ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.199 by root, Tue Dec 25 07:05:45 2007 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 110# else
95# define EV_USE_PORT 0 111# define EV_USE_PORT 0
96# endif 112# endif
97# endif 113# endif
98 114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
121# endif
122
99#endif 123#endif
100 124
101#include <math.h> 125#include <math.h>
102#include <stdlib.h> 126#include <stdlib.h>
103#include <fcntl.h> 127#include <fcntl.h>
110#include <sys/types.h> 134#include <sys/types.h>
111#include <time.h> 135#include <time.h>
112 136
113#include <signal.h> 137#include <signal.h>
114 138
139#ifdef EV_H
140# include EV_H
141#else
142# include "ev.h"
143#endif
144
115#ifndef _WIN32 145#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 146# include <sys/time.h>
118# include <sys/wait.h> 147# include <sys/wait.h>
148# include <unistd.h>
119#else 149#else
120# define WIN32_LEAN_AND_MEAN 150# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 151# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 152# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 153# define EV_SELECT_IS_WINSOCKET 1
132 162
133#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
135#endif 165#endif
136 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
137#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
139#endif 173#endif
140 174
141#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
156 190
157#ifndef EV_USE_PORT 191#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 192# define EV_USE_PORT 0
159#endif 193#endif
160 194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
161/**/ 215/**/
162 216
163#ifndef CLOCK_MONOTONIC 217#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 218# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 219# define EV_USE_MONOTONIC 0
168#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
171#endif 225#endif
172 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
173#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 243# include <winsock.h>
175#endif 244#endif
176 245
177/**/ 246/**/
178 247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 261
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 262#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 264# define noinline __attribute__ ((noinline))
193#else 265#else
194# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
195# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
196#endif 271#endif
197 272
198#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
200 282
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 285
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 286#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 287#define EMPTY2(a,b) /* used to suppress some warnings */
206 288
207typedef struct ev_watcher *W; 289typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
210 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
212 298
213#ifdef _WIN32 299#ifdef _WIN32
214# include "ev_win32.c" 300# include "ev_win32.c"
215#endif 301#endif
216 302
217/*****************************************************************************/ 303/*****************************************************************************/
218 304
219static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
220 306
307void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 309{
223 syserr_cb = cb; 310 syserr_cb = cb;
224} 311}
225 312
226static void 313static void noinline
227syserr (const char *msg) 314syserr (const char *msg)
228{ 315{
229 if (!msg) 316 if (!msg)
230 msg = "(libev) system error"; 317 msg = "(libev) system error";
231 318
238 } 325 }
239} 326}
240 327
241static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
242 329
330void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 332{
245 alloc = cb; 333 alloc = cb;
246} 334}
247 335
248static void * 336inline_speed void *
249ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
250{ 338{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 340
253 if (!ptr && size) 341 if (!ptr && size)
277typedef struct 365typedef struct
278{ 366{
279 W w; 367 W w;
280 int events; 368 int events;
281} ANPENDING; 369} ANPENDING;
370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
282 377
283#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
284 379
285 struct ev_loop 380 struct ev_loop
286 { 381 {
320 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 417#endif
323} 418}
324 419
325inline ev_tstamp 420ev_tstamp inline_size
326get_clock (void) 421get_clock (void)
327{ 422{
328#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
330 { 425 {
343{ 438{
344 return ev_rt_now; 439 return ev_rt_now;
345} 440}
346#endif 441#endif
347 442
348#define array_roundsize(type,n) (((n) | 4) & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
349 497
350#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
352 { \ 500 { \
353 int newcnt = cur; \ 501 int ocur_ = (cur); \
354 do \ 502 (base) = (type *)array_realloc \
355 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 505 }
364 506
507#if 0
365#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 510 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 514 }
515#endif
372 516
373#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 519
376/*****************************************************************************/ 520/*****************************************************************************/
377 521
378static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
379anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
380{ 552{
381 while (count--) 553 while (count--)
382 { 554 {
383 base->head = 0; 555 base->head = 0;
386 558
387 ++base; 559 ++base;
388 } 560 }
389} 561}
390 562
391void 563void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
422{ 565{
423 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 567 ev_io *w;
425 568
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 570 {
428 int ev = w->events & revents; 571 int ev = w->events & revents;
429 572
430 if (ev) 573 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
433} 576}
434 577
435void 578void
436ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 580{
581 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
439} 583}
440 584
441/*****************************************************************************/ 585void inline_size
442
443inline void
444fd_reify (EV_P) 586fd_reify (EV_P)
445{ 587{
446 int i; 588 int i;
447 589
448 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
449 { 591 {
450 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 594 ev_io *w;
453 595
454 int events = 0; 596 unsigned char events = 0;
455 597
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 599 events |= (unsigned char)w->events;
458 600
459#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
460 if (events) 602 if (events)
461 { 603 {
462 unsigned long argp; 604 unsigned long argp;
463 anfd->handle = _get_osfhandle (fd); 605 anfd->handle = _get_osfhandle (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 606 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 607 }
466#endif 608#endif
467 609
610 {
611 unsigned char o_events = anfd->events;
612 unsigned char o_reify = anfd->reify;
613
468 anfd->reify = 0; 614 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 615 anfd->events = events;
616
617 if (o_events != events || o_reify & EV_IOFDSET)
618 backend_modify (EV_A_ fd, o_events, events);
619 }
472 } 620 }
473 621
474 fdchangecnt = 0; 622 fdchangecnt = 0;
475} 623}
476 624
477static void 625void inline_size
478fd_change (EV_P_ int fd) 626fd_change (EV_P_ int fd, int flags)
479{ 627{
480 if (expect_false (anfds [fd].reify)) 628 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 629 anfds [fd].reify |= flags;
484 630
631 if (expect_true (!reify))
632 {
485 ++fdchangecnt; 633 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 634 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 635 fdchanges [fdchangecnt - 1] = fd;
636 }
488} 637}
489 638
490static void 639void inline_speed
491fd_kill (EV_P_ int fd) 640fd_kill (EV_P_ int fd)
492{ 641{
493 struct ev_io *w; 642 ev_io *w;
494 643
495 while ((w = (struct ev_io *)anfds [fd].head)) 644 while ((w = (ev_io *)anfds [fd].head))
496 { 645 {
497 ev_io_stop (EV_A_ w); 646 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 647 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 648 }
500} 649}
501 650
502inline int 651int inline_size
503fd_valid (int fd) 652fd_valid (int fd)
504{ 653{
505#ifdef _WIN32 654#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 655 return _get_osfhandle (fd) != -1;
507#else 656#else
508 return fcntl (fd, F_GETFD) != -1; 657 return fcntl (fd, F_GETFD) != -1;
509#endif 658#endif
510} 659}
511 660
512/* called on EBADF to verify fds */ 661/* called on EBADF to verify fds */
513static void 662static void noinline
514fd_ebadf (EV_P) 663fd_ebadf (EV_P)
515{ 664{
516 int fd; 665 int fd;
517 666
518 for (fd = 0; fd < anfdmax; ++fd) 667 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 669 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 670 fd_kill (EV_A_ fd);
522} 671}
523 672
524/* called on ENOMEM in select/poll to kill some fds and retry */ 673/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 674static void noinline
526fd_enomem (EV_P) 675fd_enomem (EV_P)
527{ 676{
528 int fd; 677 int fd;
529 678
530 for (fd = anfdmax; fd--; ) 679 for (fd = anfdmax; fd--; )
534 return; 683 return;
535 } 684 }
536} 685}
537 686
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 687/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 688static void noinline
540fd_rearm_all (EV_P) 689fd_rearm_all (EV_P)
541{ 690{
542 int fd; 691 int fd;
543 692
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 693 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 694 if (anfds [fd].events)
547 { 695 {
548 anfds [fd].events = 0; 696 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 697 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 698 }
551} 699}
552 700
553/*****************************************************************************/ 701/*****************************************************************************/
554 702
555static void 703void inline_speed
556upheap (WT *heap, int k) 704upheap (WT *heap, int k)
557{ 705{
558 WT w = heap [k]; 706 WT w = heap [k];
559 707
560 while (k && heap [k >> 1]->at > w->at) 708 while (k)
561 { 709 {
710 int p = (k - 1) >> 1;
711
712 if (heap [p]->at <= w->at)
713 break;
714
562 heap [k] = heap [k >> 1]; 715 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 716 ((W)heap [k])->active = k + 1;
564 k >>= 1; 717 k = p;
565 } 718 }
566 719
567 heap [k] = w; 720 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 721 ((W)heap [k])->active = k + 1;
569
570} 722}
571 723
572static void 724void inline_speed
573downheap (WT *heap, int N, int k) 725downheap (WT *heap, int N, int k)
574{ 726{
575 WT w = heap [k]; 727 WT w = heap [k];
576 728
577 while (k < (N >> 1)) 729 for (;;)
578 { 730 {
579 int j = k << 1; 731 int c = (k << 1) + 1;
580 732
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 733 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 734 break;
586 735
736 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
737 ? 1 : 0;
738
739 if (w->at <= heap [c]->at)
740 break;
741
587 heap [k] = heap [j]; 742 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 743 ((W)heap [k])->active = k + 1;
744
589 k = j; 745 k = c;
590 } 746 }
591 747
592 heap [k] = w; 748 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 749 ((W)heap [k])->active = k + 1;
594} 750}
595 751
596inline void 752void inline_size
597adjustheap (WT *heap, int N, int k) 753adjustheap (WT *heap, int N, int k)
598{ 754{
599 upheap (heap, k); 755 upheap (heap, k);
600 downheap (heap, N, k); 756 downheap (heap, N, k);
601} 757}
611static ANSIG *signals; 767static ANSIG *signals;
612static int signalmax; 768static int signalmax;
613 769
614static int sigpipe [2]; 770static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 771static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 772static ev_io sigev;
617 773
618static void 774void inline_size
619signals_init (ANSIG *base, int count) 775signals_init (ANSIG *base, int count)
620{ 776{
621 while (count--) 777 while (count--)
622 { 778 {
623 base->head = 0; 779 base->head = 0;
643 write (sigpipe [1], &signum, 1); 799 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 800 errno = old_errno;
645 } 801 }
646} 802}
647 803
648void 804void noinline
649ev_feed_signal_event (EV_P_ int signum) 805ev_feed_signal_event (EV_P_ int signum)
650{ 806{
651 WL w; 807 WL w;
652 808
653#if EV_MULTIPLICITY 809#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 820 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 821 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 822}
667 823
668static void 824static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 825sigcb (EV_P_ ev_io *iow, int revents)
670{ 826{
671 int signum; 827 int signum;
672 828
673 read (sigpipe [0], &revents, 1); 829 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 830 gotsig = 0;
676 for (signum = signalmax; signum--; ) 832 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 833 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 834 ev_feed_signal_event (EV_A_ signum + 1);
679} 835}
680 836
681static void 837void inline_speed
682fd_intern (int fd) 838fd_intern (int fd)
683{ 839{
684#ifdef _WIN32 840#ifdef _WIN32
685 int arg = 1; 841 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 842 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 844 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 845 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 846#endif
691} 847}
692 848
693static void 849static void noinline
694siginit (EV_P) 850siginit (EV_P)
695{ 851{
696 fd_intern (sigpipe [0]); 852 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 853 fd_intern (sigpipe [1]);
698 854
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 857 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 858}
703 859
704/*****************************************************************************/ 860/*****************************************************************************/
705 861
706static struct ev_child *childs [PID_HASHSIZE]; 862static WL childs [EV_PID_HASHSIZE];
707 863
708#ifndef _WIN32 864#ifndef _WIN32
709 865
710static struct ev_signal childev; 866static ev_signal childev;
867
868void inline_speed
869child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
870{
871 ev_child *w;
872
873 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
874 if (w->pid == pid || !w->pid)
875 {
876 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
877 w->rpid = pid;
878 w->rstatus = status;
879 ev_feed_event (EV_A_ (W)w, EV_CHILD);
880 }
881}
711 882
712#ifndef WCONTINUED 883#ifndef WCONTINUED
713# define WCONTINUED 0 884# define WCONTINUED 0
714#endif 885#endif
715 886
716static void 887static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 888childcb (EV_P_ ev_signal *sw, int revents)
733{ 889{
734 int pid, status; 890 int pid, status;
735 891
892 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 893 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 894 if (!WCONTINUED
895 || errno != EINVAL
896 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
897 return;
898
738 /* make sure we are called again until all childs have been reaped */ 899 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 900 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 901 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 902
742 child_reap (EV_A_ sw, pid, pid, status); 903 child_reap (EV_A_ sw, pid, pid, status);
904 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 905 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 906}
746 907
747#endif 908#endif
748 909
749/*****************************************************************************/ 910/*****************************************************************************/
775{ 936{
776 return EV_VERSION_MINOR; 937 return EV_VERSION_MINOR;
777} 938}
778 939
779/* return true if we are running with elevated privileges and should ignore env variables */ 940/* return true if we are running with elevated privileges and should ignore env variables */
780static int 941int inline_size
781enable_secure (void) 942enable_secure (void)
782{ 943{
783#ifdef _WIN32 944#ifdef _WIN32
784 return 0; 945 return 0;
785#else 946#else
821} 982}
822 983
823unsigned int 984unsigned int
824ev_embeddable_backends (void) 985ev_embeddable_backends (void)
825{ 986{
826 return EVBACKEND_EPOLL 987 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 988
828 | EVBACKEND_PORT; 989 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
990 /* please fix it and tell me how to detect the fix */
991 flags &= ~EVBACKEND_EPOLL;
992
993 return flags;
829} 994}
830 995
831unsigned int 996unsigned int
832ev_backend (EV_P) 997ev_backend (EV_P)
833{ 998{
834 return backend; 999 return backend;
835} 1000}
836 1001
837static void 1002unsigned int
1003ev_loop_count (EV_P)
1004{
1005 return loop_count;
1006}
1007
1008void
1009ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1010{
1011 io_blocktime = interval;
1012}
1013
1014void
1015ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1016{
1017 timeout_blocktime = interval;
1018}
1019
1020static void noinline
838loop_init (EV_P_ unsigned int flags) 1021loop_init (EV_P_ unsigned int flags)
839{ 1022{
840 if (!backend) 1023 if (!backend)
841 { 1024 {
842#if EV_USE_MONOTONIC 1025#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 1033 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1034 mn_now = get_clock ();
852 now_floor = mn_now; 1035 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1036 rtmn_diff = ev_rt_now - mn_now;
854 1037
1038 io_blocktime = 0.;
1039 timeout_blocktime = 0.;
1040
1041 /* pid check not overridable via env */
1042#ifndef _WIN32
1043 if (flags & EVFLAG_FORKCHECK)
1044 curpid = getpid ();
1045#endif
1046
855 if (!(flags & EVFLAG_NOENV) 1047 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1048 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1049 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1050 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1051
860 if (!(flags & 0x0000ffffUL)) 1052 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 1053 flags |= ev_recommended_backends ();
862 1054
863 backend = 0; 1055 backend = 0;
1056 backend_fd = -1;
1057#if EV_USE_INOTIFY
1058 fs_fd = -2;
1059#endif
1060
864#if EV_USE_PORT 1061#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1062 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1063#endif
867#if EV_USE_KQUEUE 1064#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1065 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 1077 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1078 ev_set_priority (&sigev, EV_MAXPRI);
882 } 1079 }
883} 1080}
884 1081
885static void 1082static void noinline
886loop_destroy (EV_P) 1083loop_destroy (EV_P)
887{ 1084{
888 int i; 1085 int i;
1086
1087#if EV_USE_INOTIFY
1088 if (fs_fd >= 0)
1089 close (fs_fd);
1090#endif
1091
1092 if (backend_fd >= 0)
1093 close (backend_fd);
889 1094
890#if EV_USE_PORT 1095#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1096 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1097#endif
893#if EV_USE_KQUEUE 1098#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1107#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1108 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1109#endif
905 1110
906 for (i = NUMPRI; i--; ) 1111 for (i = NUMPRI; i--; )
1112 {
907 array_free (pending, [i]); 1113 array_free (pending, [i]);
1114#if EV_IDLE_ENABLE
1115 array_free (idle, [i]);
1116#endif
1117 }
1118
1119 ev_free (anfds); anfdmax = 0;
908 1120
909 /* have to use the microsoft-never-gets-it-right macro */ 1121 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1122 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1123 array_free (timer, EMPTY);
912#if EV_PERIODICS 1124#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1125 array_free (periodic, EMPTY);
914#endif 1126#endif
1127#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1128 array_free (fork, EMPTY);
1129#endif
916 array_free (prepare, EMPTY0); 1130 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1131 array_free (check, EMPTY);
918 1132
919 backend = 0; 1133 backend = 0;
920} 1134}
921 1135
922static void 1136void inline_size infy_fork (EV_P);
1137
1138void inline_size
923loop_fork (EV_P) 1139loop_fork (EV_P)
924{ 1140{
925#if EV_USE_PORT 1141#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1142 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1143#endif
928#if EV_USE_KQUEUE 1144#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1145 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1146#endif
931#if EV_USE_EPOLL 1147#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1148 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1149#endif
1150#if EV_USE_INOTIFY
1151 infy_fork (EV_A);
933#endif 1152#endif
934 1153
935 if (ev_is_active (&sigev)) 1154 if (ev_is_active (&sigev))
936 { 1155 {
937 /* default loop */ 1156 /* default loop */
1053 postfork = 1; 1272 postfork = 1;
1054} 1273}
1055 1274
1056/*****************************************************************************/ 1275/*****************************************************************************/
1057 1276
1058static int 1277void
1059any_pending (EV_P) 1278ev_invoke (EV_P_ void *w, int revents)
1060{ 1279{
1061 int pri; 1280 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1281}
1069 1282
1070inline void 1283void inline_speed
1071call_pending (EV_P) 1284call_pending (EV_P)
1072{ 1285{
1073 int pri; 1286 int pri;
1074 1287
1075 for (pri = NUMPRI; pri--; ) 1288 for (pri = NUMPRI; pri--; )
1077 { 1290 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1291 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1292
1080 if (expect_true (p->w)) 1293 if (expect_true (p->w))
1081 { 1294 {
1295 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1296
1082 p->w->pending = 0; 1297 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1298 EV_CB_INVOKE (p->w, p->events);
1084 } 1299 }
1085 } 1300 }
1086} 1301}
1087 1302
1088inline void 1303void inline_size
1089timers_reify (EV_P) 1304timers_reify (EV_P)
1090{ 1305{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1306 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1307 {
1093 struct ev_timer *w = timers [0]; 1308 ev_timer *w = (ev_timer *)timers [0];
1094 1309
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1310 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1311
1097 /* first reschedule or stop timer */ 1312 /* first reschedule or stop timer */
1098 if (w->repeat) 1313 if (w->repeat)
1099 { 1314 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1315 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1316
1102 ((WT)w)->at += w->repeat; 1317 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1318 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1319 ((WT)w)->at = mn_now;
1105 1320
1106 downheap ((WT *)timers, timercnt, 0); 1321 downheap (timers, timercnt, 0);
1107 } 1322 }
1108 else 1323 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1324 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1325
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1326 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1327 }
1113} 1328}
1114 1329
1115#if EV_PERIODICS 1330#if EV_PERIODIC_ENABLE
1116inline void 1331void inline_size
1117periodics_reify (EV_P) 1332periodics_reify (EV_P)
1118{ 1333{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1334 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1335 {
1121 struct ev_periodic *w = periodics [0]; 1336 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1337
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1338 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1339
1125 /* first reschedule or stop timer */ 1340 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1341 if (w->reschedule_cb)
1127 { 1342 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1343 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1344 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1345 downheap (periodics, periodiccnt, 0);
1131 } 1346 }
1132 else if (w->interval) 1347 else if (w->interval)
1133 { 1348 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1349 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1351 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1352 downheap (periodics, periodiccnt, 0);
1137 } 1353 }
1138 else 1354 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1355 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1356
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1357 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1358 }
1143} 1359}
1144 1360
1145static void 1361static void noinline
1146periodics_reschedule (EV_P) 1362periodics_reschedule (EV_P)
1147{ 1363{
1148 int i; 1364 int i;
1149 1365
1150 /* adjust periodics after time jump */ 1366 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1367 for (i = 0; i < periodiccnt; ++i)
1152 { 1368 {
1153 struct ev_periodic *w = periodics [i]; 1369 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1370
1155 if (w->reschedule_cb) 1371 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1372 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1373 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1374 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1375 }
1160 1376
1161 /* now rebuild the heap */ 1377 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1378 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1379 downheap (periodics, periodiccnt, i);
1164} 1380}
1165#endif 1381#endif
1166 1382
1167inline int 1383#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1384void inline_size
1385idle_reify (EV_P)
1169{ 1386{
1387 if (expect_false (idleall))
1388 {
1389 int pri;
1390
1391 for (pri = NUMPRI; pri--; )
1392 {
1393 if (pendingcnt [pri])
1394 break;
1395
1396 if (idlecnt [pri])
1397 {
1398 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1399 break;
1400 }
1401 }
1402 }
1403}
1404#endif
1405
1406void inline_speed
1407time_update (EV_P_ ev_tstamp max_block)
1408{
1409 int i;
1410
1411#if EV_USE_MONOTONIC
1412 if (expect_true (have_monotonic))
1413 {
1414 ev_tstamp odiff = rtmn_diff;
1415
1170 mn_now = get_clock (); 1416 mn_now = get_clock ();
1171 1417
1418 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1419 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1420 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1421 {
1174 ev_rt_now = rtmn_diff + mn_now; 1422 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1423 return;
1176 } 1424 }
1177 else 1425
1178 {
1179 now_floor = mn_now; 1426 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1427 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1428
1185inline void 1429 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1430 * on the choice of "4": one iteration isn't enough,
1187{ 1431 * in case we get preempted during the calls to
1188 int i; 1432 * ev_time and get_clock. a second call is almost guaranteed
1189 1433 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1434 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1435 * in the unlikely event of having been preempted here.
1192 { 1436 */
1193 if (time_update_monotonic (EV_A)) 1437 for (i = 4; --i; )
1194 { 1438 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1439 rtmn_diff = ev_rt_now - mn_now;
1200 1440
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1441 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1442 return; /* all is well */
1203 1443
1204 ev_rt_now = ev_time (); 1444 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1445 mn_now = get_clock ();
1206 now_floor = mn_now; 1446 now_floor = mn_now;
1207 } 1447 }
1208 1448
1209# if EV_PERIODICS 1449# if EV_PERIODIC_ENABLE
1450 periodics_reschedule (EV_A);
1451# endif
1452 /* no timer adjustment, as the monotonic clock doesn't jump */
1453 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454 }
1455 else
1456#endif
1457 {
1458 ev_rt_now = ev_time ();
1459
1460 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1461 {
1462#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1463 periodics_reschedule (EV_A);
1211# endif 1464#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1465 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1466 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1467 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1468 }
1231 1469
1232 mn_now = ev_rt_now; 1470 mn_now = ev_rt_now;
1252{ 1490{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1491 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE 1492 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1493 : EVUNLOOP_CANCEL;
1256 1494
1257 while (activecnt) 1495 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1496
1497 do
1258 { 1498 {
1499#ifndef _WIN32
1500 if (expect_false (curpid)) /* penalise the forking check even more */
1501 if (expect_false (getpid () != curpid))
1502 {
1503 curpid = getpid ();
1504 postfork = 1;
1505 }
1506#endif
1507
1508#if EV_FORK_ENABLE
1509 /* we might have forked, so queue fork handlers */
1510 if (expect_false (postfork))
1511 if (forkcnt)
1512 {
1513 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1514 call_pending (EV_A);
1515 }
1516#endif
1517
1259 /* queue check watchers (and execute them) */ 1518 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1519 if (expect_false (preparecnt))
1261 { 1520 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1521 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1522 call_pending (EV_A);
1264 } 1523 }
1265 1524
1525 if (expect_false (!activecnt))
1526 break;
1527
1266 /* we might have forked, so reify kernel state if necessary */ 1528 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1529 if (expect_false (postfork))
1268 loop_fork (EV_A); 1530 loop_fork (EV_A);
1269 1531
1270 /* update fd-related kernel structures */ 1532 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1533 fd_reify (EV_A);
1272 1534
1273 /* calculate blocking time */ 1535 /* calculate blocking time */
1274 { 1536 {
1275 double block; 1537 ev_tstamp waittime = 0.;
1538 ev_tstamp sleeptime = 0.;
1276 1539
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1540 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1541 {
1281 /* update time to cancel out callback processing overhead */ 1542 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1543 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1544
1292 block = MAX_BLOCKTIME; 1545 waittime = MAX_BLOCKTIME;
1293 1546
1294 if (timercnt) 1547 if (timercnt)
1295 { 1548 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1549 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1550 if (waittime > to) waittime = to;
1298 } 1551 }
1299 1552
1300#if EV_PERIODICS 1553#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1554 if (periodiccnt)
1302 { 1555 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1556 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1557 if (waittime > to) waittime = to;
1305 } 1558 }
1306#endif 1559#endif
1307 1560
1308 if (expect_false (block < 0.)) block = 0.; 1561 if (expect_false (waittime < timeout_blocktime))
1562 waittime = timeout_blocktime;
1563
1564 sleeptime = waittime - backend_fudge;
1565
1566 if (expect_true (sleeptime > io_blocktime))
1567 sleeptime = io_blocktime;
1568
1569 if (sleeptime)
1570 {
1571 ev_sleep (sleeptime);
1572 waittime -= sleeptime;
1573 }
1309 } 1574 }
1310 1575
1576 ++loop_count;
1311 backend_poll (EV_A_ block); 1577 backend_poll (EV_A_ waittime);
1578
1579 /* update ev_rt_now, do magic */
1580 time_update (EV_A_ waittime + sleeptime);
1312 } 1581 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1582
1317 /* queue pending timers and reschedule them */ 1583 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1584 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1585#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1586 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1587#endif
1322 1588
1589#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1590 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1591 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1592#endif
1326 1593
1327 /* queue check watchers, to be executed first */ 1594 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1595 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1596 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1597
1331 call_pending (EV_A); 1598 call_pending (EV_A);
1332 1599
1333 if (expect_false (loop_done))
1334 break;
1335 } 1600 }
1601 while (expect_true (activecnt && !loop_done));
1336 1602
1337 if (loop_done == EVUNLOOP_ONE) 1603 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1604 loop_done = EVUNLOOP_CANCEL;
1339} 1605}
1340 1606
1344 loop_done = how; 1610 loop_done = how;
1345} 1611}
1346 1612
1347/*****************************************************************************/ 1613/*****************************************************************************/
1348 1614
1349inline void 1615void inline_size
1350wlist_add (WL *head, WL elem) 1616wlist_add (WL *head, WL elem)
1351{ 1617{
1352 elem->next = *head; 1618 elem->next = *head;
1353 *head = elem; 1619 *head = elem;
1354} 1620}
1355 1621
1356inline void 1622void inline_size
1357wlist_del (WL *head, WL elem) 1623wlist_del (WL *head, WL elem)
1358{ 1624{
1359 while (*head) 1625 while (*head)
1360 { 1626 {
1361 if (*head == elem) 1627 if (*head == elem)
1366 1632
1367 head = &(*head)->next; 1633 head = &(*head)->next;
1368 } 1634 }
1369} 1635}
1370 1636
1371inline void 1637void inline_speed
1372ev_clear_pending (EV_P_ W w) 1638clear_pending (EV_P_ W w)
1373{ 1639{
1374 if (w->pending) 1640 if (w->pending)
1375 { 1641 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1642 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1643 w->pending = 0;
1378 } 1644 }
1379} 1645}
1380 1646
1381inline void 1647int
1648ev_clear_pending (EV_P_ void *w)
1649{
1650 W w_ = (W)w;
1651 int pending = w_->pending;
1652
1653 if (expect_true (pending))
1654 {
1655 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1656 w_->pending = 0;
1657 p->w = 0;
1658 return p->events;
1659 }
1660 else
1661 return 0;
1662}
1663
1664void inline_size
1665pri_adjust (EV_P_ W w)
1666{
1667 int pri = w->priority;
1668 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1669 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1670 w->priority = pri;
1671}
1672
1673void inline_speed
1382ev_start (EV_P_ W w, int active) 1674ev_start (EV_P_ W w, int active)
1383{ 1675{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1676 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1677 w->active = active;
1388 ev_ref (EV_A); 1678 ev_ref (EV_A);
1389} 1679}
1390 1680
1391inline void 1681void inline_size
1392ev_stop (EV_P_ W w) 1682ev_stop (EV_P_ W w)
1393{ 1683{
1394 ev_unref (EV_A); 1684 ev_unref (EV_A);
1395 w->active = 0; 1685 w->active = 0;
1396} 1686}
1397 1687
1398/*****************************************************************************/ 1688/*****************************************************************************/
1399 1689
1400void 1690void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1691ev_io_start (EV_P_ ev_io *w)
1402{ 1692{
1403 int fd = w->fd; 1693 int fd = w->fd;
1404 1694
1405 if (expect_false (ev_is_active (w))) 1695 if (expect_false (ev_is_active (w)))
1406 return; 1696 return;
1407 1697
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1698 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1699
1410 ev_start (EV_A_ (W)w, 1); 1700 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1701 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1702 wlist_add (&anfds[fd].head, (WL)w);
1413 1703
1414 fd_change (EV_A_ fd); 1704 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1705 w->events &= ~EV_IOFDSET;
1415} 1706}
1416 1707
1417void 1708void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1709ev_io_stop (EV_P_ ev_io *w)
1419{ 1710{
1420 ev_clear_pending (EV_A_ (W)w); 1711 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1712 if (expect_false (!ev_is_active (w)))
1422 return; 1713 return;
1423 1714
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1715 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1716
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1717 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1718 ev_stop (EV_A_ (W)w);
1428 1719
1429 fd_change (EV_A_ w->fd); 1720 fd_change (EV_A_ w->fd, 1);
1430} 1721}
1431 1722
1432void 1723void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1724ev_timer_start (EV_P_ ev_timer *w)
1434{ 1725{
1435 if (expect_false (ev_is_active (w))) 1726 if (expect_false (ev_is_active (w)))
1436 return; 1727 return;
1437 1728
1438 ((WT)w)->at += mn_now; 1729 ((WT)w)->at += mn_now;
1439 1730
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1731 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1732
1442 ev_start (EV_A_ (W)w, ++timercnt); 1733 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1734 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1735 timers [timercnt - 1] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1736 upheap (timers, timercnt - 1);
1446 1737
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1738 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1739}
1449 1740
1450void 1741void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1742ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1743{
1453 ev_clear_pending (EV_A_ (W)w); 1744 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1745 if (expect_false (!ev_is_active (w)))
1455 return; 1746 return;
1456 1747
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1748 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1458 1749
1750 {
1751 int active = ((W)w)->active;
1752
1459 if (expect_true (((W)w)->active < timercnt--)) 1753 if (expect_true (--active < --timercnt))
1460 { 1754 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1755 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1756 adjustheap (timers, timercnt, active);
1463 } 1757 }
1758 }
1464 1759
1465 ((WT)w)->at -= mn_now; 1760 ((WT)w)->at -= mn_now;
1466 1761
1467 ev_stop (EV_A_ (W)w); 1762 ev_stop (EV_A_ (W)w);
1468} 1763}
1469 1764
1470void 1765void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1766ev_timer_again (EV_P_ ev_timer *w)
1472{ 1767{
1473 if (ev_is_active (w)) 1768 if (ev_is_active (w))
1474 { 1769 {
1475 if (w->repeat) 1770 if (w->repeat)
1476 { 1771 {
1477 ((WT)w)->at = mn_now + w->repeat; 1772 ((WT)w)->at = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1773 adjustheap (timers, timercnt, ((W)w)->active - 1);
1479 } 1774 }
1480 else 1775 else
1481 ev_timer_stop (EV_A_ w); 1776 ev_timer_stop (EV_A_ w);
1482 } 1777 }
1483 else if (w->repeat) 1778 else if (w->repeat)
1485 w->at = w->repeat; 1780 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1781 ev_timer_start (EV_A_ w);
1487 } 1782 }
1488} 1783}
1489 1784
1490#if EV_PERIODICS 1785#if EV_PERIODIC_ENABLE
1491void 1786void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1787ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1788{
1494 if (expect_false (ev_is_active (w))) 1789 if (expect_false (ev_is_active (w)))
1495 return; 1790 return;
1496 1791
1497 if (w->reschedule_cb) 1792 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1793 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1794 else if (w->interval)
1500 { 1795 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1796 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1797 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1798 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1799 }
1800 else
1801 ((WT)w)->at = w->offset;
1505 1802
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1803 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1804 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1805 periodics [periodiccnt - 1] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1806 upheap (periodics, periodiccnt - 1);
1510 1807
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1808 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1809}
1513 1810
1514void 1811void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1812ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1813{
1517 ev_clear_pending (EV_A_ (W)w); 1814 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1815 if (expect_false (!ev_is_active (w)))
1519 return; 1816 return;
1520 1817
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1818 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1522 1819
1820 {
1821 int active = ((W)w)->active;
1822
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1823 if (expect_true (--active < --periodiccnt))
1524 { 1824 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1825 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1826 adjustheap (periodics, periodiccnt, active);
1527 } 1827 }
1828 }
1528 1829
1529 ev_stop (EV_A_ (W)w); 1830 ev_stop (EV_A_ (W)w);
1530} 1831}
1531 1832
1532void 1833void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1834ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1835{
1535 /* TODO: use adjustheap and recalculation */ 1836 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1837 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1838 ev_periodic_start (EV_A_ w);
1538} 1839}
1539#endif 1840#endif
1540 1841
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1842#ifndef SA_RESTART
1608# define SA_RESTART 0 1843# define SA_RESTART 0
1609#endif 1844#endif
1610 1845
1611void 1846void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 1847ev_signal_start (EV_P_ ev_signal *w)
1613{ 1848{
1614#if EV_MULTIPLICITY 1849#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1850 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1851#endif
1617 if (expect_false (ev_is_active (w))) 1852 if (expect_false (ev_is_active (w)))
1618 return; 1853 return;
1619 1854
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1855 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 1856
1857 {
1858#ifndef _WIN32
1859 sigset_t full, prev;
1860 sigfillset (&full);
1861 sigprocmask (SIG_SETMASK, &full, &prev);
1862#endif
1863
1864 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1865
1866#ifndef _WIN32
1867 sigprocmask (SIG_SETMASK, &prev, 0);
1868#endif
1869 }
1870
1622 ev_start (EV_A_ (W)w, 1); 1871 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1872 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 1873
1626 if (!((WL)w)->next) 1874 if (!((WL)w)->next)
1627 { 1875 {
1628#if _WIN32 1876#if _WIN32
1629 signal (w->signum, sighandler); 1877 signal (w->signum, sighandler);
1635 sigaction (w->signum, &sa, 0); 1883 sigaction (w->signum, &sa, 0);
1636#endif 1884#endif
1637 } 1885 }
1638} 1886}
1639 1887
1640void 1888void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1889ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1890{
1643 ev_clear_pending (EV_A_ (W)w); 1891 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1892 if (expect_false (!ev_is_active (w)))
1645 return; 1893 return;
1646 1894
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1895 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 1896 ev_stop (EV_A_ (W)w);
1649 1897
1650 if (!signals [w->signum - 1].head) 1898 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1899 signal (w->signum, SIG_DFL);
1652} 1900}
1653 1901
1654void 1902void
1655ev_child_start (EV_P_ struct ev_child *w) 1903ev_child_start (EV_P_ ev_child *w)
1656{ 1904{
1657#if EV_MULTIPLICITY 1905#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1906 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1907#endif
1660 if (expect_false (ev_is_active (w))) 1908 if (expect_false (ev_is_active (w)))
1661 return; 1909 return;
1662 1910
1663 ev_start (EV_A_ (W)w, 1); 1911 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1912 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1913}
1666 1914
1667void 1915void
1668ev_child_stop (EV_P_ struct ev_child *w) 1916ev_child_stop (EV_P_ ev_child *w)
1669{ 1917{
1670 ev_clear_pending (EV_A_ (W)w); 1918 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1919 if (expect_false (!ev_is_active (w)))
1672 return; 1920 return;
1673 1921
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1922 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1923 ev_stop (EV_A_ (W)w);
1676} 1924}
1677 1925
1678#if EV_MULTIPLICITY 1926#if EV_STAT_ENABLE
1927
1928# ifdef _WIN32
1929# undef lstat
1930# define lstat(a,b) _stati64 (a,b)
1931# endif
1932
1933#define DEF_STAT_INTERVAL 5.0074891
1934#define MIN_STAT_INTERVAL 0.1074891
1935
1936static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1937
1938#if EV_USE_INOTIFY
1939# define EV_INOTIFY_BUFSIZE 8192
1940
1941static void noinline
1942infy_add (EV_P_ ev_stat *w)
1943{
1944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1945
1946 if (w->wd < 0)
1947 {
1948 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1949
1950 /* monitor some parent directory for speedup hints */
1951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1952 {
1953 char path [4096];
1954 strcpy (path, w->path);
1955
1956 do
1957 {
1958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1960
1961 char *pend = strrchr (path, '/');
1962
1963 if (!pend)
1964 break; /* whoops, no '/', complain to your admin */
1965
1966 *pend = 0;
1967 w->wd = inotify_add_watch (fs_fd, path, mask);
1968 }
1969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1970 }
1971 }
1972 else
1973 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1974
1975 if (w->wd >= 0)
1976 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1977}
1978
1979static void noinline
1980infy_del (EV_P_ ev_stat *w)
1981{
1982 int slot;
1983 int wd = w->wd;
1984
1985 if (wd < 0)
1986 return;
1987
1988 w->wd = -2;
1989 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1990 wlist_del (&fs_hash [slot].head, (WL)w);
1991
1992 /* remove this watcher, if others are watching it, they will rearm */
1993 inotify_rm_watch (fs_fd, wd);
1994}
1995
1996static void noinline
1997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1998{
1999 if (slot < 0)
2000 /* overflow, need to check for all hahs slots */
2001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2002 infy_wd (EV_A_ slot, wd, ev);
2003 else
2004 {
2005 WL w_;
2006
2007 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2008 {
2009 ev_stat *w = (ev_stat *)w_;
2010 w_ = w_->next; /* lets us remove this watcher and all before it */
2011
2012 if (w->wd == wd || wd == -1)
2013 {
2014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2015 {
2016 w->wd = -1;
2017 infy_add (EV_A_ w); /* re-add, no matter what */
2018 }
2019
2020 stat_timer_cb (EV_A_ &w->timer, 0);
2021 }
2022 }
2023 }
2024}
2025
1679static void 2026static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2027infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2028{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2029 char buf [EV_INOTIFY_BUFSIZE];
2030 struct inotify_event *ev = (struct inotify_event *)buf;
2031 int ofs;
2032 int len = read (fs_fd, buf, sizeof (buf));
1683 2033
2034 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2036}
2037
2038void inline_size
2039infy_init (EV_P)
2040{
2041 if (fs_fd != -2)
2042 return;
2043
2044 fs_fd = inotify_init ();
2045
2046 if (fs_fd >= 0)
2047 {
2048 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2049 ev_set_priority (&fs_w, EV_MAXPRI);
2050 ev_io_start (EV_A_ &fs_w);
2051 }
2052}
2053
2054void inline_size
2055infy_fork (EV_P)
2056{
2057 int slot;
2058
2059 if (fs_fd < 0)
2060 return;
2061
2062 close (fs_fd);
2063 fs_fd = inotify_init ();
2064
2065 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2066 {
2067 WL w_ = fs_hash [slot].head;
2068 fs_hash [slot].head = 0;
2069
2070 while (w_)
2071 {
2072 ev_stat *w = (ev_stat *)w_;
2073 w_ = w_->next; /* lets us add this watcher */
2074
2075 w->wd = -1;
2076
2077 if (fs_fd >= 0)
2078 infy_add (EV_A_ w); /* re-add, no matter what */
2079 else
2080 ev_timer_start (EV_A_ &w->timer);
2081 }
2082
2083 }
2084}
2085
2086#endif
2087
2088void
2089ev_stat_stat (EV_P_ ev_stat *w)
2090{
2091 if (lstat (w->path, &w->attr) < 0)
2092 w->attr.st_nlink = 0;
2093 else if (!w->attr.st_nlink)
2094 w->attr.st_nlink = 1;
2095}
2096
2097static void noinline
2098stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2099{
2100 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2101
2102 /* we copy this here each the time so that */
2103 /* prev has the old value when the callback gets invoked */
2104 w->prev = w->attr;
2105 ev_stat_stat (EV_A_ w);
2106
2107 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2108 if (
2109 w->prev.st_dev != w->attr.st_dev
2110 || w->prev.st_ino != w->attr.st_ino
2111 || w->prev.st_mode != w->attr.st_mode
2112 || w->prev.st_nlink != w->attr.st_nlink
2113 || w->prev.st_uid != w->attr.st_uid
2114 || w->prev.st_gid != w->attr.st_gid
2115 || w->prev.st_rdev != w->attr.st_rdev
2116 || w->prev.st_size != w->attr.st_size
2117 || w->prev.st_atime != w->attr.st_atime
2118 || w->prev.st_mtime != w->attr.st_mtime
2119 || w->prev.st_ctime != w->attr.st_ctime
2120 ) {
2121 #if EV_USE_INOTIFY
2122 infy_del (EV_A_ w);
2123 infy_add (EV_A_ w);
2124 ev_stat_stat (EV_A_ w); /* avoid race... */
2125 #endif
2126
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2127 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2128 }
1686} 2129}
1687 2130
1688void 2131void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2132ev_stat_start (EV_P_ ev_stat *w)
1690{ 2133{
1691 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1692 return; 2135 return;
1693 2136
2137 /* since we use memcmp, we need to clear any padding data etc. */
2138 memset (&w->prev, 0, sizeof (ev_statdata));
2139 memset (&w->attr, 0, sizeof (ev_statdata));
2140
2141 ev_stat_stat (EV_A_ w);
2142
2143 if (w->interval < MIN_STAT_INTERVAL)
2144 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2145
2146 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2147 ev_set_priority (&w->timer, ev_priority (w));
2148
2149#if EV_USE_INOTIFY
2150 infy_init (EV_A);
2151
2152 if (fs_fd >= 0)
2153 infy_add (EV_A_ w);
2154 else
2155#endif
2156 ev_timer_start (EV_A_ &w->timer);
2157
2158 ev_start (EV_A_ (W)w, 1);
2159}
2160
2161void
2162ev_stat_stop (EV_P_ ev_stat *w)
2163{
2164 clear_pending (EV_A_ (W)w);
2165 if (expect_false (!ev_is_active (w)))
2166 return;
2167
2168#if EV_USE_INOTIFY
2169 infy_del (EV_A_ w);
2170#endif
2171 ev_timer_stop (EV_A_ &w->timer);
2172
2173 ev_stop (EV_A_ (W)w);
2174}
2175#endif
2176
2177#if EV_IDLE_ENABLE
2178void
2179ev_idle_start (EV_P_ ev_idle *w)
2180{
2181 if (expect_false (ev_is_active (w)))
2182 return;
2183
2184 pri_adjust (EV_A_ (W)w);
2185
1694 { 2186 {
2187 int active = ++idlecnt [ABSPRI (w)];
2188
2189 ++idleall;
2190 ev_start (EV_A_ (W)w, active);
2191
2192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2193 idles [ABSPRI (w)][active - 1] = w;
2194 }
2195}
2196
2197void
2198ev_idle_stop (EV_P_ ev_idle *w)
2199{
2200 clear_pending (EV_A_ (W)w);
2201 if (expect_false (!ev_is_active (w)))
2202 return;
2203
2204 {
2205 int active = ((W)w)->active;
2206
2207 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2208 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2209
2210 ev_stop (EV_A_ (W)w);
2211 --idleall;
2212 }
2213}
2214#endif
2215
2216void
2217ev_prepare_start (EV_P_ ev_prepare *w)
2218{
2219 if (expect_false (ev_is_active (w)))
2220 return;
2221
2222 ev_start (EV_A_ (W)w, ++preparecnt);
2223 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2224 prepares [preparecnt - 1] = w;
2225}
2226
2227void
2228ev_prepare_stop (EV_P_ ev_prepare *w)
2229{
2230 clear_pending (EV_A_ (W)w);
2231 if (expect_false (!ev_is_active (w)))
2232 return;
2233
2234 {
2235 int active = ((W)w)->active;
2236 prepares [active - 1] = prepares [--preparecnt];
2237 ((W)prepares [active - 1])->active = active;
2238 }
2239
2240 ev_stop (EV_A_ (W)w);
2241}
2242
2243void
2244ev_check_start (EV_P_ ev_check *w)
2245{
2246 if (expect_false (ev_is_active (w)))
2247 return;
2248
2249 ev_start (EV_A_ (W)w, ++checkcnt);
2250 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2251 checks [checkcnt - 1] = w;
2252}
2253
2254void
2255ev_check_stop (EV_P_ ev_check *w)
2256{
2257 clear_pending (EV_A_ (W)w);
2258 if (expect_false (!ev_is_active (w)))
2259 return;
2260
2261 {
2262 int active = ((W)w)->active;
2263 checks [active - 1] = checks [--checkcnt];
2264 ((W)checks [active - 1])->active = active;
2265 }
2266
2267 ev_stop (EV_A_ (W)w);
2268}
2269
2270#if EV_EMBED_ENABLE
2271void noinline
2272ev_embed_sweep (EV_P_ ev_embed *w)
2273{
2274 ev_loop (w->other, EVLOOP_NONBLOCK);
2275}
2276
2277static void
2278embed_io_cb (EV_P_ ev_io *io, int revents)
2279{
2280 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2281
2282 if (ev_cb (w))
2283 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2284 else
2285 ev_loop (w->other, EVLOOP_NONBLOCK);
2286}
2287
2288static void
2289embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2290{
2291 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2292
2293 {
1695 struct ev_loop *loop = w->loop; 2294 struct ev_loop *loop = w->other;
2295
2296 while (fdchangecnt)
2297 {
2298 fd_reify (EV_A);
2299 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2300 }
2301 }
2302}
2303
2304#if 0
2305static void
2306embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2307{
2308 ev_idle_stop (EV_A_ idle);
2309}
2310#endif
2311
2312void
2313ev_embed_start (EV_P_ ev_embed *w)
2314{
2315 if (expect_false (ev_is_active (w)))
2316 return;
2317
2318 {
2319 struct ev_loop *loop = w->other;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2320 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2321 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1698 } 2322 }
1699 2323
2324 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2325 ev_io_start (EV_A_ &w->io);
2326
2327 ev_prepare_init (&w->prepare, embed_prepare_cb);
2328 ev_set_priority (&w->prepare, EV_MINPRI);
2329 ev_prepare_start (EV_A_ &w->prepare);
2330
2331 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2332
1701 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
1702} 2334}
1703 2335
1704void 2336void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2337ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2338{
1707 ev_clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
1709 return; 2341 return;
1710 2342
1711 ev_io_stop (EV_A_ &w->io); 2343 ev_io_stop (EV_A_ &w->io);
2344 ev_prepare_stop (EV_A_ &w->prepare);
2345
1712 ev_stop (EV_A_ (W)w); 2346 ev_stop (EV_A_ (W)w);
1713} 2347}
1714#endif 2348#endif
1715 2349
2350#if EV_FORK_ENABLE
2351void
2352ev_fork_start (EV_P_ ev_fork *w)
2353{
2354 if (expect_false (ev_is_active (w)))
2355 return;
2356
2357 ev_start (EV_A_ (W)w, ++forkcnt);
2358 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2359 forks [forkcnt - 1] = w;
2360}
2361
2362void
2363ev_fork_stop (EV_P_ ev_fork *w)
2364{
2365 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w)))
2367 return;
2368
2369 {
2370 int active = ((W)w)->active;
2371 forks [active - 1] = forks [--forkcnt];
2372 ((W)forks [active - 1])->active = active;
2373 }
2374
2375 ev_stop (EV_A_ (W)w);
2376}
2377#endif
2378
1716/*****************************************************************************/ 2379/*****************************************************************************/
1717 2380
1718struct ev_once 2381struct ev_once
1719{ 2382{
1720 struct ev_io io; 2383 ev_io io;
1721 struct ev_timer to; 2384 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2385 void (*cb)(int revents, void *arg);
1723 void *arg; 2386 void *arg;
1724}; 2387};
1725 2388
1726static void 2389static void
1735 2398
1736 cb (revents, arg); 2399 cb (revents, arg);
1737} 2400}
1738 2401
1739static void 2402static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2403once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2404{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2405 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2406}
1744 2407
1745static void 2408static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2409once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2410{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2411 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2412}
1750 2413
1751void 2414void
1775 ev_timer_set (&once->to, timeout, 0.); 2438 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2439 ev_timer_start (EV_A_ &once->to);
1777 } 2440 }
1778} 2441}
1779 2442
2443#if EV_MULTIPLICITY
2444 #include "ev_wrap.h"
2445#endif
2446
1780#ifdef __cplusplus 2447#ifdef __cplusplus
1781} 2448}
1782#endif 2449#endif
1783 2450

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines