ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.276 by root, Sun Dec 14 13:03:54 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
41# endif 62# endif
42 63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 123# else
95# define EV_USE_PORT 0 124# define EV_USE_PORT 0
96# endif 125# endif
97# endif 126# endif
98 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
99#endif 144#endif
100 145
101#include <math.h> 146#include <math.h>
102#include <stdlib.h> 147#include <stdlib.h>
103#include <fcntl.h> 148#include <fcntl.h>
110#include <sys/types.h> 155#include <sys/types.h>
111#include <time.h> 156#include <time.h>
112 157
113#include <signal.h> 158#include <signal.h>
114 159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
115#ifndef _WIN32 166#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 167# include <sys/time.h>
118# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
119#else 170#else
171# include <io.h>
120# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 173# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
124# endif 176# endif
125#endif 177#endif
126 178
127/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
128 188
129#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
130# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
131#endif 195#endif
132 196
133#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME 0
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
135#endif 207#endif
136 208
137#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
139#endif 211#endif
145# define EV_USE_POLL 1 217# define EV_USE_POLL 1
146# endif 218# endif
147#endif 219#endif
148 220
149#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
150# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
151#endif 227#endif
152 228
153#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
155#endif 231#endif
156 232
157#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 234# define EV_USE_PORT 0
159#endif 235#endif
160 236
161/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 288
163#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
166#endif 292#endif
168#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
171#endif 297#endif
172 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
173#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 322# include <winsock.h>
175#endif 323#endif
176 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
177/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 363
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 367
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 368#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 370# define noinline __attribute__ ((noinline))
193#else 371#else
194# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
195# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
196#endif 377#endif
197 378
198#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
200 388
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 391
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
206 394
207typedef struct ev_watcher *W; 395typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
210 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_MONOTONIC
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif
212 407
213#ifdef _WIN32 408#ifdef _WIN32
214# include "ev_win32.c" 409# include "ev_win32.c"
215#endif 410#endif
216 411
217/*****************************************************************************/ 412/*****************************************************************************/
218 413
219static void (*syserr_cb)(const char *msg); 414static void (*syserr_cb)(const char *msg);
220 415
416void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 417ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 418{
223 syserr_cb = cb; 419 syserr_cb = cb;
224} 420}
225 421
226static void 422static void noinline
227syserr (const char *msg) 423ev_syserr (const char *msg)
228{ 424{
229 if (!msg) 425 if (!msg)
230 msg = "(libev) system error"; 426 msg = "(libev) system error";
231 427
232 if (syserr_cb) 428 if (syserr_cb)
236 perror (msg); 432 perror (msg);
237 abort (); 433 abort ();
238 } 434 }
239} 435}
240 436
437static void *
438ev_realloc_emul (void *ptr, long size)
439{
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450}
451
241static void *(*alloc)(void *ptr, long size); 452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 453
454void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 455ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 456{
245 alloc = cb; 457 alloc = cb;
246} 458}
247 459
248static void * 460inline_speed void *
249ev_realloc (void *ptr, long size) 461ev_realloc (void *ptr, long size)
250{ 462{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 463 ptr = alloc (ptr, size);
252 464
253 if (!ptr && size) 465 if (!ptr && size)
254 { 466 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 468 abort ();
267typedef struct 479typedef struct
268{ 480{
269 WL head; 481 WL head;
270 unsigned char events; 482 unsigned char events;
271 unsigned char reify; 483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif
272#if EV_SELECT_IS_WINSOCKET 489#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 490 SOCKET handle;
274#endif 491#endif
275} ANFD; 492} ANFD;
276 493
277typedef struct 494typedef struct
278{ 495{
279 W w; 496 W w;
280 int events; 497 int events;
281} ANPENDING; 498} ANPENDING;
499
500#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */
502typedef struct
503{
504 WL head;
505} ANFS;
506#endif
507
508/* Heap Entry */
509#if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524#endif
282 525
283#if EV_MULTIPLICITY 526#if EV_MULTIPLICITY
284 527
285 struct ev_loop 528 struct ev_loop
286 { 529 {
320 gettimeofday (&tv, 0); 563 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 564 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 565#endif
323} 566}
324 567
325inline ev_tstamp 568ev_tstamp inline_size
326get_clock (void) 569get_clock (void)
327{ 570{
328#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 572 if (expect_true (have_monotonic))
330 { 573 {
343{ 586{
344 return ev_rt_now; 587 return ev_rt_now;
345} 588}
346#endif 589#endif
347 590
348#define array_roundsize(type,n) (((n) | 4) & ~3) 591void
592ev_sleep (ev_tstamp delay)
593{
594 if (delay > 0.)
595 {
596#if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603#elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605#else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615#endif
616 }
617}
618
619/*****************************************************************************/
620
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623int inline_size
624array_nextsize (int elem, int cur, int cnt)
625{
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642}
643
644static noinline void *
645array_realloc (int elem, void *base, int *cur, int cnt)
646{
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649}
650
651#define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 653
350#define array_needsize(type,base,cur,cnt,init) \ 654#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 655 if (expect_false ((cnt) > (cur))) \
352 { \ 656 { \
353 int newcnt = cur; \ 657 int ocur_ = (cur); \
354 do \ 658 (base) = (type *)array_realloc \
355 { \ 659 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 660 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 661 }
364 662
663#if 0
365#define array_slim(type,stem) \ 664#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 666 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 667 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 670 }
671#endif
372 672
373#define array_free(stem, idx) \ 673#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 675
376/*****************************************************************************/ 676/*****************************************************************************/
377 677
378static void 678void noinline
379anfds_init (ANFD *base, int count)
380{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389}
390
391void
392ev_feed_event (EV_P_ void *w, int revents) 679ev_feed_event (EV_P_ void *w, int revents)
393{ 680{
394 W w_ = (W)w; 681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
395 683
396 if (expect_false (w_->pending)) 684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
397 { 687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 691 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 692 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 693}
410 694
411static void 695void inline_speed
412queue_events (EV_P_ W *events, int eventcnt, int type) 696queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 697{
414 int i; 698 int i;
415 699
416 for (i = 0; i < eventcnt; ++i) 700 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 701 ev_feed_event (EV_A_ events [i], type);
418} 702}
419 703
420inline void 704/*****************************************************************************/
705
706void inline_speed
421fd_event (EV_P_ int fd, int revents) 707fd_event (EV_P_ int fd, int revents)
422{ 708{
423 ANFD *anfd = anfds + fd; 709 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 710 ev_io *w;
425 711
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 713 {
428 int ev = w->events & revents; 714 int ev = w->events & revents;
429 715
430 if (ev) 716 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 717 ev_feed_event (EV_A_ (W)w, ev);
433} 719}
434 720
435void 721void
436ev_feed_fd_event (EV_P_ int fd, int revents) 722ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 723{
724 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 725 fd_event (EV_A_ fd, revents);
439} 726}
440 727
441/*****************************************************************************/ 728void inline_size
442
443inline void
444fd_reify (EV_P) 729fd_reify (EV_P)
445{ 730{
446 int i; 731 int i;
447 732
448 for (i = 0; i < fdchangecnt; ++i) 733 for (i = 0; i < fdchangecnt; ++i)
449 { 734 {
450 int fd = fdchanges [i]; 735 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 736 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 737 ev_io *w;
453 738
454 int events = 0; 739 unsigned char events = 0;
455 740
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 742 events |= (unsigned char)w->events;
458 743
459#if EV_SELECT_IS_WINSOCKET 744#if EV_SELECT_IS_WINSOCKET
460 if (events) 745 if (events)
461 { 746 {
462 unsigned long argp; 747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
463 anfd->handle = _get_osfhandle (fd); 751 anfd->handle = _get_osfhandle (fd);
752 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
465 } 754 }
466#endif 755#endif
467 756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
468 anfd->reify = 0; 761 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
472 } 767 }
473 768
474 fdchangecnt = 0; 769 fdchangecnt = 0;
475} 770}
476 771
477static void 772void inline_size
478fd_change (EV_P_ int fd) 773fd_change (EV_P_ int fd, int flags)
479{ 774{
480 if (expect_false (anfds [fd].reify)) 775 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 776 anfds [fd].reify |= flags;
484 777
778 if (expect_true (!reify))
779 {
485 ++fdchangecnt; 780 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 782 fdchanges [fdchangecnt - 1] = fd;
783 }
488} 784}
489 785
490static void 786void inline_speed
491fd_kill (EV_P_ int fd) 787fd_kill (EV_P_ int fd)
492{ 788{
493 struct ev_io *w; 789 ev_io *w;
494 790
495 while ((w = (struct ev_io *)anfds [fd].head)) 791 while ((w = (ev_io *)anfds [fd].head))
496 { 792 {
497 ev_io_stop (EV_A_ w); 793 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 795 }
500} 796}
501 797
502inline int 798int inline_size
503fd_valid (int fd) 799fd_valid (int fd)
504{ 800{
505#ifdef _WIN32 801#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 802 return _get_osfhandle (fd) != -1;
507#else 803#else
508 return fcntl (fd, F_GETFD) != -1; 804 return fcntl (fd, F_GETFD) != -1;
509#endif 805#endif
510} 806}
511 807
512/* called on EBADF to verify fds */ 808/* called on EBADF to verify fds */
513static void 809static void noinline
514fd_ebadf (EV_P) 810fd_ebadf (EV_P)
515{ 811{
516 int fd; 812 int fd;
517 813
518 for (fd = 0; fd < anfdmax; ++fd) 814 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 815 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 816 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 817 fd_kill (EV_A_ fd);
522} 818}
523 819
524/* called on ENOMEM in select/poll to kill some fds and retry */ 820/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 821static void noinline
526fd_enomem (EV_P) 822fd_enomem (EV_P)
527{ 823{
528 int fd; 824 int fd;
529 825
530 for (fd = anfdmax; fd--; ) 826 for (fd = anfdmax; fd--; )
534 return; 830 return;
535 } 831 }
536} 832}
537 833
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 834/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 835static void noinline
540fd_rearm_all (EV_P) 836fd_rearm_all (EV_P)
541{ 837{
542 int fd; 838 int fd;
543 839
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 840 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 841 if (anfds [fd].events)
547 { 842 {
548 anfds [fd].events = 0; 843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
549 fd_change (EV_A_ fd); 845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 846 }
551} 847}
552 848
553/*****************************************************************************/ 849/*****************************************************************************/
554 850
555static void 851/*
556upheap (WT *heap, int k) 852 * the heap functions want a real array index. array index 0 uis guaranteed to not
557{ 853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
558 WT w = heap [k]; 854 * the branching factor of the d-tree.
855 */
559 856
560 while (k && heap [k >> 1]->at > w->at) 857/*
561 { 858 * at the moment we allow libev the luxury of two heaps,
562 heap [k] = heap [k >> 1]; 859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
563 ((W)heap [k])->active = k + 1; 860 * which is more cache-efficient.
564 k >>= 1; 861 * the difference is about 5% with 50000+ watchers.
565 } 862 */
863#if EV_USE_4HEAP
566 864
567 heap [k] = w; 865#define DHEAP 4
568 ((W)heap [k])->active = k + 1; 866#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k))
569 869
570} 870/* away from the root */
571 871void inline_speed
572static void
573downheap (WT *heap, int N, int k) 872downheap (ANHE *heap, int N, int k)
574{ 873{
575 WT w = heap [k]; 874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
576 876
577 while (k < (N >> 1)) 877 for (;;)
578 { 878 {
579 int j = k << 1; 879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
580 882
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
582 ++j; 885 {
583 886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
584 if (w->at <= heap [j]->at) 887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
585 break; 899 break;
586 900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913
914#else /* 4HEAP */
915
916#define HEAP0 1
917#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p))
919
920/* away from the root */
921void inline_speed
922downheap (ANHE *heap, int N, int k)
923{
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
587 heap [k] = heap [j]; 939 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 940 ev_active (ANHE_w (heap [k])) = k;
941
589 k = j; 942 k = c;
590 } 943 }
591 944
592 heap [k] = w; 945 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 946 ev_active (ANHE_w (he)) = k;
594} 947}
948#endif
595 949
596inline void 950/* towards the root */
951void inline_speed
952upheap (ANHE *heap, int k)
953{
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
970}
971
972void inline_size
597adjustheap (WT *heap, int N, int k) 973adjustheap (ANHE *heap, int N, int k)
598{ 974{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
599 upheap (heap, k); 976 upheap (heap, k);
977 else
600 downheap (heap, N, k); 978 downheap (heap, N, k);
979}
980
981/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size
983reheap (ANHE *heap, int N)
984{
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
601} 991}
602 992
603/*****************************************************************************/ 993/*****************************************************************************/
604 994
605typedef struct 995typedef struct
606{ 996{
607 WL head; 997 WL head;
608 sig_atomic_t volatile gotsig; 998 EV_ATOMIC_T gotsig;
609} ANSIG; 999} ANSIG;
610 1000
611static ANSIG *signals; 1001static ANSIG *signals;
612static int signalmax; 1002static int signalmax;
613 1003
614static int sigpipe [2]; 1004static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 1005
618static void 1006/*****************************************************************************/
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625 1007
626 ++base; 1008void inline_speed
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1009fd_intern (int fd)
683{ 1010{
684#ifdef _WIN32 1011#ifdef _WIN32
685 int arg = 1; 1012 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else 1014#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1016 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1017#endif
691} 1018}
692 1019
1020static void noinline
1021evpipe_init (EV_P)
1022{
1023 if (!ev_is_active (&pipeev))
1024 {
1025#if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033#endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
1038 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
1042
1043 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046}
1047
1048void inline_size
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069}
1070
693static void 1071static void
694siginit (EV_P) 1072pipecb (EV_P_ ev_io *iow, int revents)
695{ 1073{
696 fd_intern (sigpipe [0]); 1074#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081#endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
698 1086
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1087 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1088 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097#if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110#endif
702} 1111}
703 1112
704/*****************************************************************************/ 1113/*****************************************************************************/
705 1114
706static struct ev_child *childs [PID_HASHSIZE]; 1115static void
1116ev_sighandler (int signum)
1117{
1118#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120#endif
1121
1122#if _WIN32
1123 signal (signum, ev_sighandler);
1124#endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128}
1129
1130void noinline
1131ev_feed_signal_event (EV_P_ int signum)
1132{
1133 WL w;
1134
1135#if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137#endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148}
1149
1150/*****************************************************************************/
1151
1152static WL childs [EV_PID_HASHSIZE];
707 1153
708#ifndef _WIN32 1154#ifndef _WIN32
709 1155
710static struct ev_signal childev; 1156static ev_signal childev;
1157
1158#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0
1160#endif
1161
1162void inline_speed
1163child_reap (EV_P_ int chain, int pid, int status)
1164{
1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
1172 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1174 w->rpid = pid;
1175 w->rstatus = status;
1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1177 }
1178 }
1179}
711 1180
712#ifndef WCONTINUED 1181#ifndef WCONTINUED
713# define WCONTINUED 0 1182# define WCONTINUED 0
714#endif 1183#endif
715 1184
716static void 1185static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1186childcb (EV_P_ ev_signal *sw, int revents)
733{ 1187{
734 int pid, status; 1188 int pid, status;
735 1189
1190 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1191 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1192 if (!WCONTINUED
1193 || errno != EINVAL
1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1195 return;
1196
738 /* make sure we are called again until all childs have been reaped */ 1197 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1198 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1200
742 child_reap (EV_A_ sw, pid, pid, status); 1201 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1204}
746 1205
747#endif 1206#endif
748 1207
749/*****************************************************************************/ 1208/*****************************************************************************/
775{ 1234{
776 return EV_VERSION_MINOR; 1235 return EV_VERSION_MINOR;
777} 1236}
778 1237
779/* return true if we are running with elevated privileges and should ignore env variables */ 1238/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1239int inline_size
781enable_secure (void) 1240enable_secure (void)
782{ 1241{
783#ifdef _WIN32 1242#ifdef _WIN32
784 return 0; 1243 return 0;
785#else 1244#else
811 /* kqueue is borked on everything but netbsd apparently */ 1270 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1271 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1272 flags &= ~EVBACKEND_KQUEUE;
814#endif 1273#endif
815#ifdef __APPLE__ 1274#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1275 // flags &= ~EVBACKEND_KQUEUE & ~EVBACKEND_POLL; for documentation
817 flags &= ~EVBACKEND_POLL; 1276 flags &= ~EVBACKEND_SELECT;
818#endif 1277#endif
819 1278
820 return flags; 1279 return flags;
821} 1280}
822 1281
823unsigned int 1282unsigned int
824ev_embeddable_backends (void) 1283ev_embeddable_backends (void)
825{ 1284{
826 return EVBACKEND_EPOLL 1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1286
828 | EVBACKEND_PORT; 1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
829} 1292}
830 1293
831unsigned int 1294unsigned int
832ev_backend (EV_P) 1295ev_backend (EV_P)
833{ 1296{
834 return backend; 1297 return backend;
835} 1298}
836 1299
837static void 1300unsigned int
1301ev_loop_count (EV_P)
1302{
1303 return loop_count;
1304}
1305
1306void
1307ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308{
1309 io_blocktime = interval;
1310}
1311
1312void
1313ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314{
1315 timeout_blocktime = interval;
1316}
1317
1318static void noinline
838loop_init (EV_P_ unsigned int flags) 1319loop_init (EV_P_ unsigned int flags)
839{ 1320{
840 if (!backend) 1321 if (!backend)
841 { 1322 {
842#if EV_USE_MONOTONIC 1323#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1327 have_monotonic = 1;
847 } 1328 }
848#endif 1329#endif
849 1330
850 ev_rt_now = ev_time (); 1331 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1332 mn_now = get_clock ();
852 now_floor = mn_now; 1333 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341#if EV_USE_INOTIFY
1342 fs_fd = -2;
1343#endif
1344
1345 /* pid check not overridable via env */
1346#ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349#endif
854 1350
855 if (!(flags & EVFLAG_NOENV) 1351 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1352 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1353 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1354 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1355
860 if (!(flags & 0x0000ffffUL)) 1356 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1357 flags |= ev_recommended_backends ();
862 1358
863 backend = 0;
864#if EV_USE_PORT 1359#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1361#endif
867#if EV_USE_KQUEUE 1362#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1370#endif
876#if EV_USE_SELECT 1371#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1373#endif
879 1374
880 ev_init (&sigev, sigcb); 1375 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1376 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1377 }
883} 1378}
884 1379
885static void 1380static void noinline
886loop_destroy (EV_P) 1381loop_destroy (EV_P)
887{ 1382{
888 int i; 1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390#if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393#endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401
1402#if EV_USE_INOTIFY
1403 if (fs_fd >= 0)
1404 close (fs_fd);
1405#endif
1406
1407 if (backend_fd >= 0)
1408 close (backend_fd);
889 1409
890#if EV_USE_PORT 1410#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1412#endif
893#if EV_USE_KQUEUE 1413#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1422#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1424#endif
905 1425
906 for (i = NUMPRI; i--; ) 1426 for (i = NUMPRI; i--; )
1427 {
907 array_free (pending, [i]); 1428 array_free (pending, [i]);
1429#if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431#endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
908 1435
909 /* have to use the microsoft-never-gets-it-right macro */ 1436 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1437 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1438 array_free (timer, EMPTY);
912#if EV_PERIODICS 1439#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1440 array_free (periodic, EMPTY);
914#endif 1441#endif
1442#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1443 array_free (fork, EMPTY);
1444#endif
916 array_free (prepare, EMPTY0); 1445 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1446 array_free (check, EMPTY);
1447#if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449#endif
918 1450
919 backend = 0; 1451 backend = 0;
920} 1452}
921 1453
922static void 1454#if EV_USE_INOTIFY
1455void inline_size infy_fork (EV_P);
1456#endif
1457
1458void inline_size
923loop_fork (EV_P) 1459loop_fork (EV_P)
924{ 1460{
925#if EV_USE_PORT 1461#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1463#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1465 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1466#endif
931#if EV_USE_EPOLL 1467#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1468 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1469#endif
1470#if EV_USE_INOTIFY
1471 infy_fork (EV_A);
1472#endif
934 1473
935 if (ev_is_active (&sigev)) 1474 if (ev_is_active (&pipeev))
936 { 1475 {
937 /* default loop */ 1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479#if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481#endif
938 1482
939 ev_ref (EV_A); 1483 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1484 ev_io_stop (EV_A_ &pipeev);
1485
1486#if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489#endif
1490
1491 if (evpipe [0] >= 0)
1492 {
941 close (sigpipe [0]); 1493 close (evpipe [0]);
942 close (sigpipe [1]); 1494 close (evpipe [1]);
1495 }
943 1496
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1500 }
949 1501
950 postfork = 0; 1502 postfork = 0;
951} 1503}
952 1504
953#if EV_MULTIPLICITY 1505#if EV_MULTIPLICITY
1506
954struct ev_loop * 1507struct ev_loop *
955ev_loop_new (unsigned int flags) 1508ev_loop_new (unsigned int flags)
956{ 1509{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 1511
974} 1527}
975 1528
976void 1529void
977ev_loop_fork (EV_P) 1530ev_loop_fork (EV_P)
978{ 1531{
979 postfork = 1; 1532 postfork = 1; /* must be in line with ev_default_fork */
980} 1533}
981 1534
1535#if EV_VERIFY
1536static void noinline
1537verify_watcher (EV_P_ W w)
1538{
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543}
1544
1545static void noinline
1546verify_heap (EV_P_ ANHE *heap, int N)
1547{
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558}
1559
1560static void noinline
1561array_verify (EV_P_ W *ws, int cnt)
1562{
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568}
1569#endif
1570
1571void
1572ev_loop_verify (EV_P)
1573{
1574#if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596#if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599#endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604#if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608#endif
1609 }
1610
1611#if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614#endif
1615
1616#if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619#endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627# if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
982#endif 1630# endif
1631#endif
1632}
1633
1634#endif /* multiplicity */
983 1635
984#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
985struct ev_loop * 1637struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1638ev_default_loop_init (unsigned int flags)
987#else 1639#else
988int 1640int
989ev_default_loop (unsigned int flags) 1641ev_default_loop (unsigned int flags)
990#endif 1642#endif
991{ 1643{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1644 if (!ev_default_loop_ptr)
997 { 1645 {
998#if EV_MULTIPLICITY 1646#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1648#else
1003 1651
1004 loop_init (EV_A_ flags); 1652 loop_init (EV_A_ flags);
1005 1653
1006 if (ev_backend (EV_A)) 1654 if (ev_backend (EV_A))
1007 { 1655 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1656#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1657 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1658 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1659 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1026{ 1672{
1027#if EV_MULTIPLICITY 1673#if EV_MULTIPLICITY
1028 struct ev_loop *loop = ev_default_loop_ptr; 1674 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif 1675#endif
1030 1676
1677 ev_default_loop_ptr = 0;
1678
1031#ifndef _WIN32 1679#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1680 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1681 ev_signal_stop (EV_A_ &childev);
1034#endif 1682#endif
1035 1683
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1684 loop_destroy (EV_A);
1043} 1685}
1044 1686
1045void 1687void
1046ev_default_fork (void) 1688ev_default_fork (void)
1047{ 1689{
1048#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1691 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1692#endif
1051 1693
1052 if (backend) 1694 postfork = 1; /* must be in line with ev_loop_fork */
1053 postfork = 1;
1054} 1695}
1055 1696
1056/*****************************************************************************/ 1697/*****************************************************************************/
1057 1698
1058static int 1699void
1059any_pending (EV_P) 1700ev_invoke (EV_P_ void *w, int revents)
1060{ 1701{
1061 int pri; 1702 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1703}
1069 1704
1070inline void 1705void inline_speed
1071call_pending (EV_P) 1706call_pending (EV_P)
1072{ 1707{
1073 int pri; 1708 int pri;
1074 1709
1075 for (pri = NUMPRI; pri--; ) 1710 for (pri = NUMPRI; pri--; )
1077 { 1712 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1714
1080 if (expect_true (p->w)) 1715 if (expect_true (p->w))
1081 { 1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1718
1082 p->w->pending = 0; 1719 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1084 } 1722 }
1085 } 1723 }
1086} 1724}
1087 1725
1088inline void 1726#if EV_IDLE_ENABLE
1727void inline_size
1728idle_reify (EV_P)
1729{
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
1735 {
1736 if (pendingcnt [pri])
1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
1744 }
1745 }
1746}
1747#endif
1748
1749void inline_size
1089timers_reify (EV_P) 1750timers_reify (EV_P)
1090{ 1751{
1752 EV_FREQUENT_CHECK;
1753
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 1755 {
1093 struct ev_timer *w = timers [0]; 1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1094 1757
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1759
1097 /* first reschedule or stop timer */ 1760 /* first reschedule or stop timer */
1098 if (w->repeat) 1761 if (w->repeat)
1099 { 1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1768
1102 ((WT)w)->at += w->repeat; 1769 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 1770 downheap (timers, timercnt, HEAP0);
1107 } 1771 }
1108 else 1772 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1774
1775 EV_FREQUENT_CHECK;
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1777 }
1113} 1778}
1114 1779
1115#if EV_PERIODICS 1780#if EV_PERIODIC_ENABLE
1116inline void 1781void inline_size
1117periodics_reify (EV_P) 1782periodics_reify (EV_P)
1118{ 1783{
1784 EV_FREQUENT_CHECK;
1785
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 1787 {
1121 struct ev_periodic *w = periodics [0]; 1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1122 1789
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1791
1125 /* first reschedule or stop timer */ 1792 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1793 if (w->reschedule_cb)
1127 { 1794 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1130 downheap ((WT *)periodics, periodiccnt, 0); 1800 downheap (periodics, periodiccnt, HEAP0);
1131 } 1801 }
1132 else if (w->interval) 1802 else if (w->interval)
1133 { 1803 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1136 downheap ((WT *)periodics, periodiccnt, 0); 1819 downheap (periodics, periodiccnt, HEAP0);
1137 } 1820 }
1138 else 1821 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1823
1824 EV_FREQUENT_CHECK;
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1826 }
1143} 1827}
1144 1828
1145static void 1829static void noinline
1146periodics_reschedule (EV_P) 1830periodics_reschedule (EV_P)
1147{ 1831{
1148 int i; 1832 int i;
1149 1833
1150 /* adjust periodics after time jump */ 1834 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1152 { 1836 {
1153 struct ev_periodic *w = periodics [i]; 1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1154 1838
1155 if (w->reschedule_cb) 1839 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1841 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848}
1849#endif
1850
1851void inline_speed
1852time_update (EV_P_ ev_tstamp max_block)
1853{
1854 int i;
1855
1856#if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1159 } 1858 {
1859 ev_tstamp odiff = rtmn_diff;
1160 1860
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock (); 1861 mn_now = get_clock ();
1171 1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1866 {
1174 ev_rt_now = rtmn_diff + mn_now; 1867 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1868 return;
1176 } 1869 }
1177 else 1870
1178 {
1179 now_floor = mn_now; 1871 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1872 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1873
1185inline void 1874 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1875 * on the choice of "4": one iteration isn't enough,
1187{ 1876 * in case we get preempted during the calls to
1188 int i; 1877 * ev_time and get_clock. a second call is almost guaranteed
1189 1878 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1879 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1880 * in the unlikely event of having been preempted here.
1192 { 1881 */
1193 if (time_update_monotonic (EV_A)) 1882 for (i = 4; --i; )
1194 { 1883 {
1195 ev_tstamp odiff = rtmn_diff; 1884 rtmn_diff = ev_rt_now - mn_now;
1196 1885
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1887 return; /* all is well */
1888
1889 ev_rt_now = ev_time ();
1890 mn_now = get_clock ();
1891 now_floor = mn_now;
1892 }
1893
1894# if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A);
1896# endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 }
1900 else
1901#endif
1902 {
1903 ev_rt_now = ev_time ();
1904
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 {
1907#if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A);
1909#endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1198 { 1912 {
1199 rtmn_diff = ev_rt_now - mn_now; 1913 ANHE *he = timers + i + HEAP0;
1200 1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1915 ANHE_at_cache (*he);
1202 return; /* all is well */
1203
1204 ev_rt_now = ev_time ();
1205 mn_now = get_clock ();
1206 now_floor = mn_now;
1207 } 1916 }
1208
1209# if EV_PERIODICS
1210 periodics_reschedule (EV_A);
1211# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 1917 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1918
1232 mn_now = ev_rt_now; 1919 mn_now = ev_rt_now;
1233 } 1920 }
1234} 1921}
1235 1922
1243ev_unref (EV_P) 1930ev_unref (EV_P)
1244{ 1931{
1245 --activecnt; 1932 --activecnt;
1246} 1933}
1247 1934
1935void
1936ev_now_update (EV_P)
1937{
1938 time_update (EV_A_ 1e100);
1939}
1940
1248static int loop_done; 1941static int loop_done;
1249 1942
1250void 1943void
1251ev_loop (EV_P_ int flags) 1944ev_loop (EV_P_ int flags)
1252{ 1945{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1946 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1947
1257 while (activecnt) 1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1949
1950 do
1258 { 1951 {
1952#if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954#endif
1955
1956#ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid))
1959 {
1960 curpid = getpid ();
1961 postfork = 1;
1962 }
1963#endif
1964
1965#if EV_FORK_ENABLE
1966 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork))
1968 if (forkcnt)
1969 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A);
1972 }
1973#endif
1974
1259 /* queue check watchers (and execute them) */ 1975 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1976 if (expect_false (preparecnt))
1261 { 1977 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1979 call_pending (EV_A);
1264 } 1980 }
1265 1981
1982 if (expect_false (!activecnt))
1983 break;
1984
1266 /* we might have forked, so reify kernel state if necessary */ 1985 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1986 if (expect_false (postfork))
1268 loop_fork (EV_A); 1987 loop_fork (EV_A);
1269 1988
1270 /* update fd-related kernel structures */ 1989 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1990 fd_reify (EV_A);
1272 1991
1273 /* calculate blocking time */ 1992 /* calculate blocking time */
1274 { 1993 {
1275 double block; 1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1276 1996
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1998 {
1281 /* update time to cancel out callback processing overhead */ 1999 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 2000 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 2001
1292 block = MAX_BLOCKTIME; 2002 waittime = MAX_BLOCKTIME;
1293 2003
1294 if (timercnt) 2004 if (timercnt)
1295 { 2005 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 2007 if (waittime > to) waittime = to;
1298 } 2008 }
1299 2009
1300#if EV_PERIODICS 2010#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 2011 if (periodiccnt)
1302 { 2012 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 2014 if (waittime > to) waittime = to;
1305 } 2015 }
1306#endif 2016#endif
1307 2017
1308 if (expect_false (block < 0.)) block = 0.; 2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
1309 } 2031 }
1310 2032
2033 ++loop_count;
1311 backend_poll (EV_A_ block); 2034 backend_poll (EV_A_ waittime);
2035
2036 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime);
1312 } 2038 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 2039
1317 /* queue pending timers and reschedule them */ 2040 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 2041 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 2042#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 2043 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 2044#endif
1322 2045
2046#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 2047 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 2048 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2049#endif
1326 2050
1327 /* queue check watchers, to be executed first */ 2051 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 2052 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 2054
1331 call_pending (EV_A); 2055 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 2056 }
2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
1336 2062
1337 if (loop_done == EVUNLOOP_ONE) 2063 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 2064 loop_done = EVUNLOOP_CANCEL;
1339} 2065}
1340 2066
1344 loop_done = how; 2070 loop_done = how;
1345} 2071}
1346 2072
1347/*****************************************************************************/ 2073/*****************************************************************************/
1348 2074
1349inline void 2075void inline_size
1350wlist_add (WL *head, WL elem) 2076wlist_add (WL *head, WL elem)
1351{ 2077{
1352 elem->next = *head; 2078 elem->next = *head;
1353 *head = elem; 2079 *head = elem;
1354} 2080}
1355 2081
1356inline void 2082void inline_size
1357wlist_del (WL *head, WL elem) 2083wlist_del (WL *head, WL elem)
1358{ 2084{
1359 while (*head) 2085 while (*head)
1360 { 2086 {
1361 if (*head == elem) 2087 if (*head == elem)
1366 2092
1367 head = &(*head)->next; 2093 head = &(*head)->next;
1368 } 2094 }
1369} 2095}
1370 2096
1371inline void 2097void inline_speed
1372ev_clear_pending (EV_P_ W w) 2098clear_pending (EV_P_ W w)
1373{ 2099{
1374 if (w->pending) 2100 if (w->pending)
1375 { 2101 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 2103 w->pending = 0;
1378 } 2104 }
1379} 2105}
1380 2106
1381inline void 2107int
2108ev_clear_pending (EV_P_ void *w)
2109{
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122}
2123
2124void inline_size
2125pri_adjust (EV_P_ W w)
2126{
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131}
2132
2133void inline_speed
1382ev_start (EV_P_ W w, int active) 2134ev_start (EV_P_ W w, int active)
1383{ 2135{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2136 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 2137 w->active = active;
1388 ev_ref (EV_A); 2138 ev_ref (EV_A);
1389} 2139}
1390 2140
1391inline void 2141void inline_size
1392ev_stop (EV_P_ W w) 2142ev_stop (EV_P_ W w)
1393{ 2143{
1394 ev_unref (EV_A); 2144 ev_unref (EV_A);
1395 w->active = 0; 2145 w->active = 0;
1396} 2146}
1397 2147
1398/*****************************************************************************/ 2148/*****************************************************************************/
1399 2149
1400void 2150void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 2151ev_io_start (EV_P_ ev_io *w)
1402{ 2152{
1403 int fd = w->fd; 2153 int fd = w->fd;
1404 2154
1405 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1406 return; 2156 return;
1407 2157
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
1409 2162
1410 ev_start (EV_A_ (W)w, 1); 2163 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2165 wlist_add (&anfds[fd].head, (WL)w);
1413 2166
1414 fd_change (EV_A_ fd); 2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1415} 2168 w->events &= ~EV_IOFDSET;
1416 2169
1417void 2170 EV_FREQUENT_CHECK;
2171}
2172
2173void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 2174ev_io_stop (EV_P_ ev_io *w)
1419{ 2175{
1420 ev_clear_pending (EV_A_ (W)w); 2176 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 2177 if (expect_false (!ev_is_active (w)))
1422 return; 2178 return;
1423 2179
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 2181
2182 EV_FREQUENT_CHECK;
2183
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2184 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1428 2186
1429 fd_change (EV_A_ w->fd); 2187 fd_change (EV_A_ w->fd, 1);
1430}
1431 2188
1432void 2189 EV_FREQUENT_CHECK;
2190}
2191
2192void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 2193ev_timer_start (EV_P_ ev_timer *w)
1434{ 2194{
1435 if (expect_false (ev_is_active (w))) 2195 if (expect_false (ev_is_active (w)))
1436 return; 2196 return;
1437 2197
1438 ((WT)w)->at += mn_now; 2198 ev_at (w) += mn_now;
1439 2199
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
1446 2210
2211 EV_FREQUENT_CHECK;
2212
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 2214}
1449 2215
1450void 2216void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 2217ev_timer_stop (EV_P_ ev_timer *w)
1452{ 2218{
1453 ev_clear_pending (EV_A_ (W)w); 2219 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 2220 if (expect_false (!ev_is_active (w)))
1455 return; 2221 return;
1456 2222
2223 EV_FREQUENT_CHECK;
2224
2225 {
2226 int active = ev_active (w);
2227
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 2229
2230 --timercnt;
2231
1459 if (expect_true (((W)w)->active < timercnt--)) 2232 if (expect_true (active < timercnt + HEAP0))
1460 { 2233 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2234 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, active);
1463 } 2236 }
2237 }
1464 2238
1465 ((WT)w)->at -= mn_now; 2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
1466 2242
1467 ev_stop (EV_A_ (W)w); 2243 ev_stop (EV_A_ (W)w);
1468} 2244}
1469 2245
1470void 2246void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2247ev_timer_again (EV_P_ ev_timer *w)
1472{ 2248{
2249 EV_FREQUENT_CHECK;
2250
1473 if (ev_is_active (w)) 2251 if (ev_is_active (w))
1474 { 2252 {
1475 if (w->repeat) 2253 if (w->repeat)
1476 { 2254 {
1477 ((WT)w)->at = mn_now + w->repeat; 2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2257 adjustheap (timers, timercnt, ev_active (w));
1479 } 2258 }
1480 else 2259 else
1481 ev_timer_stop (EV_A_ w); 2260 ev_timer_stop (EV_A_ w);
1482 } 2261 }
1483 else if (w->repeat) 2262 else if (w->repeat)
1484 { 2263 {
1485 w->at = w->repeat; 2264 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2265 ev_timer_start (EV_A_ w);
1487 } 2266 }
1488}
1489 2267
2268 EV_FREQUENT_CHECK;
2269}
2270
1490#if EV_PERIODICS 2271#if EV_PERIODIC_ENABLE
1491void 2272void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2273ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2274{
1494 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1495 return; 2276 return;
1496 2277
1497 if (w->reschedule_cb) 2278 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2280 else if (w->interval)
1500 { 2281 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2283 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 2285 }
2286 else
2287 ev_at (w) = w->offset;
1505 2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
1510 2297
2298 EV_FREQUENT_CHECK;
2299
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 2301}
1513 2302
1514void 2303void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2304ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2305{
1517 ev_clear_pending (EV_A_ (W)w); 2306 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2307 if (expect_false (!ev_is_active (w)))
1519 return; 2308 return;
1520 2309
2310 EV_FREQUENT_CHECK;
2311
2312 {
2313 int active = ev_active (w);
2314
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 2316
2317 --periodiccnt;
2318
1523 if (expect_true (((W)w)->active < periodiccnt--)) 2319 if (expect_true (active < periodiccnt + HEAP0))
1524 { 2320 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2321 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2322 adjustheap (periodics, periodiccnt, active);
1527 } 2323 }
2324 }
2325
2326 EV_FREQUENT_CHECK;
1528 2327
1529 ev_stop (EV_A_ (W)w); 2328 ev_stop (EV_A_ (W)w);
1530} 2329}
1531 2330
1532void 2331void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 2332ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2333{
1535 /* TODO: use adjustheap and recalculation */ 2334 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2335 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2336 ev_periodic_start (EV_A_ w);
1538} 2337}
1539#endif 2338#endif
1540 2339
1541void 2340#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 2341# define SA_RESTART 0
2342#endif
2343
2344void noinline
2345ev_signal_start (EV_P_ ev_signal *w)
1543{ 2346{
2347#if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349#endif
1544 if (expect_false (ev_is_active (w))) 2350 if (expect_false (ev_is_active (w)))
1545 return; 2351 return;
1546 2352
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART
1608# define SA_RESTART 0
1609#endif
1610
1611void
1612ev_signal_start (EV_P_ struct ev_signal *w)
1613{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w)))
1618 return;
1619
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360#ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364#endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368#ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370#endif
2371 }
2372
1622 ev_start (EV_A_ (W)w, 1); 2373 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2375
1626 if (!((WL)w)->next) 2376 if (!((WL)w)->next)
1627 { 2377 {
1628#if _WIN32 2378#if _WIN32
1629 signal (w->signum, sighandler); 2379 signal (w->signum, ev_sighandler);
1630#else 2380#else
1631 struct sigaction sa; 2381 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2382 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2383 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2385 sigaction (w->signum, &sa, 0);
1636#endif 2386#endif
1637 } 2387 }
1638}
1639 2388
1640void 2389 EV_FREQUENT_CHECK;
2390}
2391
2392void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2393ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2394{
1643 ev_clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1645 return; 2397 return;
1646 2398
2399 EV_FREQUENT_CHECK;
2400
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
1649 2403
1650 if (!signals [w->signum - 1].head) 2404 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2405 signal (w->signum, SIG_DFL);
1652}
1653 2406
2407 EV_FREQUENT_CHECK;
2408}
2409
1654void 2410void
1655ev_child_start (EV_P_ struct ev_child *w) 2411ev_child_start (EV_P_ ev_child *w)
1656{ 2412{
1657#if EV_MULTIPLICITY 2413#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2415#endif
1660 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1661 return; 2417 return;
1662 2418
2419 EV_FREQUENT_CHECK;
2420
1663 ev_start (EV_A_ (W)w, 1); 2421 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665}
1666 2423
2424 EV_FREQUENT_CHECK;
2425}
2426
1667void 2427void
1668ev_child_stop (EV_P_ struct ev_child *w) 2428ev_child_stop (EV_P_ ev_child *w)
1669{ 2429{
1670 ev_clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1672 return; 2432 return;
1673 2433
2434 EV_FREQUENT_CHECK;
2435
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
1676}
1677 2438
1678#if EV_MULTIPLICITY 2439 EV_FREQUENT_CHECK;
2440}
2441
2442#if EV_STAT_ENABLE
2443
2444# ifdef _WIN32
2445# undef lstat
2446# define lstat(a,b) _stati64 (a,b)
2447# endif
2448
2449#define DEF_STAT_INTERVAL 5.0074891
2450#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2451#define MIN_STAT_INTERVAL 0.1074891
2452
2453static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454
2455#if EV_USE_INOTIFY
2456# define EV_INOTIFY_BUFSIZE 8192
2457
2458static void noinline
2459infy_add (EV_P_ ev_stat *w)
2460{
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462
2463 if (w->wd < 0)
2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467
2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 {
2473 char path [4096];
2474 strcpy (path, w->path);
2475
2476 do
2477 {
2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2480
2481 char *pend = strrchr (path, '/');
2482
2483 if (!pend || pend == path)
2484 break;
2485
2486 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 }
2491 }
2492
2493 if (w->wd >= 0)
2494 {
2495 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2496
2497 /* now local changes will be tracked by inotify, but remote changes won't */
2498 /* unless the filesystem it known to be local, we therefore still poll */
2499 /* also do poll on <2.6.25, but with normal frequency */
2500 struct statfs sfs;
2501
2502 if (fs_2625 && !statfs (w->path, &sfs))
2503 if (sfs.f_type == 0x1373 /* devfs */
2504 || sfs.f_type == 0xEF53 /* ext2/3 */
2505 || sfs.f_type == 0x3153464a /* jfs */
2506 || sfs.f_type == 0x52654973 /* reiser3 */
2507 || sfs.f_type == 0x01021994 /* tempfs */
2508 || sfs.f_type == 0x58465342 /* xfs */)
2509 return;
2510
2511 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2512 ev_timer_again (EV_A_ &w->timer);
2513 }
2514}
2515
2516static void noinline
2517infy_del (EV_P_ ev_stat *w)
2518{
2519 int slot;
2520 int wd = w->wd;
2521
2522 if (wd < 0)
2523 return;
2524
2525 w->wd = -2;
2526 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2527 wlist_del (&fs_hash [slot].head, (WL)w);
2528
2529 /* remove this watcher, if others are watching it, they will rearm */
2530 inotify_rm_watch (fs_fd, wd);
2531}
2532
2533static void noinline
2534infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2535{
2536 if (slot < 0)
2537 /* overflow, need to check for all hash slots */
2538 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2539 infy_wd (EV_A_ slot, wd, ev);
2540 else
2541 {
2542 WL w_;
2543
2544 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2545 {
2546 ev_stat *w = (ev_stat *)w_;
2547 w_ = w_->next; /* lets us remove this watcher and all before it */
2548
2549 if (w->wd == wd || wd == -1)
2550 {
2551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2552 {
2553 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2554 w->wd = -1;
2555 infy_add (EV_A_ w); /* re-add, no matter what */
2556 }
2557
2558 stat_timer_cb (EV_A_ &w->timer, 0);
2559 }
2560 }
2561 }
2562}
2563
1679static void 2564static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2565infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2566{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2567 char buf [EV_INOTIFY_BUFSIZE];
2568 struct inotify_event *ev = (struct inotify_event *)buf;
2569 int ofs;
2570 int len = read (fs_fd, buf, sizeof (buf));
1683 2571
2572 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2573 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2574}
2575
2576void inline_size
2577check_2625 (EV_P)
2578{
2579 /* kernels < 2.6.25 are borked
2580 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2581 */
2582 struct utsname buf;
2583 int major, minor, micro;
2584
2585 if (uname (&buf))
2586 return;
2587
2588 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2589 return;
2590
2591 if (major < 2
2592 || (major == 2 && minor < 6)
2593 || (major == 2 && minor == 6 && micro < 25))
2594 return;
2595
2596 fs_2625 = 1;
2597}
2598
2599void inline_size
2600infy_init (EV_P)
2601{
2602 if (fs_fd != -2)
2603 return;
2604
2605 fs_fd = -1;
2606
2607 check_2625 (EV_A);
2608
2609 fs_fd = inotify_init ();
2610
2611 if (fs_fd >= 0)
2612 {
2613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2614 ev_set_priority (&fs_w, EV_MAXPRI);
2615 ev_io_start (EV_A_ &fs_w);
2616 }
2617}
2618
2619void inline_size
2620infy_fork (EV_P)
2621{
2622 int slot;
2623
2624 if (fs_fd < 0)
2625 return;
2626
2627 close (fs_fd);
2628 fs_fd = inotify_init ();
2629
2630 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2631 {
2632 WL w_ = fs_hash [slot].head;
2633 fs_hash [slot].head = 0;
2634
2635 while (w_)
2636 {
2637 ev_stat *w = (ev_stat *)w_;
2638 w_ = w_->next; /* lets us add this watcher */
2639
2640 w->wd = -1;
2641
2642 if (fs_fd >= 0)
2643 infy_add (EV_A_ w); /* re-add, no matter what */
2644 else
2645 ev_timer_again (EV_A_ &w->timer);
2646 }
2647 }
2648}
2649
2650#endif
2651
2652#ifdef _WIN32
2653# define EV_LSTAT(p,b) _stati64 (p, b)
2654#else
2655# define EV_LSTAT(p,b) lstat (p, b)
2656#endif
2657
2658void
2659ev_stat_stat (EV_P_ ev_stat *w)
2660{
2661 if (lstat (w->path, &w->attr) < 0)
2662 w->attr.st_nlink = 0;
2663 else if (!w->attr.st_nlink)
2664 w->attr.st_nlink = 1;
2665}
2666
2667static void noinline
2668stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2669{
2670 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2671
2672 /* we copy this here each the time so that */
2673 /* prev has the old value when the callback gets invoked */
2674 w->prev = w->attr;
2675 ev_stat_stat (EV_A_ w);
2676
2677 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2678 if (
2679 w->prev.st_dev != w->attr.st_dev
2680 || w->prev.st_ino != w->attr.st_ino
2681 || w->prev.st_mode != w->attr.st_mode
2682 || w->prev.st_nlink != w->attr.st_nlink
2683 || w->prev.st_uid != w->attr.st_uid
2684 || w->prev.st_gid != w->attr.st_gid
2685 || w->prev.st_rdev != w->attr.st_rdev
2686 || w->prev.st_size != w->attr.st_size
2687 || w->prev.st_atime != w->attr.st_atime
2688 || w->prev.st_mtime != w->attr.st_mtime
2689 || w->prev.st_ctime != w->attr.st_ctime
2690 ) {
2691 #if EV_USE_INOTIFY
2692 if (fs_fd >= 0)
2693 {
2694 infy_del (EV_A_ w);
2695 infy_add (EV_A_ w);
2696 ev_stat_stat (EV_A_ w); /* avoid race... */
2697 }
2698 #endif
2699
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2700 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2701 }
1686} 2702}
1687 2703
1688void 2704void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2705ev_stat_start (EV_P_ ev_stat *w)
1690{ 2706{
1691 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1692 return; 2708 return;
1693 2709
1694 { 2710 ev_stat_stat (EV_A_ w);
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 2711
1700 ev_io_start (EV_A_ &w->io); 2712 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2713 w->interval = MIN_STAT_INTERVAL;
2714
2715 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2716 ev_set_priority (&w->timer, ev_priority (w));
2717
2718#if EV_USE_INOTIFY
2719 infy_init (EV_A);
2720
2721 if (fs_fd >= 0)
2722 infy_add (EV_A_ w);
2723 else
2724#endif
2725 ev_timer_again (EV_A_ &w->timer);
2726
1701 ev_start (EV_A_ (W)w, 1); 2727 ev_start (EV_A_ (W)w, 1);
1702}
1703 2728
2729 EV_FREQUENT_CHECK;
2730}
2731
1704void 2732void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2733ev_stat_stop (EV_P_ ev_stat *w)
1706{ 2734{
1707 ev_clear_pending (EV_A_ (W)w); 2735 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2736 if (expect_false (!ev_is_active (w)))
1709 return; 2737 return;
1710 2738
2739 EV_FREQUENT_CHECK;
2740
2741#if EV_USE_INOTIFY
2742 infy_del (EV_A_ w);
2743#endif
1711 ev_io_stop (EV_A_ &w->io); 2744 ev_timer_stop (EV_A_ &w->timer);
2745
1712 ev_stop (EV_A_ (W)w); 2746 ev_stop (EV_A_ (W)w);
2747
2748 EV_FREQUENT_CHECK;
2749}
2750#endif
2751
2752#if EV_IDLE_ENABLE
2753void
2754ev_idle_start (EV_P_ ev_idle *w)
2755{
2756 if (expect_false (ev_is_active (w)))
2757 return;
2758
2759 pri_adjust (EV_A_ (W)w);
2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ++idlecnt [ABSPRI (w)];
2765
2766 ++idleall;
2767 ev_start (EV_A_ (W)w, active);
2768
2769 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2770 idles [ABSPRI (w)][active - 1] = w;
2771 }
2772
2773 EV_FREQUENT_CHECK;
2774}
2775
2776void
2777ev_idle_stop (EV_P_ ev_idle *w)
2778{
2779 clear_pending (EV_A_ (W)w);
2780 if (expect_false (!ev_is_active (w)))
2781 return;
2782
2783 EV_FREQUENT_CHECK;
2784
2785 {
2786 int active = ev_active (w);
2787
2788 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2789 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2790
2791 ev_stop (EV_A_ (W)w);
2792 --idleall;
2793 }
2794
2795 EV_FREQUENT_CHECK;
2796}
2797#endif
2798
2799void
2800ev_prepare_start (EV_P_ ev_prepare *w)
2801{
2802 if (expect_false (ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 ev_start (EV_A_ (W)w, ++preparecnt);
2808 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2809 prepares [preparecnt - 1] = w;
2810
2811 EV_FREQUENT_CHECK;
2812}
2813
2814void
2815ev_prepare_stop (EV_P_ ev_prepare *w)
2816{
2817 clear_pending (EV_A_ (W)w);
2818 if (expect_false (!ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
2822
2823 {
2824 int active = ev_active (w);
2825
2826 prepares [active - 1] = prepares [--preparecnt];
2827 ev_active (prepares [active - 1]) = active;
2828 }
2829
2830 ev_stop (EV_A_ (W)w);
2831
2832 EV_FREQUENT_CHECK;
2833}
2834
2835void
2836ev_check_start (EV_P_ ev_check *w)
2837{
2838 if (expect_false (ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 ev_start (EV_A_ (W)w, ++checkcnt);
2844 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2845 checks [checkcnt - 1] = w;
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850void
2851ev_check_stop (EV_P_ ev_check *w)
2852{
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859 {
2860 int active = ev_active (w);
2861
2862 checks [active - 1] = checks [--checkcnt];
2863 ev_active (checks [active - 1]) = active;
2864 }
2865
2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871#if EV_EMBED_ENABLE
2872void noinline
2873ev_embed_sweep (EV_P_ ev_embed *w)
2874{
2875 ev_loop (w->other, EVLOOP_NONBLOCK);
2876}
2877
2878static void
2879embed_io_cb (EV_P_ ev_io *io, int revents)
2880{
2881 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2882
2883 if (ev_cb (w))
2884 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2885 else
2886 ev_loop (w->other, EVLOOP_NONBLOCK);
2887}
2888
2889static void
2890embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2891{
2892 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2893
2894 {
2895 struct ev_loop *loop = w->other;
2896
2897 while (fdchangecnt)
2898 {
2899 fd_reify (EV_A);
2900 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2901 }
2902 }
2903}
2904
2905static void
2906embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2907{
2908 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2909
2910 {
2911 struct ev_loop *loop = w->other;
2912
2913 ev_loop_fork (EV_A);
2914 }
2915}
2916
2917#if 0
2918static void
2919embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2920{
2921 ev_idle_stop (EV_A_ idle);
2922}
2923#endif
2924
2925void
2926ev_embed_start (EV_P_ ev_embed *w)
2927{
2928 if (expect_false (ev_is_active (w)))
2929 return;
2930
2931 {
2932 struct ev_loop *loop = w->other;
2933 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2934 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2935 }
2936
2937 EV_FREQUENT_CHECK;
2938
2939 ev_set_priority (&w->io, ev_priority (w));
2940 ev_io_start (EV_A_ &w->io);
2941
2942 ev_prepare_init (&w->prepare, embed_prepare_cb);
2943 ev_set_priority (&w->prepare, EV_MINPRI);
2944 ev_prepare_start (EV_A_ &w->prepare);
2945
2946 ev_fork_init (&w->fork, embed_fork_cb);
2947 ev_fork_start (EV_A_ &w->fork);
2948
2949 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2950
2951 ev_start (EV_A_ (W)w, 1);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955
2956void
2957ev_embed_stop (EV_P_ ev_embed *w)
2958{
2959 clear_pending (EV_A_ (W)w);
2960 if (expect_false (!ev_is_active (w)))
2961 return;
2962
2963 EV_FREQUENT_CHECK;
2964
2965 ev_io_stop (EV_A_ &w->io);
2966 ev_prepare_stop (EV_A_ &w->prepare);
2967 ev_fork_stop (EV_A_ &w->fork);
2968
2969 EV_FREQUENT_CHECK;
2970}
2971#endif
2972
2973#if EV_FORK_ENABLE
2974void
2975ev_fork_start (EV_P_ ev_fork *w)
2976{
2977 if (expect_false (ev_is_active (w)))
2978 return;
2979
2980 EV_FREQUENT_CHECK;
2981
2982 ev_start (EV_A_ (W)w, ++forkcnt);
2983 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2984 forks [forkcnt - 1] = w;
2985
2986 EV_FREQUENT_CHECK;
2987}
2988
2989void
2990ev_fork_stop (EV_P_ ev_fork *w)
2991{
2992 clear_pending (EV_A_ (W)w);
2993 if (expect_false (!ev_is_active (w)))
2994 return;
2995
2996 EV_FREQUENT_CHECK;
2997
2998 {
2999 int active = ev_active (w);
3000
3001 forks [active - 1] = forks [--forkcnt];
3002 ev_active (forks [active - 1]) = active;
3003 }
3004
3005 ev_stop (EV_A_ (W)w);
3006
3007 EV_FREQUENT_CHECK;
3008}
3009#endif
3010
3011#if EV_ASYNC_ENABLE
3012void
3013ev_async_start (EV_P_ ev_async *w)
3014{
3015 if (expect_false (ev_is_active (w)))
3016 return;
3017
3018 evpipe_init (EV_A);
3019
3020 EV_FREQUENT_CHECK;
3021
3022 ev_start (EV_A_ (W)w, ++asynccnt);
3023 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3024 asyncs [asynccnt - 1] = w;
3025
3026 EV_FREQUENT_CHECK;
3027}
3028
3029void
3030ev_async_stop (EV_P_ ev_async *w)
3031{
3032 clear_pending (EV_A_ (W)w);
3033 if (expect_false (!ev_is_active (w)))
3034 return;
3035
3036 EV_FREQUENT_CHECK;
3037
3038 {
3039 int active = ev_active (w);
3040
3041 asyncs [active - 1] = asyncs [--asynccnt];
3042 ev_active (asyncs [active - 1]) = active;
3043 }
3044
3045 ev_stop (EV_A_ (W)w);
3046
3047 EV_FREQUENT_CHECK;
3048}
3049
3050void
3051ev_async_send (EV_P_ ev_async *w)
3052{
3053 w->sent = 1;
3054 evpipe_write (EV_A_ &gotasync);
1713} 3055}
1714#endif 3056#endif
1715 3057
1716/*****************************************************************************/ 3058/*****************************************************************************/
1717 3059
1718struct ev_once 3060struct ev_once
1719{ 3061{
1720 struct ev_io io; 3062 ev_io io;
1721 struct ev_timer to; 3063 ev_timer to;
1722 void (*cb)(int revents, void *arg); 3064 void (*cb)(int revents, void *arg);
1723 void *arg; 3065 void *arg;
1724}; 3066};
1725 3067
1726static void 3068static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 3069once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 3070{
1729 void (*cb)(int revents, void *arg) = once->cb; 3071 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 3072 void *arg = once->arg;
1731 3073
1732 ev_io_stop (EV_A_ &once->io); 3074 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 3075 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 3076 ev_free (once);
1735 3077
1736 cb (revents, arg); 3078 cb (revents, arg);
1737} 3079}
1738 3080
1739static void 3081static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 3082once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 3083{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3084 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3085
3086 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 3087}
1744 3088
1745static void 3089static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 3090once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 3091{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3092 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3093
3094 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 3095}
1750 3096
1751void 3097void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3098ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1753{ 3099{
1775 ev_timer_set (&once->to, timeout, 0.); 3121 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 3122 ev_timer_start (EV_A_ &once->to);
1777 } 3123 }
1778} 3124}
1779 3125
3126#if EV_MULTIPLICITY
3127 #include "ev_wrap.h"
3128#endif
3129
1780#ifdef __cplusplus 3130#ifdef __cplusplus
1781} 3131}
1782#endif 3132#endif
1783 3133

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines