ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 249
163#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
166#endif 253#endif
168#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
171#endif 258#endif
172 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
173#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 276# include <winsock.h>
175#endif 277#endif
176 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
177/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 313
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 317
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 318#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 320# define noinline __attribute__ ((noinline))
193#else 321#else
194# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
195# define inline static 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
196#endif 327#endif
197 328
198#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
200 338
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 341
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
206 344
207typedef struct ev_watcher *W; 345typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
210 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
212 357
213#ifdef _WIN32 358#ifdef _WIN32
214# include "ev_win32.c" 359# include "ev_win32.c"
215#endif 360#endif
216 361
217/*****************************************************************************/ 362/*****************************************************************************/
218 363
219static void (*syserr_cb)(const char *msg); 364static void (*syserr_cb)(const char *msg);
220 365
366void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 367ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 368{
223 syserr_cb = cb; 369 syserr_cb = cb;
224} 370}
225 371
226static void 372static void noinline
227syserr (const char *msg) 373syserr (const char *msg)
228{ 374{
229 if (!msg) 375 if (!msg)
230 msg = "(libev) system error"; 376 msg = "(libev) system error";
231 377
236 perror (msg); 382 perror (msg);
237 abort (); 383 abort ();
238 } 384 }
239} 385}
240 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
241static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 403
404void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 406{
245 alloc = cb; 407 alloc = cb;
246} 408}
247 409
248static void * 410inline_speed void *
249ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
250{ 412{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
252 414
253 if (!ptr && size) 415 if (!ptr && size)
254 { 416 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 418 abort ();
277typedef struct 439typedef struct
278{ 440{
279 W w; 441 W w;
280 int events; 442 int events;
281} ANPENDING; 443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
282 470
283#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
284 472
285 struct ev_loop 473 struct ev_loop
286 { 474 {
320 gettimeofday (&tv, 0); 508 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 509 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 510#endif
323} 511}
324 512
325inline ev_tstamp 513ev_tstamp inline_size
326get_clock (void) 514get_clock (void)
327{ 515{
328#if EV_USE_MONOTONIC 516#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 517 if (expect_true (have_monotonic))
330 { 518 {
343{ 531{
344 return ev_rt_now; 532 return ev_rt_now;
345} 533}
346#endif 534#endif
347 535
348#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
349 592
350#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
352 { \ 595 { \
353 int newcnt = cur; \ 596 int ocur_ = (cur); \
354 do \ 597 (base) = (type *)array_realloc \
355 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 600 }
364 601
602#if 0
365#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 605 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 609 }
610#endif
372 611
373#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 614
376/*****************************************************************************/ 615/*****************************************************************************/
377 616
378static void 617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
642
643/*****************************************************************************/
644
645void inline_size
379anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
380{ 647{
381 while (count--) 648 while (count--)
382 { 649 {
383 base->head = 0; 650 base->head = 0;
386 653
387 ++base; 654 ++base;
388 } 655 }
389} 656}
390 657
391void 658void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 659fd_event (EV_P_ int fd, int revents)
422{ 660{
423 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 662 ev_io *w;
425 663
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 665 {
428 int ev = w->events & revents; 666 int ev = w->events & revents;
429 667
430 if (ev) 668 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 669 ev_feed_event (EV_A_ (W)w, ev);
433} 671}
434 672
435void 673void
436ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 675{
676 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
439} 678}
440 679
441/*****************************************************************************/ 680void inline_size
442
443inline void
444fd_reify (EV_P) 681fd_reify (EV_P)
445{ 682{
446 int i; 683 int i;
447 684
448 for (i = 0; i < fdchangecnt; ++i) 685 for (i = 0; i < fdchangecnt; ++i)
449 { 686 {
450 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 689 ev_io *w;
453 690
454 int events = 0; 691 unsigned char events = 0;
455 692
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 694 events |= (unsigned char)w->events;
458 695
459#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
460 if (events) 697 if (events)
461 { 698 {
462 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
463 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 706 }
466#endif 707#endif
467 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
468 anfd->reify = 0; 713 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
472 } 719 }
473 720
474 fdchangecnt = 0; 721 fdchangecnt = 0;
475} 722}
476 723
477static void 724void inline_size
478fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
479{ 726{
480 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
484 729
730 if (expect_true (!reify))
731 {
485 ++fdchangecnt; 732 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
488} 736}
489 737
490static void 738void inline_speed
491fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
492{ 740{
493 struct ev_io *w; 741 ev_io *w;
494 742
495 while ((w = (struct ev_io *)anfds [fd].head)) 743 while ((w = (ev_io *)anfds [fd].head))
496 { 744 {
497 ev_io_stop (EV_A_ w); 745 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 747 }
500} 748}
501 749
502inline int 750int inline_size
503fd_valid (int fd) 751fd_valid (int fd)
504{ 752{
505#ifdef _WIN32 753#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 754 return _get_osfhandle (fd) != -1;
507#else 755#else
508 return fcntl (fd, F_GETFD) != -1; 756 return fcntl (fd, F_GETFD) != -1;
509#endif 757#endif
510} 758}
511 759
512/* called on EBADF to verify fds */ 760/* called on EBADF to verify fds */
513static void 761static void noinline
514fd_ebadf (EV_P) 762fd_ebadf (EV_P)
515{ 763{
516 int fd; 764 int fd;
517 765
518 for (fd = 0; fd < anfdmax; ++fd) 766 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 768 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 769 fd_kill (EV_A_ fd);
522} 770}
523 771
524/* called on ENOMEM in select/poll to kill some fds and retry */ 772/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 773static void noinline
526fd_enomem (EV_P) 774fd_enomem (EV_P)
527{ 775{
528 int fd; 776 int fd;
529 777
530 for (fd = anfdmax; fd--; ) 778 for (fd = anfdmax; fd--; )
534 return; 782 return;
535 } 783 }
536} 784}
537 785
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 786/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 787static void noinline
540fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
541{ 789{
542 int fd; 790 int fd;
543 791
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 793 if (anfds [fd].events)
547 { 794 {
548 anfds [fd].events = 0; 795 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 797 }
551} 798}
552 799
553/*****************************************************************************/ 800/*****************************************************************************/
554 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922
923void inline_size
924adjustheap (ANHE *heap, int N, int k)
925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k);
928 else
929 downheap (heap, N, k);
930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
555static void 944static void
556upheap (WT *heap, int k) 945checkheap (ANHE *heap, int N)
557{ 946{
558 WT w = heap [k]; 947 int i;
559 948
560 while (k && heap [k >> 1]->at > w->at) 949 for (i = HEAP0; i < N + HEAP0; ++i)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 } 950 {
566 951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
567 heap [k] = w; 952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
568 ((W)heap [k])->active = k + 1; 953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 { 954 }
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594} 955}
595 956#endif
596inline void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602 957
603/*****************************************************************************/ 958/*****************************************************************************/
604 959
605typedef struct 960typedef struct
606{ 961{
607 WL head; 962 WL head;
608 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
609} ANSIG; 964} ANSIG;
610 965
611static ANSIG *signals; 966static ANSIG *signals;
612static int signalmax; 967static int signalmax;
613 968
614static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 970
618static void 971void inline_size
619signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
620{ 973{
621 while (count--) 974 while (count--)
622 { 975 {
623 base->head = 0; 976 base->head = 0;
625 978
626 ++base; 979 ++base;
627 } 980 }
628} 981}
629 982
630static void 983/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 984
637 signals [signum - 1].gotsig = 1; 985void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 986fd_intern (int fd)
683{ 987{
684#ifdef _WIN32 988#ifdef _WIN32
685 int arg = 1; 989 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 994#endif
691} 995}
692 996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
693static void 1048static void
694siginit (EV_P) 1049pipecb (EV_P_ ev_io *iow, int revents)
695{ 1050{
696 fd_intern (sigpipe [0]); 1051#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
698 1063
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1064 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1065 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
702} 1088}
703 1089
704/*****************************************************************************/ 1090/*****************************************************************************/
705 1091
706static struct ev_child *childs [PID_HASHSIZE]; 1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
1129static WL childs [EV_PID_HASHSIZE];
707 1130
708#ifndef _WIN32 1131#ifndef _WIN32
709 1132
710static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
711 1157
712#ifndef WCONTINUED 1158#ifndef WCONTINUED
713# define WCONTINUED 0 1159# define WCONTINUED 0
714#endif 1160#endif
715 1161
716static void 1162static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
733{ 1164{
734 int pid, status; 1165 int pid, status;
735 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
738 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1177
742 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1181}
746 1182
747#endif 1183#endif
748 1184
749/*****************************************************************************/ 1185/*****************************************************************************/
775{ 1211{
776 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
777} 1213}
778 1214
779/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1216int inline_size
781enable_secure (void) 1217enable_secure (void)
782{ 1218{
783#ifdef _WIN32 1219#ifdef _WIN32
784 return 0; 1220 return 0;
785#else 1221#else
821} 1257}
822 1258
823unsigned int 1259unsigned int
824ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
825{ 1261{
826 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1263
828 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
829} 1269}
830 1270
831unsigned int 1271unsigned int
832ev_backend (EV_P) 1272ev_backend (EV_P)
833{ 1273{
834 return backend; 1274 return backend;
835} 1275}
836 1276
837static void 1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
838loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
839{ 1297{
840 if (!backend) 1298 if (!backend)
841 { 1299 {
842#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1304 have_monotonic = 1;
847 } 1305 }
848#endif 1306#endif
849 1307
850 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1309 mn_now = get_clock ();
852 now_floor = mn_now; 1310 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
854 1327
855 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1329 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1332
860 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
862 1335
863 backend = 0;
864#if EV_USE_PORT 1336#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1338#endif
867#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1347#endif
876#if EV_USE_SELECT 1348#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1350#endif
879 1351
880 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1354 }
883} 1355}
884 1356
885static void 1357static void noinline
886loop_destroy (EV_P) 1358loop_destroy (EV_P)
887{ 1359{
888 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
889 1386
890#if EV_USE_PORT 1387#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1389#endif
893#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1399#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1401#endif
905 1402
906 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
907 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
908 1412
909 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
912#if EV_PERIODICS 1416#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
914#endif 1418#endif
1419#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
916 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
918 1427
919 backend = 0; 1428 backend = 0;
920} 1429}
921 1430
922static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
923loop_fork (EV_P) 1436loop_fork (EV_P)
924{ 1437{
925#if EV_USE_PORT 1438#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1440#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1443#endif
931#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
934 1450
935 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
936 { 1452 {
937 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
938 1459
939 ev_ref (EV_A); 1460 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
941 close (sigpipe [0]); 1470 close (evpipe [0]);
942 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
943 1473
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1477 }
949 1478
950 postfork = 0; 1479 postfork = 0;
951} 1480}
952 1481
974} 1503}
975 1504
976void 1505void
977ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
978{ 1507{
979 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
980} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
981 1543
982#endif 1544#endif
983 1545
984#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
985struct ev_loop * 1547struct ev_loop *
987#else 1549#else
988int 1550int
989ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
990#endif 1552#endif
991{ 1553{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
997 { 1555 {
998#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1558#else
1003 1561
1004 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1005 1563
1006 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1007 { 1565 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1566#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1587#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1034#endif 1590#endif
1035 1591
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1043} 1593}
1044 1594
1045void 1595void
1046ev_default_fork (void) 1596ev_default_fork (void)
1048#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1600#endif
1051 1601
1052 if (backend) 1602 if (backend)
1053 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1604}
1055 1605
1056/*****************************************************************************/ 1606/*****************************************************************************/
1057 1607
1058static int 1608void
1609ev_invoke (EV_P_ void *w, int revents)
1610{
1611 EV_CB_INVOKE ((W)w, revents);
1612}
1613
1614void inline_speed
1059any_pending (EV_P) 1615call_pending (EV_P)
1060{ 1616{
1061 int pri; 1617 int pri;
1062 1618
1063 for (pri = NUMPRI; pri--; ) 1619 EV_FREQUENT_CHECK;
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068}
1069
1070inline void
1071call_pending (EV_P)
1072{
1073 int pri;
1074 1620
1075 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1077 { 1623 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1625
1080 if (expect_true (p->w)) 1626 if (expect_true (p->w))
1081 { 1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1629
1082 p->w->pending = 0; 1630 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1084 } 1632 }
1085 } 1633 }
1086}
1087 1634
1088inline void 1635 EV_FREQUENT_CHECK;
1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1660
1661void inline_size
1089timers_reify (EV_P) 1662timers_reify (EV_P)
1090{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 1667 {
1093 struct ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1094 1669
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1671
1097 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1098 if (w->repeat) 1673 if (w->repeat)
1099 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1680
1102 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1107 } 1683 }
1108 else 1684 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1686
1687 EV_FREQUENT_CHECK;
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1689 }
1113} 1690}
1114 1691
1115#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1116inline void 1693void inline_size
1117periodics_reify (EV_P) 1694periodics_reify (EV_P)
1118{ 1695{
1696 EV_FREQUENT_CHECK;
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 1698 {
1121 struct ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 1700
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1702
1125 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1127 { 1705 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1130 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1131 } 1713 }
1132 else if (w->interval) 1714 else if (w->interval)
1133 { 1715 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1136 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1137 } 1732 }
1138 else 1733 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1735
1736 EV_FREQUENT_CHECK;
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1738 }
1143} 1739}
1144 1740
1145static void 1741static void noinline
1146periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1147{ 1743{
1148 int i; 1744 int i;
1149 1745
1150 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1152 { 1748 {
1153 struct ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1154 1750
1155 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1753 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1159 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1160 1772
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock (); 1773 mn_now = get_clock ();
1171 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1778 {
1174 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1780 return;
1176 } 1781 }
1177 else 1782
1178 {
1179 now_floor = mn_now; 1783 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1785
1185inline void 1786 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1187{ 1788 * in case we get preempted during the calls to
1188 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1189 1790 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1192 { 1793 */
1193 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1194 { 1795 {
1195 ev_tstamp odiff = rtmn_diff; 1796 rtmn_diff = ev_rt_now - mn_now;
1196 1797
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1799 return; /* all is well */
1800
1801 ev_rt_now = ev_time ();
1802 mn_now = get_clock ();
1803 now_floor = mn_now;
1804 }
1805
1806# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A);
1808# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 }
1812 else
1813#endif
1814 {
1815 ev_rt_now = ev_time ();
1816
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 {
1819#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A);
1821#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1198 { 1824 {
1199 rtmn_diff = ev_rt_now - mn_now; 1825 ANHE *he = timers + i + HEAP0;
1200 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1827 ANHE_at_cache (*he);
1202 return; /* all is well */
1203
1204 ev_rt_now = ev_time ();
1205 mn_now = get_clock ();
1206 now_floor = mn_now;
1207 } 1828 }
1208
1209# if EV_PERIODICS
1210 periodics_reschedule (EV_A);
1211# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1829 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1830
1232 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1233 } 1832 }
1234} 1833}
1235 1834
1248static int loop_done; 1847static int loop_done;
1249 1848
1250void 1849void
1251ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1252{ 1851{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1853
1257 while (activecnt) 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1855
1856 do
1258 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1259 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1261 { 1879 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1881 call_pending (EV_A);
1264 } 1882 }
1265 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1266 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1268 loop_fork (EV_A); 1889 loop_fork (EV_A);
1269 1890
1270 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1892 fd_reify (EV_A);
1272 1893
1273 /* calculate blocking time */ 1894 /* calculate blocking time */
1274 { 1895 {
1275 double block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1276 1898
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1900 {
1281 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1902 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1903
1292 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1293 1905
1294 if (timercnt) 1906 if (timercnt)
1295 { 1907 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1298 } 1910 }
1299 1911
1300#if EV_PERIODICS 1912#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1913 if (periodiccnt)
1302 { 1914 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1305 } 1917 }
1306#endif 1918#endif
1307 1919
1308 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1309 } 1933 }
1310 1934
1935 ++loop_count;
1311 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1937
1938 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime);
1312 } 1940 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1941
1317 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1944#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1946#endif
1322 1947
1948#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1949 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1326 1952
1327 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1956
1331 call_pending (EV_A); 1957 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1336 1964
1337 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1339} 1967}
1340 1968
1344 loop_done = how; 1972 loop_done = how;
1345} 1973}
1346 1974
1347/*****************************************************************************/ 1975/*****************************************************************************/
1348 1976
1349inline void 1977void inline_size
1350wlist_add (WL *head, WL elem) 1978wlist_add (WL *head, WL elem)
1351{ 1979{
1352 elem->next = *head; 1980 elem->next = *head;
1353 *head = elem; 1981 *head = elem;
1354} 1982}
1355 1983
1356inline void 1984void inline_size
1357wlist_del (WL *head, WL elem) 1985wlist_del (WL *head, WL elem)
1358{ 1986{
1359 while (*head) 1987 while (*head)
1360 { 1988 {
1361 if (*head == elem) 1989 if (*head == elem)
1366 1994
1367 head = &(*head)->next; 1995 head = &(*head)->next;
1368 } 1996 }
1369} 1997}
1370 1998
1371inline void 1999void inline_speed
1372ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1373{ 2001{
1374 if (w->pending) 2002 if (w->pending)
1375 { 2003 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 2005 w->pending = 0;
1378 } 2006 }
1379} 2007}
1380 2008
1381inline void 2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
2035void inline_speed
1382ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1383{ 2037{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 2039 w->active = active;
1388 ev_ref (EV_A); 2040 ev_ref (EV_A);
1389} 2041}
1390 2042
1391inline void 2043void inline_size
1392ev_stop (EV_P_ W w) 2044ev_stop (EV_P_ W w)
1393{ 2045{
1394 ev_unref (EV_A); 2046 ev_unref (EV_A);
1395 w->active = 0; 2047 w->active = 0;
1396} 2048}
1397 2049
1398/*****************************************************************************/ 2050/*****************************************************************************/
1399 2051
1400void 2052void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1402{ 2054{
1403 int fd = w->fd; 2055 int fd = w->fd;
1404 2056
1405 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1406 return; 2058 return;
1407 2059
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1409 2061
2062 EV_FREQUENT_CHECK;
2063
1410 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1413 2067
1414 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1415} 2069 w->events &= ~EV_IOFDSET;
1416 2070
1417void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1419{ 2076{
1420 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1422 return; 2079 return;
1423 2080
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 2082
2083 EV_FREQUENT_CHECK;
2084
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1428 2087
1429 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1430}
1431 2089
1432void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1434{ 2095{
1435 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1436 return; 2097 return;
1437 2098
1438 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1439 2100
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1446 2111
2112 EV_FREQUENT_CHECK;
2113
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 2115}
1449 2116
1450void 2117void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1452{ 2119{
1453 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1455 return; 2122 return;
1456 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 2130
2131 --timercnt;
2132
1459 if (expect_true (((W)w)->active < timercnt--)) 2133 if (expect_true (active < timercnt + HEAP0))
1460 { 2134 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1463 } 2137 }
2138 }
1464 2139
1465 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1466 2143
1467 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1468} 2145}
1469 2146
1470void 2147void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1472{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1473 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1474 { 2153 {
1475 if (w->repeat) 2154 if (w->repeat)
1476 { 2155 {
1477 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1479 } 2159 }
1480 else 2160 else
1481 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1482 } 2162 }
1483 else if (w->repeat) 2163 else if (w->repeat)
1484 { 2164 {
1485 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1487 } 2167 }
1488}
1489 2168
2169 EV_FREQUENT_CHECK;
2170}
2171
1490#if EV_PERIODICS 2172#if EV_PERIODIC_ENABLE
1491void 2173void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2175{
1494 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1495 return; 2177 return;
1496 2178
1497 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2181 else if (w->interval)
1500 { 2182 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1505 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1510 2198
2199 EV_FREQUENT_CHECK;
2200
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 2202}
1513 2203
1514void 2204void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2206{
1517 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1519 return; 2209 return;
1520 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 2217
2218 --periodiccnt;
2219
1523 if (expect_true (((W)w)->active < periodiccnt--)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1524 { 2221 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1527 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1528 2228
1529 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1530} 2230}
1531 2231
1532void 2232void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2234{
1535 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1538} 2238}
1539#endif 2239#endif
1540 2240
1541void 2241#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 2242# define SA_RESTART 0
2243#endif
2244
2245void noinline
2246ev_signal_start (EV_P_ ev_signal *w)
1543{ 2247{
2248#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif
1544 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1545 return; 2252 return;
1546 2253
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART
1608# define SA_RESTART 0
1609#endif
1610
1611void
1612ev_signal_start (EV_P_ struct ev_signal *w)
1613{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w)))
1618 return;
1619
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1622 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2276
1626 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1627 { 2278 {
1628#if _WIN32 2279#if _WIN32
1629 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1630#else 2281#else
1631 struct sigaction sa; 2282 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1636#endif 2287#endif
1637 } 2288 }
1638}
1639 2289
1640void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2295{
1643 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1645 return; 2298 return;
1646 2299
2300 EV_FREQUENT_CHECK;
2301
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1649 2304
1650 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
1652}
1653 2307
2308 EV_FREQUENT_CHECK;
2309}
2310
1654void 2311void
1655ev_child_start (EV_P_ struct ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1656{ 2313{
1657#if EV_MULTIPLICITY 2314#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2316#endif
1660 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1661 return; 2318 return;
1662 2319
2320 EV_FREQUENT_CHECK;
2321
1663 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665}
1666 2324
2325 EV_FREQUENT_CHECK;
2326}
2327
1667void 2328void
1668ev_child_stop (EV_P_ struct ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1669{ 2330{
1670 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1672 return; 2333 return;
1673 2334
2335 EV_FREQUENT_CHECK;
2336
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
1676}
1677 2339
1678#if EV_MULTIPLICITY 2340 EV_FREQUENT_CHECK;
2341}
2342
2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
2360{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
1679static void 2445static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2446infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2447{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
1683 2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
2506
2507void
2508ev_stat_stat (EV_P_ ev_stat *w)
2509{
2510 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1;
2514}
2515
2516static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520
2521 /* we copy this here each the time so that */
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w);
2525
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2546 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2547 }
1686} 2548}
1687 2549
1688void 2550void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2551ev_stat_start (EV_P_ ev_stat *w)
1690{ 2552{
1691 if (expect_false (ev_is_active (w))) 2553 if (expect_false (ev_is_active (w)))
1692 return; 2554 return;
1693 2555
1694 { 2556 /* since we use memcmp, we need to clear any padding data etc. */
1695 struct ev_loop *loop = w->loop; 2557 memset (&w->prev, 0, sizeof (ev_statdata));
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2558 memset (&w->attr, 0, sizeof (ev_statdata));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 2559
2560 ev_stat_stat (EV_A_ w);
2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
1700 ev_io_start (EV_A_ &w->io); 2575 ev_timer_start (EV_A_ &w->timer);
2576
1701 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
1702}
1703 2578
2579 EV_FREQUENT_CHECK;
2580}
2581
1704void 2582void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
1706{ 2584{
1707 ev_clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
1709 return; 2587 return;
1710 2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
2594 ev_timer_stop (EV_A_ &w->timer);
2595
2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
2657 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2662}
2663
2664void
2665ev_prepare_stop (EV_P_ ev_prepare *w)
2666{
2667 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w)))
2669 return;
2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_check_start (EV_P_ ev_check *w)
2687{
2688 if (expect_false (ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_check_stop (EV_P_ ev_check *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2789}
2790
2791void
2792ev_embed_stop (EV_P_ ev_embed *w)
2793{
2794 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w)))
2796 return;
2797
2798 EV_FREQUENT_CHECK;
2799
1711 ev_io_stop (EV_A_ &w->io); 2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
1712 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
1713} 2891}
1714#endif 2892#endif
1715 2893
1716/*****************************************************************************/ 2894/*****************************************************************************/
1717 2895
1718struct ev_once 2896struct ev_once
1719{ 2897{
1720 struct ev_io io; 2898 ev_io io;
1721 struct ev_timer to; 2899 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2900 void (*cb)(int revents, void *arg);
1723 void *arg; 2901 void *arg;
1724}; 2902};
1725 2903
1726static void 2904static void
1735 2913
1736 cb (revents, arg); 2914 cb (revents, arg);
1737} 2915}
1738 2916
1739static void 2917static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2918once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2919{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2921}
1744 2922
1745static void 2923static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2924once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2925{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2927}
1750 2928
1751void 2929void
1775 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1777 } 2955 }
1778} 2956}
1779 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
1780#ifdef __cplusplus 2962#ifdef __cplusplus
1781} 2963}
1782#endif 2964#endif
1783 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines