ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.145 by root, Tue Nov 27 08:54:38 2007 UTC

111#include <time.h> 111#include <time.h>
112 112
113#include <signal.h> 113#include <signal.h>
114 114
115#ifndef _WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 116# include <sys/time.h>
118# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else 119#else
120# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
187# include "ev.h" 187# include "ev.h"
188#endif 188#endif
189 189
190#if __GNUC__ >= 3 190#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
192# define inline static inline 198# define inline_speed static inline
199# endif
193#else 200#else
194# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
202# define inline_speed static
195# define inline static 203# define inline_size static
204# define noinline
196#endif 205#endif
197 206
198#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
200 209
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
203 212
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 214#define EMPTY2(a,b) /* used to suppress some warnings */
206 215
207typedef struct ev_watcher *W; 216typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
210 219
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 221
213#ifdef _WIN32 222#ifdef _WIN32
214# include "ev_win32.c" 223# include "ev_win32.c"
216 225
217/*****************************************************************************/ 226/*****************************************************************************/
218 227
219static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
220 229
230void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 232{
223 syserr_cb = cb; 233 syserr_cb = cb;
224} 234}
225 235
226static void 236static void noinline
227syserr (const char *msg) 237syserr (const char *msg)
228{ 238{
229 if (!msg) 239 if (!msg)
230 msg = "(libev) system error"; 240 msg = "(libev) system error";
231 241
238 } 248 }
239} 249}
240 250
241static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
242 252
253void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 255{
245 alloc = cb; 256 alloc = cb;
246} 257}
247 258
248static void * 259static void *
320 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 333#endif
323} 334}
324 335
325inline ev_tstamp 336ev_tstamp inline_size
326get_clock (void) 337get_clock (void)
327{ 338{
328#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
330 { 341 {
373#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 386
376/*****************************************************************************/ 387/*****************************************************************************/
377 388
378static void 389void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 390ev_feed_event (EV_P_ void *w, int revents)
393{ 391{
394 W w_ = (W)w; 392 W w_ = (W)w;
395 393
396 if (expect_false (w_->pending)) 394 if (expect_false (w_->pending))
397 { 395 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 397 return;
400 } 398 }
401
402 if (expect_false (!w_->cb))
403 return;
404 399
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 400 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 404}
410 405
411static void 406void inline_size
412queue_events (EV_P_ W *events, int eventcnt, int type) 407queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 408{
414 int i; 409 int i;
415 410
416 for (i = 0; i < eventcnt; ++i) 411 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 412 ev_feed_event (EV_A_ events [i], type);
418} 413}
419 414
420inline void 415/*****************************************************************************/
416
417void inline_size
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
421fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
422{ 432{
423 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 434 ev_io *w;
425 435
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 437 {
428 int ev = w->events & revents; 438 int ev = w->events & revents;
429 439
430 if (ev) 440 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
436ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 447{
438 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
439} 449}
440 450
441/*****************************************************************************/ 451void inline_size
442
443inline void
444fd_reify (EV_P) 452fd_reify (EV_P)
445{ 453{
446 int i; 454 int i;
447 455
448 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
449 { 457 {
450 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 460 ev_io *w;
453 461
454 int events = 0; 462 int events = 0;
455 463
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 465 events |= w->events;
458 466
459#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
460 if (events) 468 if (events)
461 { 469 {
472 } 480 }
473 481
474 fdchangecnt = 0; 482 fdchangecnt = 0;
475} 483}
476 484
477static void 485void inline_size
478fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
479{ 487{
480 if (expect_false (anfds [fd].reify)) 488 if (expect_false (anfds [fd].reify))
481 return; 489 return;
482 490
485 ++fdchangecnt; 493 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
488} 496}
489 497
490static void 498void inline_speed
491fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
492{ 500{
493 struct ev_io *w; 501 ev_io *w;
494 502
495 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
496 { 504 {
497 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 507 }
500} 508}
501 509
502inline int 510int inline_size
503fd_valid (int fd) 511fd_valid (int fd)
504{ 512{
505#ifdef _WIN32 513#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
507#else 515#else
508 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
509#endif 517#endif
510} 518}
511 519
512/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
513static void 521static void noinline
514fd_ebadf (EV_P) 522fd_ebadf (EV_P)
515{ 523{
516 int fd; 524 int fd;
517 525
518 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
522} 530}
523 531
524/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 533static void noinline
526fd_enomem (EV_P) 534fd_enomem (EV_P)
527{ 535{
528 int fd; 536 int fd;
529 537
530 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
534 return; 542 return;
535 } 543 }
536} 544}
537 545
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 547static void noinline
540fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
541{ 549{
542 int fd; 550 int fd;
543 551
544 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
550 } 558 }
551} 559}
552 560
553/*****************************************************************************/ 561/*****************************************************************************/
554 562
555static void 563void inline_speed
556upheap (WT *heap, int k) 564upheap (WT *heap, int k)
557{ 565{
558 WT w = heap [k]; 566 WT w = heap [k];
559 567
560 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 575 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
569 577
570} 578}
571 579
572static void 580void inline_speed
573downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
574{ 582{
575 WT w = heap [k]; 583 WT w = heap [k];
576 584
577 while (k < (N >> 1)) 585 while (k < (N >> 1))
591 599
592 heap [k] = w; 600 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
594} 602}
595 603
596inline void 604void inline_size
597adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
598{ 606{
599 upheap (heap, k); 607 upheap (heap, k);
600 downheap (heap, N, k); 608 downheap (heap, N, k);
601} 609}
611static ANSIG *signals; 619static ANSIG *signals;
612static int signalmax; 620static int signalmax;
613 621
614static int sigpipe [2]; 622static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 624static ev_io sigev;
617 625
618static void 626void inline_size
619signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
620{ 628{
621 while (count--) 629 while (count--)
622 { 630 {
623 base->head = 0; 631 base->head = 0;
643 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 652 errno = old_errno;
645 } 653 }
646} 654}
647 655
648void 656void noinline
649ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
650{ 658{
651 WL w; 659 WL w;
652 660
653#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 674}
667 675
668static void 676static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
670{ 678{
671 int signum; 679 int signum;
672 680
673 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 682 gotsig = 0;
676 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
679} 687}
680 688
681static void 689void inline_size
682fd_intern (int fd) 690fd_intern (int fd)
683{ 691{
684#ifdef _WIN32 692#ifdef _WIN32
685 int arg = 1; 693 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 698#endif
691} 699}
692 700
693static void 701static void noinline
694siginit (EV_P) 702siginit (EV_P)
695{ 703{
696 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
698 706
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 710}
703 711
704/*****************************************************************************/ 712/*****************************************************************************/
705 713
706static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
707 715
708#ifndef _WIN32 716#ifndef _WIN32
709 717
710static struct ev_signal childev; 718static ev_signal childev;
711 719
712#ifndef WCONTINUED 720void inline_speed
713# define WCONTINUED 0
714#endif
715
716static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
718{ 722{
719 struct ev_child *w; 723 ev_child *w;
720 724
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid) 726 if (w->pid == pid || !w->pid)
723 { 727 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid; 729 w->rpid = pid;
726 w->rstatus = status; 730 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 731 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 } 732 }
729} 733}
730 734
735#ifndef WCONTINUED
736# define WCONTINUED 0
737#endif
738
731static void 739static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
733{ 741{
734 int pid, status; 742 int pid, status;
735 743
744 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 745 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 746 if (!WCONTINUED
747 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return;
750
738 /* make sure we are called again until all childs have been reaped */ 751 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 752 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 754
742 child_reap (EV_A_ sw, pid, pid, status); 755 child_reap (EV_A_ sw, pid, pid, status);
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 757}
746 758
747#endif 759#endif
748 760
749/*****************************************************************************/ 761/*****************************************************************************/
775{ 787{
776 return EV_VERSION_MINOR; 788 return EV_VERSION_MINOR;
777} 789}
778 790
779/* return true if we are running with elevated privileges and should ignore env variables */ 791/* return true if we are running with elevated privileges and should ignore env variables */
780static int 792int inline_size
781enable_secure (void) 793enable_secure (void)
782{ 794{
783#ifdef _WIN32 795#ifdef _WIN32
784 return 0; 796 return 0;
785#else 797#else
907 array_free (pending, [i]); 919 array_free (pending, [i]);
908 920
909 /* have to use the microsoft-never-gets-it-right macro */ 921 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 922 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0); 923 array_free (timer, EMPTY0);
912#if EV_PERIODICS 924#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 925 array_free (periodic, EMPTY0);
914#endif 926#endif
915 array_free (idle, EMPTY0); 927 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 928 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0); 929 array_free (check, EMPTY0);
1053 postfork = 1; 1065 postfork = 1;
1054} 1066}
1055 1067
1056/*****************************************************************************/ 1068/*****************************************************************************/
1057 1069
1058static int 1070int inline_size
1059any_pending (EV_P) 1071any_pending (EV_P)
1060{ 1072{
1061 int pri; 1073 int pri;
1062 1074
1063 for (pri = NUMPRI; pri--; ) 1075 for (pri = NUMPRI; pri--; )
1065 return 1; 1077 return 1;
1066 1078
1067 return 0; 1079 return 0;
1068} 1080}
1069 1081
1070inline void 1082void inline_speed
1071call_pending (EV_P) 1083call_pending (EV_P)
1072{ 1084{
1073 int pri; 1085 int pri;
1074 1086
1075 for (pri = NUMPRI; pri--; ) 1087 for (pri = NUMPRI; pri--; )
1077 { 1089 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1091
1080 if (expect_true (p->w)) 1092 if (expect_true (p->w))
1081 { 1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending));
1095
1082 p->w->pending = 0; 1096 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1097 EV_CB_INVOKE (p->w, p->events);
1084 } 1098 }
1085 } 1099 }
1086} 1100}
1087 1101
1088inline void 1102void inline_size
1089timers_reify (EV_P) 1103timers_reify (EV_P)
1090{ 1104{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1105 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1106 {
1093 struct ev_timer *w = timers [0]; 1107 ev_timer *w = timers [0];
1094 1108
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096 1110
1097 /* first reschedule or stop timer */ 1111 /* first reschedule or stop timer */
1098 if (w->repeat) 1112 if (w->repeat)
1110 1124
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1126 }
1113} 1127}
1114 1128
1115#if EV_PERIODICS 1129#if EV_PERIODIC_ENABLE
1116inline void 1130void inline_size
1117periodics_reify (EV_P) 1131periodics_reify (EV_P)
1118{ 1132{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1134 {
1121 struct ev_periodic *w = periodics [0]; 1135 ev_periodic *w = periodics [0];
1122 1136
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1137 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1124 1138
1125 /* first reschedule or stop timer */ 1139 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1140 if (w->reschedule_cb)
1140 1154
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1156 }
1143} 1157}
1144 1158
1145static void 1159static void noinline
1146periodics_reschedule (EV_P) 1160periodics_reschedule (EV_P)
1147{ 1161{
1148 int i; 1162 int i;
1149 1163
1150 /* adjust periodics after time jump */ 1164 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1165 for (i = 0; i < periodiccnt; ++i)
1152 { 1166 {
1153 struct ev_periodic *w = periodics [i]; 1167 ev_periodic *w = periodics [i];
1154 1168
1155 if (w->reschedule_cb) 1169 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1171 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1176 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1177 downheap ((WT *)periodics, periodiccnt, i);
1164} 1178}
1165#endif 1179#endif
1166 1180
1167inline int 1181int inline_size
1168time_update_monotonic (EV_P) 1182time_update_monotonic (EV_P)
1169{ 1183{
1170 mn_now = get_clock (); 1184 mn_now = get_clock ();
1171 1185
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1194 ev_rt_now = ev_time ();
1181 return 1; 1195 return 1;
1182 } 1196 }
1183} 1197}
1184 1198
1185inline void 1199void inline_size
1186time_update (EV_P) 1200time_update (EV_P)
1187{ 1201{
1188 int i; 1202 int i;
1189 1203
1190#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
1192 { 1206 {
1193 if (time_update_monotonic (EV_A)) 1207 if (time_update_monotonic (EV_A))
1194 { 1208 {
1195 ev_tstamp odiff = rtmn_diff; 1209 ev_tstamp odiff = rtmn_diff;
1196 1210
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1198 { 1220 {
1199 rtmn_diff = ev_rt_now - mn_now; 1221 rtmn_diff = ev_rt_now - mn_now;
1200 1222
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1224 return; /* all is well */
1204 ev_rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1227 mn_now = get_clock ();
1206 now_floor = mn_now; 1228 now_floor = mn_now;
1207 } 1229 }
1208 1230
1209# if EV_PERIODICS 1231# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1232 periodics_reschedule (EV_A);
1211# endif 1233# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1236 }
1218 { 1240 {
1219 ev_rt_now = ev_time (); 1241 ev_rt_now = ev_time ();
1220 1242
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1244 {
1223#if EV_PERIODICS 1245#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1246 periodics_reschedule (EV_A);
1225#endif 1247#endif
1226 1248
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1249 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i) 1250 for (i = 0; i < timercnt; ++i)
1295 { 1317 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1319 if (block > to) block = to;
1298 } 1320 }
1299 1321
1300#if EV_PERIODICS 1322#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1323 if (periodiccnt)
1302 { 1324 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1326 if (block > to) block = to;
1305 } 1327 }
1314 /* update ev_rt_now, do magic */ 1336 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1337 time_update (EV_A);
1316 1338
1317 /* queue pending timers and reschedule them */ 1339 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1340 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1341#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1342 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1343#endif
1322 1344
1323 /* queue idle watchers unless io or timers are pending */ 1345 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1346 if (idlecnt && !any_pending (EV_A))
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1326 1348
1327 /* queue check watchers, to be executed first */ 1349 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1350 if (expect_false (checkcnt))
1344 loop_done = how; 1366 loop_done = how;
1345} 1367}
1346 1368
1347/*****************************************************************************/ 1369/*****************************************************************************/
1348 1370
1349inline void 1371void inline_size
1350wlist_add (WL *head, WL elem) 1372wlist_add (WL *head, WL elem)
1351{ 1373{
1352 elem->next = *head; 1374 elem->next = *head;
1353 *head = elem; 1375 *head = elem;
1354} 1376}
1355 1377
1356inline void 1378void inline_size
1357wlist_del (WL *head, WL elem) 1379wlist_del (WL *head, WL elem)
1358{ 1380{
1359 while (*head) 1381 while (*head)
1360 { 1382 {
1361 if (*head == elem) 1383 if (*head == elem)
1366 1388
1367 head = &(*head)->next; 1389 head = &(*head)->next;
1368 } 1390 }
1369} 1391}
1370 1392
1371inline void 1393void inline_speed
1372ev_clear_pending (EV_P_ W w) 1394ev_clear_pending (EV_P_ W w)
1373{ 1395{
1374 if (w->pending) 1396 if (w->pending)
1375 { 1397 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1398 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1399 w->pending = 0;
1378 } 1400 }
1379} 1401}
1380 1402
1381inline void 1403void inline_speed
1382ev_start (EV_P_ W w, int active) 1404ev_start (EV_P_ W w, int active)
1383{ 1405{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386 1408
1387 w->active = active; 1409 w->active = active;
1388 ev_ref (EV_A); 1410 ev_ref (EV_A);
1389} 1411}
1390 1412
1391inline void 1413void inline_size
1392ev_stop (EV_P_ W w) 1414ev_stop (EV_P_ W w)
1393{ 1415{
1394 ev_unref (EV_A); 1416 ev_unref (EV_A);
1395 w->active = 0; 1417 w->active = 0;
1396} 1418}
1397 1419
1398/*****************************************************************************/ 1420/*****************************************************************************/
1399 1421
1400void 1422void
1401ev_io_start (EV_P_ struct ev_io *w) 1423ev_io_start (EV_P_ ev_io *w)
1402{ 1424{
1403 int fd = w->fd; 1425 int fd = w->fd;
1404 1426
1405 if (expect_false (ev_is_active (w))) 1427 if (expect_false (ev_is_active (w)))
1406 return; 1428 return;
1413 1435
1414 fd_change (EV_A_ fd); 1436 fd_change (EV_A_ fd);
1415} 1437}
1416 1438
1417void 1439void
1418ev_io_stop (EV_P_ struct ev_io *w) 1440ev_io_stop (EV_P_ ev_io *w)
1419{ 1441{
1420 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1443 if (expect_false (!ev_is_active (w)))
1422 return; 1444 return;
1423 1445
1428 1450
1429 fd_change (EV_A_ w->fd); 1451 fd_change (EV_A_ w->fd);
1430} 1452}
1431 1453
1432void 1454void
1433ev_timer_start (EV_P_ struct ev_timer *w) 1455ev_timer_start (EV_P_ ev_timer *w)
1434{ 1456{
1435 if (expect_false (ev_is_active (w))) 1457 if (expect_false (ev_is_active (w)))
1436 return; 1458 return;
1437 1459
1438 ((WT)w)->at += mn_now; 1460 ((WT)w)->at += mn_now;
1439 1461
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1463
1442 ev_start (EV_A_ (W)w, ++timercnt); 1464 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1466 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1467 upheap ((WT *)timers, timercnt - 1);
1446 1468
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1448} 1470}
1449 1471
1450void 1472void
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1473ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1474{
1453 ev_clear_pending (EV_A_ (W)w); 1475 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1476 if (expect_false (!ev_is_active (w)))
1455 return; 1477 return;
1456 1478
1466 1488
1467 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1468} 1490}
1469 1491
1470void 1492void
1471ev_timer_again (EV_P_ struct ev_timer *w) 1493ev_timer_again (EV_P_ ev_timer *w)
1472{ 1494{
1473 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1474 { 1496 {
1475 if (w->repeat) 1497 if (w->repeat)
1476 { 1498 {
1485 w->at = w->repeat; 1507 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1508 ev_timer_start (EV_A_ w);
1487 } 1509 }
1488} 1510}
1489 1511
1490#if EV_PERIODICS 1512#if EV_PERIODIC_ENABLE
1491void 1513void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1514ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1515{
1494 if (expect_false (ev_is_active (w))) 1516 if (expect_false (ev_is_active (w)))
1495 return; 1517 return;
1496 1518
1497 if (w->reschedule_cb) 1519 if (w->reschedule_cb)
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1524 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 1526 }
1505 1527
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1528 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1530 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1531 upheap ((WT *)periodics, periodiccnt - 1);
1510 1532
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1512} 1534}
1513 1535
1514void 1536void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1537ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1538{
1517 ev_clear_pending (EV_A_ (W)w); 1539 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1540 if (expect_false (!ev_is_active (w)))
1519 return; 1541 return;
1520 1542
1528 1550
1529 ev_stop (EV_A_ (W)w); 1551 ev_stop (EV_A_ (W)w);
1530} 1552}
1531 1553
1532void 1554void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1555ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1556{
1535 /* TODO: use adjustheap and recalculation */ 1557 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1558 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1559 ev_periodic_start (EV_A_ w);
1538} 1560}
1539#endif 1561#endif
1540 1562
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1563#ifndef SA_RESTART
1608# define SA_RESTART 0 1564# define SA_RESTART 0
1609#endif 1565#endif
1610 1566
1611void 1567void
1612ev_signal_start (EV_P_ struct ev_signal *w) 1568ev_signal_start (EV_P_ ev_signal *w)
1613{ 1569{
1614#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1571 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1572#endif
1617 if (expect_false (ev_is_active (w))) 1573 if (expect_false (ev_is_active (w)))
1636#endif 1592#endif
1637 } 1593 }
1638} 1594}
1639 1595
1640void 1596void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1597ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1598{
1643 ev_clear_pending (EV_A_ (W)w); 1599 ev_clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1600 if (expect_false (!ev_is_active (w)))
1645 return; 1601 return;
1646 1602
1650 if (!signals [w->signum - 1].head) 1606 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1607 signal (w->signum, SIG_DFL);
1652} 1608}
1653 1609
1654void 1610void
1655ev_child_start (EV_P_ struct ev_child *w) 1611ev_child_start (EV_P_ ev_child *w)
1656{ 1612{
1657#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1614 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1615#endif
1660 if (expect_false (ev_is_active (w))) 1616 if (expect_false (ev_is_active (w)))
1663 ev_start (EV_A_ (W)w, 1); 1619 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1620 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1665} 1621}
1666 1622
1667void 1623void
1668ev_child_stop (EV_P_ struct ev_child *w) 1624ev_child_stop (EV_P_ ev_child *w)
1669{ 1625{
1670 ev_clear_pending (EV_A_ (W)w); 1626 ev_clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1627 if (expect_false (!ev_is_active (w)))
1672 return; 1628 return;
1673 1629
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1630 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1631 ev_stop (EV_A_ (W)w);
1676} 1632}
1677 1633
1678#if EV_MULTIPLICITY 1634#if EV_STAT_ENABLE
1635
1636# ifdef _WIN32
1637# define lstat(a,b) stat(a,b)
1638# endif
1639
1640#define DEF_STAT_INTERVAL 5.0074891
1641#define MIN_STAT_INTERVAL 0.1074891
1642
1643void
1644ev_stat_stat (EV_P_ ev_stat *w)
1645{
1646 if (lstat (w->path, &w->attr) < 0)
1647 w->attr.st_nlink = 0;
1648 else if (!w->attr.st_nlink)
1649 w->attr.st_nlink = 1;
1650}
1651
1679static void 1652static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1653stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 1654{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1655 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 1656
1657 /* we copy this here each the time so that */
1658 /* prev has the old value when the callback gets invoked */
1659 w->prev = w->attr;
1660 ev_stat_stat (EV_A_ w);
1661
1662 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1663 ev_feed_event (EV_A_ w, EV_STAT);
1664}
1665
1666void
1667ev_stat_start (EV_P_ ev_stat *w)
1668{
1669 if (expect_false (ev_is_active (w)))
1670 return;
1671
1672 /* since we use memcmp, we need to clear any padding data etc. */
1673 memset (&w->prev, 0, sizeof (ev_statdata));
1674 memset (&w->attr, 0, sizeof (ev_statdata));
1675
1676 ev_stat_stat (EV_A_ w);
1677
1678 if (w->interval < MIN_STAT_INTERVAL)
1679 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1680
1681 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1682 ev_set_priority (&w->timer, ev_priority (w));
1683 ev_timer_start (EV_A_ &w->timer);
1684
1685 ev_start (EV_A_ (W)w, 1);
1686}
1687
1688void
1689ev_stat_stop (EV_P_ ev_stat *w)
1690{
1691 ev_clear_pending (EV_A_ (W)w);
1692 if (expect_false (!ev_is_active (w)))
1693 return;
1694
1695 ev_timer_stop (EV_A_ &w->timer);
1696
1697 ev_stop (EV_A_ (W)w);
1698}
1699#endif
1700
1701void
1702ev_idle_start (EV_P_ ev_idle *w)
1703{
1704 if (expect_false (ev_is_active (w)))
1705 return;
1706
1707 ev_start (EV_A_ (W)w, ++idlecnt);
1708 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1709 idles [idlecnt - 1] = w;
1710}
1711
1712void
1713ev_idle_stop (EV_P_ ev_idle *w)
1714{
1715 ev_clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w)))
1717 return;
1718
1719 {
1720 int active = ((W)w)->active;
1721 idles [active - 1] = idles [--idlecnt];
1722 ((W)idles [active - 1])->active = active;
1723 }
1724
1725 ev_stop (EV_A_ (W)w);
1726}
1727
1728void
1729ev_prepare_start (EV_P_ ev_prepare *w)
1730{
1731 if (expect_false (ev_is_active (w)))
1732 return;
1733
1734 ev_start (EV_A_ (W)w, ++preparecnt);
1735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1736 prepares [preparecnt - 1] = w;
1737}
1738
1739void
1740ev_prepare_stop (EV_P_ ev_prepare *w)
1741{
1742 ev_clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w)))
1744 return;
1745
1746 {
1747 int active = ((W)w)->active;
1748 prepares [active - 1] = prepares [--preparecnt];
1749 ((W)prepares [active - 1])->active = active;
1750 }
1751
1752 ev_stop (EV_A_ (W)w);
1753}
1754
1755void
1756ev_check_start (EV_P_ ev_check *w)
1757{
1758 if (expect_false (ev_is_active (w)))
1759 return;
1760
1761 ev_start (EV_A_ (W)w, ++checkcnt);
1762 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1763 checks [checkcnt - 1] = w;
1764}
1765
1766void
1767ev_check_stop (EV_P_ ev_check *w)
1768{
1769 ev_clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w)))
1771 return;
1772
1773 {
1774 int active = ((W)w)->active;
1775 checks [active - 1] = checks [--checkcnt];
1776 ((W)checks [active - 1])->active = active;
1777 }
1778
1779 ev_stop (EV_A_ (W)w);
1780}
1781
1782#if EV_EMBED_ENABLE
1783void noinline
1784ev_embed_sweep (EV_P_ ev_embed *w)
1785{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 1786 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 1787}
1687 1788
1789static void
1790embed_cb (EV_P_ ev_io *io, int revents)
1791{
1792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1793
1794 if (ev_cb (w))
1795 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1796 else
1797 ev_embed_sweep (loop, w);
1798}
1799
1688void 1800void
1689ev_embed_start (EV_P_ struct ev_embed *w) 1801ev_embed_start (EV_P_ ev_embed *w)
1690{ 1802{
1691 if (expect_false (ev_is_active (w))) 1803 if (expect_false (ev_is_active (w)))
1692 return; 1804 return;
1693 1805
1694 { 1806 {
1695 struct ev_loop *loop = w->loop; 1807 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 1808 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 1809 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 1810 }
1699 1811
1812 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 1813 ev_io_start (EV_A_ &w->io);
1814
1701 ev_start (EV_A_ (W)w, 1); 1815 ev_start (EV_A_ (W)w, 1);
1702} 1816}
1703 1817
1704void 1818void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 1819ev_embed_stop (EV_P_ ev_embed *w)
1706{ 1820{
1707 ev_clear_pending (EV_A_ (W)w); 1821 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1822 if (expect_false (!ev_is_active (w)))
1709 return; 1823 return;
1710 1824
1711 ev_io_stop (EV_A_ &w->io); 1825 ev_io_stop (EV_A_ &w->io);
1826
1712 ev_stop (EV_A_ (W)w); 1827 ev_stop (EV_A_ (W)w);
1713} 1828}
1714#endif 1829#endif
1715 1830
1716/*****************************************************************************/ 1831/*****************************************************************************/
1717 1832
1718struct ev_once 1833struct ev_once
1719{ 1834{
1720 struct ev_io io; 1835 ev_io io;
1721 struct ev_timer to; 1836 ev_timer to;
1722 void (*cb)(int revents, void *arg); 1837 void (*cb)(int revents, void *arg);
1723 void *arg; 1838 void *arg;
1724}; 1839};
1725 1840
1726static void 1841static void
1735 1850
1736 cb (revents, arg); 1851 cb (revents, arg);
1737} 1852}
1738 1853
1739static void 1854static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 1855once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 1856{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 1858}
1744 1859
1745static void 1860static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 1861once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 1862{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1863 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 1864}
1750 1865
1751void 1866void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines