ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.164 by root, Fri Dec 7 16:44:10 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
178 220
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 224
190#if __GNUC__ >= 3 225#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
192# define inline static inline 233# define inline_speed static inline
234# endif
193#else 235#else
194# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
195# define inline static 238# define inline_size static
239# define noinline
196#endif 240#endif
197 241
198#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
200 244
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 247
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 248#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 249#define EMPTY2(a,b) /* used to suppress some warnings */
206 250
207typedef struct ev_watcher *W; 251typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
210 254
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 256
213#ifdef _WIN32 257#ifdef _WIN32
214# include "ev_win32.c" 258# include "ev_win32.c"
216 260
217/*****************************************************************************/ 261/*****************************************************************************/
218 262
219static void (*syserr_cb)(const char *msg); 263static void (*syserr_cb)(const char *msg);
220 264
265void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 266ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 267{
223 syserr_cb = cb; 268 syserr_cb = cb;
224} 269}
225 270
226static void 271static void noinline
227syserr (const char *msg) 272syserr (const char *msg)
228{ 273{
229 if (!msg) 274 if (!msg)
230 msg = "(libev) system error"; 275 msg = "(libev) system error";
231 276
238 } 283 }
239} 284}
240 285
241static void *(*alloc)(void *ptr, long size); 286static void *(*alloc)(void *ptr, long size);
242 287
288void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 289ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 290{
245 alloc = cb; 291 alloc = cb;
246} 292}
247 293
248static void * 294inline_speed void *
249ev_realloc (void *ptr, long size) 295ev_realloc (void *ptr, long size)
250{ 296{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 298
253 if (!ptr && size) 299 if (!ptr && size)
277typedef struct 323typedef struct
278{ 324{
279 W w; 325 W w;
280 int events; 326 int events;
281} ANPENDING; 327} ANPENDING;
328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
282 335
283#if EV_MULTIPLICITY 336#if EV_MULTIPLICITY
284 337
285 struct ev_loop 338 struct ev_loop
286 { 339 {
320 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 375#endif
323} 376}
324 377
325inline ev_tstamp 378ev_tstamp inline_size
326get_clock (void) 379get_clock (void)
327{ 380{
328#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
330 { 383 {
343{ 396{
344 return ev_rt_now; 397 return ev_rt_now;
345} 398}
346#endif 399#endif
347 400
348#define array_roundsize(type,n) (((n) | 4) & ~3) 401int inline_size
402array_nextsize (int elem, int cur, int cnt)
403{
404 int ncur = cur + 1;
405
406 do
407 ncur <<= 1;
408 while (cnt > ncur);
409
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096)
412 {
413 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
415 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem;
417 }
418
419 return ncur;
420}
421
422inline_speed void *
423array_realloc (int elem, void *base, int *cur, int cnt)
424{
425 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur);
427}
349 428
350#define array_needsize(type,base,cur,cnt,init) \ 429#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 430 if (expect_false ((cnt) > (cur))) \
352 { \ 431 { \
353 int newcnt = cur; \ 432 int ocur_ = (cur); \
354 do \ 433 (base) = (type *)array_realloc \
355 { \ 434 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 435 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 436 }
364 437
438#if 0
365#define array_slim(type,stem) \ 439#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 440 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 441 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 442 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 443 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 445 }
446#endif
372 447
373#define array_free(stem, idx) \ 448#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 450
376/*****************************************************************************/ 451/*****************************************************************************/
377 452
378static void 453void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 454ev_feed_event (EV_P_ void *w, int revents)
393{ 455{
394 W w_ = (W)w; 456 W w_ = (W)w;
395 457
396 if (expect_false (w_->pending)) 458 if (expect_false (w_->pending))
397 { 459 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return; 461 return;
400 } 462 }
401
402 if (expect_false (!w_->cb))
403 return;
404 463
405 w_->pending = ++pendingcnt [ABSPRI (w_)]; 464 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2); 465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 468}
410 469
411static void 470void inline_size
412queue_events (EV_P_ W *events, int eventcnt, int type) 471queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 472{
414 int i; 473 int i;
415 474
416 for (i = 0; i < eventcnt; ++i) 475 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 476 ev_feed_event (EV_A_ events [i], type);
418} 477}
419 478
420inline void 479/*****************************************************************************/
480
481void inline_size
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
421fd_event (EV_P_ int fd, int revents) 495fd_event (EV_P_ int fd, int revents)
422{ 496{
423 ANFD *anfd = anfds + fd; 497 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 498 ev_io *w;
425 499
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 501 {
428 int ev = w->events & revents; 502 int ev = w->events & revents;
429 503
430 if (ev) 504 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 505 ev_feed_event (EV_A_ (W)w, ev);
436ev_feed_fd_event (EV_P_ int fd, int revents) 510ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 511{
438 fd_event (EV_A_ fd, revents); 512 fd_event (EV_A_ fd, revents);
439} 513}
440 514
441/*****************************************************************************/ 515void inline_size
442
443inline void
444fd_reify (EV_P) 516fd_reify (EV_P)
445{ 517{
446 int i; 518 int i;
447 519
448 for (i = 0; i < fdchangecnt; ++i) 520 for (i = 0; i < fdchangecnt; ++i)
449 { 521 {
450 int fd = fdchanges [i]; 522 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 523 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 524 ev_io *w;
453 525
454 int events = 0; 526 int events = 0;
455 527
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 529 events |= w->events;
458 530
459#if EV_SELECT_IS_WINSOCKET 531#if EV_SELECT_IS_WINSOCKET
460 if (events) 532 if (events)
461 { 533 {
472 } 544 }
473 545
474 fdchangecnt = 0; 546 fdchangecnt = 0;
475} 547}
476 548
477static void 549void inline_size
478fd_change (EV_P_ int fd) 550fd_change (EV_P_ int fd)
479{ 551{
480 if (expect_false (anfds [fd].reify)) 552 if (expect_false (anfds [fd].reify))
481 return; 553 return;
482 554
485 ++fdchangecnt; 557 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 559 fdchanges [fdchangecnt - 1] = fd;
488} 560}
489 561
490static void 562void inline_speed
491fd_kill (EV_P_ int fd) 563fd_kill (EV_P_ int fd)
492{ 564{
493 struct ev_io *w; 565 ev_io *w;
494 566
495 while ((w = (struct ev_io *)anfds [fd].head)) 567 while ((w = (ev_io *)anfds [fd].head))
496 { 568 {
497 ev_io_stop (EV_A_ w); 569 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 571 }
500} 572}
501 573
502inline int 574int inline_size
503fd_valid (int fd) 575fd_valid (int fd)
504{ 576{
505#ifdef _WIN32 577#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 578 return _get_osfhandle (fd) != -1;
507#else 579#else
508 return fcntl (fd, F_GETFD) != -1; 580 return fcntl (fd, F_GETFD) != -1;
509#endif 581#endif
510} 582}
511 583
512/* called on EBADF to verify fds */ 584/* called on EBADF to verify fds */
513static void 585static void noinline
514fd_ebadf (EV_P) 586fd_ebadf (EV_P)
515{ 587{
516 int fd; 588 int fd;
517 589
518 for (fd = 0; fd < anfdmax; ++fd) 590 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 592 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 593 fd_kill (EV_A_ fd);
522} 594}
523 595
524/* called on ENOMEM in select/poll to kill some fds and retry */ 596/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 597static void noinline
526fd_enomem (EV_P) 598fd_enomem (EV_P)
527{ 599{
528 int fd; 600 int fd;
529 601
530 for (fd = anfdmax; fd--; ) 602 for (fd = anfdmax; fd--; )
534 return; 606 return;
535 } 607 }
536} 608}
537 609
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 610/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 611static void noinline
540fd_rearm_all (EV_P) 612fd_rearm_all (EV_P)
541{ 613{
542 int fd; 614 int fd;
543 615
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 616 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 617 if (anfds [fd].events)
547 { 618 {
548 anfds [fd].events = 0; 619 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 620 fd_change (EV_A_ fd);
550 } 621 }
551} 622}
552 623
553/*****************************************************************************/ 624/*****************************************************************************/
554 625
555static void 626void inline_speed
556upheap (WT *heap, int k) 627upheap (WT *heap, int k)
557{ 628{
558 WT w = heap [k]; 629 WT w = heap [k];
559 630
560 while (k && heap [k >> 1]->at > w->at) 631 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 638 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 639 ((W)heap [k])->active = k + 1;
569 640
570} 641}
571 642
572static void 643void inline_speed
573downheap (WT *heap, int N, int k) 644downheap (WT *heap, int N, int k)
574{ 645{
575 WT w = heap [k]; 646 WT w = heap [k];
576 647
577 while (k < (N >> 1)) 648 while (k < (N >> 1))
591 662
592 heap [k] = w; 663 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 664 ((W)heap [k])->active = k + 1;
594} 665}
595 666
596inline void 667void inline_size
597adjustheap (WT *heap, int N, int k) 668adjustheap (WT *heap, int N, int k)
598{ 669{
599 upheap (heap, k); 670 upheap (heap, k);
600 downheap (heap, N, k); 671 downheap (heap, N, k);
601} 672}
611static ANSIG *signals; 682static ANSIG *signals;
612static int signalmax; 683static int signalmax;
613 684
614static int sigpipe [2]; 685static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 686static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 687static ev_io sigev;
617 688
618static void 689void inline_size
619signals_init (ANSIG *base, int count) 690signals_init (ANSIG *base, int count)
620{ 691{
621 while (count--) 692 while (count--)
622 { 693 {
623 base->head = 0; 694 base->head = 0;
643 write (sigpipe [1], &signum, 1); 714 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 715 errno = old_errno;
645 } 716 }
646} 717}
647 718
648void 719void noinline
649ev_feed_signal_event (EV_P_ int signum) 720ev_feed_signal_event (EV_P_ int signum)
650{ 721{
651 WL w; 722 WL w;
652 723
653#if EV_MULTIPLICITY 724#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 735 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 737}
667 738
668static void 739static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 740sigcb (EV_P_ ev_io *iow, int revents)
670{ 741{
671 int signum; 742 int signum;
672 743
673 read (sigpipe [0], &revents, 1); 744 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 745 gotsig = 0;
676 for (signum = signalmax; signum--; ) 747 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 748 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 749 ev_feed_signal_event (EV_A_ signum + 1);
679} 750}
680 751
681static void 752void inline_size
682fd_intern (int fd) 753fd_intern (int fd)
683{ 754{
684#ifdef _WIN32 755#ifdef _WIN32
685 int arg = 1; 756 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 759 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 760 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 761#endif
691} 762}
692 763
693static void 764static void noinline
694siginit (EV_P) 765siginit (EV_P)
695{ 766{
696 fd_intern (sigpipe [0]); 767 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 768 fd_intern (sigpipe [1]);
698 769
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 772 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 773}
703 774
704/*****************************************************************************/ 775/*****************************************************************************/
705 776
706static struct ev_child *childs [PID_HASHSIZE]; 777static ev_child *childs [EV_PID_HASHSIZE];
707 778
708#ifndef _WIN32 779#ifndef _WIN32
709 780
710static struct ev_signal childev; 781static ev_signal childev;
782
783void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
785{
786 ev_child *w;
787
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
789 if (w->pid == pid || !w->pid)
790 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
792 w->rpid = pid;
793 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 }
796}
711 797
712#ifndef WCONTINUED 798#ifndef WCONTINUED
713# define WCONTINUED 0 799# define WCONTINUED 0
714#endif 800#endif
715 801
716static void 802static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 803childcb (EV_P_ ev_signal *sw, int revents)
733{ 804{
734 int pid, status; 805 int pid, status;
735 806
807 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 808 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 809 if (!WCONTINUED
810 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return;
813
738 /* make sure we are called again until all childs have been reaped */ 814 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 815 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 817
742 child_reap (EV_A_ sw, pid, pid, status); 818 child_reap (EV_A_ sw, pid, pid, status);
819 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 821}
746 822
747#endif 823#endif
748 824
749/*****************************************************************************/ 825/*****************************************************************************/
775{ 851{
776 return EV_VERSION_MINOR; 852 return EV_VERSION_MINOR;
777} 853}
778 854
779/* return true if we are running with elevated privileges and should ignore env variables */ 855/* return true if we are running with elevated privileges and should ignore env variables */
780static int 856int inline_size
781enable_secure (void) 857enable_secure (void)
782{ 858{
783#ifdef _WIN32 859#ifdef _WIN32
784 return 0; 860 return 0;
785#else 861#else
832ev_backend (EV_P) 908ev_backend (EV_P)
833{ 909{
834 return backend; 910 return backend;
835} 911}
836 912
837static void 913unsigned int
914ev_loop_count (EV_P)
915{
916 return loop_count;
917}
918
919static void noinline
838loop_init (EV_P_ unsigned int flags) 920loop_init (EV_P_ unsigned int flags)
839{ 921{
840 if (!backend) 922 if (!backend)
841 { 923 {
842#if EV_USE_MONOTONIC 924#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 932 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 933 mn_now = get_clock ();
852 now_floor = mn_now; 934 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 935 rtmn_diff = ev_rt_now - mn_now;
854 936
937 /* pid check not overridable via env */
938#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid ();
941#endif
942
855 if (!(flags & EVFLAG_NOENV) 943 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 944 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 945 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 946 flags = atoi (getenv ("LIBEV_FLAGS"));
859 947
860 if (!(flags & 0x0000ffffUL)) 948 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 949 flags |= ev_recommended_backends ();
862 950
863 backend = 0; 951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956
864#if EV_USE_PORT 957#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 959#endif
867#if EV_USE_KQUEUE 960#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 973 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 974 ev_set_priority (&sigev, EV_MAXPRI);
882 } 975 }
883} 976}
884 977
885static void 978static void noinline
886loop_destroy (EV_P) 979loop_destroy (EV_P)
887{ 980{
888 int i; 981 int i;
982
983#if EV_USE_INOTIFY
984 if (fs_fd >= 0)
985 close (fs_fd);
986#endif
987
988 if (backend_fd >= 0)
989 close (backend_fd);
889 990
890#if EV_USE_PORT 991#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 993#endif
893#if EV_USE_KQUEUE 994#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1003#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1004 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1005#endif
905 1006
906 for (i = NUMPRI; i--; ) 1007 for (i = NUMPRI; i--; )
1008 {
907 array_free (pending, [i]); 1009 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE
1011 array_free (idle, [i]);
1012#endif
1013 }
908 1014
909 /* have to use the microsoft-never-gets-it-right macro */ 1015 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1016 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1017 array_free (timer, EMPTY);
912#if EV_PERIODICS 1018#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1019 array_free (periodic, EMPTY);
914#endif 1020#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1021 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1022 array_free (check, EMPTY);
918 1023
919 backend = 0; 1024 backend = 0;
920} 1025}
921 1026
922static void 1027void inline_size infy_fork (EV_P);
1028
1029void inline_size
923loop_fork (EV_P) 1030loop_fork (EV_P)
924{ 1031{
925#if EV_USE_PORT 1032#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1034#endif
928#if EV_USE_KQUEUE 1035#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1036 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1037#endif
931#if EV_USE_EPOLL 1038#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1039 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1040#endif
1041#if EV_USE_INOTIFY
1042 infy_fork (EV_A);
933#endif 1043#endif
934 1044
935 if (ev_is_active (&sigev)) 1045 if (ev_is_active (&sigev))
936 { 1046 {
937 /* default loop */ 1047 /* default loop */
1053 postfork = 1; 1163 postfork = 1;
1054} 1164}
1055 1165
1056/*****************************************************************************/ 1166/*****************************************************************************/
1057 1167
1058static int 1168void inline_speed
1059any_pending (EV_P)
1060{
1061 int pri;
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
1071call_pending (EV_P) 1169call_pending (EV_P)
1072{ 1170{
1073 int pri; 1171 int pri;
1074 1172
1075 for (pri = NUMPRI; pri--; ) 1173 for (pri = NUMPRI; pri--; )
1077 { 1175 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1177
1080 if (expect_true (p->w)) 1178 if (expect_true (p->w))
1081 { 1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1181
1082 p->w->pending = 0; 1182 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1183 EV_CB_INVOKE (p->w, p->events);
1084 } 1184 }
1085 } 1185 }
1086} 1186}
1087 1187
1088inline void 1188void inline_size
1089timers_reify (EV_P) 1189timers_reify (EV_P)
1090{ 1190{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1192 {
1093 struct ev_timer *w = timers [0]; 1193 ev_timer *w = timers [0];
1094 1194
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1196
1097 /* first reschedule or stop timer */ 1197 /* first reschedule or stop timer */
1098 if (w->repeat) 1198 if (w->repeat)
1099 { 1199 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1110 1210
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1212 }
1113} 1213}
1114 1214
1115#if EV_PERIODICS 1215#if EV_PERIODIC_ENABLE
1116inline void 1216void inline_size
1117periodics_reify (EV_P) 1217periodics_reify (EV_P)
1118{ 1218{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1220 {
1121 struct ev_periodic *w = periodics [0]; 1221 ev_periodic *w = periodics [0];
1122 1222
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1224
1125 /* first reschedule or stop timer */ 1225 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1226 if (w->reschedule_cb)
1127 { 1227 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1140 1240
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1242 }
1143} 1243}
1144 1244
1145static void 1245static void noinline
1146periodics_reschedule (EV_P) 1246periodics_reschedule (EV_P)
1147{ 1247{
1148 int i; 1248 int i;
1149 1249
1150 /* adjust periodics after time jump */ 1250 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1251 for (i = 0; i < periodiccnt; ++i)
1152 { 1252 {
1153 struct ev_periodic *w = periodics [i]; 1253 ev_periodic *w = periodics [i];
1154 1254
1155 if (w->reschedule_cb) 1255 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1257 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1162 for (i = periodiccnt >> 1; i--; ) 1262 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1263 downheap ((WT *)periodics, periodiccnt, i);
1164} 1264}
1165#endif 1265#endif
1166 1266
1167inline int 1267#if EV_IDLE_ENABLE
1268void inline_size
1269idle_reify (EV_P)
1270{
1271 if (expect_false (!idleall))
1272 {
1273 int pri;
1274
1275 for (pri = NUMPRI; pri--; )
1276 {
1277 if (pendingcnt [pri])
1278 break;
1279
1280 if (idlecnt [pri])
1281 {
1282 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1283 break;
1284 }
1285 }
1286 }
1287}
1288#endif
1289
1290int inline_size
1168time_update_monotonic (EV_P) 1291time_update_monotonic (EV_P)
1169{ 1292{
1170 mn_now = get_clock (); 1293 mn_now = get_clock ();
1171 1294
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1303 ev_rt_now = ev_time ();
1181 return 1; 1304 return 1;
1182 } 1305 }
1183} 1306}
1184 1307
1185inline void 1308void inline_size
1186time_update (EV_P) 1309time_update (EV_P)
1187{ 1310{
1188 int i; 1311 int i;
1189 1312
1190#if EV_USE_MONOTONIC 1313#if EV_USE_MONOTONIC
1192 { 1315 {
1193 if (time_update_monotonic (EV_A)) 1316 if (time_update_monotonic (EV_A))
1194 { 1317 {
1195 ev_tstamp odiff = rtmn_diff; 1318 ev_tstamp odiff = rtmn_diff;
1196 1319
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1198 { 1329 {
1199 rtmn_diff = ev_rt_now - mn_now; 1330 rtmn_diff = ev_rt_now - mn_now;
1200 1331
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1333 return; /* all is well */
1204 ev_rt_now = ev_time (); 1335 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1336 mn_now = get_clock ();
1206 now_floor = mn_now; 1337 now_floor = mn_now;
1207 } 1338 }
1208 1339
1209# if EV_PERIODICS 1340# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1341 periodics_reschedule (EV_A);
1211# endif 1342# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1345 }
1218 { 1349 {
1219 ev_rt_now = ev_time (); 1350 ev_rt_now = ev_time ();
1220 1351
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1353 {
1223#if EV_PERIODICS 1354#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1355 periodics_reschedule (EV_A);
1225#endif 1356#endif
1226 1357
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1359 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1361 }
1231 1362
1232 mn_now = ev_rt_now; 1363 mn_now = ev_rt_now;
1252{ 1383{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE 1385 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1386 : EVUNLOOP_CANCEL;
1256 1387
1257 while (activecnt) 1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389
1390 do
1258 { 1391 {
1392#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid))
1395 {
1396 curpid = getpid ();
1397 postfork = 1;
1398 }
1399#endif
1400
1401#if EV_FORK_ENABLE
1402 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork))
1404 if (forkcnt)
1405 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A);
1408 }
1409#endif
1410
1259 /* queue check watchers (and execute them) */ 1411 /* queue check watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1412 if (expect_false (preparecnt))
1261 { 1413 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1415 call_pending (EV_A);
1264 } 1416 }
1265 1417
1418 if (expect_false (!activecnt))
1419 break;
1420
1266 /* we might have forked, so reify kernel state if necessary */ 1421 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1422 if (expect_false (postfork))
1268 loop_fork (EV_A); 1423 loop_fork (EV_A);
1269 1424
1270 /* update fd-related kernel structures */ 1425 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1426 fd_reify (EV_A);
1272 1427
1273 /* calculate blocking time */ 1428 /* calculate blocking time */
1274 { 1429 {
1275 double block; 1430 ev_tstamp block;
1276 1431
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1278 block = 0.; /* do not block at all */ 1433 block = 0.; /* do not block at all */
1279 else 1434 else
1280 { 1435 {
1281 /* update time to cancel out callback processing overhead */ 1436 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC 1437#if EV_USE_MONOTONIC
1295 { 1450 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1452 if (block > to) block = to;
1298 } 1453 }
1299 1454
1300#if EV_PERIODICS 1455#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1456 if (periodiccnt)
1302 { 1457 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1459 if (block > to) block = to;
1305 } 1460 }
1306#endif 1461#endif
1307 1462
1308 if (expect_false (block < 0.)) block = 0.; 1463 if (expect_false (block < 0.)) block = 0.;
1309 } 1464 }
1310 1465
1466 ++loop_count;
1311 backend_poll (EV_A_ block); 1467 backend_poll (EV_A_ block);
1312 } 1468 }
1313 1469
1314 /* update ev_rt_now, do magic */ 1470 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1471 time_update (EV_A);
1316 1472
1317 /* queue pending timers and reschedule them */ 1473 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1474 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1475#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1476 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1477#endif
1322 1478
1479#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1480 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1481 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1482#endif
1326 1483
1327 /* queue check watchers, to be executed first */ 1484 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1485 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1487
1331 call_pending (EV_A); 1488 call_pending (EV_A);
1332 1489
1333 if (expect_false (loop_done))
1334 break;
1335 } 1490 }
1491 while (expect_true (activecnt && !loop_done));
1336 1492
1337 if (loop_done == EVUNLOOP_ONE) 1493 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1494 loop_done = EVUNLOOP_CANCEL;
1339} 1495}
1340 1496
1344 loop_done = how; 1500 loop_done = how;
1345} 1501}
1346 1502
1347/*****************************************************************************/ 1503/*****************************************************************************/
1348 1504
1349inline void 1505void inline_size
1350wlist_add (WL *head, WL elem) 1506wlist_add (WL *head, WL elem)
1351{ 1507{
1352 elem->next = *head; 1508 elem->next = *head;
1353 *head = elem; 1509 *head = elem;
1354} 1510}
1355 1511
1356inline void 1512void inline_size
1357wlist_del (WL *head, WL elem) 1513wlist_del (WL *head, WL elem)
1358{ 1514{
1359 while (*head) 1515 while (*head)
1360 { 1516 {
1361 if (*head == elem) 1517 if (*head == elem)
1366 1522
1367 head = &(*head)->next; 1523 head = &(*head)->next;
1368 } 1524 }
1369} 1525}
1370 1526
1371inline void 1527void inline_speed
1372ev_clear_pending (EV_P_ W w) 1528ev_clear_pending (EV_P_ W w)
1373{ 1529{
1374 if (w->pending) 1530 if (w->pending)
1375 { 1531 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1532 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1533 w->pending = 0;
1378 } 1534 }
1379} 1535}
1380 1536
1381inline void 1537void inline_size
1538pri_adjust (EV_P_ W w)
1539{
1540 int pri = w->priority;
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri;
1544}
1545
1546void inline_speed
1382ev_start (EV_P_ W w, int active) 1547ev_start (EV_P_ W w, int active)
1383{ 1548{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1549 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1550 w->active = active;
1388 ev_ref (EV_A); 1551 ev_ref (EV_A);
1389} 1552}
1390 1553
1391inline void 1554void inline_size
1392ev_stop (EV_P_ W w) 1555ev_stop (EV_P_ W w)
1393{ 1556{
1394 ev_unref (EV_A); 1557 ev_unref (EV_A);
1395 w->active = 0; 1558 w->active = 0;
1396} 1559}
1397 1560
1398/*****************************************************************************/ 1561/*****************************************************************************/
1399 1562
1400void 1563void
1401ev_io_start (EV_P_ struct ev_io *w) 1564ev_io_start (EV_P_ ev_io *w)
1402{ 1565{
1403 int fd = w->fd; 1566 int fd = w->fd;
1404 1567
1405 if (expect_false (ev_is_active (w))) 1568 if (expect_false (ev_is_active (w)))
1406 return; 1569 return;
1413 1576
1414 fd_change (EV_A_ fd); 1577 fd_change (EV_A_ fd);
1415} 1578}
1416 1579
1417void 1580void
1418ev_io_stop (EV_P_ struct ev_io *w) 1581ev_io_stop (EV_P_ ev_io *w)
1419{ 1582{
1420 ev_clear_pending (EV_A_ (W)w); 1583 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1584 if (expect_false (!ev_is_active (w)))
1422 return; 1585 return;
1423 1586
1428 1591
1429 fd_change (EV_A_ w->fd); 1592 fd_change (EV_A_ w->fd);
1430} 1593}
1431 1594
1432void 1595void
1433ev_timer_start (EV_P_ struct ev_timer *w) 1596ev_timer_start (EV_P_ ev_timer *w)
1434{ 1597{
1435 if (expect_false (ev_is_active (w))) 1598 if (expect_false (ev_is_active (w)))
1436 return; 1599 return;
1437 1600
1438 ((WT)w)->at += mn_now; 1601 ((WT)w)->at += mn_now;
1439 1602
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1604
1442 ev_start (EV_A_ (W)w, ++timercnt); 1605 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1607 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1608 upheap ((WT *)timers, timercnt - 1);
1446 1609
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1611}
1449 1612
1450void 1613void
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1614ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1615{
1453 ev_clear_pending (EV_A_ (W)w); 1616 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1617 if (expect_false (!ev_is_active (w)))
1455 return; 1618 return;
1456 1619
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1458 1621
1622 {
1623 int active = ((W)w)->active;
1624
1459 if (expect_true (((W)w)->active < timercnt--)) 1625 if (expect_true (--active < --timercnt))
1460 { 1626 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1627 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1628 adjustheap ((WT *)timers, timercnt, active);
1463 } 1629 }
1630 }
1464 1631
1465 ((WT)w)->at -= mn_now; 1632 ((WT)w)->at -= mn_now;
1466 1633
1467 ev_stop (EV_A_ (W)w); 1634 ev_stop (EV_A_ (W)w);
1468} 1635}
1469 1636
1470void 1637void
1471ev_timer_again (EV_P_ struct ev_timer *w) 1638ev_timer_again (EV_P_ ev_timer *w)
1472{ 1639{
1473 if (ev_is_active (w)) 1640 if (ev_is_active (w))
1474 { 1641 {
1475 if (w->repeat) 1642 if (w->repeat)
1476 { 1643 {
1485 w->at = w->repeat; 1652 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1653 ev_timer_start (EV_A_ w);
1487 } 1654 }
1488} 1655}
1489 1656
1490#if EV_PERIODICS 1657#if EV_PERIODIC_ENABLE
1491void 1658void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1659ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1660{
1494 if (expect_false (ev_is_active (w))) 1661 if (expect_false (ev_is_active (w)))
1495 return; 1662 return;
1496 1663
1497 if (w->reschedule_cb) 1664 if (w->reschedule_cb)
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1669 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 1671 }
1505 1672
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1673 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1675 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1676 upheap ((WT *)periodics, periodiccnt - 1);
1510 1677
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1679}
1513 1680
1514void 1681void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1682ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1683{
1517 ev_clear_pending (EV_A_ (W)w); 1684 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1685 if (expect_false (!ev_is_active (w)))
1519 return; 1686 return;
1520 1687
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1522 1689
1690 {
1691 int active = ((W)w)->active;
1692
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1693 if (expect_true (--active < --periodiccnt))
1524 { 1694 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1695 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1696 adjustheap ((WT *)periodics, periodiccnt, active);
1527 } 1697 }
1698 }
1528 1699
1529 ev_stop (EV_A_ (W)w); 1700 ev_stop (EV_A_ (W)w);
1530} 1701}
1531 1702
1532void 1703void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1704ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1705{
1535 /* TODO: use adjustheap and recalculation */ 1706 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1707 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1708 ev_periodic_start (EV_A_ w);
1538} 1709}
1539#endif 1710#endif
1540 1711
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1712#ifndef SA_RESTART
1608# define SA_RESTART 0 1713# define SA_RESTART 0
1609#endif 1714#endif
1610 1715
1611void 1716void
1612ev_signal_start (EV_P_ struct ev_signal *w) 1717ev_signal_start (EV_P_ ev_signal *w)
1613{ 1718{
1614#if EV_MULTIPLICITY 1719#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1721#endif
1617 if (expect_false (ev_is_active (w))) 1722 if (expect_false (ev_is_active (w)))
1636#endif 1741#endif
1637 } 1742 }
1638} 1743}
1639 1744
1640void 1745void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1746ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1747{
1643 ev_clear_pending (EV_A_ (W)w); 1748 ev_clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1749 if (expect_false (!ev_is_active (w)))
1645 return; 1750 return;
1646 1751
1650 if (!signals [w->signum - 1].head) 1755 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1756 signal (w->signum, SIG_DFL);
1652} 1757}
1653 1758
1654void 1759void
1655ev_child_start (EV_P_ struct ev_child *w) 1760ev_child_start (EV_P_ ev_child *w)
1656{ 1761{
1657#if EV_MULTIPLICITY 1762#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1764#endif
1660 if (expect_false (ev_is_active (w))) 1765 if (expect_false (ev_is_active (w)))
1661 return; 1766 return;
1662 1767
1663 ev_start (EV_A_ (W)w, 1); 1768 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1770}
1666 1771
1667void 1772void
1668ev_child_stop (EV_P_ struct ev_child *w) 1773ev_child_stop (EV_P_ ev_child *w)
1669{ 1774{
1670 ev_clear_pending (EV_A_ (W)w); 1775 ev_clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1776 if (expect_false (!ev_is_active (w)))
1672 return; 1777 return;
1673 1778
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1780 ev_stop (EV_A_ (W)w);
1676} 1781}
1677 1782
1678#if EV_MULTIPLICITY 1783#if EV_STAT_ENABLE
1784
1785# ifdef _WIN32
1786# undef lstat
1787# define lstat(a,b) _stati64 (a,b)
1788# endif
1789
1790#define DEF_STAT_INTERVAL 5.0074891
1791#define MIN_STAT_INTERVAL 0.1074891
1792
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794
1795#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192
1797
1798static void noinline
1799infy_add (EV_P_ ev_stat *w)
1800{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802
1803 if (w->wd < 0)
1804 {
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1806
1807 /* monitor some parent directory for speedup hints */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 {
1810 char path [4096];
1811 strcpy (path, w->path);
1812
1813 do
1814 {
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817
1818 char *pend = strrchr (path, '/');
1819
1820 if (!pend)
1821 break; /* whoops, no '/', complain to your admin */
1822
1823 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 }
1828 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831
1832 if (w->wd >= 0)
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1834}
1835
1836static void noinline
1837infy_del (EV_P_ ev_stat *w)
1838{
1839 int slot;
1840 int wd = w->wd;
1841
1842 if (wd < 0)
1843 return;
1844
1845 w->wd = -2;
1846 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1847 wlist_del (&fs_hash [slot].head, (WL)w);
1848
1849 /* remove this watcher, if others are watching it, they will rearm */
1850 inotify_rm_watch (fs_fd, wd);
1851}
1852
1853static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{
1856 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev);
1860 else
1861 {
1862 WL w_;
1863
1864 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1865 {
1866 ev_stat *w = (ev_stat *)w_;
1867 w_ = w_->next; /* lets us remove this watcher and all before it */
1868
1869 if (w->wd == wd || wd == -1)
1870 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 {
1873 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */
1875 }
1876
1877 stat_timer_cb (EV_A_ &w->timer, 0);
1878 }
1879 }
1880 }
1881}
1882
1679static void 1883static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1884infy_cb (EV_P_ ev_io *w, int revents)
1681{ 1885{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1886 char buf [EV_INOTIFY_BUFSIZE];
1887 struct inotify_event *ev = (struct inotify_event *)buf;
1888 int ofs;
1889 int len = read (fs_fd, buf, sizeof (buf));
1683 1890
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1893}
1894
1895void inline_size
1896infy_init (EV_P)
1897{
1898 if (fs_fd != -2)
1899 return;
1900
1901 fs_fd = inotify_init ();
1902
1903 if (fs_fd >= 0)
1904 {
1905 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1906 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w);
1908 }
1909}
1910
1911void inline_size
1912infy_fork (EV_P)
1913{
1914 int slot;
1915
1916 if (fs_fd < 0)
1917 return;
1918
1919 close (fs_fd);
1920 fs_fd = inotify_init ();
1921
1922 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1923 {
1924 WL w_ = fs_hash [slot].head;
1925 fs_hash [slot].head = 0;
1926
1927 while (w_)
1928 {
1929 ev_stat *w = (ev_stat *)w_;
1930 w_ = w_->next; /* lets us add this watcher */
1931
1932 w->wd = -1;
1933
1934 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else
1937 ev_timer_start (EV_A_ &w->timer);
1938 }
1939
1940 }
1941}
1942
1943#endif
1944
1945void
1946ev_stat_stat (EV_P_ ev_stat *w)
1947{
1948 if (lstat (w->path, &w->attr) < 0)
1949 w->attr.st_nlink = 0;
1950 else if (!w->attr.st_nlink)
1951 w->attr.st_nlink = 1;
1952}
1953
1954static void noinline
1955stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1956{
1957 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1958
1959 /* we copy this here each the time so that */
1960 /* prev has the old value when the callback gets invoked */
1961 w->prev = w->attr;
1962 ev_stat_stat (EV_A_ w);
1963
1964 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1965 if (
1966 w->prev.st_dev != w->attr.st_dev
1967 || w->prev.st_ino != w->attr.st_ino
1968 || w->prev.st_mode != w->attr.st_mode
1969 || w->prev.st_nlink != w->attr.st_nlink
1970 || w->prev.st_uid != w->attr.st_uid
1971 || w->prev.st_gid != w->attr.st_gid
1972 || w->prev.st_rdev != w->attr.st_rdev
1973 || w->prev.st_size != w->attr.st_size
1974 || w->prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime
1977 ) {
1978 #if EV_USE_INOTIFY
1979 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */
1982 #endif
1983
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 1984 ev_feed_event (EV_A_ w, EV_STAT);
1985 }
1986}
1987
1988void
1989ev_stat_start (EV_P_ ev_stat *w)
1990{
1991 if (expect_false (ev_is_active (w)))
1992 return;
1993
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w);
1999
2000 if (w->interval < MIN_STAT_INTERVAL)
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2004 ev_set_priority (&w->timer, ev_priority (w));
2005
2006#if EV_USE_INOTIFY
2007 infy_init (EV_A);
2008
2009 if (fs_fd >= 0)
2010 infy_add (EV_A_ w);
2011 else
2012#endif
2013 ev_timer_start (EV_A_ &w->timer);
2014
2015 ev_start (EV_A_ (W)w, 1);
2016}
2017
2018void
2019ev_stat_stop (EV_P_ ev_stat *w)
2020{
2021 ev_clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w)))
2023 return;
2024
2025#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w);
2027#endif
2028 ev_timer_stop (EV_A_ &w->timer);
2029
2030 ev_stop (EV_A_ (W)w);
2031}
2032#endif
2033
2034#if EV_IDLE_ENABLE
2035void
2036ev_idle_start (EV_P_ ev_idle *w)
2037{
2038 if (expect_false (ev_is_active (w)))
2039 return;
2040
2041 pri_adjust (EV_A_ (W)w);
2042
2043 {
2044 int active = ++idlecnt [ABSPRI (w)];
2045
2046 ++idleall;
2047 ev_start (EV_A_ (W)w, active);
2048
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w;
2051 }
2052}
2053
2054void
2055ev_idle_stop (EV_P_ ev_idle *w)
2056{
2057 ev_clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w)))
2059 return;
2060
2061 {
2062 int active = ((W)w)->active;
2063
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2066
2067 ev_stop (EV_A_ (W)w);
2068 --idleall;
2069 }
2070}
2071#endif
2072
2073void
2074ev_prepare_start (EV_P_ ev_prepare *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w;
2082}
2083
2084void
2085ev_prepare_stop (EV_P_ ev_prepare *w)
2086{
2087 ev_clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w)))
2089 return;
2090
2091 {
2092 int active = ((W)w)->active;
2093 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active;
2095 }
2096
2097 ev_stop (EV_A_ (W)w);
2098}
2099
2100void
2101ev_check_start (EV_P_ ev_check *w)
2102{
2103 if (expect_false (ev_is_active (w)))
2104 return;
2105
2106 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w;
2109}
2110
2111void
2112ev_check_stop (EV_P_ ev_check *w)
2113{
2114 ev_clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w)))
2116 return;
2117
2118 {
2119 int active = ((W)w)->active;
2120 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active;
2122 }
2123
2124 ev_stop (EV_A_ (W)w);
2125}
2126
2127#if EV_EMBED_ENABLE
2128void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w)
2130{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2131 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 2132}
1687 2133
2134static void
2135embed_cb (EV_P_ ev_io *io, int revents)
2136{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138
2139 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else
2142 ev_embed_sweep (loop, w);
2143}
2144
1688void 2145void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2146ev_embed_start (EV_P_ ev_embed *w)
1690{ 2147{
1691 if (expect_false (ev_is_active (w))) 2148 if (expect_false (ev_is_active (w)))
1692 return; 2149 return;
1693 2150
1694 { 2151 {
1695 struct ev_loop *loop = w->loop; 2152 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 2155 }
1699 2156
2157 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2158 ev_io_start (EV_A_ &w->io);
2159
1701 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1702} 2161}
1703 2162
1704void 2163void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2164ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2165{
1707 ev_clear_pending (EV_A_ (W)w); 2166 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2167 if (expect_false (!ev_is_active (w)))
1709 return; 2168 return;
1710 2169
1711 ev_io_stop (EV_A_ &w->io); 2170 ev_io_stop (EV_A_ &w->io);
2171
1712 ev_stop (EV_A_ (W)w); 2172 ev_stop (EV_A_ (W)w);
1713} 2173}
1714#endif 2174#endif
1715 2175
2176#if EV_FORK_ENABLE
2177void
2178ev_fork_start (EV_P_ ev_fork *w)
2179{
2180 if (expect_false (ev_is_active (w)))
2181 return;
2182
2183 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w;
2186}
2187
2188void
2189ev_fork_stop (EV_P_ ev_fork *w)
2190{
2191 ev_clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w)))
2193 return;
2194
2195 {
2196 int active = ((W)w)->active;
2197 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active;
2199 }
2200
2201 ev_stop (EV_A_ (W)w);
2202}
2203#endif
2204
1716/*****************************************************************************/ 2205/*****************************************************************************/
1717 2206
1718struct ev_once 2207struct ev_once
1719{ 2208{
1720 struct ev_io io; 2209 ev_io io;
1721 struct ev_timer to; 2210 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2211 void (*cb)(int revents, void *arg);
1723 void *arg; 2212 void *arg;
1724}; 2213};
1725 2214
1726static void 2215static void
1735 2224
1736 cb (revents, arg); 2225 cb (revents, arg);
1737} 2226}
1738 2227
1739static void 2228static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2229once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2230{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2232}
1744 2233
1745static void 2234static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2235once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2236{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2238}
1750 2239
1751void 2240void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines