ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#include <signal.h> 113#include <signal.h>
70 114
71#ifndef WIN32 115#ifndef _WIN32
72# include <unistd.h> 116# include <unistd.h>
73# include <sys/time.h> 117# include <sys/time.h>
74# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
75#endif 124# endif
125#endif
126
76/**/ 127/**/
77 128
78#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
80#endif 135#endif
81 136
82#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
84#endif 139#endif
85 140
86#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
88#endif 147#endif
89 148
90#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
92#endif 151#endif
93 152
94#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
96#endif 155#endif
97 156
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
110#endif 159#endif
111 160
112/**/ 161/**/
113 162
114#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
122#endif 171#endif
123 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
124/**/ 177/**/
125 178
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 183
184#ifdef EV_H
185# include EV_H
186#else
131#include "ev.h" 187# include "ev.h"
188#endif
132 189
133#if __GNUC__ >= 3 190#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 192# define inline static inline
136#else 193#else
137# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
138# define inline static 195# define inline static
139#endif 196#endif
140 197
142#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
143 200
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
146 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
147typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
148typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
150 210
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 212
153#if WIN32 213#ifdef _WIN32
154/* note: the comment below could not be substantiated, but what would I care */ 214# include "ev_win32.c"
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif 215#endif
211 216
212/*****************************************************************************/ 217/*****************************************************************************/
213 218
214static void (*syserr_cb)(const char *msg); 219static void (*syserr_cb)(const char *msg);
262typedef struct 267typedef struct
263{ 268{
264 WL head; 269 WL head;
265 unsigned char events; 270 unsigned char events;
266 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
267} ANFD; 275} ANFD;
268 276
269typedef struct 277typedef struct
270{ 278{
271 W w; 279 W w;
272 int events; 280 int events;
273} ANPENDING; 281} ANPENDING;
274 282
275#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
276 284
277struct ev_loop 285 struct ev_loop
278{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
279# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
280# include "ev_vars.h" 290 #include "ev_vars.h"
281};
282# undef VAR 291 #undef VAR
292 };
283# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
284 297
285#else 298#else
286 299
300 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 302 #include "ev_vars.h"
289# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
290 306
291#endif 307#endif
292 308
293/*****************************************************************************/ 309/*****************************************************************************/
294 310
295inline ev_tstamp 311ev_tstamp
296ev_time (void) 312ev_time (void)
297{ 313{
298#if EV_USE_REALTIME 314#if EV_USE_REALTIME
299 struct timespec ts; 315 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 335#endif
320 336
321 return ev_time (); 337 return ev_time ();
322} 338}
323 339
340#if EV_MULTIPLICITY
324ev_tstamp 341ev_tstamp
325ev_now (EV_P) 342ev_now (EV_P)
326{ 343{
327 return rt_now; 344 return ev_rt_now;
328} 345}
346#endif
329 347
330#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
331 349
332#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
334 { \ 352 { \
335 int newcnt = cur; \ 353 int newcnt = cur; \
336 do \ 354 do \
337 { \ 355 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 357 } \
340 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
341 \ 359 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 362 cur = newcnt; \
345 } 363 }
346 364
347#define array_slim(stem) \ 365#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 367 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 371 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359 372
360#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
362 375
363/*****************************************************************************/ 376/*****************************************************************************/
373 386
374 ++base; 387 ++base;
375 } 388 }
376} 389}
377 390
378static void 391void
379event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
380{ 393{
381 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
382 { 397 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 399 return;
385 } 400 }
386 401
402 if (expect_false (!w_->cb))
403 return;
404
387 w->pending = ++pendingcnt [ABSPRI (w)]; 405 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 409}
392 410
393static void 411static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 412queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 413{
396 int i; 414 int i;
397 415
398 for (i = 0; i < eventcnt; ++i) 416 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 417 ev_feed_event (EV_A_ events [i], type);
400} 418}
401 419
402static void 420inline void
403fd_event (EV_P_ int fd, int events) 421fd_event (EV_P_ int fd, int revents)
404{ 422{
405 ANFD *anfd = anfds + fd; 423 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 424 struct ev_io *w;
407 425
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 427 {
410 int ev = w->events & events; 428 int ev = w->events & revents;
411 429
412 if (ev) 430 if (ev)
413 event (EV_A_ (W)w, ev); 431 ev_feed_event (EV_A_ (W)w, ev);
414 } 432 }
433}
434
435void
436ev_feed_fd_event (EV_P_ int fd, int revents)
437{
438 fd_event (EV_A_ fd, revents);
415} 439}
416 440
417/*****************************************************************************/ 441/*****************************************************************************/
418 442
419static void 443inline void
420fd_reify (EV_P) 444fd_reify (EV_P)
421{ 445{
422 int i; 446 int i;
423 447
424 for (i = 0; i < fdchangecnt; ++i) 448 for (i = 0; i < fdchangecnt; ++i)
430 int events = 0; 454 int events = 0;
431 455
432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
433 events |= w->events; 457 events |= w->events;
434 458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 {
462 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 }
466#endif
467
435 anfd->reify = 0; 468 anfd->reify = 0;
436 469
437 method_modify (EV_A_ fd, anfd->events, events); 470 backend_modify (EV_A_ fd, anfd->events, events);
438 anfd->events = events; 471 anfd->events = events;
439 } 472 }
440 473
441 fdchangecnt = 0; 474 fdchangecnt = 0;
442} 475}
443 476
444static void 477static void
445fd_change (EV_P_ int fd) 478fd_change (EV_P_ int fd)
446{ 479{
447 if (anfds [fd].reify) 480 if (expect_false (anfds [fd].reify))
448 return; 481 return;
449 482
450 anfds [fd].reify = 1; 483 anfds [fd].reify = 1;
451 484
452 ++fdchangecnt; 485 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
454 fdchanges [fdchangecnt - 1] = fd; 487 fdchanges [fdchangecnt - 1] = fd;
455} 488}
456 489
457static void 490static void
458fd_kill (EV_P_ int fd) 491fd_kill (EV_P_ int fd)
460 struct ev_io *w; 493 struct ev_io *w;
461 494
462 while ((w = (struct ev_io *)anfds [fd].head)) 495 while ((w = (struct ev_io *)anfds [fd].head))
463 { 496 {
464 ev_io_stop (EV_A_ w); 497 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 499 }
467} 500}
468 501
469static int 502inline int
470fd_valid (int fd) 503fd_valid (int fd)
471{ 504{
472#ifdef WIN32 505#ifdef _WIN32
473 return !!win32_get_osfhandle (fd); 506 return _get_osfhandle (fd) != -1;
474#else 507#else
475 return fcntl (fd, F_GETFD) != -1; 508 return fcntl (fd, F_GETFD) != -1;
476#endif 509#endif
477} 510}
478 511
500 fd_kill (EV_A_ fd); 533 fd_kill (EV_A_ fd);
501 return; 534 return;
502 } 535 }
503} 536}
504 537
505/* usually called after fork if method needs to re-arm all fds from scratch */ 538/* usually called after fork if backend needs to re-arm all fds from scratch */
506static void 539static void
507fd_rearm_all (EV_P) 540fd_rearm_all (EV_P)
508{ 541{
509 int fd; 542 int fd;
510 543
558 591
559 heap [k] = w; 592 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 593 ((W)heap [k])->active = k + 1;
561} 594}
562 595
596inline void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
563/*****************************************************************************/ 603/*****************************************************************************/
564 604
565typedef struct 605typedef struct
566{ 606{
567 WL head; 607 WL head;
588} 628}
589 629
590static void 630static void
591sighandler (int signum) 631sighandler (int signum)
592{ 632{
593#if WIN32 633#if _WIN32
594 signal (signum, sighandler); 634 signal (signum, sighandler);
595#endif 635#endif
596 636
597 signals [signum - 1].gotsig = 1; 637 signals [signum - 1].gotsig = 1;
598 638
603 write (sigpipe [1], &signum, 1); 643 write (sigpipe [1], &signum, 1);
604 errno = old_errno; 644 errno = old_errno;
605 } 645 }
606} 646}
607 647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
608static void 668static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 669sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 670{
611 WL w;
612 int signum; 671 int signum;
613 672
614 read (sigpipe [0], &revents, 1); 673 read (sigpipe [0], &revents, 1);
615 gotsig = 0; 674 gotsig = 0;
616 675
617 for (signum = signalmax; signum--; ) 676 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 677 if (signals [signum].gotsig)
619 { 678 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0; 679}
621 680
622 for (w = signals [signum].head; w; w = w->next) 681static void
623 event (EV_A_ (W)w, EV_SIGNAL); 682fd_intern (int fd)
624 } 683{
684#ifdef _WIN32
685 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif
625} 691}
626 692
627static void 693static void
628siginit (EV_P) 694siginit (EV_P)
629{ 695{
630#ifndef WIN32 696 fd_intern (sigpipe [0]);
631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 697 fd_intern (sigpipe [1]);
632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
633
634 /* rather than sort out wether we really need nb, set it */
635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
638 698
639 ev_io_set (&sigev, sigpipe [0], EV_READ); 699 ev_io_set (&sigev, sigpipe [0], EV_READ);
640 ev_io_start (EV_A_ &sigev); 700 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */ 701 ev_unref (EV_A); /* child watcher should not keep loop alive */
642} 702}
643 703
644/*****************************************************************************/ 704/*****************************************************************************/
645 705
646static struct ev_child *childs [PID_HASHSIZE]; 706static struct ev_child *childs [PID_HASHSIZE];
647 707
648#ifndef WIN32 708#ifndef _WIN32
649 709
650static struct ev_signal childev; 710static struct ev_signal childev;
651 711
652#ifndef WCONTINUED 712#ifndef WCONTINUED
653# define WCONTINUED 0 713# define WCONTINUED 0
662 if (w->pid == pid || !w->pid) 722 if (w->pid == pid || !w->pid)
663 { 723 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 725 w->rpid = pid;
666 w->rstatus = status; 726 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 728 }
669} 729}
670 730
671static void 731static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 732childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 734 int pid, status;
675 735
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 737 {
678 /* make sure we are called again until all childs have been reaped */ 738 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */
679 event (EV_A_ (W)sw, EV_SIGNAL); 740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 741
681 child_reap (EV_A_ sw, pid, pid, status); 742 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
683 } 744 }
684} 745}
685 746
686#endif 747#endif
687 748
688/*****************************************************************************/ 749/*****************************************************************************/
689 750
751#if EV_USE_PORT
752# include "ev_port.c"
753#endif
690#if EV_USE_KQUEUE 754#if EV_USE_KQUEUE
691# include "ev_kqueue.c" 755# include "ev_kqueue.c"
692#endif 756#endif
693#if EV_USE_EPOLL 757#if EV_USE_EPOLL
694# include "ev_epoll.c" 758# include "ev_epoll.c"
714 778
715/* return true if we are running with elevated privileges and should ignore env variables */ 779/* return true if we are running with elevated privileges and should ignore env variables */
716static int 780static int
717enable_secure (void) 781enable_secure (void)
718{ 782{
719#ifdef WIN32 783#ifdef _WIN32
720 return 0; 784 return 0;
721#else 785#else
722 return getuid () != geteuid () 786 return getuid () != geteuid ()
723 || getgid () != getegid (); 787 || getgid () != getegid ();
724#endif 788#endif
725} 789}
726 790
727int 791unsigned int
728ev_method (EV_P) 792ev_supported_backends (void)
729{ 793{
730 return method; 794 unsigned int flags = 0;
731}
732 795
733static void 796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
734loop_init (EV_P_ int methods) 797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
798 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
799 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801
802 return flags;
803}
804
805unsigned int
806ev_recommended_backends (void)
735{ 807{
736 if (!method) 808 unsigned int flags = ev_supported_backends ();
809
810#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE;
814#endif
815#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation
817 flags &= ~EVBACKEND_POLL;
818#endif
819
820 return flags;
821}
822
823unsigned int
824ev_embeddable_backends (void)
825{
826 return EVBACKEND_EPOLL
827 | EVBACKEND_KQUEUE
828 | EVBACKEND_PORT;
829}
830
831unsigned int
832ev_backend (EV_P)
833{
834 return backend;
835}
836
837static void
838loop_init (EV_P_ unsigned int flags)
839{
840 if (!backend)
737 { 841 {
738#if EV_USE_MONOTONIC 842#if EV_USE_MONOTONIC
739 { 843 {
740 struct timespec ts; 844 struct timespec ts;
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 845 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 846 have_monotonic = 1;
743 } 847 }
744#endif 848#endif
745 849
746 rt_now = ev_time (); 850 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 851 mn_now = get_clock ();
748 now_floor = mn_now; 852 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 853 rtmn_diff = ev_rt_now - mn_now;
750 854
751 if (methods == EVMETHOD_AUTO) 855 if (!(flags & EVFLAG_NOENV)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 856 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 858 flags = atoi (getenv ("LIBEV_FLAGS"));
754 else
755 methods = EVMETHOD_ANY;
756 859
757 method = 0; 860 if (!(flags & 0x0000ffffUL))
758#if EV_USE_WIN32 861 flags |= ev_recommended_backends ();
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 862
863 backend = 0;
864#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
760#endif 866#endif
761#if EV_USE_KQUEUE 867#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
763#endif 869#endif
764#if EV_USE_EPOLL 870#if EV_USE_EPOLL
765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
766#endif 872#endif
767#if EV_USE_POLL 873#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
769#endif 875#endif
770#if EV_USE_SELECT 876#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
772#endif 878#endif
773 879
774 ev_watcher_init (&sigev, sigcb); 880 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 881 ev_set_priority (&sigev, EV_MAXPRI);
776 } 882 }
777} 883}
778 884
779void 885static void
780loop_destroy (EV_P) 886loop_destroy (EV_P)
781{ 887{
782 int i; 888 int i;
783 889
784#if EV_USE_WIN32 890#if EV_USE_PORT
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
786#endif 892#endif
787#if EV_USE_KQUEUE 893#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
789#endif 895#endif
790#if EV_USE_EPOLL 896#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 897 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
792#endif 898#endif
793#if EV_USE_POLL 899#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 900 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
795#endif 901#endif
796#if EV_USE_SELECT 902#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
798#endif 904#endif
799 905
800 for (i = NUMPRI; i--; ) 906 for (i = NUMPRI; i--; )
801 array_free (pending, [i]); 907 array_free (pending, [i]);
802 908
803 /* have to use the microsoft-never-gets-it-right macro */ 909 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 910 array_free (fdchange, EMPTY0);
805 array_free_microshit (timer); 911 array_free (timer, EMPTY0);
806 array_free_microshit (periodic); 912#if EV_PERIODICS
807 array_free_microshit (idle); 913 array_free (periodic, EMPTY0);
808 array_free_microshit (prepare); 914#endif
809 array_free_microshit (check); 915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0);
810 918
811 method = 0; 919 backend = 0;
812} 920}
813 921
814static void 922static void
815loop_fork (EV_P) 923loop_fork (EV_P)
816{ 924{
925#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif
928#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif
817#if EV_USE_EPOLL 931#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif 933#endif
823 934
824 if (ev_is_active (&sigev)) 935 if (ev_is_active (&sigev))
825 { 936 {
826 /* default loop */ 937 /* default loop */
828 ev_ref (EV_A); 939 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 940 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 941 close (sigpipe [0]);
831 close (sigpipe [1]); 942 close (sigpipe [1]);
832 943
833 while (ev_pipe (sigpipe)) 944 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 945 syserr ("(libev) error creating pipe");
835 946
836 siginit (EV_A); 947 siginit (EV_A);
837 } 948 }
838 949
839 postfork = 0; 950 postfork = 0;
840} 951}
841 952
842#if EV_MULTIPLICITY 953#if EV_MULTIPLICITY
843struct ev_loop * 954struct ev_loop *
844ev_loop_new (int methods) 955ev_loop_new (unsigned int flags)
845{ 956{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847 958
848 memset (loop, 0, sizeof (struct ev_loop)); 959 memset (loop, 0, sizeof (struct ev_loop));
849 960
850 loop_init (EV_A_ methods); 961 loop_init (EV_A_ flags);
851 962
852 if (ev_method (EV_A)) 963 if (ev_backend (EV_A))
853 return loop; 964 return loop;
854 965
855 return 0; 966 return 0;
856} 967}
857 968
869} 980}
870 981
871#endif 982#endif
872 983
873#if EV_MULTIPLICITY 984#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 985struct ev_loop *
986ev_default_loop_init (unsigned int flags)
878#else 987#else
879static int default_loop;
880
881int 988int
989ev_default_loop (unsigned int flags)
882#endif 990#endif
883ev_default_loop (int methods)
884{ 991{
885 if (sigpipe [0] == sigpipe [1]) 992 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 993 if (pipe (sigpipe))
887 return 0; 994 return 0;
888 995
889 if (!default_loop) 996 if (!ev_default_loop_ptr)
890 { 997 {
891#if EV_MULTIPLICITY 998#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1000#else
894 default_loop = 1; 1001 ev_default_loop_ptr = 1;
895#endif 1002#endif
896 1003
897 loop_init (EV_A_ methods); 1004 loop_init (EV_A_ flags);
898 1005
899 if (ev_method (EV_A)) 1006 if (ev_backend (EV_A))
900 { 1007 {
901 siginit (EV_A); 1008 siginit (EV_A);
902 1009
903#ifndef WIN32 1010#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1011 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1012 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1013 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1015#endif
909 } 1016 }
910 else 1017 else
911 default_loop = 0; 1018 ev_default_loop_ptr = 0;
912 } 1019 }
913 1020
914 return default_loop; 1021 return ev_default_loop_ptr;
915} 1022}
916 1023
917void 1024void
918ev_default_destroy (void) 1025ev_default_destroy (void)
919{ 1026{
920#if EV_MULTIPLICITY 1027#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1028 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1029#endif
923 1030
924#ifndef WIN32 1031#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1032 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1033 ev_signal_stop (EV_A_ &childev);
927#endif 1034#endif
928 1035
929 ev_ref (EV_A); /* signal watcher */ 1036 ev_ref (EV_A); /* signal watcher */
937 1044
938void 1045void
939ev_default_fork (void) 1046ev_default_fork (void)
940{ 1047{
941#if EV_MULTIPLICITY 1048#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1049 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1050#endif
944 1051
945 if (method) 1052 if (backend)
946 postfork = 1; 1053 postfork = 1;
947} 1054}
948 1055
949/*****************************************************************************/ 1056/*****************************************************************************/
950 1057
951static void 1058static int
1059any_pending (EV_P)
1060{
1061 int pri;
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
952call_pending (EV_P) 1071call_pending (EV_P)
953{ 1072{
954 int pri; 1073 int pri;
955 1074
956 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
957 while (pendingcnt [pri]) 1076 while (pendingcnt [pri])
958 { 1077 {
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 1079
961 if (p->w) 1080 if (expect_true (p->w))
962 { 1081 {
963 p->w->pending = 0; 1082 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 1083 EV_CB_INVOKE (p->w, p->events);
965 } 1084 }
966 } 1085 }
967} 1086}
968 1087
969static void 1088inline void
970timers_reify (EV_P) 1089timers_reify (EV_P)
971{ 1090{
972 while (timercnt && ((WT)timers [0])->at <= mn_now) 1091 while (timercnt && ((WT)timers [0])->at <= mn_now)
973 { 1092 {
974 struct ev_timer *w = timers [0]; 1093 struct ev_timer *w = timers [0];
977 1096
978 /* first reschedule or stop timer */ 1097 /* first reschedule or stop timer */
979 if (w->repeat) 1098 if (w->repeat)
980 { 1099 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101
982 ((WT)w)->at = mn_now + w->repeat; 1102 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
983 downheap ((WT *)timers, timercnt, 0); 1106 downheap ((WT *)timers, timercnt, 0);
984 } 1107 }
985 else 1108 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1110
988 event (EV_A_ (W)w, EV_TIMEOUT); 1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1112 }
990} 1113}
991 1114
992static void 1115#if EV_PERIODICS
1116inline void
993periodics_reify (EV_P) 1117periodics_reify (EV_P)
994{ 1118{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1120 {
997 struct ev_periodic *w = periodics [0]; 1121 struct ev_periodic *w = periodics [0];
998 1122
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1123 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1124
1001 /* first reschedule or stop timer */ 1125 /* first reschedule or stop timer */
1002 if (w->interval) 1126 if (w->reschedule_cb)
1003 { 1127 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 }
1132 else if (w->interval)
1133 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1136 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1137 }
1008 else 1138 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1140
1011 event (EV_A_ (W)w, EV_PERIODIC); 1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1142 }
1013} 1143}
1014 1144
1015static void 1145static void
1016periodics_reschedule (EV_P) 1146periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1150 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1151 for (i = 0; i < periodiccnt; ++i)
1022 { 1152 {
1023 struct ev_periodic *w = periodics [i]; 1153 struct ev_periodic *w = periodics [i];
1024 1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1157 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1038} 1164}
1165#endif
1039 1166
1040inline int 1167inline int
1041time_update_monotonic (EV_P) 1168time_update_monotonic (EV_P)
1042{ 1169{
1043 mn_now = get_clock (); 1170 mn_now = get_clock ();
1044 1171
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1173 {
1047 rt_now = rtmn_diff + mn_now; 1174 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1175 return 0;
1049 } 1176 }
1050 else 1177 else
1051 { 1178 {
1052 now_floor = mn_now; 1179 now_floor = mn_now;
1053 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
1054 return 1; 1181 return 1;
1055 } 1182 }
1056} 1183}
1057 1184
1058static void 1185inline void
1059time_update (EV_P) 1186time_update (EV_P)
1060{ 1187{
1061 int i; 1188 int i;
1062 1189
1063#if EV_USE_MONOTONIC 1190#if EV_USE_MONOTONIC
1067 { 1194 {
1068 ev_tstamp odiff = rtmn_diff; 1195 ev_tstamp odiff = rtmn_diff;
1069 1196
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1198 {
1072 rtmn_diff = rt_now - mn_now; 1199 rtmn_diff = ev_rt_now - mn_now;
1073 1200
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1202 return; /* all is well */
1076 1203
1077 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1205 mn_now = get_clock ();
1079 now_floor = mn_now; 1206 now_floor = mn_now;
1080 } 1207 }
1081 1208
1209# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1210 periodics_reschedule (EV_A);
1211# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1214 }
1086 } 1215 }
1087 else 1216 else
1088#endif 1217#endif
1089 { 1218 {
1090 rt_now = ev_time (); 1219 ev_rt_now = ev_time ();
1091 1220
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1222 {
1223#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1224 periodics_reschedule (EV_A);
1225#endif
1095 1226
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1227 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1228 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1230 }
1100 1231
1101 mn_now = rt_now; 1232 mn_now = ev_rt_now;
1102 } 1233 }
1103} 1234}
1104 1235
1105void 1236void
1106ev_ref (EV_P) 1237ev_ref (EV_P)
1120ev_loop (EV_P_ int flags) 1251ev_loop (EV_P_ int flags)
1121{ 1252{
1122 double block; 1253 double block;
1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1124 1255
1125 do 1256 while (activecnt)
1126 { 1257 {
1127 /* queue check watchers (and execute them) */ 1258 /* queue check watchers (and execute them) */
1128 if (expect_false (preparecnt)) 1259 if (expect_false (preparecnt))
1129 { 1260 {
1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1138 /* update fd-related kernel structures */ 1269 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1270 fd_reify (EV_A);
1140 1271
1141 /* calculate blocking time */ 1272 /* calculate blocking time */
1142 1273
1143 /* we only need this for !monotonic clockor timers, but as we basically 1274 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1275 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1276#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1277 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1278 time_update_monotonic (EV_A);
1148 else 1279 else
1149#endif 1280#endif
1150 { 1281 {
1151 rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1283 mn_now = ev_rt_now;
1153 } 1284 }
1154 1285
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1287 block = 0.;
1157 else 1288 else
1158 { 1289 {
1159 block = MAX_BLOCKTIME; 1290 block = MAX_BLOCKTIME;
1160 1291
1161 if (timercnt) 1292 if (timercnt)
1162 { 1293 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1164 if (block > to) block = to; 1295 if (block > to) block = to;
1165 } 1296 }
1166 1297
1298#if EV_PERIODICS
1167 if (periodiccnt) 1299 if (periodiccnt)
1168 { 1300 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1170 if (block > to) block = to; 1302 if (block > to) block = to;
1171 } 1303 }
1304#endif
1172 1305
1173 if (block < 0.) block = 0.; 1306 if (expect_false (block < 0.)) block = 0.;
1174 } 1307 }
1175 1308
1176 method_poll (EV_A_ block); 1309 backend_poll (EV_A_ block);
1177 1310
1178 /* update rt_now, do magic */ 1311 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1312 time_update (EV_A);
1180 1313
1181 /* queue pending timers and reschedule them */ 1314 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1315 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1317 periodics_reify (EV_A); /* absolute timers called first */
1318#endif
1184 1319
1185 /* queue idle watchers unless io or timers are pending */ 1320 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1321 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1323
1189 /* queue check watchers, to be executed first */ 1324 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1325 if (expect_false (checkcnt))
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1192 1327
1193 call_pending (EV_A); 1328 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1194 } 1332 }
1195 while (activecnt && !loop_done);
1196 1333
1197 if (loop_done != 2) 1334 if (loop_done != 2)
1198 loop_done = 0; 1335 loop_done = 0;
1199} 1336}
1200 1337
1260void 1397void
1261ev_io_start (EV_P_ struct ev_io *w) 1398ev_io_start (EV_P_ struct ev_io *w)
1262{ 1399{
1263 int fd = w->fd; 1400 int fd = w->fd;
1264 1401
1265 if (ev_is_active (w)) 1402 if (expect_false (ev_is_active (w)))
1266 return; 1403 return;
1267 1404
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1405 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1406
1270 ev_start (EV_A_ (W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1409 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1410
1274 fd_change (EV_A_ fd); 1411 fd_change (EV_A_ fd);
1275} 1412}
1276 1413
1277void 1414void
1278ev_io_stop (EV_P_ struct ev_io *w) 1415ev_io_stop (EV_P_ struct ev_io *w)
1279{ 1416{
1280 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1418 if (expect_false (!ev_is_active (w)))
1282 return; 1419 return;
1420
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1283 1422
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1286 1425
1287 fd_change (EV_A_ w->fd); 1426 fd_change (EV_A_ w->fd);
1288} 1427}
1289 1428
1290void 1429void
1291ev_timer_start (EV_P_ struct ev_timer *w) 1430ev_timer_start (EV_P_ struct ev_timer *w)
1292{ 1431{
1293 if (ev_is_active (w)) 1432 if (expect_false (ev_is_active (w)))
1294 return; 1433 return;
1295 1434
1296 ((WT)w)->at += mn_now; 1435 ((WT)w)->at += mn_now;
1297 1436
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1438
1300 ev_start (EV_A_ (W)w, ++timercnt); 1439 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1302 timers [timercnt - 1] = w; 1441 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1442 upheap ((WT *)timers, timercnt - 1);
1304 1443
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1445}
1307 1446
1308void 1447void
1309ev_timer_stop (EV_P_ struct ev_timer *w) 1448ev_timer_stop (EV_P_ struct ev_timer *w)
1310{ 1449{
1311 ev_clear_pending (EV_A_ (W)w); 1450 ev_clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 1451 if (expect_false (!ev_is_active (w)))
1313 return; 1452 return;
1314 1453
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316 1455
1317 if (((W)w)->active < timercnt--) 1456 if (expect_true (((W)w)->active < timercnt--))
1318 { 1457 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1458 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1460 }
1322 1461
1323 ((WT)w)->at = w->repeat; 1462 ((WT)w)->at -= mn_now;
1324 1463
1325 ev_stop (EV_A_ (W)w); 1464 ev_stop (EV_A_ (W)w);
1326} 1465}
1327 1466
1328void 1467void
1331 if (ev_is_active (w)) 1470 if (ev_is_active (w))
1332 { 1471 {
1333 if (w->repeat) 1472 if (w->repeat)
1334 { 1473 {
1335 ((WT)w)->at = mn_now + w->repeat; 1474 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1337 } 1476 }
1338 else 1477 else
1339 ev_timer_stop (EV_A_ w); 1478 ev_timer_stop (EV_A_ w);
1340 } 1479 }
1341 else if (w->repeat) 1480 else if (w->repeat)
1481 {
1482 w->at = w->repeat;
1342 ev_timer_start (EV_A_ w); 1483 ev_timer_start (EV_A_ w);
1484 }
1343} 1485}
1344 1486
1487#if EV_PERIODICS
1345void 1488void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1489ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1490{
1348 if (ev_is_active (w)) 1491 if (expect_false (ev_is_active (w)))
1349 return; 1492 return;
1350 1493
1494 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval)
1497 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1499 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 }
1356 1502
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1503 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1359 periodics [periodiccnt - 1] = w; 1505 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1506 upheap ((WT *)periodics, periodiccnt - 1);
1361 1507
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1509}
1364 1510
1365void 1511void
1366ev_periodic_stop (EV_P_ struct ev_periodic *w) 1512ev_periodic_stop (EV_P_ struct ev_periodic *w)
1367{ 1513{
1368 ev_clear_pending (EV_A_ (W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1369 if (!ev_is_active (w)) 1515 if (expect_false (!ev_is_active (w)))
1370 return; 1516 return;
1371 1517
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373 1519
1374 if (((W)w)->active < periodiccnt--) 1520 if (expect_true (((W)w)->active < periodiccnt--))
1375 { 1521 {
1376 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1522 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1378 } 1524 }
1379 1525
1380 ev_stop (EV_A_ (W)w); 1526 ev_stop (EV_A_ (W)w);
1381} 1527}
1382 1528
1383void 1529void
1530ev_periodic_again (EV_P_ struct ev_periodic *w)
1531{
1532 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w);
1535}
1536#endif
1537
1538void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1539ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1540{
1386 if (ev_is_active (w)) 1541 if (expect_false (ev_is_active (w)))
1387 return; 1542 return;
1388 1543
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1544 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1391 idles [idlecnt - 1] = w; 1546 idles [idlecnt - 1] = w;
1392} 1547}
1393 1548
1394void 1549void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1550ev_idle_stop (EV_P_ struct ev_idle *w)
1396{ 1551{
1397 ev_clear_pending (EV_A_ (W)w); 1552 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w)) 1553 if (expect_false (!ev_is_active (w)))
1399 return; 1554 return;
1400 1555
1401 idles [((W)w)->active - 1] = idles [--idlecnt]; 1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w); 1557 ev_stop (EV_A_ (W)w);
1403} 1558}
1404 1559
1405void 1560void
1406ev_prepare_start (EV_P_ struct ev_prepare *w) 1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{ 1562{
1408 if (ev_is_active (w)) 1563 if (expect_false (ev_is_active (w)))
1409 return; 1564 return;
1410 1565
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1566 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1413 prepares [preparecnt - 1] = w; 1568 prepares [preparecnt - 1] = w;
1414} 1569}
1415 1570
1416void 1571void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{ 1573{
1419 ev_clear_pending (EV_A_ (W)w); 1574 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w)) 1575 if (expect_false (!ev_is_active (w)))
1421 return; 1576 return;
1422 1577
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w); 1579 ev_stop (EV_A_ (W)w);
1425} 1580}
1426 1581
1427void 1582void
1428ev_check_start (EV_P_ struct ev_check *w) 1583ev_check_start (EV_P_ struct ev_check *w)
1429{ 1584{
1430 if (ev_is_active (w)) 1585 if (expect_false (ev_is_active (w)))
1431 return; 1586 return;
1432 1587
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1588 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1435 checks [checkcnt - 1] = w; 1590 checks [checkcnt - 1] = w;
1436} 1591}
1437 1592
1438void 1593void
1439ev_check_stop (EV_P_ struct ev_check *w) 1594ev_check_stop (EV_P_ struct ev_check *w)
1440{ 1595{
1441 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1443 return; 1598 return;
1444 1599
1445 checks [((W)w)->active - 1] = checks [--checkcnt]; 1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1447} 1602}
1452 1607
1453void 1608void
1454ev_signal_start (EV_P_ struct ev_signal *w) 1609ev_signal_start (EV_P_ struct ev_signal *w)
1455{ 1610{
1456#if EV_MULTIPLICITY 1611#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1458#endif 1613#endif
1459 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1460 return; 1615 return;
1461 1616
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1618
1464 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1622
1468 if (!((WL)w)->next) 1623 if (!((WL)w)->next)
1469 { 1624 {
1470#if WIN32 1625#if _WIN32
1471 signal (w->signum, sighandler); 1626 signal (w->signum, sighandler);
1472#else 1627#else
1473 struct sigaction sa; 1628 struct sigaction sa;
1474 sa.sa_handler = sighandler; 1629 sa.sa_handler = sighandler;
1475 sigfillset (&sa.sa_mask); 1630 sigfillset (&sa.sa_mask);
1481 1636
1482void 1637void
1483ev_signal_stop (EV_P_ struct ev_signal *w) 1638ev_signal_stop (EV_P_ struct ev_signal *w)
1484{ 1639{
1485 ev_clear_pending (EV_A_ (W)w); 1640 ev_clear_pending (EV_A_ (W)w);
1486 if (!ev_is_active (w)) 1641 if (expect_false (!ev_is_active (w)))
1487 return; 1642 return;
1488 1643
1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 ev_stop (EV_A_ (W)w); 1645 ev_stop (EV_A_ (W)w);
1491 1646
1495 1650
1496void 1651void
1497ev_child_start (EV_P_ struct ev_child *w) 1652ev_child_start (EV_P_ struct ev_child *w)
1498{ 1653{
1499#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1501#endif 1656#endif
1502 if (ev_is_active (w)) 1657 if (expect_false (ev_is_active (w)))
1503 return; 1658 return;
1504 1659
1505 ev_start (EV_A_ (W)w, 1); 1660 ev_start (EV_A_ (W)w, 1);
1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1507} 1662}
1508 1663
1509void 1664void
1510ev_child_stop (EV_P_ struct ev_child *w) 1665ev_child_stop (EV_P_ struct ev_child *w)
1511{ 1666{
1512 ev_clear_pending (EV_A_ (W)w); 1667 ev_clear_pending (EV_A_ (W)w);
1513 if (ev_is_active (w)) 1668 if (expect_false (!ev_is_active (w)))
1514 return; 1669 return;
1515 1670
1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1517 ev_stop (EV_A_ (W)w); 1672 ev_stop (EV_A_ (W)w);
1518} 1673}
1674
1675#if EV_MULTIPLICITY
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683}
1684
1685void
1686ev_embed_start (EV_P_ struct ev_embed *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 {
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1);
1699}
1700
1701void
1702ev_embed_stop (EV_P_ struct ev_embed *w)
1703{
1704 ev_clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w)))
1706 return;
1707
1708 ev_io_stop (EV_A_ &w->io);
1709 ev_stop (EV_A_ (W)w);
1710}
1711#endif
1519 1712
1520/*****************************************************************************/ 1713/*****************************************************************************/
1521 1714
1522struct ev_once 1715struct ev_once
1523{ 1716{
1553} 1746}
1554 1747
1555void 1748void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1750{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1752
1560 if (!once) 1753 if (expect_false (!once))
1754 {
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1756 return;
1563 { 1757 }
1758
1564 once->cb = cb; 1759 once->cb = cb;
1565 once->arg = arg; 1760 once->arg = arg;
1566 1761
1567 ev_watcher_init (&once->io, once_cb_io); 1762 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1763 if (fd >= 0)
1569 { 1764 {
1570 ev_io_set (&once->io, fd, events); 1765 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1766 ev_io_start (EV_A_ &once->io);
1572 } 1767 }
1573 1768
1574 ev_watcher_init (&once->to, once_cb_to); 1769 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1770 if (timeout >= 0.)
1576 { 1771 {
1577 ev_timer_set (&once->to, timeout, 0.); 1772 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1773 ev_timer_start (EV_A_ &once->to);
1579 }
1580 } 1774 }
1581} 1775}
1582 1776
1777#ifdef __cplusplus
1778}
1779#endif
1780

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines