ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
212 338
213#ifdef _WIN32 339#ifdef _WIN32
214# include "ev_win32.c" 340# include "ev_win32.c"
215#endif 341#endif
216 342
217/*****************************************************************************/ 343/*****************************************************************************/
218 344
219static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
220 346
347void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 349{
223 syserr_cb = cb; 350 syserr_cb = cb;
224} 351}
225 352
226static void 353static void noinline
227syserr (const char *msg) 354syserr (const char *msg)
228{ 355{
229 if (!msg) 356 if (!msg)
230 msg = "(libev) system error"; 357 msg = "(libev) system error";
231 358
236 perror (msg); 363 perror (msg);
237 abort (); 364 abort ();
238 } 365 }
239} 366}
240 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
241static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 384
385void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 387{
245 alloc = cb; 388 alloc = cb;
246} 389}
247 390
248static void * 391inline_speed void *
249ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
250{ 393{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
252 395
253 if (!ptr && size) 396 if (!ptr && size)
254 { 397 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 399 abort ();
277typedef struct 420typedef struct
278{ 421{
279 W w; 422 W w;
280 int events; 423 int events;
281} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
282 432
283#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
284 434
285 struct ev_loop 435 struct ev_loop
286 { 436 {
320 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 472#endif
323} 473}
324 474
325inline ev_tstamp 475ev_tstamp inline_size
326get_clock (void) 476get_clock (void)
327{ 477{
328#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
330 { 480 {
343{ 493{
344 return ev_rt_now; 494 return ev_rt_now;
345} 495}
346#endif 496#endif
347 497
348#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
349 554
350#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
352 { \ 557 { \
353 int newcnt = cur; \ 558 int ocur_ = (cur); \
354 do \ 559 (base) = (type *)array_realloc \
355 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 562 }
364 563
564#if 0
365#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 567 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 571 }
572#endif
372 573
373#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 576
376/*****************************************************************************/ 577/*****************************************************************************/
377 578
378static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
379anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
380{ 609{
381 while (count--) 610 while (count--)
382 { 611 {
383 base->head = 0; 612 base->head = 0;
386 615
387 ++base; 616 ++base;
388 } 617 }
389} 618}
390 619
391void 620void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
422{ 622{
423 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 624 ev_io *w;
425 625
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 627 {
428 int ev = w->events & revents; 628 int ev = w->events & revents;
429 629
430 if (ev) 630 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
433} 633}
434 634
435void 635void
436ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 637{
638 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
439} 640}
440 641
441/*****************************************************************************/ 642void inline_size
442
443inline void
444fd_reify (EV_P) 643fd_reify (EV_P)
445{ 644{
446 int i; 645 int i;
447 646
448 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
449 { 648 {
450 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 651 ev_io *w;
453 652
454 int events = 0; 653 unsigned char events = 0;
455 654
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 656 events |= (unsigned char)w->events;
458 657
459#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
460 if (events) 659 if (events)
461 { 660 {
462 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
463 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 668 }
466#endif 669#endif
467 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
468 anfd->reify = 0; 675 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
472 } 681 }
473 682
474 fdchangecnt = 0; 683 fdchangecnt = 0;
475} 684}
476 685
477static void 686void inline_size
478fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
479{ 688{
480 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
484 691
692 if (expect_true (!reify))
693 {
485 ++fdchangecnt; 694 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
488} 698}
489 699
490static void 700void inline_speed
491fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
492{ 702{
493 struct ev_io *w; 703 ev_io *w;
494 704
495 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
496 { 706 {
497 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 709 }
500} 710}
501 711
502inline int 712int inline_size
503fd_valid (int fd) 713fd_valid (int fd)
504{ 714{
505#ifdef _WIN32 715#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 716 return _get_osfhandle (fd) != -1;
507#else 717#else
508 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
509#endif 719#endif
510} 720}
511 721
512/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
513static void 723static void noinline
514fd_ebadf (EV_P) 724fd_ebadf (EV_P)
515{ 725{
516 int fd; 726 int fd;
517 727
518 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
522} 732}
523 733
524/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 735static void noinline
526fd_enomem (EV_P) 736fd_enomem (EV_P)
527{ 737{
528 int fd; 738 int fd;
529 739
530 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
534 return; 744 return;
535 } 745 }
536} 746}
537 747
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 749static void noinline
540fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
541{ 751{
542 int fd; 752 int fd;
543 753
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 755 if (anfds [fd].events)
547 { 756 {
548 anfds [fd].events = 0; 757 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 759 }
551} 760}
552 761
553/*****************************************************************************/ 762/*****************************************************************************/
554 763
555static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define HEAP0 3 /* index of first element in heap */
774
775/* towards the root */
776void inline_speed
556upheap (WT *heap, int k) 777upheap (WT *heap, int k)
557{ 778{
558 WT w = heap [k]; 779 WT w = heap [k];
559 780
560 while (k && heap [k >> 1]->at > w->at) 781 for (;;)
561 { 782 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
562 heap [k] = heap [k >> 1]; 788 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 789 ev_active (heap [k]) = k;
564 k >>= 1; 790 k = p;
565 } 791 }
566 792
567 heap [k] = w; 793 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 794 ev_active (heap [k]) = k;
569
570} 795}
571 796
572static void 797/* away from the root */
798void inline_speed
573downheap (WT *heap, int N, int k) 799downheap (WT *heap, int N, int k)
574{ 800{
575 WT w = heap [k]; 801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
576 803
577 while (k < (N >> 1)) 804 for (;;)
578 { 805 {
579 int j = k << 1; 806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
580 809
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 810 // find minimum child
811 if (expect_true (pos +3 < E))
582 ++j; 812 {
813 (minpos = pos + 0), (minat = (*minpos)->at);
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
817 }
818 else
819 {
820 if (pos >= E)
821 break;
583 822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
584 if (w->at <= heap [j]->at) 829 if (w->at <= minat)
585 break; 830 break;
586 831
587 heap [k] = heap [j]; 832 ev_active (*minpos) = k;
588 ((W)heap [k])->active = k + 1; 833 heap [k] = *minpos;
589 k = j; 834
835 k = minpos - heap;
590 } 836 }
591 837
592 heap [k] = w; 838 heap [k] = w;
839 ev_active (heap [k]) = k;
840}
841
842#else // 4HEAP
843
844#define HEAP0 1
845
846/* towards the root */
847void inline_speed
848upheap (WT *heap, int k)
849{
850 WT w = heap [k];
851
852 for (;;)
853 {
854 int p = k >> 1;
855
856 /* maybe we could use a dummy element at heap [0]? */
857 if (!p || heap [p]->at <= w->at)
858 break;
859
860 heap [k] = heap [p];
861 ev_active (heap [k]) = k;
862 k = p;
863 }
864
865 heap [k] = w;
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break;
881
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c];
593 ((W)heap [k])->active = k + 1; 889 ((W)heap [k])->active = k;
594} 890
891 k = c;
892 }
595 893
596inline void 894 heap [k] = w;
895 ev_active (heap [k]) = k;
896}
897#endif
898
899void inline_size
597adjustheap (WT *heap, int N, int k) 900adjustheap (WT *heap, int N, int k)
598{ 901{
599 upheap (heap, k); 902 upheap (heap, k);
600 downheap (heap, N, k); 903 downheap (heap, N, k);
601} 904}
603/*****************************************************************************/ 906/*****************************************************************************/
604 907
605typedef struct 908typedef struct
606{ 909{
607 WL head; 910 WL head;
608 sig_atomic_t volatile gotsig; 911 EV_ATOMIC_T gotsig;
609} ANSIG; 912} ANSIG;
610 913
611static ANSIG *signals; 914static ANSIG *signals;
612static int signalmax; 915static int signalmax;
613 916
614static int sigpipe [2]; 917static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 918
618static void 919void inline_size
619signals_init (ANSIG *base, int count) 920signals_init (ANSIG *base, int count)
620{ 921{
621 while (count--) 922 while (count--)
622 { 923 {
623 base->head = 0; 924 base->head = 0;
625 926
626 ++base; 927 ++base;
627 } 928 }
628} 929}
629 930
630static void 931/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 932
637 signals [signum - 1].gotsig = 1; 933void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 934fd_intern (int fd)
683{ 935{
684#ifdef _WIN32 936#ifdef _WIN32
685 int arg = 1; 937 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 940 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 941 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 942#endif
691} 943}
692 944
945static void noinline
946evpipe_init (EV_P)
947{
948 if (!ev_is_active (&pipeev))
949 {
950#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0)
952 {
953 evpipe [0] = -1;
954 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ);
956 }
957 else
958#endif
959 {
960 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe");
962
963 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ);
966 }
967
968 ev_io_start (EV_A_ &pipeev);
969 ev_unref (EV_A); /* watcher should not keep loop alive */
970 }
971}
972
973void inline_size
974evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{
976 if (!*flag)
977 {
978 int old_errno = errno; /* save errno because write might clobber it */
979
980 *flag = 1;
981
982#if EV_USE_EVENTFD
983 if (evfd >= 0)
984 {
985 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t));
987 }
988 else
989#endif
990 write (evpipe [1], &old_errno, 1);
991
992 errno = old_errno;
993 }
994}
995
693static void 996static void
694siginit (EV_P) 997pipecb (EV_P_ ev_io *iow, int revents)
695{ 998{
696 fd_intern (sigpipe [0]); 999#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1000 if (evfd >= 0)
1001 {
1002 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t));
1004 }
1005 else
1006#endif
1007 {
1008 char dummy;
1009 read (evpipe [0], &dummy, 1);
1010 }
698 1011
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1012 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1013 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1014 int signum;
1015 gotsig = 0;
1016
1017 for (signum = signalmax; signum--; )
1018 if (signals [signum].gotsig)
1019 ev_feed_signal_event (EV_A_ signum + 1);
1020 }
1021
1022#if EV_ASYNC_ENABLE
1023 if (gotasync)
1024 {
1025 int i;
1026 gotasync = 0;
1027
1028 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent)
1030 {
1031 asyncs [i]->sent = 0;
1032 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1033 }
1034 }
1035#endif
702} 1036}
703 1037
704/*****************************************************************************/ 1038/*****************************************************************************/
705 1039
706static struct ev_child *childs [PID_HASHSIZE]; 1040static void
1041ev_sighandler (int signum)
1042{
1043#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct;
1045#endif
1046
1047#if _WIN32
1048 signal (signum, ev_sighandler);
1049#endif
1050
1051 signals [signum - 1].gotsig = 1;
1052 evpipe_write (EV_A_ &gotsig);
1053}
1054
1055void noinline
1056ev_feed_signal_event (EV_P_ int signum)
1057{
1058 WL w;
1059
1060#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif
1063
1064 --signum;
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return;
1068
1069 signals [signum].gotsig = 0;
1070
1071 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073}
1074
1075/*****************************************************************************/
1076
1077static WL childs [EV_PID_HASHSIZE];
707 1078
708#ifndef _WIN32 1079#ifndef _WIN32
709 1080
710static struct ev_signal childev; 1081static ev_signal childev;
1082
1083#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0
1085#endif
1086
1087void inline_speed
1088child_reap (EV_P_ int chain, int pid, int status)
1089{
1090 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 {
1095 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1)))
1097 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1099 w->rpid = pid;
1100 w->rstatus = status;
1101 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1102 }
1103 }
1104}
711 1105
712#ifndef WCONTINUED 1106#ifndef WCONTINUED
713# define WCONTINUED 0 1107# define WCONTINUED 0
714#endif 1108#endif
715 1109
716static void 1110static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1111childcb (EV_P_ ev_signal *sw, int revents)
733{ 1112{
734 int pid, status; 1113 int pid, status;
735 1114
1115 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1116 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1117 if (!WCONTINUED
1118 || errno != EINVAL
1119 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1120 return;
1121
738 /* make sure we are called again until all childs have been reaped */ 1122 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1123 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1125
742 child_reap (EV_A_ sw, pid, pid, status); 1126 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1129}
746 1130
747#endif 1131#endif
748 1132
749/*****************************************************************************/ 1133/*****************************************************************************/
775{ 1159{
776 return EV_VERSION_MINOR; 1160 return EV_VERSION_MINOR;
777} 1161}
778 1162
779/* return true if we are running with elevated privileges and should ignore env variables */ 1163/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1164int inline_size
781enable_secure (void) 1165enable_secure (void)
782{ 1166{
783#ifdef _WIN32 1167#ifdef _WIN32
784 return 0; 1168 return 0;
785#else 1169#else
821} 1205}
822 1206
823unsigned int 1207unsigned int
824ev_embeddable_backends (void) 1208ev_embeddable_backends (void)
825{ 1209{
826 return EVBACKEND_EPOLL 1210 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1211
828 | EVBACKEND_PORT; 1212 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1213 /* please fix it and tell me how to detect the fix */
1214 flags &= ~EVBACKEND_EPOLL;
1215
1216 return flags;
829} 1217}
830 1218
831unsigned int 1219unsigned int
832ev_backend (EV_P) 1220ev_backend (EV_P)
833{ 1221{
834 return backend; 1222 return backend;
835} 1223}
836 1224
837static void 1225unsigned int
1226ev_loop_count (EV_P)
1227{
1228 return loop_count;
1229}
1230
1231void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{
1234 io_blocktime = interval;
1235}
1236
1237void
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{
1240 timeout_blocktime = interval;
1241}
1242
1243static void noinline
838loop_init (EV_P_ unsigned int flags) 1244loop_init (EV_P_ unsigned int flags)
839{ 1245{
840 if (!backend) 1246 if (!backend)
841 { 1247 {
842#if EV_USE_MONOTONIC 1248#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1252 have_monotonic = 1;
847 } 1253 }
848#endif 1254#endif
849 1255
850 ev_rt_now = ev_time (); 1256 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1257 mn_now = get_clock ();
852 now_floor = mn_now; 1258 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1259 rtmn_diff = ev_rt_now - mn_now;
1260
1261 io_blocktime = 0.;
1262 timeout_blocktime = 0.;
1263 backend = 0;
1264 backend_fd = -1;
1265 gotasync = 0;
1266#if EV_USE_INOTIFY
1267 fs_fd = -2;
1268#endif
1269
1270 /* pid check not overridable via env */
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif
854 1275
855 if (!(flags & EVFLAG_NOENV) 1276 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1277 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1278 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1279 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1280
860 if (!(flags & 0x0000ffffUL)) 1281 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1282 flags |= ev_recommended_backends ();
862 1283
863 backend = 0;
864#if EV_USE_PORT 1284#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1285 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1286#endif
867#if EV_USE_KQUEUE 1287#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1288 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1295#endif
876#if EV_USE_SELECT 1296#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1298#endif
879 1299
880 ev_init (&sigev, sigcb); 1300 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1301 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1302 }
883} 1303}
884 1304
885static void 1305static void noinline
886loop_destroy (EV_P) 1306loop_destroy (EV_P)
887{ 1307{
888 int i; 1308 int i;
1309
1310 if (ev_is_active (&pipeev))
1311 {
1312 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev);
1314
1315#if EV_USE_EVENTFD
1316 if (evfd >= 0)
1317 close (evfd);
1318#endif
1319
1320 if (evpipe [0] >= 0)
1321 {
1322 close (evpipe [0]);
1323 close (evpipe [1]);
1324 }
1325 }
1326
1327#if EV_USE_INOTIFY
1328 if (fs_fd >= 0)
1329 close (fs_fd);
1330#endif
1331
1332 if (backend_fd >= 0)
1333 close (backend_fd);
889 1334
890#if EV_USE_PORT 1335#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1336 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1337#endif
893#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1347#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1348 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1349#endif
905 1350
906 for (i = NUMPRI; i--; ) 1351 for (i = NUMPRI; i--; )
1352 {
907 array_free (pending, [i]); 1353 array_free (pending, [i]);
1354#if EV_IDLE_ENABLE
1355 array_free (idle, [i]);
1356#endif
1357 }
1358
1359 ev_free (anfds); anfdmax = 0;
908 1360
909 /* have to use the microsoft-never-gets-it-right macro */ 1361 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1362 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1363 array_free (timer, EMPTY);
912#if EV_PERIODICS 1364#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1365 array_free (periodic, EMPTY);
914#endif 1366#endif
1367#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1368 array_free (fork, EMPTY);
1369#endif
916 array_free (prepare, EMPTY0); 1370 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1371 array_free (check, EMPTY);
1372#if EV_ASYNC_ENABLE
1373 array_free (async, EMPTY);
1374#endif
918 1375
919 backend = 0; 1376 backend = 0;
920} 1377}
921 1378
922static void 1379#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P);
1381#endif
1382
1383void inline_size
923loop_fork (EV_P) 1384loop_fork (EV_P)
924{ 1385{
925#if EV_USE_PORT 1386#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1388#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1391#endif
931#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1394#endif
1395#if EV_USE_INOTIFY
1396 infy_fork (EV_A);
1397#endif
934 1398
935 if (ev_is_active (&sigev)) 1399 if (ev_is_active (&pipeev))
936 { 1400 {
937 /* default loop */ 1401 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */
1403 gotsig = 1;
1404#if EV_ASYNC_ENABLE
1405 gotasync = 1;
1406#endif
938 1407
939 ev_ref (EV_A); 1408 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1409 ev_io_stop (EV_A_ &pipeev);
1410
1411#if EV_USE_EVENTFD
1412 if (evfd >= 0)
1413 close (evfd);
1414#endif
1415
1416 if (evpipe [0] >= 0)
1417 {
941 close (sigpipe [0]); 1418 close (evpipe [0]);
942 close (sigpipe [1]); 1419 close (evpipe [1]);
1420 }
943 1421
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1422 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1425 }
949 1426
950 postfork = 0; 1427 postfork = 0;
951} 1428}
952 1429
974} 1451}
975 1452
976void 1453void
977ev_loop_fork (EV_P) 1454ev_loop_fork (EV_P)
978{ 1455{
979 postfork = 1; 1456 postfork = 1; /* must be in line with ev_default_fork */
980} 1457}
981
982#endif 1458#endif
983 1459
984#if EV_MULTIPLICITY 1460#if EV_MULTIPLICITY
985struct ev_loop * 1461struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1462ev_default_loop_init (unsigned int flags)
987#else 1463#else
988int 1464int
989ev_default_loop (unsigned int flags) 1465ev_default_loop (unsigned int flags)
990#endif 1466#endif
991{ 1467{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1468 if (!ev_default_loop_ptr)
997 { 1469 {
998#if EV_MULTIPLICITY 1470#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1472#else
1003 1475
1004 loop_init (EV_A_ flags); 1476 loop_init (EV_A_ flags);
1005 1477
1006 if (ev_backend (EV_A)) 1478 if (ev_backend (EV_A))
1007 { 1479 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1480#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1481 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1482 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1483 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1484 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1501#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1502 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1503 ev_signal_stop (EV_A_ &childev);
1034#endif 1504#endif
1035 1505
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1506 loop_destroy (EV_A);
1043} 1507}
1044 1508
1045void 1509void
1046ev_default_fork (void) 1510ev_default_fork (void)
1048#if EV_MULTIPLICITY 1512#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1513 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1514#endif
1051 1515
1052 if (backend) 1516 if (backend)
1053 postfork = 1; 1517 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1518}
1055 1519
1056/*****************************************************************************/ 1520/*****************************************************************************/
1057 1521
1058static int 1522void
1059any_pending (EV_P) 1523ev_invoke (EV_P_ void *w, int revents)
1060{ 1524{
1061 int pri; 1525 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1526}
1069 1527
1070inline void 1528void inline_speed
1071call_pending (EV_P) 1529call_pending (EV_P)
1072{ 1530{
1073 int pri; 1531 int pri;
1074 1532
1075 for (pri = NUMPRI; pri--; ) 1533 for (pri = NUMPRI; pri--; )
1077 { 1535 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1537
1080 if (expect_true (p->w)) 1538 if (expect_true (p->w))
1081 { 1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1541
1082 p->w->pending = 0; 1542 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1543 EV_CB_INVOKE (p->w, p->events);
1084 } 1544 }
1085 } 1545 }
1086} 1546}
1087 1547
1088inline void 1548#if EV_IDLE_ENABLE
1549void inline_size
1550idle_reify (EV_P)
1551{
1552 if (expect_false (idleall))
1553 {
1554 int pri;
1555
1556 for (pri = NUMPRI; pri--; )
1557 {
1558 if (pendingcnt [pri])
1559 break;
1560
1561 if (idlecnt [pri])
1562 {
1563 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1564 break;
1565 }
1566 }
1567 }
1568}
1569#endif
1570
1571void inline_size
1089timers_reify (EV_P) 1572timers_reify (EV_P)
1090{ 1573{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
1092 { 1575 {
1093 struct ev_timer *w = timers [0]; 1576 ev_timer *w = (ev_timer *)timers [HEAP0];
1094 1577
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1579
1097 /* first reschedule or stop timer */ 1580 /* first reschedule or stop timer */
1098 if (w->repeat) 1581 if (w->repeat)
1099 { 1582 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1584
1102 ((WT)w)->at += w->repeat; 1585 ev_at (w) += w->repeat;
1103 if (((WT)w)->at < mn_now) 1586 if (ev_at (w) < mn_now)
1104 ((WT)w)->at = mn_now; 1587 ev_at (w) = mn_now;
1105 1588
1106 downheap ((WT *)timers, timercnt, 0); 1589 downheap (timers, timercnt, HEAP0);
1107 } 1590 }
1108 else 1591 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1593
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1595 }
1113} 1596}
1114 1597
1115#if EV_PERIODICS 1598#if EV_PERIODIC_ENABLE
1116inline void 1599void inline_size
1117periodics_reify (EV_P) 1600periodics_reify (EV_P)
1118{ 1601{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1120 { 1603 {
1121 struct ev_periodic *w = periodics [0]; 1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1122 1605
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1607
1125 /* first reschedule or stop timer */ 1608 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1609 if (w->reschedule_cb)
1127 { 1610 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1613 downheap (periodics, periodiccnt, 1);
1131 } 1614 }
1132 else if (w->interval) 1615 else if (w->interval)
1133 { 1616 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1620 downheap (periodics, periodiccnt, HEAP0);
1137 } 1621 }
1138 else 1622 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1624
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1626 }
1143} 1627}
1144 1628
1145static void 1629static void noinline
1146periodics_reschedule (EV_P) 1630periodics_reschedule (EV_P)
1147{ 1631{
1148 int i; 1632 int i;
1149 1633
1150 /* adjust periodics after time jump */ 1634 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1635 for (i = 1; i <= periodiccnt; ++i)
1152 { 1636 {
1153 struct ev_periodic *w = periodics [i]; 1637 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1638
1155 if (w->reschedule_cb) 1639 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1641 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1643 }
1160 1644
1161 /* now rebuild the heap */ 1645 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1646 for (i = periodiccnt >> 1; --i; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1647 downheap (periodics, periodiccnt, i + HEAP0);
1164} 1648}
1165#endif 1649#endif
1166 1650
1167inline int 1651void inline_speed
1168time_update_monotonic (EV_P) 1652time_update (EV_P_ ev_tstamp max_block)
1169{ 1653{
1654 int i;
1655
1656#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic))
1658 {
1659 ev_tstamp odiff = rtmn_diff;
1660
1170 mn_now = get_clock (); 1661 mn_now = get_clock ();
1171 1662
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1664 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1665 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1666 {
1174 ev_rt_now = rtmn_diff + mn_now; 1667 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1668 return;
1176 } 1669 }
1177 else 1670
1178 {
1179 now_floor = mn_now; 1671 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1672 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1673
1185inline void 1674 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1675 * on the choice of "4": one iteration isn't enough,
1187{ 1676 * in case we get preempted during the calls to
1188 int i; 1677 * ev_time and get_clock. a second call is almost guaranteed
1189 1678 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1679 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1680 * in the unlikely event of having been preempted here.
1192 { 1681 */
1193 if (time_update_monotonic (EV_A)) 1682 for (i = 4; --i; )
1194 { 1683 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1200 1685
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1686 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 1687 return; /* all is well */
1203 1688
1204 ev_rt_now = ev_time (); 1689 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1690 mn_now = get_clock ();
1206 now_floor = mn_now; 1691 now_floor = mn_now;
1207 } 1692 }
1208 1693
1209# if EV_PERIODICS 1694# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A);
1696# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 }
1700 else
1701#endif
1702 {
1703 ev_rt_now = ev_time ();
1704
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 {
1707#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1708 periodics_reschedule (EV_A);
1211# endif 1709#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1214 } 1713 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1714
1232 mn_now = ev_rt_now; 1715 mn_now = ev_rt_now;
1233 } 1716 }
1234} 1717}
1235 1718
1248static int loop_done; 1731static int loop_done;
1249 1732
1250void 1733void
1251ev_loop (EV_P_ int flags) 1734ev_loop (EV_P_ int flags)
1252{ 1735{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1736 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1737
1257 while (activecnt) 1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1739
1740 do
1258 { 1741 {
1742#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid))
1745 {
1746 curpid = getpid ();
1747 postfork = 1;
1748 }
1749#endif
1750
1751#if EV_FORK_ENABLE
1752 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork))
1754 if (forkcnt)
1755 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A);
1758 }
1759#endif
1760
1259 /* queue check watchers (and execute them) */ 1761 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1762 if (expect_false (preparecnt))
1261 { 1763 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1765 call_pending (EV_A);
1264 } 1766 }
1265 1767
1768 if (expect_false (!activecnt))
1769 break;
1770
1266 /* we might have forked, so reify kernel state if necessary */ 1771 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1772 if (expect_false (postfork))
1268 loop_fork (EV_A); 1773 loop_fork (EV_A);
1269 1774
1270 /* update fd-related kernel structures */ 1775 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1776 fd_reify (EV_A);
1272 1777
1273 /* calculate blocking time */ 1778 /* calculate blocking time */
1274 { 1779 {
1275 double block; 1780 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.;
1276 1782
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1784 {
1281 /* update time to cancel out callback processing overhead */ 1785 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1786 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1787
1292 block = MAX_BLOCKTIME; 1788 waittime = MAX_BLOCKTIME;
1293 1789
1294 if (timercnt) 1790 if (timercnt)
1295 { 1791 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 1793 if (waittime > to) waittime = to;
1298 } 1794 }
1299 1795
1300#if EV_PERIODICS 1796#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1797 if (periodiccnt)
1302 { 1798 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1800 if (waittime > to) waittime = to;
1305 } 1801 }
1306#endif 1802#endif
1307 1803
1308 if (expect_false (block < 0.)) block = 0.; 1804 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime;
1806
1807 sleeptime = waittime - backend_fudge;
1808
1809 if (expect_true (sleeptime > io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 {
1814 ev_sleep (sleeptime);
1815 waittime -= sleeptime;
1816 }
1309 } 1817 }
1310 1818
1819 ++loop_count;
1311 backend_poll (EV_A_ block); 1820 backend_poll (EV_A_ waittime);
1821
1822 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime);
1312 } 1824 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1825
1317 /* queue pending timers and reschedule them */ 1826 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1827 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1828#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1829 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1830#endif
1322 1831
1832#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1833 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1834 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1835#endif
1326 1836
1327 /* queue check watchers, to be executed first */ 1837 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1838 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1840
1331 call_pending (EV_A); 1841 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 1842 }
1843 while (expect_true (
1844 activecnt
1845 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 ));
1336 1848
1337 if (loop_done == EVUNLOOP_ONE) 1849 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1850 loop_done = EVUNLOOP_CANCEL;
1339} 1851}
1340 1852
1344 loop_done = how; 1856 loop_done = how;
1345} 1857}
1346 1858
1347/*****************************************************************************/ 1859/*****************************************************************************/
1348 1860
1349inline void 1861void inline_size
1350wlist_add (WL *head, WL elem) 1862wlist_add (WL *head, WL elem)
1351{ 1863{
1352 elem->next = *head; 1864 elem->next = *head;
1353 *head = elem; 1865 *head = elem;
1354} 1866}
1355 1867
1356inline void 1868void inline_size
1357wlist_del (WL *head, WL elem) 1869wlist_del (WL *head, WL elem)
1358{ 1870{
1359 while (*head) 1871 while (*head)
1360 { 1872 {
1361 if (*head == elem) 1873 if (*head == elem)
1366 1878
1367 head = &(*head)->next; 1879 head = &(*head)->next;
1368 } 1880 }
1369} 1881}
1370 1882
1371inline void 1883void inline_speed
1372ev_clear_pending (EV_P_ W w) 1884clear_pending (EV_P_ W w)
1373{ 1885{
1374 if (w->pending) 1886 if (w->pending)
1375 { 1887 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1888 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1889 w->pending = 0;
1378 } 1890 }
1379} 1891}
1380 1892
1381inline void 1893int
1894ev_clear_pending (EV_P_ void *w)
1895{
1896 W w_ = (W)w;
1897 int pending = w_->pending;
1898
1899 if (expect_true (pending))
1900 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1902 w_->pending = 0;
1903 p->w = 0;
1904 return p->events;
1905 }
1906 else
1907 return 0;
1908}
1909
1910void inline_size
1911pri_adjust (EV_P_ W w)
1912{
1913 int pri = w->priority;
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri;
1917}
1918
1919void inline_speed
1382ev_start (EV_P_ W w, int active) 1920ev_start (EV_P_ W w, int active)
1383{ 1921{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1922 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1923 w->active = active;
1388 ev_ref (EV_A); 1924 ev_ref (EV_A);
1389} 1925}
1390 1926
1391inline void 1927void inline_size
1392ev_stop (EV_P_ W w) 1928ev_stop (EV_P_ W w)
1393{ 1929{
1394 ev_unref (EV_A); 1930 ev_unref (EV_A);
1395 w->active = 0; 1931 w->active = 0;
1396} 1932}
1397 1933
1398/*****************************************************************************/ 1934/*****************************************************************************/
1399 1935
1400void 1936void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1937ev_io_start (EV_P_ ev_io *w)
1402{ 1938{
1403 int fd = w->fd; 1939 int fd = w->fd;
1404 1940
1405 if (expect_false (ev_is_active (w))) 1941 if (expect_false (ev_is_active (w)))
1406 return; 1942 return;
1407 1943
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1944 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1945
1410 ev_start (EV_A_ (W)w, 1); 1946 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1948 wlist_add (&anfds[fd].head, (WL)w);
1413 1949
1414 fd_change (EV_A_ fd); 1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1951 w->events &= ~EV_IOFDSET;
1415} 1952}
1416 1953
1417void 1954void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1955ev_io_stop (EV_P_ ev_io *w)
1419{ 1956{
1420 ev_clear_pending (EV_A_ (W)w); 1957 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1958 if (expect_false (!ev_is_active (w)))
1422 return; 1959 return;
1423 1960
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1962
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1963 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1964 ev_stop (EV_A_ (W)w);
1428 1965
1429 fd_change (EV_A_ w->fd); 1966 fd_change (EV_A_ w->fd, 1);
1430} 1967}
1431 1968
1432void 1969void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1970ev_timer_start (EV_P_ ev_timer *w)
1434{ 1971{
1435 if (expect_false (ev_is_active (w))) 1972 if (expect_false (ev_is_active (w)))
1436 return; 1973 return;
1437 1974
1438 ((WT)w)->at += mn_now; 1975 ev_at (w) += mn_now;
1439 1976
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1978
1442 ev_start (EV_A_ (W)w, ++timercnt); 1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1444 timers [timercnt - 1] = w; 1981 timers [ev_active (w)] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1982 upheap (timers, ev_active (w));
1446 1983
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1448} 1985}
1449 1986
1450void 1987void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1988ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1989{
1453 ev_clear_pending (EV_A_ (W)w); 1990 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1991 if (expect_false (!ev_is_active (w)))
1455 return; 1992 return;
1456 1993
1994 {
1995 int active = ev_active (w);
1996
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1997 assert (("internal timer heap corruption", timers [active] == (WT)w));
1458 1998
1459 if (expect_true (((W)w)->active < timercnt--)) 1999 if (expect_true (active < timercnt + HEAP0 - 1))
1460 { 2000 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2001 timers [active] = timers [timercnt + HEAP0 - 1];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2002 adjustheap (timers, timercnt, active);
1463 } 2003 }
1464 2004
1465 ((WT)w)->at -= mn_now; 2005 --timercnt;
2006 }
2007
2008 ev_at (w) -= mn_now;
1466 2009
1467 ev_stop (EV_A_ (W)w); 2010 ev_stop (EV_A_ (W)w);
1468} 2011}
1469 2012
1470void 2013void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2014ev_timer_again (EV_P_ ev_timer *w)
1472{ 2015{
1473 if (ev_is_active (w)) 2016 if (ev_is_active (w))
1474 { 2017 {
1475 if (w->repeat) 2018 if (w->repeat)
1476 { 2019 {
1477 ((WT)w)->at = mn_now + w->repeat; 2020 ev_at (w) = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2021 adjustheap (timers, timercnt, ev_active (w));
1479 } 2022 }
1480 else 2023 else
1481 ev_timer_stop (EV_A_ w); 2024 ev_timer_stop (EV_A_ w);
1482 } 2025 }
1483 else if (w->repeat) 2026 else if (w->repeat)
1484 { 2027 {
1485 w->at = w->repeat; 2028 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2029 ev_timer_start (EV_A_ w);
1487 } 2030 }
1488} 2031}
1489 2032
1490#if EV_PERIODICS 2033#if EV_PERIODIC_ENABLE
1491void 2034void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2035ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2036{
1494 if (expect_false (ev_is_active (w))) 2037 if (expect_false (ev_is_active (w)))
1495 return; 2038 return;
1496 2039
1497 if (w->reschedule_cb) 2040 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2042 else if (w->interval)
1500 { 2043 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2045 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 2047 }
2048 else
2049 ev_at (w) = w->offset;
1505 2050
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2053 periodics [ev_active (w)] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2054 upheap (periodics, ev_active (w));
1510 2055
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1512} 2057}
1513 2058
1514void 2059void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2060ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2061{
1517 ev_clear_pending (EV_A_ (W)w); 2062 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2063 if (expect_false (!ev_is_active (w)))
1519 return; 2064 return;
1520 2065
2066 {
2067 int active = ev_active (w);
2068
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1522 2070
1523 if (expect_true (((W)w)->active < periodiccnt--)) 2071 if (expect_true (active < periodiccnt + HEAP0 - 1))
1524 { 2072 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2074 adjustheap (periodics, periodiccnt, active);
1527 } 2075 }
2076
2077 --periodiccnt;
2078 }
1528 2079
1529 ev_stop (EV_A_ (W)w); 2080 ev_stop (EV_A_ (W)w);
1530} 2081}
1531 2082
1532void 2083void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 2084ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2085{
1535 /* TODO: use adjustheap and recalculation */ 2086 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2087 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2088 ev_periodic_start (EV_A_ w);
1538} 2089}
1539#endif 2090#endif
1540 2091
1541void 2092#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 2093# define SA_RESTART 0
2094#endif
2095
2096void noinline
2097ev_signal_start (EV_P_ ev_signal *w)
1543{ 2098{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
1544 if (expect_false (ev_is_active (w))) 2102 if (expect_false (ev_is_active (w)))
1545 return; 2103 return;
1546 2104
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART
1608# define SA_RESTART 0
1609#endif
1610
1611void
1612ev_signal_start (EV_P_ struct ev_signal *w)
1613{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w)))
1618 return;
1619
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2106
2107 evpipe_init (EV_A);
2108
2109 {
2110#ifndef _WIN32
2111 sigset_t full, prev;
2112 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2117
2118#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif
2121 }
2122
1622 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2124 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2125
1626 if (!((WL)w)->next) 2126 if (!((WL)w)->next)
1627 { 2127 {
1628#if _WIN32 2128#if _WIN32
1629 signal (w->signum, sighandler); 2129 signal (w->signum, ev_sighandler);
1630#else 2130#else
1631 struct sigaction sa; 2131 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2132 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2133 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2135 sigaction (w->signum, &sa, 0);
1636#endif 2136#endif
1637 } 2137 }
1638} 2138}
1639 2139
1640void 2140void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2141ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2142{
1643 ev_clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
1645 return; 2145 return;
1646 2146
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2147 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2148 ev_stop (EV_A_ (W)w);
1649 2149
1650 if (!signals [w->signum - 1].head) 2150 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2151 signal (w->signum, SIG_DFL);
1652} 2152}
1653 2153
1654void 2154void
1655ev_child_start (EV_P_ struct ev_child *w) 2155ev_child_start (EV_P_ ev_child *w)
1656{ 2156{
1657#if EV_MULTIPLICITY 2157#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2159#endif
1660 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1661 return; 2161 return;
1662 2162
1663 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 2165}
1666 2166
1667void 2167void
1668ev_child_stop (EV_P_ struct ev_child *w) 2168ev_child_stop (EV_P_ ev_child *w)
1669{ 2169{
1670 ev_clear_pending (EV_A_ (W)w); 2170 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2171 if (expect_false (!ev_is_active (w)))
1672 return; 2172 return;
1673 2173
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2175 ev_stop (EV_A_ (W)w);
1676} 2176}
1677 2177
1678#if EV_MULTIPLICITY 2178#if EV_STAT_ENABLE
2179
2180# ifdef _WIN32
2181# undef lstat
2182# define lstat(a,b) _stati64 (a,b)
2183# endif
2184
2185#define DEF_STAT_INTERVAL 5.0074891
2186#define MIN_STAT_INTERVAL 0.1074891
2187
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189
2190#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192
2192
2193static void noinline
2194infy_add (EV_P_ ev_stat *w)
2195{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197
2198 if (w->wd < 0)
2199 {
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201
2202 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */
2204 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 {
2207 char path [4096];
2208 strcpy (path, w->path);
2209
2210 do
2211 {
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214
2215 char *pend = strrchr (path, '/');
2216
2217 if (!pend)
2218 break; /* whoops, no '/', complain to your admin */
2219
2220 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 }
2225 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228
2229 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2231}
2232
2233static void noinline
2234infy_del (EV_P_ ev_stat *w)
2235{
2236 int slot;
2237 int wd = w->wd;
2238
2239 if (wd < 0)
2240 return;
2241
2242 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w);
2245
2246 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd);
2248}
2249
2250static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{
2253 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev);
2257 else
2258 {
2259 WL w_;
2260
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2262 {
2263 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */
2265
2266 if (w->wd == wd || wd == -1)
2267 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 {
2270 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */
2272 }
2273
2274 stat_timer_cb (EV_A_ &w->timer, 0);
2275 }
2276 }
2277 }
2278}
2279
1679static void 2280static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2281infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2282{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2283 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf));
1683 2287
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290}
2291
2292void inline_size
2293infy_init (EV_P)
2294{
2295 if (fs_fd != -2)
2296 return;
2297
2298 fs_fd = inotify_init ();
2299
2300 if (fs_fd >= 0)
2301 {
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w);
2305 }
2306}
2307
2308void inline_size
2309infy_fork (EV_P)
2310{
2311 int slot;
2312
2313 if (fs_fd < 0)
2314 return;
2315
2316 close (fs_fd);
2317 fs_fd = inotify_init ();
2318
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2320 {
2321 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0;
2323
2324 while (w_)
2325 {
2326 ev_stat *w = (ev_stat *)w_;
2327 w_ = w_->next; /* lets us add this watcher */
2328
2329 w->wd = -1;
2330
2331 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else
2334 ev_timer_start (EV_A_ &w->timer);
2335 }
2336
2337 }
2338}
2339
2340#endif
2341
2342void
2343ev_stat_stat (EV_P_ ev_stat *w)
2344{
2345 if (lstat (w->path, &w->attr) < 0)
2346 w->attr.st_nlink = 0;
2347 else if (!w->attr.st_nlink)
2348 w->attr.st_nlink = 1;
2349}
2350
2351static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355
2356 /* we copy this here each the time so that */
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w);
2360
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if (
2363 w->prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime
2374 ) {
2375 #if EV_USE_INOTIFY
2376 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */
2379 #endif
2380
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2381 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2382 }
1686} 2383}
1687 2384
1688void 2385void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2386ev_stat_start (EV_P_ ev_stat *w)
1690{ 2387{
1691 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
1692 return; 2389 return;
1693 2390
1694 { 2391 /* since we use memcmp, we need to clear any padding data etc. */
1695 struct ev_loop *loop = w->loop; 2392 memset (&w->prev, 0, sizeof (ev_statdata));
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2393 memset (&w->attr, 0, sizeof (ev_statdata));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 2394
2395 ev_stat_stat (EV_A_ w);
2396
2397 if (w->interval < MIN_STAT_INTERVAL)
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2401 ev_set_priority (&w->timer, ev_priority (w));
2402
2403#if EV_USE_INOTIFY
2404 infy_init (EV_A);
2405
2406 if (fs_fd >= 0)
2407 infy_add (EV_A_ w);
2408 else
2409#endif
1700 ev_io_start (EV_A_ &w->io); 2410 ev_timer_start (EV_A_ &w->timer);
2411
1701 ev_start (EV_A_ (W)w, 1); 2412 ev_start (EV_A_ (W)w, 1);
1702} 2413}
1703 2414
1704void 2415void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2416ev_stat_stop (EV_P_ ev_stat *w)
1706{ 2417{
1707 ev_clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1709 return; 2420 return;
1710 2421
2422#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w);
2424#endif
2425 ev_timer_stop (EV_A_ &w->timer);
2426
2427 ev_stop (EV_A_ (W)w);
2428}
2429#endif
2430
2431#if EV_IDLE_ENABLE
2432void
2433ev_idle_start (EV_P_ ev_idle *w)
2434{
2435 if (expect_false (ev_is_active (w)))
2436 return;
2437
2438 pri_adjust (EV_A_ (W)w);
2439
2440 {
2441 int active = ++idlecnt [ABSPRI (w)];
2442
2443 ++idleall;
2444 ev_start (EV_A_ (W)w, active);
2445
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w;
2448 }
2449}
2450
2451void
2452ev_idle_stop (EV_P_ ev_idle *w)
2453{
2454 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w)))
2456 return;
2457
2458 {
2459 int active = ev_active (w);
2460
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463
2464 ev_stop (EV_A_ (W)w);
2465 --idleall;
2466 }
2467}
2468#endif
2469
2470void
2471ev_prepare_start (EV_P_ ev_prepare *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
2476 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w;
2479}
2480
2481void
2482ev_prepare_stop (EV_P_ ev_prepare *w)
2483{
2484 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w)))
2486 return;
2487
2488 {
2489 int active = ev_active (w);
2490
2491 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active;
2493 }
2494
2495 ev_stop (EV_A_ (W)w);
2496}
2497
2498void
2499ev_check_start (EV_P_ ev_check *w)
2500{
2501 if (expect_false (ev_is_active (w)))
2502 return;
2503
2504 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w;
2507}
2508
2509void
2510ev_check_stop (EV_P_ ev_check *w)
2511{
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active;
2521 }
2522
2523 ev_stop (EV_A_ (W)w);
2524}
2525
2526#if EV_EMBED_ENABLE
2527void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w)
2529{
2530 ev_loop (w->other, EVLOOP_NONBLOCK);
2531}
2532
2533static void
2534embed_io_cb (EV_P_ ev_io *io, int revents)
2535{
2536 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2537
2538 if (ev_cb (w))
2539 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2540 else
2541 ev_loop (w->other, EVLOOP_NONBLOCK);
2542}
2543
2544static void
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548
2549 {
2550 struct ev_loop *loop = w->other;
2551
2552 while (fdchangecnt)
2553 {
2554 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 }
2557 }
2558}
2559
2560#if 0
2561static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{
2564 ev_idle_stop (EV_A_ idle);
2565}
2566#endif
2567
2568void
2569ev_embed_start (EV_P_ ev_embed *w)
2570{
2571 if (expect_false (ev_is_active (w)))
2572 return;
2573
2574 {
2575 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 }
2579
2580 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io);
2582
2583 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare);
2586
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588
2589 ev_start (EV_A_ (W)w, 1);
2590}
2591
2592void
2593ev_embed_stop (EV_P_ ev_embed *w)
2594{
2595 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w)))
2597 return;
2598
1711 ev_io_stop (EV_A_ &w->io); 2599 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare);
2601
1712 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1713} 2603}
1714#endif 2604#endif
1715 2605
2606#if EV_FORK_ENABLE
2607void
2608ev_fork_start (EV_P_ ev_fork *w)
2609{
2610 if (expect_false (ev_is_active (w)))
2611 return;
2612
2613 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w;
2616}
2617
2618void
2619ev_fork_stop (EV_P_ ev_fork *w)
2620{
2621 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w)))
2623 return;
2624
2625 {
2626 int active = ev_active (w);
2627
2628 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active;
2630 }
2631
2632 ev_stop (EV_A_ (W)w);
2633}
2634#endif
2635
2636#if EV_ASYNC_ENABLE
2637void
2638ev_async_start (EV_P_ ev_async *w)
2639{
2640 if (expect_false (ev_is_active (w)))
2641 return;
2642
2643 evpipe_init (EV_A);
2644
2645 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w;
2648}
2649
2650void
2651ev_async_stop (EV_P_ ev_async *w)
2652{
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 {
2658 int active = ev_active (w);
2659
2660 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active;
2662 }
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666
2667void
2668ev_async_send (EV_P_ ev_async *w)
2669{
2670 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync);
2672}
2673#endif
2674
1716/*****************************************************************************/ 2675/*****************************************************************************/
1717 2676
1718struct ev_once 2677struct ev_once
1719{ 2678{
1720 struct ev_io io; 2679 ev_io io;
1721 struct ev_timer to; 2680 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2681 void (*cb)(int revents, void *arg);
1723 void *arg; 2682 void *arg;
1724}; 2683};
1725 2684
1726static void 2685static void
1735 2694
1736 cb (revents, arg); 2695 cb (revents, arg);
1737} 2696}
1738 2697
1739static void 2698static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2699once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2700{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2702}
1744 2703
1745static void 2704static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2705once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2706{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2708}
1750 2709
1751void 2710void
1775 ev_timer_set (&once->to, timeout, 0.); 2734 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2735 ev_timer_start (EV_A_ &once->to);
1777 } 2736 }
1778} 2737}
1779 2738
2739#if EV_MULTIPLICITY
2740 #include "ev_wrap.h"
2741#endif
2742
1780#ifdef __cplusplus 2743#ifdef __cplusplus
1781} 2744}
1782#endif 2745#endif
1783 2746

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines