV_CHECK_ENABLE
4760 if (types & EV_CHECK)
4761 for (i = checkcnt; i--; )
4762 cb (EV_A_ EV_CHECK, checks [i]);
4763#endif
4764
4765#if EV_SIGNAL_ENABLE
4766 if (types & EV_SIGNAL)
4767 for (i = 0; i < EV_NSIG - 1; ++i)
4768 for (wl = signals [i].head; wl; )
4769 {
4770 wn = wl->next;
4771 cb (EV_A_ EV_SIGNAL, wl);
4772 wl = wn;
4773 }
4774#endif
4775
4776#if EV_CHILD_ENABLE
4777 if (types & EV_CHILD)
4778 for (i = (EV_PID_HASHSIZE); i--; )
4779 for (wl = childs [i]; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_CHILD, wl);
4783 wl = wn;
4784 }
4785#endif
4786/* EV_STAT 0x00001000 /* stat data changed */
4787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4788}
4789#endif
4790
4791#if EV_MULTIPLICITY
4792 #include "ev_wrap.h"
4793#endif
4794

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines