ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
195# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
306 315
307#endif 316#endif
308 317
309/*****************************************************************************/ 318/*****************************************************************************/
310 319
311ev_tstamp 320ev_tstamp noinline
312ev_time (void) 321ev_time (void)
313{ 322{
314#if EV_USE_REALTIME 323#if EV_USE_REALTIME
315 struct timespec ts; 324 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
320 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 331#endif
323} 332}
324 333
325inline ev_tstamp 334ev_tstamp inline_size
326get_clock (void) 335get_clock (void)
327{ 336{
328#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
330 { 339 {
373#define array_free(stem, idx) \ 382#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 384
376/*****************************************************************************/ 385/*****************************************************************************/
377 386
378static void 387void inline_size
379anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
380{ 389{
381 while (count--) 390 while (count--)
382 { 391 {
383 base->head = 0; 392 base->head = 0;
386 395
387 ++base; 396 ++base;
388 } 397 }
389} 398}
390 399
391void 400void noinline
392ev_feed_event (EV_P_ void *w, int revents) 401ev_feed_event (EV_P_ void *w, int revents)
393{ 402{
394 W w_ = (W)w; 403 W w_ = (W)w;
395 404
396 if (expect_false (w_->pending)) 405 if (expect_false (w_->pending))
397 { 406 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 408 return;
400 } 409 }
401
402 if (expect_false (!w_->cb))
403 return;
404 410
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 411 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415 421
416 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
418} 424}
419 425
420inline void 426void inline_speed
421fd_event (EV_P_ int fd, int revents) 427fd_event (EV_P_ int fd, int revents)
422{ 428{
423 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 430 ev_io *w;
425 431
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 433 {
428 int ev = w->events & revents; 434 int ev = w->events & revents;
429 435
430 if (ev) 436 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
438 fd_event (EV_A_ fd, revents); 444 fd_event (EV_A_ fd, revents);
439} 445}
440 446
441/*****************************************************************************/ 447/*****************************************************************************/
442 448
443inline void 449void inline_size
444fd_reify (EV_P) 450fd_reify (EV_P)
445{ 451{
446 int i; 452 int i;
447 453
448 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
449 { 455 {
450 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 458 ev_io *w;
453 459
454 int events = 0; 460 int events = 0;
455 461
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 463 events |= w->events;
458 464
459#if EV_SELECT_IS_WINSOCKET 465#if EV_SELECT_IS_WINSOCKET
460 if (events) 466 if (events)
461 { 467 {
472 } 478 }
473 479
474 fdchangecnt = 0; 480 fdchangecnt = 0;
475} 481}
476 482
477static void 483void inline_size
478fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
479{ 485{
480 if (expect_false (anfds [fd].reify)) 486 if (expect_false (anfds [fd].reify))
481 return; 487 return;
482 488
485 ++fdchangecnt; 491 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
488} 494}
489 495
490static void 496void inline_speed
491fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
492{ 498{
493 struct ev_io *w; 499 ev_io *w;
494 500
495 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
496 { 502 {
497 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 505 }
500} 506}
501 507
502inline int 508int inline_size
503fd_valid (int fd) 509fd_valid (int fd)
504{ 510{
505#ifdef _WIN32 511#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 512 return _get_osfhandle (fd) != -1;
507#else 513#else
508 return fcntl (fd, F_GETFD) != -1; 514 return fcntl (fd, F_GETFD) != -1;
509#endif 515#endif
510} 516}
511 517
512/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
513static void 519static void noinline
514fd_ebadf (EV_P) 520fd_ebadf (EV_P)
515{ 521{
516 int fd; 522 int fd;
517 523
518 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
522} 528}
523 529
524/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 531static void noinline
526fd_enomem (EV_P) 532fd_enomem (EV_P)
527{ 533{
528 int fd; 534 int fd;
529 535
530 for (fd = anfdmax; fd--; ) 536 for (fd = anfdmax; fd--; )
534 return; 540 return;
535 } 541 }
536} 542}
537 543
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 545static void noinline
540fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
541{ 547{
542 int fd; 548 int fd;
543 549
544 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
550 } 556 }
551} 557}
552 558
553/*****************************************************************************/ 559/*****************************************************************************/
554 560
555static void 561void inline_speed
556upheap (WT *heap, int k) 562upheap (WT *heap, int k)
557{ 563{
558 WT w = heap [k]; 564 WT w = heap [k];
559 565
560 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 573 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 574 ((W)heap [k])->active = k + 1;
569 575
570} 576}
571 577
572static void 578void inline_speed
573downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
574{ 580{
575 WT w = heap [k]; 581 WT w = heap [k];
576 582
577 while (k < (N >> 1)) 583 while (k < (N >> 1))
591 597
592 heap [k] = w; 598 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 599 ((W)heap [k])->active = k + 1;
594} 600}
595 601
596inline void 602void inline_size
597adjustheap (WT *heap, int N, int k) 603adjustheap (WT *heap, int N, int k)
598{ 604{
599 upheap (heap, k); 605 upheap (heap, k);
600 downheap (heap, N, k); 606 downheap (heap, N, k);
601} 607}
611static ANSIG *signals; 617static ANSIG *signals;
612static int signalmax; 618static int signalmax;
613 619
614static int sigpipe [2]; 620static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 622static ev_io sigev;
617 623
618static void 624void inline_size
619signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
620{ 626{
621 while (count--) 627 while (count--)
622 { 628 {
623 base->head = 0; 629 base->head = 0;
643 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 650 errno = old_errno;
645 } 651 }
646} 652}
647 653
648void 654void noinline
649ev_feed_signal_event (EV_P_ int signum) 655ev_feed_signal_event (EV_P_ int signum)
650{ 656{
651 WL w; 657 WL w;
652 658
653#if EV_MULTIPLICITY 659#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 670 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 672}
667 673
668static void 674static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
670{ 676{
671 int signum; 677 int signum;
672 678
673 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 680 gotsig = 0;
676 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 684 ev_feed_signal_event (EV_A_ signum + 1);
679} 685}
680 686
681static void 687void inline_size
682fd_intern (int fd) 688fd_intern (int fd)
683{ 689{
684#ifdef _WIN32 690#ifdef _WIN32
685 int arg = 1; 691 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 694 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 695 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 696#endif
691} 697}
692 698
693static void 699static void noinline
694siginit (EV_P) 700siginit (EV_P)
695{ 701{
696 fd_intern (sigpipe [0]); 702 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 703 fd_intern (sigpipe [1]);
698 704
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 708}
703 709
704/*****************************************************************************/ 710/*****************************************************************************/
705 711
706static struct ev_child *childs [PID_HASHSIZE]; 712static ev_child *childs [PID_HASHSIZE];
707 713
708#ifndef _WIN32 714#ifndef _WIN32
709 715
710static struct ev_signal childev; 716static ev_signal childev;
711 717
712#ifndef WCONTINUED 718#ifndef WCONTINUED
713# define WCONTINUED 0 719# define WCONTINUED 0
714#endif 720#endif
715 721
716static void 722void inline_speed
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
718{ 724{
719 struct ev_child *w; 725 ev_child *w;
720 726
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
723 { 729 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid; 731 w->rpid = pid;
726 w->rstatus = status; 732 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 } 734 }
729} 735}
730 736
731static void 737static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
733{ 739{
734 int pid, status; 740 int pid, status;
735 741
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 743 {
775{ 781{
776 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
777} 783}
778 784
779/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
780static int 786int inline_size
781enable_secure (void) 787enable_secure (void)
782{ 788{
783#ifdef _WIN32 789#ifdef _WIN32
784 return 0; 790 return 0;
785#else 791#else
907 array_free (pending, [i]); 913 array_free (pending, [i]);
908 914
909 /* have to use the microsoft-never-gets-it-right macro */ 915 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 916 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0); 917 array_free (timer, EMPTY0);
912#if EV_PERIODICS 918#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 919 array_free (periodic, EMPTY0);
914#endif 920#endif
915 array_free (idle, EMPTY0); 921 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 922 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0); 923 array_free (check, EMPTY0);
1053 postfork = 1; 1059 postfork = 1;
1054} 1060}
1055 1061
1056/*****************************************************************************/ 1062/*****************************************************************************/
1057 1063
1058static int 1064int inline_size
1059any_pending (EV_P) 1065any_pending (EV_P)
1060{ 1066{
1061 int pri; 1067 int pri;
1062 1068
1063 for (pri = NUMPRI; pri--; ) 1069 for (pri = NUMPRI; pri--; )
1065 return 1; 1071 return 1;
1066 1072
1067 return 0; 1073 return 0;
1068} 1074}
1069 1075
1070inline void 1076void inline_speed
1071call_pending (EV_P) 1077call_pending (EV_P)
1072{ 1078{
1073 int pri; 1079 int pri;
1074 1080
1075 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
1077 { 1083 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1085
1080 if (expect_true (p->w)) 1086 if (expect_true (p->w))
1081 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
1082 p->w->pending = 0; 1090 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
1084 } 1092 }
1085 } 1093 }
1086} 1094}
1087 1095
1088inline void 1096void inline_size
1089timers_reify (EV_P) 1097timers_reify (EV_P)
1090{ 1098{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1100 {
1093 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
1094 1102
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096 1104
1097 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
1098 if (w->repeat) 1106 if (w->repeat)
1110 1118
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1120 }
1113} 1121}
1114 1122
1115#if EV_PERIODICS 1123#if EV_PERIODIC_ENABLE
1116inline void 1124void inline_size
1117periodics_reify (EV_P) 1125periodics_reify (EV_P)
1118{ 1126{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1128 {
1121 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
1122 1130
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1124 1132
1125 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1134 if (w->reschedule_cb)
1140 1148
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1150 }
1143} 1151}
1144 1152
1145static void 1153static void noinline
1146periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
1147{ 1155{
1148 int i; 1156 int i;
1149 1157
1150 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
1152 { 1160 {
1153 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
1154 1162
1155 if (w->reschedule_cb) 1163 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1165 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1170 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1171 downheap ((WT *)periodics, periodiccnt, i);
1164} 1172}
1165#endif 1173#endif
1166 1174
1167inline int 1175int inline_size
1168time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
1169{ 1177{
1170 mn_now = get_clock (); 1178 mn_now = get_clock ();
1171 1179
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
1181 return 1; 1189 return 1;
1182 } 1190 }
1183} 1191}
1184 1192
1185inline void 1193void inline_size
1186time_update (EV_P) 1194time_update (EV_P)
1187{ 1195{
1188 int i; 1196 int i;
1189 1197
1190#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
1192 { 1200 {
1193 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
1194 { 1202 {
1195 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
1196 1204
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1198 { 1214 {
1199 rtmn_diff = ev_rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
1200 1216
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1218 return; /* all is well */
1204 ev_rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1221 mn_now = get_clock ();
1206 now_floor = mn_now; 1222 now_floor = mn_now;
1207 } 1223 }
1208 1224
1209# if EV_PERIODICS 1225# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1211# endif 1227# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1230 }
1218 { 1234 {
1219 ev_rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
1220 1236
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1238 {
1223#if EV_PERIODICS 1239#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1225#endif 1241#endif
1226 1242
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
1295 { 1311 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1313 if (block > to) block = to;
1298 } 1314 }
1299 1315
1300#if EV_PERIODICS 1316#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1317 if (periodiccnt)
1302 { 1318 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1320 if (block > to) block = to;
1305 } 1321 }
1314 /* update ev_rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1331 time_update (EV_A);
1316 1332
1317 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1337#endif
1322 1338
1323 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1340 if (idlecnt && !any_pending (EV_A))
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1326 1342
1327 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1344 if (expect_false (checkcnt))
1344 loop_done = how; 1360 loop_done = how;
1345} 1361}
1346 1362
1347/*****************************************************************************/ 1363/*****************************************************************************/
1348 1364
1349inline void 1365void inline_size
1350wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
1351{ 1367{
1352 elem->next = *head; 1368 elem->next = *head;
1353 *head = elem; 1369 *head = elem;
1354} 1370}
1355 1371
1356inline void 1372void inline_size
1357wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1358{ 1374{
1359 while (*head) 1375 while (*head)
1360 { 1376 {
1361 if (*head == elem) 1377 if (*head == elem)
1366 1382
1367 head = &(*head)->next; 1383 head = &(*head)->next;
1368 } 1384 }
1369} 1385}
1370 1386
1371inline void 1387void inline_speed
1372ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1373{ 1389{
1374 if (w->pending) 1390 if (w->pending)
1375 { 1391 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1393 w->pending = 0;
1378 } 1394 }
1379} 1395}
1380 1396
1381inline void 1397void inline_speed
1382ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1383{ 1399{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386 1402
1387 w->active = active; 1403 w->active = active;
1388 ev_ref (EV_A); 1404 ev_ref (EV_A);
1389} 1405}
1390 1406
1391inline void 1407void inline_size
1392ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1393{ 1409{
1394 ev_unref (EV_A); 1410 ev_unref (EV_A);
1395 w->active = 0; 1411 w->active = 0;
1396} 1412}
1397 1413
1398/*****************************************************************************/ 1414/*****************************************************************************/
1399 1415
1400void 1416void
1401ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1402{ 1418{
1403 int fd = w->fd; 1419 int fd = w->fd;
1404 1420
1405 if (expect_false (ev_is_active (w))) 1421 if (expect_false (ev_is_active (w)))
1406 return; 1422 return;
1413 1429
1414 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1415} 1431}
1416 1432
1417void 1433void
1418ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1419{ 1435{
1420 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1437 if (expect_false (!ev_is_active (w)))
1422 return; 1438 return;
1423 1439
1428 1444
1429 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1430} 1446}
1431 1447
1432void 1448void
1433ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1434{ 1450{
1435 if (expect_false (ev_is_active (w))) 1451 if (expect_false (ev_is_active (w)))
1436 return; 1452 return;
1437 1453
1438 ((WT)w)->at += mn_now; 1454 ((WT)w)->at += mn_now;
1439 1455
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1457
1442 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1446 1462
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1448} 1464}
1449 1465
1450void 1466void
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1468{
1453 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1470 if (expect_false (!ev_is_active (w)))
1455 return; 1471 return;
1456 1472
1466 1482
1467 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1468} 1484}
1469 1485
1470void 1486void
1471ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1472{ 1488{
1473 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1474 { 1490 {
1475 if (w->repeat) 1491 if (w->repeat)
1476 { 1492 {
1485 w->at = w->repeat; 1501 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1487 } 1503 }
1488} 1504}
1489 1505
1490#if EV_PERIODICS 1506#if EV_PERIODIC_ENABLE
1491void 1507void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1509{
1494 if (expect_false (ev_is_active (w))) 1510 if (expect_false (ev_is_active (w)))
1495 return; 1511 return;
1496 1512
1497 if (w->reschedule_cb) 1513 if (w->reschedule_cb)
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 1520 }
1505 1521
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1510 1526
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1512} 1528}
1513 1529
1514void 1530void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1532{
1517 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1534 if (expect_false (!ev_is_active (w)))
1519 return; 1535 return;
1520 1536
1528 1544
1529 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1530} 1546}
1531 1547
1532void 1548void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1549ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1550{
1535 /* TODO: use adjustheap and recalculation */ 1551 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1552 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1553 ev_periodic_start (EV_A_ w);
1538} 1554}
1539#endif 1555#endif
1540 1556
1541void 1557void
1542ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1543{ 1559{
1544 if (expect_false (ev_is_active (w))) 1560 if (expect_false (ev_is_active (w)))
1545 return; 1561 return;
1546 1562
1547 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1550} 1566}
1551 1567
1552void 1568void
1553ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1554{ 1570{
1555 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w))) 1572 if (expect_false (!ev_is_active (w)))
1557 return; 1573 return;
1558 1574
1575 {
1576 int active = ((W)w)->active;
1559 idles [((W)w)->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1560 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1561} 1582}
1562 1583
1563void 1584void
1564ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1565{ 1586{
1566 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1567 return; 1588 return;
1568 1589
1569 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1572} 1593}
1573 1594
1574void 1595void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1576{ 1597{
1577 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 1599 if (expect_false (!ev_is_active (w)))
1579 return; 1600 return;
1580 1601
1602 {
1603 int active = ((W)w)->active;
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1582 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1583} 1609}
1584 1610
1585void 1611void
1586ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1587{ 1613{
1588 if (expect_false (ev_is_active (w))) 1614 if (expect_false (ev_is_active (w)))
1589 return; 1615 return;
1590 1616
1591 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1594} 1620}
1595 1621
1596void 1622void
1597ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1598{ 1624{
1599 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 1626 if (expect_false (!ev_is_active (w)))
1601 return; 1627 return;
1602 1628
1629 {
1630 int active = ((W)w)->active;
1603 checks [((W)w)->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1604 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1605} 1636}
1606 1637
1607#ifndef SA_RESTART 1638#ifndef SA_RESTART
1608# define SA_RESTART 0 1639# define SA_RESTART 0
1609#endif 1640#endif
1610 1641
1611void 1642void
1612ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1613{ 1644{
1614#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1647#endif
1617 if (expect_false (ev_is_active (w))) 1648 if (expect_false (ev_is_active (w)))
1636#endif 1667#endif
1637 } 1668 }
1638} 1669}
1639 1670
1640void 1671void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1673{
1643 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1675 if (expect_false (!ev_is_active (w)))
1645 return; 1676 return;
1646 1677
1650 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1652} 1683}
1653 1684
1654void 1685void
1655ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1656{ 1687{
1657#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1690#endif
1660 if (expect_false (ev_is_active (w))) 1691 if (expect_false (ev_is_active (w)))
1663 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1665} 1696}
1666 1697
1667void 1698void
1668ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1669{ 1700{
1670 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1702 if (expect_false (!ev_is_active (w)))
1672 return; 1703 return;
1673 1704
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1676} 1707}
1677 1708
1678#if EV_MULTIPLICITY 1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1679static void 1716static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1717embed_cb (EV_P_ ev_io *io, int revents)
1681{ 1718{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1683 1720
1721 if (ev_cb (w))
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 1723 else
1724 ev_embed_sweep (loop, w);
1686} 1725}
1687 1726
1688void 1727void
1689ev_embed_start (EV_P_ struct ev_embed *w) 1728ev_embed_start (EV_P_ ev_embed *w)
1690{ 1729{
1691 if (expect_false (ev_is_active (w))) 1730 if (expect_false (ev_is_active (w)))
1692 return; 1731 return;
1693 1732
1694 { 1733 {
1695 struct ev_loop *loop = w->loop; 1734 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 1737 }
1699 1738
1739 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 1740 ev_io_start (EV_A_ &w->io);
1741
1701 ev_start (EV_A_ (W)w, 1); 1742 ev_start (EV_A_ (W)w, 1);
1702} 1743}
1703 1744
1704void 1745void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 1746ev_embed_stop (EV_P_ ev_embed *w)
1706{ 1747{
1707 ev_clear_pending (EV_A_ (W)w); 1748 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1749 if (expect_false (!ev_is_active (w)))
1709 return; 1750 return;
1710 1751
1711 ev_io_stop (EV_A_ &w->io); 1752 ev_io_stop (EV_A_ &w->io);
1753
1712 ev_stop (EV_A_ (W)w); 1754 ev_stop (EV_A_ (W)w);
1713} 1755}
1714#endif 1756#endif
1715 1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1716/*****************************************************************************/ 1819/*****************************************************************************/
1717 1820
1718struct ev_once 1821struct ev_once
1719{ 1822{
1720 struct ev_io io; 1823 ev_io io;
1721 struct ev_timer to; 1824 ev_timer to;
1722 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1723 void *arg; 1826 void *arg;
1724}; 1827};
1725 1828
1726static void 1829static void
1735 1838
1736 cb (revents, arg); 1839 cb (revents, arg);
1737} 1840}
1738 1841
1739static void 1842static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 1844{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 1846}
1744 1847
1745static void 1848static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 1850{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 1852}
1750 1853
1751void 1854void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines