ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 231
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 235
190#if __GNUC__ >= 3 236#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 238# define noinline __attribute__ ((noinline))
193#else 239#else
194# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
195# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
196#endif 245#endif
197 246
198#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
200 256
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 259
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 260#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 261#define EMPTY2(a,b) /* used to suppress some warnings */
206 262
207typedef struct ev_watcher *W; 263typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
210 266
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 268
213#ifdef _WIN32 269#ifdef _WIN32
214# include "ev_win32.c" 270# include "ev_win32.c"
216 272
217/*****************************************************************************/ 273/*****************************************************************************/
218 274
219static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
220 276
277void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 279{
223 syserr_cb = cb; 280 syserr_cb = cb;
224} 281}
225 282
226static void 283static void noinline
227syserr (const char *msg) 284syserr (const char *msg)
228{ 285{
229 if (!msg) 286 if (!msg)
230 msg = "(libev) system error"; 287 msg = "(libev) system error";
231 288
238 } 295 }
239} 296}
240 297
241static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
242 299
300void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 302{
245 alloc = cb; 303 alloc = cb;
246} 304}
247 305
248static void * 306inline_speed void *
249ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
250{ 308{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 310
253 if (!ptr && size) 311 if (!ptr && size)
277typedef struct 335typedef struct
278{ 336{
279 W w; 337 W w;
280 int events; 338 int events;
281} ANPENDING; 339} ANPENDING;
340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
282 347
283#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
284 349
285 struct ev_loop 350 struct ev_loop
286 { 351 {
320 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 387#endif
323} 388}
324 389
325inline ev_tstamp 390ev_tstamp inline_size
326get_clock (void) 391get_clock (void)
327{ 392{
328#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
330 { 395 {
343{ 408{
344 return ev_rt_now; 409 return ev_rt_now;
345} 410}
346#endif 411#endif
347 412
348#define array_roundsize(type,n) (((n) | 4) & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
349 440
350#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
352 { \ 443 { \
353 int newcnt = cur; \ 444 int ocur_ = (cur); \
354 do \ 445 (base) = (type *)array_realloc \
355 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 448 }
364 449
450#if 0
365#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 453 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 457 }
458#endif
372 459
373#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 462
376/*****************************************************************************/ 463/*****************************************************************************/
377 464
378static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_size
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
379anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
380{ 495{
381 while (count--) 496 while (count--)
382 { 497 {
383 base->head = 0; 498 base->head = 0;
386 501
387 ++base; 502 ++base;
388 } 503 }
389} 504}
390 505
391void 506void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
422{ 508{
423 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 510 ev_io *w;
425 511
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 513 {
428 int ev = w->events & revents; 514 int ev = w->events & revents;
429 515
430 if (ev) 516 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
433} 519}
434 520
435void 521void
436ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 523{
524 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
439} 526}
440 527
441/*****************************************************************************/ 528void inline_size
442
443inline void
444fd_reify (EV_P) 529fd_reify (EV_P)
445{ 530{
446 int i; 531 int i;
447 532
448 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
449 { 534 {
450 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 537 ev_io *w;
453 538
454 int events = 0; 539 int events = 0;
455 540
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 542 events |= w->events;
458 543
459#if EV_SELECT_IS_WINSOCKET 544#if EV_SELECT_IS_WINSOCKET
460 if (events) 545 if (events)
461 { 546 {
472 } 557 }
473 558
474 fdchangecnt = 0; 559 fdchangecnt = 0;
475} 560}
476 561
477static void 562void inline_size
478fd_change (EV_P_ int fd) 563fd_change (EV_P_ int fd)
479{ 564{
480 if (expect_false (anfds [fd].reify)) 565 if (expect_false (anfds [fd].reify))
481 return; 566 return;
482 567
485 ++fdchangecnt; 570 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 572 fdchanges [fdchangecnt - 1] = fd;
488} 573}
489 574
490static void 575void inline_speed
491fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
492{ 577{
493 struct ev_io *w; 578 ev_io *w;
494 579
495 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
496 { 581 {
497 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 584 }
500} 585}
501 586
502inline int 587int inline_size
503fd_valid (int fd) 588fd_valid (int fd)
504{ 589{
505#ifdef _WIN32 590#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 591 return _get_osfhandle (fd) != -1;
507#else 592#else
508 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
509#endif 594#endif
510} 595}
511 596
512/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
513static void 598static void noinline
514fd_ebadf (EV_P) 599fd_ebadf (EV_P)
515{ 600{
516 int fd; 601 int fd;
517 602
518 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
522} 607}
523 608
524/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 610static void noinline
526fd_enomem (EV_P) 611fd_enomem (EV_P)
527{ 612{
528 int fd; 613 int fd;
529 614
530 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
534 return; 619 return;
535 } 620 }
536} 621}
537 622
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 624static void noinline
540fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
541{ 626{
542 int fd; 627 int fd;
543 628
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 630 if (anfds [fd].events)
547 { 631 {
548 anfds [fd].events = 0; 632 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd);
550 } 634 }
551} 635}
552 636
553/*****************************************************************************/ 637/*****************************************************************************/
554 638
555static void 639void inline_speed
556upheap (WT *heap, int k) 640upheap (WT *heap, int k)
557{ 641{
558 WT w = heap [k]; 642 WT w = heap [k];
559 643
560 while (k && heap [k >> 1]->at > w->at) 644 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 651 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
569 653
570} 654}
571 655
572static void 656void inline_speed
573downheap (WT *heap, int N, int k) 657downheap (WT *heap, int N, int k)
574{ 658{
575 WT w = heap [k]; 659 WT w = heap [k];
576 660
577 while (k < (N >> 1)) 661 while (k < (N >> 1))
591 675
592 heap [k] = w; 676 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 677 ((W)heap [k])->active = k + 1;
594} 678}
595 679
596inline void 680void inline_size
597adjustheap (WT *heap, int N, int k) 681adjustheap (WT *heap, int N, int k)
598{ 682{
599 upheap (heap, k); 683 upheap (heap, k);
600 downheap (heap, N, k); 684 downheap (heap, N, k);
601} 685}
611static ANSIG *signals; 695static ANSIG *signals;
612static int signalmax; 696static int signalmax;
613 697
614static int sigpipe [2]; 698static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 699static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 700static ev_io sigev;
617 701
618static void 702void inline_size
619signals_init (ANSIG *base, int count) 703signals_init (ANSIG *base, int count)
620{ 704{
621 while (count--) 705 while (count--)
622 { 706 {
623 base->head = 0; 707 base->head = 0;
643 write (sigpipe [1], &signum, 1); 727 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 728 errno = old_errno;
645 } 729 }
646} 730}
647 731
648void 732void noinline
649ev_feed_signal_event (EV_P_ int signum) 733ev_feed_signal_event (EV_P_ int signum)
650{ 734{
651 WL w; 735 WL w;
652 736
653#if EV_MULTIPLICITY 737#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 748 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 750}
667 751
668static void 752static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 753sigcb (EV_P_ ev_io *iow, int revents)
670{ 754{
671 int signum; 755 int signum;
672 756
673 read (sigpipe [0], &revents, 1); 757 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 758 gotsig = 0;
676 for (signum = signalmax; signum--; ) 760 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 761 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 762 ev_feed_signal_event (EV_A_ signum + 1);
679} 763}
680 764
681static void 765void inline_speed
682fd_intern (int fd) 766fd_intern (int fd)
683{ 767{
684#ifdef _WIN32 768#ifdef _WIN32
685 int arg = 1; 769 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 772 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 773 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 774#endif
691} 775}
692 776
693static void 777static void noinline
694siginit (EV_P) 778siginit (EV_P)
695{ 779{
696 fd_intern (sigpipe [0]); 780 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 781 fd_intern (sigpipe [1]);
698 782
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 785 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 786}
703 787
704/*****************************************************************************/ 788/*****************************************************************************/
705 789
706static struct ev_child *childs [PID_HASHSIZE]; 790static ev_child *childs [EV_PID_HASHSIZE];
707 791
708#ifndef _WIN32 792#ifndef _WIN32
709 793
710static struct ev_signal childev; 794static ev_signal childev;
795
796void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{
799 ev_child *w;
800
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
802 if (w->pid == pid || !w->pid)
803 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid;
806 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 }
809}
711 810
712#ifndef WCONTINUED 811#ifndef WCONTINUED
713# define WCONTINUED 0 812# define WCONTINUED 0
714#endif 813#endif
715 814
716static void 815static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 816childcb (EV_P_ ev_signal *sw, int revents)
733{ 817{
734 int pid, status; 818 int pid, status;
735 819
820 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 821 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 822 if (!WCONTINUED
823 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return;
826
738 /* make sure we are called again until all childs have been reaped */ 827 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 828 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 830
742 child_reap (EV_A_ sw, pid, pid, status); 831 child_reap (EV_A_ sw, pid, pid, status);
832 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 834}
746 835
747#endif 836#endif
748 837
749/*****************************************************************************/ 838/*****************************************************************************/
775{ 864{
776 return EV_VERSION_MINOR; 865 return EV_VERSION_MINOR;
777} 866}
778 867
779/* return true if we are running with elevated privileges and should ignore env variables */ 868/* return true if we are running with elevated privileges and should ignore env variables */
780static int 869int inline_size
781enable_secure (void) 870enable_secure (void)
782{ 871{
783#ifdef _WIN32 872#ifdef _WIN32
784 return 0; 873 return 0;
785#else 874#else
832ev_backend (EV_P) 921ev_backend (EV_P)
833{ 922{
834 return backend; 923 return backend;
835} 924}
836 925
837static void 926unsigned int
927ev_loop_count (EV_P)
928{
929 return loop_count;
930}
931
932static void noinline
838loop_init (EV_P_ unsigned int flags) 933loop_init (EV_P_ unsigned int flags)
839{ 934{
840 if (!backend) 935 if (!backend)
841 { 936 {
842#if EV_USE_MONOTONIC 937#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 945 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 946 mn_now = get_clock ();
852 now_floor = mn_now; 947 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 948 rtmn_diff = ev_rt_now - mn_now;
854 949
950 /* pid check not overridable via env */
951#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid ();
954#endif
955
855 if (!(flags & EVFLAG_NOENV) 956 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 957 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 958 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 959 flags = atoi (getenv ("LIBEV_FLAGS"));
859 960
860 if (!(flags & 0x0000ffffUL)) 961 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 962 flags |= ev_recommended_backends ();
862 963
863 backend = 0; 964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969
864#if EV_USE_PORT 970#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 972#endif
867#if EV_USE_KQUEUE 973#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 986 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 987 ev_set_priority (&sigev, EV_MAXPRI);
882 } 988 }
883} 989}
884 990
885static void 991static void noinline
886loop_destroy (EV_P) 992loop_destroy (EV_P)
887{ 993{
888 int i; 994 int i;
995
996#if EV_USE_INOTIFY
997 if (fs_fd >= 0)
998 close (fs_fd);
999#endif
1000
1001 if (backend_fd >= 0)
1002 close (backend_fd);
889 1003
890#if EV_USE_PORT 1004#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1006#endif
893#if EV_USE_KQUEUE 1007#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1016#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1017 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1018#endif
905 1019
906 for (i = NUMPRI; i--; ) 1020 for (i = NUMPRI; i--; )
1021 {
907 array_free (pending, [i]); 1022 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE
1024 array_free (idle, [i]);
1025#endif
1026 }
908 1027
909 /* have to use the microsoft-never-gets-it-right macro */ 1028 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1029 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1030 array_free (timer, EMPTY);
912#if EV_PERIODICS 1031#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1032 array_free (periodic, EMPTY);
914#endif 1033#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1034 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1035 array_free (check, EMPTY);
918 1036
919 backend = 0; 1037 backend = 0;
920} 1038}
921 1039
922static void 1040void inline_size infy_fork (EV_P);
1041
1042void inline_size
923loop_fork (EV_P) 1043loop_fork (EV_P)
924{ 1044{
925#if EV_USE_PORT 1045#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1047#endif
928#if EV_USE_KQUEUE 1048#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1049 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1050#endif
931#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1052 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1053#endif
1054#if EV_USE_INOTIFY
1055 infy_fork (EV_A);
933#endif 1056#endif
934 1057
935 if (ev_is_active (&sigev)) 1058 if (ev_is_active (&sigev))
936 { 1059 {
937 /* default loop */ 1060 /* default loop */
1053 postfork = 1; 1176 postfork = 1;
1054} 1177}
1055 1178
1056/*****************************************************************************/ 1179/*****************************************************************************/
1057 1180
1058static int 1181void
1059any_pending (EV_P) 1182ev_invoke (EV_P_ void *w, int revents)
1060{ 1183{
1061 int pri; 1184 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1185}
1069 1186
1070inline void 1187void inline_speed
1071call_pending (EV_P) 1188call_pending (EV_P)
1072{ 1189{
1073 int pri; 1190 int pri;
1074 1191
1075 for (pri = NUMPRI; pri--; ) 1192 for (pri = NUMPRI; pri--; )
1077 { 1194 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1196
1080 if (expect_true (p->w)) 1197 if (expect_true (p->w))
1081 { 1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1082 p->w->pending = 0; 1201 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1202 EV_CB_INVOKE (p->w, p->events);
1084 } 1203 }
1085 } 1204 }
1086} 1205}
1087 1206
1088inline void 1207void inline_size
1089timers_reify (EV_P) 1208timers_reify (EV_P)
1090{ 1209{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1211 {
1093 struct ev_timer *w = timers [0]; 1212 ev_timer *w = timers [0];
1094 1213
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1215
1097 /* first reschedule or stop timer */ 1216 /* first reschedule or stop timer */
1098 if (w->repeat) 1217 if (w->repeat)
1099 { 1218 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1110 1229
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1231 }
1113} 1232}
1114 1233
1115#if EV_PERIODICS 1234#if EV_PERIODIC_ENABLE
1116inline void 1235void inline_size
1117periodics_reify (EV_P) 1236periodics_reify (EV_P)
1118{ 1237{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1239 {
1121 struct ev_periodic *w = periodics [0]; 1240 ev_periodic *w = periodics [0];
1122 1241
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1243
1125 /* first reschedule or stop timer */ 1244 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1245 if (w->reschedule_cb)
1127 { 1246 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1249 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 1250 }
1132 else if (w->interval) 1251 else if (w->interval)
1133 { 1252 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1137 } 1256 }
1138 else 1257 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1259
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1261 }
1143} 1262}
1144 1263
1145static void 1264static void noinline
1146periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1147{ 1266{
1148 int i; 1267 int i;
1149 1268
1150 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1152 { 1271 {
1153 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1154 1273
1155 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1276 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1278 }
1160 1279
1161 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1164} 1283}
1165#endif 1284#endif
1166 1285
1167inline int 1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309int inline_size
1168time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1169{ 1311{
1170 mn_now = get_clock (); 1312 mn_now = get_clock ();
1171 1313
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1180 ev_rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
1181 return 1; 1323 return 1;
1182 } 1324 }
1183} 1325}
1184 1326
1185inline void 1327void inline_size
1186time_update (EV_P) 1328time_update (EV_P)
1187{ 1329{
1188 int i; 1330 int i;
1189 1331
1190#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
1192 { 1334 {
1193 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
1194 { 1336 {
1195 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1196 1338
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1198 { 1348 {
1199 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1200 1350
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1352 return; /* all is well */
1204 ev_rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1355 mn_now = get_clock ();
1206 now_floor = mn_now; 1356 now_floor = mn_now;
1207 } 1357 }
1208 1358
1209# if EV_PERIODICS 1359# if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1211# endif 1361# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1364 }
1218 { 1368 {
1219 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1220 1370
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 { 1372 {
1223#if EV_PERIODICS 1373#if EV_PERIODIC_ENABLE
1224 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1225#endif 1375#endif
1226 1376
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1380 }
1231 1381
1232 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1252{ 1402{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE 1404 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1405 : EVUNLOOP_CANCEL;
1256 1406
1257 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1258 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1259 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1261 { 1432 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1434 call_pending (EV_A);
1264 } 1435 }
1265 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1266 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1268 loop_fork (EV_A); 1442 loop_fork (EV_A);
1269 1443
1270 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1445 fd_reify (EV_A);
1272 1446
1273 /* calculate blocking time */ 1447 /* calculate blocking time */
1274 { 1448 {
1275 double block; 1449 ev_tstamp block;
1276 1450
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1278 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1279 else 1453 else
1280 { 1454 {
1281 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC 1456#if EV_USE_MONOTONIC
1295 { 1469 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1471 if (block > to) block = to;
1298 } 1472 }
1299 1473
1300#if EV_PERIODICS 1474#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1475 if (periodiccnt)
1302 { 1476 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1478 if (block > to) block = to;
1305 } 1479 }
1306#endif 1480#endif
1307 1481
1308 if (expect_false (block < 0.)) block = 0.; 1482 if (expect_false (block < 0.)) block = 0.;
1309 } 1483 }
1310 1484
1485 ++loop_count;
1311 backend_poll (EV_A_ block); 1486 backend_poll (EV_A_ block);
1312 } 1487 }
1313 1488
1314 /* update ev_rt_now, do magic */ 1489 /* update ev_rt_now, do magic */
1315 time_update (EV_A); 1490 time_update (EV_A);
1316 1491
1317 /* queue pending timers and reschedule them */ 1492 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1493 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1494#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1495 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1496#endif
1322 1497
1498#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1499 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1500 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1501#endif
1326 1502
1327 /* queue check watchers, to be executed first */ 1503 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1504 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1506
1331 call_pending (EV_A); 1507 call_pending (EV_A);
1332 1508
1333 if (expect_false (loop_done))
1334 break;
1335 } 1509 }
1510 while (expect_true (activecnt && !loop_done));
1336 1511
1337 if (loop_done == EVUNLOOP_ONE) 1512 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1513 loop_done = EVUNLOOP_CANCEL;
1339} 1514}
1340 1515
1344 loop_done = how; 1519 loop_done = how;
1345} 1520}
1346 1521
1347/*****************************************************************************/ 1522/*****************************************************************************/
1348 1523
1349inline void 1524void inline_size
1350wlist_add (WL *head, WL elem) 1525wlist_add (WL *head, WL elem)
1351{ 1526{
1352 elem->next = *head; 1527 elem->next = *head;
1353 *head = elem; 1528 *head = elem;
1354} 1529}
1355 1530
1356inline void 1531void inline_size
1357wlist_del (WL *head, WL elem) 1532wlist_del (WL *head, WL elem)
1358{ 1533{
1359 while (*head) 1534 while (*head)
1360 { 1535 {
1361 if (*head == elem) 1536 if (*head == elem)
1366 1541
1367 head = &(*head)->next; 1542 head = &(*head)->next;
1368 } 1543 }
1369} 1544}
1370 1545
1371inline void 1546void inline_speed
1372ev_clear_pending (EV_P_ W w) 1547clear_pending (EV_P_ W w)
1373{ 1548{
1374 if (w->pending) 1549 if (w->pending)
1375 { 1550 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1551 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1552 w->pending = 0;
1378 } 1553 }
1379} 1554}
1380 1555
1381inline void 1556int
1557ev_clear_pending (EV_P_ void *w)
1558{
1559 W w_ = (W)w;
1560 int pending = w_->pending;
1561
1562 if (expect_true (pending))
1563 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1565 w_->pending = 0;
1566 p->w = 0;
1567 return p->events;
1568 }
1569 else
1570 return 0;
1571}
1572
1573void inline_size
1574pri_adjust (EV_P_ W w)
1575{
1576 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri;
1580}
1581
1582void inline_speed
1382ev_start (EV_P_ W w, int active) 1583ev_start (EV_P_ W w, int active)
1383{ 1584{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1585 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1586 w->active = active;
1388 ev_ref (EV_A); 1587 ev_ref (EV_A);
1389} 1588}
1390 1589
1391inline void 1590void inline_size
1392ev_stop (EV_P_ W w) 1591ev_stop (EV_P_ W w)
1393{ 1592{
1394 ev_unref (EV_A); 1593 ev_unref (EV_A);
1395 w->active = 0; 1594 w->active = 0;
1396} 1595}
1397 1596
1398/*****************************************************************************/ 1597/*****************************************************************************/
1399 1598
1400void 1599void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1600ev_io_start (EV_P_ ev_io *w)
1402{ 1601{
1403 int fd = w->fd; 1602 int fd = w->fd;
1404 1603
1405 if (expect_false (ev_is_active (w))) 1604 if (expect_false (ev_is_active (w)))
1406 return; 1605 return;
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1611 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1413 1612
1414 fd_change (EV_A_ fd); 1613 fd_change (EV_A_ fd);
1415} 1614}
1416 1615
1417void 1616void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1419{ 1618{
1420 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1620 if (expect_false (!ev_is_active (w)))
1422 return; 1621 return;
1423 1622
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1624
1427 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1428 1627
1429 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd);
1430} 1629}
1431 1630
1432void 1631void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1434{ 1633{
1435 if (expect_false (ev_is_active (w))) 1634 if (expect_false (ev_is_active (w)))
1436 return; 1635 return;
1437 1636
1438 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1439 1638
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1640
1442 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1); 1644 upheap ((WT *)timers, timercnt - 1);
1446 1645
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647}
1648
1649void noinline
1650ev_timer_stop (EV_P_ ev_timer *w)
1651{
1652 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1448}
1449 1657
1450void 1658 {
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1659 int active = ((W)w)->active;
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w)))
1455 return;
1456 1660
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1458
1459 if (expect_true (((W)w)->active < timercnt--)) 1661 if (expect_true (--active < --timercnt))
1460 { 1662 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap ((WT *)timers, timercnt, active);
1463 } 1665 }
1666 }
1464 1667
1465 ((WT)w)->at -= mn_now; 1668 ((WT)w)->at -= mn_now;
1466 1669
1467 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1468} 1671}
1469 1672
1470void 1673void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1472{ 1675{
1473 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1474 { 1677 {
1475 if (w->repeat) 1678 if (w->repeat)
1476 { 1679 {
1485 w->at = w->repeat; 1688 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1487 } 1690 }
1488} 1691}
1489 1692
1490#if EV_PERIODICS 1693#if EV_PERIODIC_ENABLE
1491void 1694void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1696{
1494 if (expect_false (ev_is_active (w))) 1697 if (expect_false (ev_is_active (w)))
1495 return; 1698 return;
1496 1699
1497 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1702 else if (w->interval)
1500 { 1703 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1505 1710
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap ((WT *)periodics, periodiccnt - 1);
1510 1715
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717}
1718
1719void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w)
1721{
1722 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w)))
1724 return;
1725
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1512}
1513 1727
1514void 1728 {
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1729 int active = ((W)w)->active;
1516{
1517 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w)))
1519 return;
1520 1730
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1522
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1731 if (expect_true (--active < --periodiccnt))
1524 { 1732 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap ((WT *)periodics, periodiccnt, active);
1527 } 1735 }
1736 }
1528 1737
1529 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1530} 1739}
1531 1740
1532void 1741void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1743{
1535 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1538} 1747}
1539#endif 1748#endif
1540 1749
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1750#ifndef SA_RESTART
1608# define SA_RESTART 0 1751# define SA_RESTART 0
1609#endif 1752#endif
1610 1753
1611void 1754void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1613{ 1756{
1614#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1759#endif
1617 if (expect_false (ev_is_active (w))) 1760 if (expect_false (ev_is_active (w)))
1635 sigaction (w->signum, &sa, 0); 1778 sigaction (w->signum, &sa, 0);
1636#endif 1779#endif
1637 } 1780 }
1638} 1781}
1639 1782
1640void 1783void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1784ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1785{
1643 ev_clear_pending (EV_A_ (W)w); 1786 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1787 if (expect_false (!ev_is_active (w)))
1645 return; 1788 return;
1646 1789
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 1791 ev_stop (EV_A_ (W)w);
1650 if (!signals [w->signum - 1].head) 1793 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1794 signal (w->signum, SIG_DFL);
1652} 1795}
1653 1796
1654void 1797void
1655ev_child_start (EV_P_ struct ev_child *w) 1798ev_child_start (EV_P_ ev_child *w)
1656{ 1799{
1657#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1802#endif
1660 if (expect_false (ev_is_active (w))) 1803 if (expect_false (ev_is_active (w)))
1661 return; 1804 return;
1662 1805
1663 ev_start (EV_A_ (W)w, 1); 1806 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1808}
1666 1809
1667void 1810void
1668ev_child_stop (EV_P_ struct ev_child *w) 1811ev_child_stop (EV_P_ ev_child *w)
1669{ 1812{
1670 ev_clear_pending (EV_A_ (W)w); 1813 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1814 if (expect_false (!ev_is_active (w)))
1672 return; 1815 return;
1673 1816
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1676} 1819}
1677 1820
1678#if EV_MULTIPLICITY 1821#if EV_STAT_ENABLE
1822
1823# ifdef _WIN32
1824# undef lstat
1825# define lstat(a,b) _stati64 (a,b)
1826# endif
1827
1828#define DEF_STAT_INTERVAL 5.0074891
1829#define MIN_STAT_INTERVAL 0.1074891
1830
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832
1833#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192
1835
1836static void noinline
1837infy_add (EV_P_ ev_stat *w)
1838{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840
1841 if (w->wd < 0)
1842 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844
1845 /* monitor some parent directory for speedup hints */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 {
1848 char path [4096];
1849 strcpy (path, w->path);
1850
1851 do
1852 {
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855
1856 char *pend = strrchr (path, '/');
1857
1858 if (!pend)
1859 break; /* whoops, no '/', complain to your admin */
1860
1861 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 }
1866 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1872}
1873
1874static void noinline
1875infy_del (EV_P_ ev_stat *w)
1876{
1877 int slot;
1878 int wd = w->wd;
1879
1880 if (wd < 0)
1881 return;
1882
1883 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w);
1886
1887 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd);
1889}
1890
1891static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{
1894 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev);
1898 else
1899 {
1900 WL w_;
1901
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1903 {
1904 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */
1906
1907 if (w->wd == wd || wd == -1)
1908 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 {
1911 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 }
1914
1915 stat_timer_cb (EV_A_ &w->timer, 0);
1916 }
1917 }
1918 }
1919}
1920
1679static void 1921static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1922infy_cb (EV_P_ ev_io *w, int revents)
1681{ 1923{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1924 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf));
1683 1928
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931}
1932
1933void inline_size
1934infy_init (EV_P)
1935{
1936 if (fs_fd != -2)
1937 return;
1938
1939 fs_fd = inotify_init ();
1940
1941 if (fs_fd >= 0)
1942 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w);
1946 }
1947}
1948
1949void inline_size
1950infy_fork (EV_P)
1951{
1952 int slot;
1953
1954 if (fs_fd < 0)
1955 return;
1956
1957 close (fs_fd);
1958 fs_fd = inotify_init ();
1959
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 {
1962 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0;
1964
1965 while (w_)
1966 {
1967 ev_stat *w = (ev_stat *)w_;
1968 w_ = w_->next; /* lets us add this watcher */
1969
1970 w->wd = -1;
1971
1972 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else
1975 ev_timer_start (EV_A_ &w->timer);
1976 }
1977
1978 }
1979}
1980
1981#endif
1982
1983void
1984ev_stat_stat (EV_P_ ev_stat *w)
1985{
1986 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1;
1990}
1991
1992static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996
1997 /* we copy this here each the time so that */
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w);
2001
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if (
2004 w->prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime
2015 ) {
2016 #if EV_USE_INOTIFY
2017 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */
2020 #endif
2021
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2022 ev_feed_event (EV_A_ w, EV_STAT);
2023 }
2024}
2025
2026void
2027ev_stat_start (EV_P_ ev_stat *w)
2028{
2029 if (expect_false (ev_is_active (w)))
2030 return;
2031
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w);
2037
2038 if (w->interval < MIN_STAT_INTERVAL)
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2042 ev_set_priority (&w->timer, ev_priority (w));
2043
2044#if EV_USE_INOTIFY
2045 infy_init (EV_A);
2046
2047 if (fs_fd >= 0)
2048 infy_add (EV_A_ w);
2049 else
2050#endif
2051 ev_timer_start (EV_A_ &w->timer);
2052
2053 ev_start (EV_A_ (W)w, 1);
2054}
2055
2056void
2057ev_stat_stop (EV_P_ ev_stat *w)
2058{
2059 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w)))
2061 return;
2062
2063#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w);
2065#endif
2066 ev_timer_stop (EV_A_ &w->timer);
2067
2068 ev_stop (EV_A_ (W)w);
2069}
2070#endif
2071
2072#if EV_IDLE_ENABLE
2073void
2074ev_idle_start (EV_P_ ev_idle *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 pri_adjust (EV_A_ (W)w);
2080
2081 {
2082 int active = ++idlecnt [ABSPRI (w)];
2083
2084 ++idleall;
2085 ev_start (EV_A_ (W)w, active);
2086
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w;
2089 }
2090}
2091
2092void
2093ev_idle_stop (EV_P_ ev_idle *w)
2094{
2095 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w)))
2097 return;
2098
2099 {
2100 int active = ((W)w)->active;
2101
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2104
2105 ev_stop (EV_A_ (W)w);
2106 --idleall;
2107 }
2108}
2109#endif
2110
2111void
2112ev_prepare_start (EV_P_ ev_prepare *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w;
2120}
2121
2122void
2123ev_prepare_stop (EV_P_ ev_prepare *w)
2124{
2125 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137
2138void
2139ev_check_start (EV_P_ ev_check *w)
2140{
2141 if (expect_false (ev_is_active (w)))
2142 return;
2143
2144 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w;
2147}
2148
2149void
2150ev_check_stop (EV_P_ ev_check *w)
2151{
2152 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w)))
2154 return;
2155
2156 {
2157 int active = ((W)w)->active;
2158 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active;
2160 }
2161
2162 ev_stop (EV_A_ (W)w);
2163}
2164
2165#if EV_EMBED_ENABLE
2166void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w)
2168{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2169 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 2170}
1687 2171
2172static void
2173embed_cb (EV_P_ ev_io *io, int revents)
2174{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176
2177 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else
2180 ev_embed_sweep (loop, w);
2181}
2182
1688void 2183void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2184ev_embed_start (EV_P_ ev_embed *w)
1690{ 2185{
1691 if (expect_false (ev_is_active (w))) 2186 if (expect_false (ev_is_active (w)))
1692 return; 2187 return;
1693 2188
1694 { 2189 {
1695 struct ev_loop *loop = w->loop; 2190 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 2193 }
1699 2194
2195 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2196 ev_io_start (EV_A_ &w->io);
2197
1701 ev_start (EV_A_ (W)w, 1); 2198 ev_start (EV_A_ (W)w, 1);
1702} 2199}
1703 2200
1704void 2201void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2202ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2203{
1707 ev_clear_pending (EV_A_ (W)w); 2204 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2205 if (expect_false (!ev_is_active (w)))
1709 return; 2206 return;
1710 2207
1711 ev_io_stop (EV_A_ &w->io); 2208 ev_io_stop (EV_A_ &w->io);
2209
1712 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1713} 2211}
1714#endif 2212#endif
1715 2213
2214#if EV_FORK_ENABLE
2215void
2216ev_fork_start (EV_P_ ev_fork *w)
2217{
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w;
2224}
2225
2226void
2227ev_fork_stop (EV_P_ ev_fork *w)
2228{
2229 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w)))
2231 return;
2232
2233 {
2234 int active = ((W)w)->active;
2235 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active;
2237 }
2238
2239 ev_stop (EV_A_ (W)w);
2240}
2241#endif
2242
1716/*****************************************************************************/ 2243/*****************************************************************************/
1717 2244
1718struct ev_once 2245struct ev_once
1719{ 2246{
1720 struct ev_io io; 2247 ev_io io;
1721 struct ev_timer to; 2248 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2249 void (*cb)(int revents, void *arg);
1723 void *arg; 2250 void *arg;
1724}; 2251};
1725 2252
1726static void 2253static void
1735 2262
1736 cb (revents, arg); 2263 cb (revents, arg);
1737} 2264}
1738 2265
1739static void 2266static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2267once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2268{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2270}
1744 2271
1745static void 2272static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2273once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2274{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2276}
1750 2277
1751void 2278void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines