ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.293 by root, Mon Jun 29 18:46:52 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
99#endif 146#endif
100 147
101#include <math.h> 148#include <math.h>
102#include <stdlib.h> 149#include <stdlib.h>
103#include <fcntl.h> 150#include <fcntl.h>
110#include <sys/types.h> 157#include <sys/types.h>
111#include <time.h> 158#include <time.h>
112 159
113#include <signal.h> 160#include <signal.h>
114 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
115#ifndef _WIN32 168#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 169# include <sys/time.h>
118# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
119#else 172#else
173# include <io.h>
120# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 175# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
124# endif 178# endif
125#endif 179#endif
126 180
127/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
128 190
129#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
130# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
131#endif 197#endif
132 198
133#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
135#endif 209#endif
136 210
137#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
139#endif 213#endif
145# define EV_USE_POLL 1 219# define EV_USE_POLL 1
146# endif 220# endif
147#endif 221#endif
148 222
149#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
150# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
151#endif 229#endif
152 230
153#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
155#endif 233#endif
156 234
157#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 236# define EV_USE_PORT 0
159#endif 237#endif
160 238
161/**/ 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 304
163#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
166#endif 308#endif
168#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
171#endif 313#endif
172 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
173#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 338# include <winsock.h>
175#endif 339#endif
176 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
177/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 370
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 374
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 375#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 377# define noinline __attribute__ ((noinline))
193#else 378#else
194# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
195# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
196#endif 384#endif
197 385
198#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
200 395
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 397#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 398
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 399#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 400#define EMPTY2(a,b) /* used to suppress some warnings */
206 401
207typedef struct ev_watcher *W; 402typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
210 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
212 418
213#ifdef _WIN32 419#ifdef _WIN32
214# include "ev_win32.c" 420# include "ev_win32.c"
215#endif 421#endif
216 422
217/*****************************************************************************/ 423/*****************************************************************************/
218 424
219static void (*syserr_cb)(const char *msg); 425static void (*syserr_cb)(const char *msg);
220 426
427void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 428ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 429{
223 syserr_cb = cb; 430 syserr_cb = cb;
224} 431}
225 432
226static void 433static void noinline
227syserr (const char *msg) 434ev_syserr (const char *msg)
228{ 435{
229 if (!msg) 436 if (!msg)
230 msg = "(libev) system error"; 437 msg = "(libev) system error";
231 438
232 if (syserr_cb) 439 if (syserr_cb)
236 perror (msg); 443 perror (msg);
237 abort (); 444 abort ();
238 } 445 }
239} 446}
240 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
241static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 464
465void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 467{
245 alloc = cb; 468 alloc = cb;
246} 469}
247 470
248static void * 471inline_speed void *
249ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
250{ 473{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
252 475
253 if (!ptr && size) 476 if (!ptr && size)
254 { 477 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 479 abort ();
262#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
264 487
265/*****************************************************************************/ 488/*****************************************************************************/
266 489
490/* file descriptor info structure */
267typedef struct 491typedef struct
268{ 492{
269 WL head; 493 WL head;
270 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
272#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 502 SOCKET handle;
274#endif 503#endif
275} ANFD; 504} ANFD;
276 505
506/* stores the pending event set for a given watcher */
277typedef struct 507typedef struct
278{ 508{
279 W w; 509 W w;
280 int events; 510 int events; /* the pending event set for the given watcher */
281} ANPENDING; 511} ANPENDING;
512
513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
515typedef struct
516{
517 WL head;
518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539#endif
282 540
283#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
284 542
285 struct ev_loop 543 struct ev_loop
286 { 544 {
306 564
307#endif 565#endif
308 566
309/*****************************************************************************/ 567/*****************************************************************************/
310 568
569#ifndef EV_HAVE_EV_TIME
311ev_tstamp 570ev_tstamp
312ev_time (void) 571ev_time (void)
313{ 572{
314#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
315 struct timespec ts; 576 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 579 }
580#endif
581
319 struct timeval tv; 582 struct timeval tv;
320 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 585}
586#endif
324 587
325inline ev_tstamp 588inline_size ev_tstamp
326get_clock (void) 589get_clock (void)
327{ 590{
328#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
330 { 593 {
343{ 606{
344 return ev_rt_now; 607 return ev_rt_now;
345} 608}
346#endif 609#endif
347 610
348#define array_roundsize(type,n) (((n) | 4) & ~3) 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
646array_nextsize (int elem, int cur, int cnt)
647{
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664}
665
666static noinline void *
667array_realloc (int elem, void *base, int *cur, int cnt)
668{
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 675
350#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 677 if (expect_false ((cnt) > (cur))) \
352 { \ 678 { \
353 int newcnt = cur; \ 679 int ocur_ = (cur); \
354 do \ 680 (base) = (type *)array_realloc \
355 { \ 681 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 682 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 683 }
364 684
685#if 0
365#define array_slim(type,stem) \ 686#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 688 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 689 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 692 }
693#endif
372 694
373#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 697
376/*****************************************************************************/ 698/*****************************************************************************/
377 699
378static void 700/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 703{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 704}
390 705
391void 706void noinline
392ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
393{ 708{
394 W w_ = (W)w; 709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
395 711
396 if (expect_false (w_->pending)) 712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
397 { 715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 719 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 720 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 721}
410 722
411static void 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 740{
414 int i; 741 int i;
415 742
416 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
418} 745}
419 746
747/*****************************************************************************/
748
420inline void 749inline_speed void
421fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
422{ 751{
423 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 753 ev_io *w;
425 754
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 756 {
428 int ev = w->events & revents; 757 int ev = w->events & revents;
429 758
430 if (ev) 759 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 760 ev_feed_event (EV_A_ (W)w, ev);
433} 762}
434 763
435void 764void
436ev_feed_fd_event (EV_P_ int fd, int revents) 765ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 766{
767 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
439} 769}
440 770
441/*****************************************************************************/ 771/* make sure the external fd watch events are in-sync */
442 772/* with the kernel/libev internal state */
443inline void 773inline_size void
444fd_reify (EV_P) 774fd_reify (EV_P)
445{ 775{
446 int i; 776 int i;
447 777
448 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
449 { 779 {
450 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 782 ev_io *w;
453 783
454 int events = 0; 784 unsigned char events = 0;
455 785
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 787 events |= (unsigned char)w->events;
458 788
459#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
460 if (events) 790 if (events)
461 { 791 {
462 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
463 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
465 } 799 }
466#endif 800#endif
467 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
468 anfd->reify = 0; 806 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
472 } 812 }
473 813
474 fdchangecnt = 0; 814 fdchangecnt = 0;
475} 815}
476 816
477static void 817/* something about the given fd changed */
818inline_size void
478fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
479{ 820{
480 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
484 823
824 if (expect_true (!reify))
825 {
485 ++fdchangecnt; 826 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
488} 830}
489 831
490static void 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
491fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
492{ 835{
493 struct ev_io *w; 836 ev_io *w;
494 837
495 while ((w = (struct ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
496 { 839 {
497 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 842 }
500} 843}
501 844
845/* check whether the given fd is atcually valid, for error recovery */
502inline int 846inline_size int
503fd_valid (int fd) 847fd_valid (int fd)
504{ 848{
505#ifdef _WIN32 849#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
507#else 851#else
508 return fcntl (fd, F_GETFD) != -1; 852 return fcntl (fd, F_GETFD) != -1;
509#endif 853#endif
510} 854}
511 855
512/* called on EBADF to verify fds */ 856/* called on EBADF to verify fds */
513static void 857static void noinline
514fd_ebadf (EV_P) 858fd_ebadf (EV_P)
515{ 859{
516 int fd; 860 int fd;
517 861
518 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 863 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
522} 866}
523 867
524/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 869static void noinline
526fd_enomem (EV_P) 870fd_enomem (EV_P)
527{ 871{
528 int fd; 872 int fd;
529 873
530 for (fd = anfdmax; fd--; ) 874 for (fd = anfdmax; fd--; )
534 return; 878 return;
535 } 879 }
536} 880}
537 881
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 882/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 883static void noinline
540fd_rearm_all (EV_P) 884fd_rearm_all (EV_P)
541{ 885{
542 int fd; 886 int fd;
543 887
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 889 if (anfds [fd].events)
547 { 890 {
548 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
549 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
550 } 894 }
551} 895}
552 896
553/*****************************************************************************/ 897/*****************************************************************************/
554 898
555static void 899/*
556upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
557{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
558 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
559 904
560 while (k && heap [k >> 1]->at > w->at) 905/*
561 { 906 * at the moment we allow libev the luxury of two heaps,
562 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
563 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
564 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
565 } 910 */
911#if EV_USE_4HEAP
566 912
567 heap [k] = w; 913#define DHEAP 4
568 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
569 917
570} 918/* away from the root */
571 919inline_speed void
572static void
573downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
574{ 921{
575 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
576 924
577 while (k < (N >> 1)) 925 for (;;)
578 { 926 {
579 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
580 930
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
582 ++j; 933 {
583 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
584 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
585 break; 947 break;
586 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
587 heap [k] = heap [j]; 987 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
589 k = j; 990 k = c;
590 } 991 }
591 992
592 heap [k] = w; 993 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
594} 995}
996#endif
595 997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
596inline void 1021inline_size void
597adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
598{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
599 upheap (heap, k); 1025 upheap (heap, k);
1026 else
600 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
601} 1040}
602 1041
603/*****************************************************************************/ 1042/*****************************************************************************/
604 1043
1044/* associate signal watchers to a signal signal */
605typedef struct 1045typedef struct
606{ 1046{
607 WL head; 1047 WL head;
608 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
609} ANSIG; 1049} ANSIG;
610 1050
611static ANSIG *signals; 1051static ANSIG *signals;
612static int signalmax; 1052static int signalmax;
613 1053
614static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 1055
618static void 1056/*****************************************************************************/
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625 1057
626 ++base; 1058/* used to prepare libev internal fd's */
627 } 1059/* this is not fork-safe */
628} 1060inline_speed void
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1061fd_intern (int fd)
683{ 1062{
684#ifdef _WIN32 1063#ifdef _WIN32
685 int arg = 1; 1064 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else 1066#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1069#endif
691} 1070}
692 1071
1072static void noinline
1073evpipe_init (EV_P)
1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
693static void 1125static void
694siginit (EV_P) 1126pipecb (EV_P_ ev_io *iow, int revents)
695{ 1127{
696 fd_intern (sigpipe [0]); 1128#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
698 1140
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1141 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 1142 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
702} 1165}
703 1166
704/*****************************************************************************/ 1167/*****************************************************************************/
705 1168
706static struct ev_child *childs [PID_HASHSIZE]; 1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
1206static WL childs [EV_PID_HASHSIZE];
707 1207
708#ifndef _WIN32 1208#ifndef _WIN32
709 1209
710static struct ev_signal childev; 1210static ev_signal childev;
1211
1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
1218child_reap (EV_P_ int chain, int pid, int status)
1219{
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234}
711 1235
712#ifndef WCONTINUED 1236#ifndef WCONTINUED
713# define WCONTINUED 0 1237# define WCONTINUED 0
714#endif 1238#endif
715 1239
1240/* called on sigchld etc., calls waitpid */
716static void 1241static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
733{ 1243{
734 int pid, status; 1244 int pid, status;
735 1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
738 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1256
742 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1260}
746 1261
747#endif 1262#endif
748 1263
749/*****************************************************************************/ 1264/*****************************************************************************/
775{ 1290{
776 return EV_VERSION_MINOR; 1291 return EV_VERSION_MINOR;
777} 1292}
778 1293
779/* return true if we are running with elevated privileges and should ignore env variables */ 1294/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1295int inline_size
781enable_secure (void) 1296enable_secure (void)
782{ 1297{
783#ifdef _WIN32 1298#ifdef _WIN32
784 return 0; 1299 return 0;
785#else 1300#else
811 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
814#endif 1329#endif
815#ifdef __APPLE__ 1330#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
818#endif 1334#endif
819 1335
820 return flags; 1336 return flags;
821} 1337}
822 1338
823unsigned int 1339unsigned int
824ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
825{ 1341{
826 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1343
828 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
829} 1349}
830 1350
831unsigned int 1351unsigned int
832ev_backend (EV_P) 1352ev_backend (EV_P)
833{ 1353{
834 return backend; 1354 return backend;
835} 1355}
836 1356
837static void 1357unsigned int
1358ev_loop_count (EV_P)
1359{
1360 return loop_count;
1361}
1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
1376static void noinline
838loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
839{ 1378{
840 if (!backend) 1379 if (!backend)
841 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
842#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
843 { 1393 {
844 struct timespec ts; 1394 struct timespec ts;
1395
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1397 have_monotonic = 1;
847 } 1398 }
848#endif 1399#endif
849 1400
850 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1402 mn_now = get_clock ();
852 now_floor = mn_now; 1403 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
1414
1415 /* pid check not overridable via env */
1416#ifndef _WIN32
1417 if (flags & EVFLAG_FORKCHECK)
1418 curpid = getpid ();
1419#endif
854 1420
855 if (!(flags & EVFLAG_NOENV) 1421 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1422 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1423 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1424 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1425
860 if (!(flags & 0x0000ffffUL)) 1426 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1427 flags |= ev_recommended_backends ();
862 1428
863 backend = 0;
864#if EV_USE_PORT 1429#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1431#endif
867#if EV_USE_KQUEUE 1432#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1440#endif
876#if EV_USE_SELECT 1441#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1443#endif
879 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
880 ev_init (&sigev, sigcb); 1447 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
882 } 1449 }
883} 1450}
884 1451
885static void 1452/* free up a loop structure */
1453static void noinline
886loop_destroy (EV_P) 1454loop_destroy (EV_P)
887{ 1455{
888 int i; 1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
1474
1475#if EV_USE_INOTIFY
1476 if (fs_fd >= 0)
1477 close (fs_fd);
1478#endif
1479
1480 if (backend_fd >= 0)
1481 close (backend_fd);
889 1482
890#if EV_USE_PORT 1483#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1484 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1485#endif
893#if EV_USE_KQUEUE 1486#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1495#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1496 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1497#endif
905 1498
906 for (i = NUMPRI; i--; ) 1499 for (i = NUMPRI; i--; )
1500 {
907 array_free (pending, [i]); 1501 array_free (pending, [i]);
1502#if EV_IDLE_ENABLE
1503 array_free (idle, [i]);
1504#endif
1505 }
1506
1507 ev_free (anfds); anfdmax = 0;
908 1508
909 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 1511 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1512 array_free (timer, EMPTY);
912#if EV_PERIODICS 1513#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1514 array_free (periodic, EMPTY);
914#endif 1515#endif
1516#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1517 array_free (fork, EMPTY);
1518#endif
916 array_free (prepare, EMPTY0); 1519 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
918 1524
919 backend = 0; 1525 backend = 0;
920} 1526}
921 1527
922static void 1528#if EV_USE_INOTIFY
1529inline_size void infy_fork (EV_P);
1530#endif
1531
1532inline_size void
923loop_fork (EV_P) 1533loop_fork (EV_P)
924{ 1534{
925#if EV_USE_PORT 1535#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1537#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1539 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1540#endif
931#if EV_USE_EPOLL 1541#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1542 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1543#endif
1544#if EV_USE_INOTIFY
1545 infy_fork (EV_A);
1546#endif
934 1547
935 if (ev_is_active (&sigev)) 1548 if (ev_is_active (&pipe_w))
936 { 1549 {
937 /* default loop */ 1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
938 1556
939 ev_ref (EV_A); 1557 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
941 close (sigpipe [0]); 1567 close (evpipe [0]);
942 close (sigpipe [1]); 1568 close (evpipe [1]);
1569 }
943 1570
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
948 } 1574 }
949 1575
950 postfork = 0; 1576 postfork = 0;
951} 1577}
952 1578
953#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
954struct ev_loop * 1581struct ev_loop *
955ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
956{ 1583{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 1585
974} 1601}
975 1602
976void 1603void
977ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
978{ 1605{
979 postfork = 1; 1606 postfork = 1; /* must be in line with ev_default_fork */
980} 1607}
981 1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
982#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
983 1709
984#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
985struct ev_loop * 1711struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
987#else 1713#else
988int 1714int
989ev_default_loop (unsigned int flags) 1715ev_default_loop (unsigned int flags)
990#endif 1716#endif
991{ 1717{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1718 if (!ev_default_loop_ptr)
997 { 1719 {
998#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1722#else
1003 1725
1004 loop_init (EV_A_ flags); 1726 loop_init (EV_A_ flags);
1005 1727
1006 if (ev_backend (EV_A)) 1728 if (ev_backend (EV_A))
1007 { 1729 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1730#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
1026{ 1746{
1027#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1028 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif 1749#endif
1030 1750
1751 ev_default_loop_ptr = 0;
1752
1031#ifndef _WIN32 1753#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1034#endif 1756#endif
1035 1757
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
1043} 1759}
1044 1760
1045void 1761void
1046ev_default_fork (void) 1762ev_default_fork (void)
1047{ 1763{
1048#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1766#endif
1051 1767
1052 if (backend) 1768 postfork = 1; /* must be in line with ev_loop_fork */
1053 postfork = 1;
1054} 1769}
1055 1770
1056/*****************************************************************************/ 1771/*****************************************************************************/
1057 1772
1058static int 1773void
1059any_pending (EV_P) 1774ev_invoke (EV_P_ void *w, int revents)
1060{ 1775{
1061 int pri; 1776 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1777}
1069 1778
1070inline void 1779inline_speed void
1071call_pending (EV_P) 1780call_pending (EV_P)
1072{ 1781{
1073 int pri; 1782 int pri;
1074 1783
1075 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1077 { 1786 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1788
1080 if (expect_true (p->w)) 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1081 { 1790 /* ^ this is no longer true, as pending_w could be here */
1791
1082 p->w->pending = 0; 1792 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1084 } 1794 EV_FREQUENT_CHECK;
1085 } 1795 }
1086} 1796}
1087 1797
1798#if EV_IDLE_ENABLE
1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1088inline void 1801inline_size void
1802idle_reify (EV_P)
1803{
1804 if (expect_false (idleall))
1805 {
1806 int pri;
1807
1808 for (pri = NUMPRI; pri--; )
1809 {
1810 if (pendingcnt [pri])
1811 break;
1812
1813 if (idlecnt [pri])
1814 {
1815 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1816 break;
1817 }
1818 }
1819 }
1820}
1821#endif
1822
1823/* make timers pending */
1824inline_size void
1089timers_reify (EV_P) 1825timers_reify (EV_P)
1090{ 1826{
1827 EV_FREQUENT_CHECK;
1828
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 1830 {
1093 struct ev_timer *w = timers [0]; 1831 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1845
1102 ((WT)w)->at += w->repeat; 1846 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1107 } 1854 }
1108 else 1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1856
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1112 } 1858 }
1113} 1859}
1114 1860
1115#if EV_PERIODICS 1861#if EV_PERIODIC_ENABLE
1862/* make periodics pending */
1116inline void 1863inline_size void
1117periodics_reify (EV_P) 1864periodics_reify (EV_P)
1118{ 1865{
1866 EV_FREQUENT_CHECK;
1867
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 1869 {
1121 struct ev_periodic *w = periodics [0]; 1870 int feed_count = 0;
1122 1871
1872 do
1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1877
1125 /* first reschedule or stop timer */ 1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917}
1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921static void noinline
1922periodics_reschedule (EV_P)
1923{
1924 int i;
1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1126 if (w->reschedule_cb) 1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1961{
1962#if EV_USE_MONOTONIC
1963 if (expect_true (have_monotonic))
1964 {
1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1968 mn_now = get_clock ();
1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 1973 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1974 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1975 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 1976 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1977
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 1978 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1979 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1980
1185inline void 1981 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1982 * on the choice of "4": one iteration isn't enough,
1187{ 1983 * in case we get preempted during the calls to
1188 int i; 1984 * ev_time and get_clock. a second call is almost guaranteed
1189 1985 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1986 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1987 * in the unlikely event of having been preempted here.
1192 { 1988 */
1193 if (time_update_monotonic (EV_A)) 1989 for (i = 4; --i; )
1194 { 1990 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1200 1992
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 1994 return; /* all is well */
1203 1995
1204 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1997 mn_now = get_clock ();
1206 now_floor = mn_now; 1998 now_floor = mn_now;
1207 } 1999 }
1208 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2003# if EV_PERIODIC_ENABLE
2004 periodics_reschedule (EV_A);
2005# endif
2006 }
2007 else
2008#endif
2009 {
2010 ev_rt_now = ev_time ();
2011
2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2016#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1211# endif 2018#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2019 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2020
1232 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1233 } 2022 }
1234} 2023}
1235 2024
1236void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done; 2025static int loop_done;
1249 2026
1250void 2027void
1251ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1252{ 2029{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2030 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 2031
1257 while (activecnt) 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2033
2034 do
1258 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
2040#ifndef _WIN32
2041 if (expect_false (curpid)) /* penalise the forking check even more */
2042 if (expect_false (getpid () != curpid))
2043 {
2044 curpid = getpid ();
2045 postfork = 1;
2046 }
2047#endif
2048
2049#if EV_FORK_ENABLE
2050 /* we might have forked, so queue fork handlers */
2051 if (expect_false (postfork))
2052 if (forkcnt)
2053 {
2054 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2055 call_pending (EV_A);
2056 }
2057#endif
2058
1259 /* queue check watchers (and execute them) */ 2059 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 2060 if (expect_false (preparecnt))
1261 { 2061 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 2063 call_pending (EV_A);
1264 } 2064 }
1270 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 2071 fd_reify (EV_A);
1272 2072
1273 /* calculate blocking time */ 2073 /* calculate blocking time */
1274 { 2074 {
1275 double block; 2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1276 2077
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 2079 {
2080 /* remember old timestamp for io_blocktime calculation */
2081 ev_tstamp prev_mn_now = mn_now;
2082
1281 /* update time to cancel out callback processing overhead */ 2083 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 2084 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 2085
1292 block = MAX_BLOCKTIME; 2086 waittime = MAX_BLOCKTIME;
1293 2087
1294 if (timercnt) 2088 if (timercnt)
1295 { 2089 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2090 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 2091 if (waittime > to) waittime = to;
1298 } 2092 }
1299 2093
1300#if EV_PERIODICS 2094#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 2095 if (periodiccnt)
1302 { 2096 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2097 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 2098 if (waittime > to) waittime = to;
1305 } 2099 }
1306#endif 2100#endif
1307 2101
2102 /* don't let timeouts decrease the waittime below timeout_blocktime */
2103 if (expect_false (waittime < timeout_blocktime))
2104 waittime = timeout_blocktime;
2105
2106 /* extra check because io_blocktime is commonly 0 */
1308 if (expect_false (block < 0.)) block = 0.; 2107 if (expect_false (io_blocktime))
2108 {
2109 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2110
2111 if (sleeptime > waittime - backend_fudge)
2112 sleeptime = waittime - backend_fudge;
2113
2114 if (expect_true (sleeptime > 0.))
2115 {
2116 ev_sleep (sleeptime);
2117 waittime -= sleeptime;
2118 }
2119 }
1309 } 2120 }
1310 2121
2122 ++loop_count;
1311 backend_poll (EV_A_ block); 2123 backend_poll (EV_A_ waittime);
2124
2125 /* update ev_rt_now, do magic */
2126 time_update (EV_A_ waittime + sleeptime);
1312 } 2127 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 2128
1317 /* queue pending timers and reschedule them */ 2129 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 2130 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 2131#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 2132 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 2133#endif
1322 2134
2135#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 2136 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 2137 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2138#endif
1326 2139
1327 /* queue check watchers, to be executed first */ 2140 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 2141 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 2143
1331 call_pending (EV_A); 2144 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 2145 }
2146 while (expect_true (
2147 activecnt
2148 && !loop_done
2149 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2150 ));
1336 2151
1337 if (loop_done == EVUNLOOP_ONE) 2152 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 2153 loop_done = EVUNLOOP_CANCEL;
1339} 2154}
1340 2155
1342ev_unloop (EV_P_ int how) 2157ev_unloop (EV_P_ int how)
1343{ 2158{
1344 loop_done = how; 2159 loop_done = how;
1345} 2160}
1346 2161
2162void
2163ev_ref (EV_P)
2164{
2165 ++activecnt;
2166}
2167
2168void
2169ev_unref (EV_P)
2170{
2171 --activecnt;
2172}
2173
2174void
2175ev_now_update (EV_P)
2176{
2177 time_update (EV_A_ 1e100);
2178}
2179
2180void
2181ev_suspend (EV_P)
2182{
2183 ev_now_update (EV_A);
2184}
2185
2186void
2187ev_resume (EV_P)
2188{
2189 ev_tstamp mn_prev = mn_now;
2190
2191 ev_now_update (EV_A);
2192 timers_reschedule (EV_A_ mn_now - mn_prev);
2193#if EV_PERIODIC_ENABLE
2194 /* TODO: really do this? */
2195 periodics_reschedule (EV_A);
2196#endif
2197}
2198
1347/*****************************************************************************/ 2199/*****************************************************************************/
2200/* singly-linked list management, used when the expected list length is short */
1348 2201
1349inline void 2202inline_size void
1350wlist_add (WL *head, WL elem) 2203wlist_add (WL *head, WL elem)
1351{ 2204{
1352 elem->next = *head; 2205 elem->next = *head;
1353 *head = elem; 2206 *head = elem;
1354} 2207}
1355 2208
1356inline void 2209inline_size void
1357wlist_del (WL *head, WL elem) 2210wlist_del (WL *head, WL elem)
1358{ 2211{
1359 while (*head) 2212 while (*head)
1360 { 2213 {
1361 if (*head == elem) 2214 if (*head == elem)
1366 2219
1367 head = &(*head)->next; 2220 head = &(*head)->next;
1368 } 2221 }
1369} 2222}
1370 2223
2224/* internal, faster, version of ev_clear_pending */
1371inline void 2225inline_speed void
1372ev_clear_pending (EV_P_ W w) 2226clear_pending (EV_P_ W w)
1373{ 2227{
1374 if (w->pending) 2228 if (w->pending)
1375 { 2229 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2230 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1377 w->pending = 0; 2231 w->pending = 0;
1378 } 2232 }
1379} 2233}
1380 2234
2235int
2236ev_clear_pending (EV_P_ void *w)
2237{
2238 W w_ = (W)w;
2239 int pending = w_->pending;
2240
2241 if (expect_true (pending))
2242 {
2243 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2244 p->w = (W)&pending_w;
2245 w_->pending = 0;
2246 return p->events;
2247 }
2248 else
2249 return 0;
2250}
2251
1381inline void 2252inline_size void
2253pri_adjust (EV_P_ W w)
2254{
2255 int pri = w->priority;
2256 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2257 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2258 w->priority = pri;
2259}
2260
2261inline_speed void
1382ev_start (EV_P_ W w, int active) 2262ev_start (EV_P_ W w, int active)
1383{ 2263{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2264 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 2265 w->active = active;
1388 ev_ref (EV_A); 2266 ev_ref (EV_A);
1389} 2267}
1390 2268
1391inline void 2269inline_size void
1392ev_stop (EV_P_ W w) 2270ev_stop (EV_P_ W w)
1393{ 2271{
1394 ev_unref (EV_A); 2272 ev_unref (EV_A);
1395 w->active = 0; 2273 w->active = 0;
1396} 2274}
1397 2275
1398/*****************************************************************************/ 2276/*****************************************************************************/
1399 2277
1400void 2278void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 2279ev_io_start (EV_P_ ev_io *w)
1402{ 2280{
1403 int fd = w->fd; 2281 int fd = w->fd;
1404 2282
1405 if (expect_false (ev_is_active (w))) 2283 if (expect_false (ev_is_active (w)))
1406 return; 2284 return;
1407 2285
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 2286 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2287 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2288
2289 EV_FREQUENT_CHECK;
1409 2290
1410 ev_start (EV_A_ (W)w, 1); 2291 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2292 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2293 wlist_add (&anfds[fd].head, (WL)w);
1413 2294
1414 fd_change (EV_A_ fd); 2295 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1415} 2296 w->events &= ~EV__IOFDSET;
1416 2297
1417void 2298 EV_FREQUENT_CHECK;
2299}
2300
2301void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 2302ev_io_stop (EV_P_ ev_io *w)
1419{ 2303{
1420 ev_clear_pending (EV_A_ (W)w); 2304 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 2305 if (expect_false (!ev_is_active (w)))
1422 return; 2306 return;
1423 2307
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2308 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 2309
2310 EV_FREQUENT_CHECK;
2311
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2312 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1428 2314
1429 fd_change (EV_A_ w->fd); 2315 fd_change (EV_A_ w->fd, 1);
1430}
1431 2316
1432void 2317 EV_FREQUENT_CHECK;
2318}
2319
2320void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 2321ev_timer_start (EV_P_ ev_timer *w)
1434{ 2322{
1435 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
1436 return; 2324 return;
1437 2325
1438 ((WT)w)->at += mn_now; 2326 ev_at (w) += mn_now;
1439 2327
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2328 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 2329
2330 EV_FREQUENT_CHECK;
2331
2332 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 2333 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2334 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 2335 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 2336 ANHE_at_cache (timers [ev_active (w)]);
2337 upheap (timers, ev_active (w));
1446 2338
2339 EV_FREQUENT_CHECK;
2340
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2341 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 2342}
1449 2343
1450void 2344void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 2345ev_timer_stop (EV_P_ ev_timer *w)
1452{ 2346{
1453 ev_clear_pending (EV_A_ (W)w); 2347 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 2348 if (expect_false (!ev_is_active (w)))
1455 return; 2349 return;
1456 2350
2351 EV_FREQUENT_CHECK;
2352
2353 {
2354 int active = ev_active (w);
2355
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2356 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 2357
2358 --timercnt;
2359
1459 if (expect_true (((W)w)->active < timercnt--)) 2360 if (expect_true (active < timercnt + HEAP0))
1460 { 2361 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2362 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2363 adjustheap (timers, timercnt, active);
1463 } 2364 }
2365 }
1464 2366
1465 ((WT)w)->at -= mn_now; 2367 EV_FREQUENT_CHECK;
2368
2369 ev_at (w) -= mn_now;
1466 2370
1467 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1468} 2372}
1469 2373
1470void 2374void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2375ev_timer_again (EV_P_ ev_timer *w)
1472{ 2376{
2377 EV_FREQUENT_CHECK;
2378
1473 if (ev_is_active (w)) 2379 if (ev_is_active (w))
1474 { 2380 {
1475 if (w->repeat) 2381 if (w->repeat)
1476 { 2382 {
1477 ((WT)w)->at = mn_now + w->repeat; 2383 ev_at (w) = mn_now + w->repeat;
2384 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2385 adjustheap (timers, timercnt, ev_active (w));
1479 } 2386 }
1480 else 2387 else
1481 ev_timer_stop (EV_A_ w); 2388 ev_timer_stop (EV_A_ w);
1482 } 2389 }
1483 else if (w->repeat) 2390 else if (w->repeat)
1484 { 2391 {
1485 w->at = w->repeat; 2392 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2393 ev_timer_start (EV_A_ w);
1487 } 2394 }
1488}
1489 2395
2396 EV_FREQUENT_CHECK;
2397}
2398
1490#if EV_PERIODICS 2399#if EV_PERIODIC_ENABLE
1491void 2400void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2401ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2402{
1494 if (expect_false (ev_is_active (w))) 2403 if (expect_false (ev_is_active (w)))
1495 return; 2404 return;
1496 2405
1497 if (w->reschedule_cb) 2406 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2407 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2408 else if (w->interval)
1500 { 2409 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2410 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2411 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2412 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 2413 }
2414 else
2415 ev_at (w) = w->offset;
1505 2416
2417 EV_FREQUENT_CHECK;
2418
2419 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2420 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2421 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2422 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2423 ANHE_at_cache (periodics [ev_active (w)]);
2424 upheap (periodics, ev_active (w));
1510 2425
2426 EV_FREQUENT_CHECK;
2427
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2428 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 2429}
1513 2430
1514void 2431void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2432ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2433{
1517 ev_clear_pending (EV_A_ (W)w); 2434 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2435 if (expect_false (!ev_is_active (w)))
1519 return; 2436 return;
1520 2437
2438 EV_FREQUENT_CHECK;
2439
2440 {
2441 int active = ev_active (w);
2442
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2443 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 2444
2445 --periodiccnt;
2446
1523 if (expect_true (((W)w)->active < periodiccnt--)) 2447 if (expect_true (active < periodiccnt + HEAP0))
1524 { 2448 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2449 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2450 adjustheap (periodics, periodiccnt, active);
1527 } 2451 }
2452 }
2453
2454 EV_FREQUENT_CHECK;
1528 2455
1529 ev_stop (EV_A_ (W)w); 2456 ev_stop (EV_A_ (W)w);
1530} 2457}
1531 2458
1532void 2459void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 2460ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2461{
1535 /* TODO: use adjustheap and recalculation */ 2462 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2463 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2464 ev_periodic_start (EV_A_ w);
1538} 2465}
1539#endif 2466#endif
1540 2467
1541void 2468#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 2469# define SA_RESTART 0
2470#endif
2471
2472void noinline
2473ev_signal_start (EV_P_ ev_signal *w)
1543{ 2474{
2475#if EV_MULTIPLICITY
2476 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2477#endif
1544 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1545 return; 2479 return;
1546 2480
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART
1608# define SA_RESTART 0
1609#endif
1610
1611void
1612ev_signal_start (EV_P_ struct ev_signal *w)
1613{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w)))
1618 return;
1619
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2481 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2482
2483 evpipe_init (EV_A);
2484
2485 EV_FREQUENT_CHECK;
2486
2487 {
2488#ifndef _WIN32
2489 sigset_t full, prev;
2490 sigfillset (&full);
2491 sigprocmask (SIG_SETMASK, &full, &prev);
2492#endif
2493
2494 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2495
2496#ifndef _WIN32
2497 sigprocmask (SIG_SETMASK, &prev, 0);
2498#endif
2499 }
1621 2500
1622 ev_start (EV_A_ (W)w, 1); 2501 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2502 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2503
1626 if (!((WL)w)->next) 2504 if (!((WL)w)->next)
1627 { 2505 {
1628#if _WIN32 2506#if _WIN32
1629 signal (w->signum, sighandler); 2507 signal (w->signum, ev_sighandler);
1630#else 2508#else
1631 struct sigaction sa; 2509 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2510 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2511 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2512 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2513 sigaction (w->signum, &sa, 0);
1636#endif 2514#endif
1637 } 2515 }
1638}
1639 2516
1640void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2521ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2522{
1643 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1645 return; 2525 return;
1646 2526
2527 EV_FREQUENT_CHECK;
2528
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2529 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2530 ev_stop (EV_A_ (W)w);
1649 2531
1650 if (!signals [w->signum - 1].head) 2532 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2533 signal (w->signum, SIG_DFL);
1652}
1653 2534
2535 EV_FREQUENT_CHECK;
2536}
2537
1654void 2538void
1655ev_child_start (EV_P_ struct ev_child *w) 2539ev_child_start (EV_P_ ev_child *w)
1656{ 2540{
1657#if EV_MULTIPLICITY 2541#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2542 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2543#endif
1660 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1661 return; 2545 return;
1662 2546
2547 EV_FREQUENT_CHECK;
2548
1663 ev_start (EV_A_ (W)w, 1); 2549 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2550 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665}
1666 2551
2552 EV_FREQUENT_CHECK;
2553}
2554
1667void 2555void
1668ev_child_stop (EV_P_ struct ev_child *w) 2556ev_child_stop (EV_P_ ev_child *w)
1669{ 2557{
1670 ev_clear_pending (EV_A_ (W)w); 2558 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2559 if (expect_false (!ev_is_active (w)))
1672 return; 2560 return;
1673 2561
2562 EV_FREQUENT_CHECK;
2563
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2564 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
1676}
1677 2566
1678#if EV_MULTIPLICITY 2567 EV_FREQUENT_CHECK;
2568}
2569
2570#if EV_STAT_ENABLE
2571
2572# ifdef _WIN32
2573# undef lstat
2574# define lstat(a,b) _stati64 (a,b)
2575# endif
2576
2577#define DEF_STAT_INTERVAL 5.0074891
2578#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2579#define MIN_STAT_INTERVAL 0.1074891
2580
2581static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2582
2583#if EV_USE_INOTIFY
2584# define EV_INOTIFY_BUFSIZE 8192
2585
2586static void noinline
2587infy_add (EV_P_ ev_stat *w)
2588{
2589 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2590
2591 if (w->wd < 0)
2592 {
2593 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2594 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2595
2596 /* monitor some parent directory for speedup hints */
2597 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2598 /* but an efficiency issue only */
2599 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2600 {
2601 char path [4096];
2602 strcpy (path, w->path);
2603
2604 do
2605 {
2606 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2607 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2608
2609 char *pend = strrchr (path, '/');
2610
2611 if (!pend || pend == path)
2612 break;
2613
2614 *pend = 0;
2615 w->wd = inotify_add_watch (fs_fd, path, mask);
2616 }
2617 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2618 }
2619 }
2620
2621 if (w->wd >= 0)
2622 {
2623 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2624
2625 /* now local changes will be tracked by inotify, but remote changes won't */
2626 /* unless the filesystem it known to be local, we therefore still poll */
2627 /* also do poll on <2.6.25, but with normal frequency */
2628 struct statfs sfs;
2629
2630 if (fs_2625 && !statfs (w->path, &sfs))
2631 if (sfs.f_type == 0x1373 /* devfs */
2632 || sfs.f_type == 0xEF53 /* ext2/3 */
2633 || sfs.f_type == 0x3153464a /* jfs */
2634 || sfs.f_type == 0x52654973 /* reiser3 */
2635 || sfs.f_type == 0x01021994 /* tempfs */
2636 || sfs.f_type == 0x58465342 /* xfs */)
2637 return;
2638
2639 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2640 ev_timer_again (EV_A_ &w->timer);
2641 }
2642}
2643
2644static void noinline
2645infy_del (EV_P_ ev_stat *w)
2646{
2647 int slot;
2648 int wd = w->wd;
2649
2650 if (wd < 0)
2651 return;
2652
2653 w->wd = -2;
2654 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2655 wlist_del (&fs_hash [slot].head, (WL)w);
2656
2657 /* remove this watcher, if others are watching it, they will rearm */
2658 inotify_rm_watch (fs_fd, wd);
2659}
2660
2661static void noinline
2662infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2663{
2664 if (slot < 0)
2665 /* overflow, need to check for all hash slots */
2666 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2667 infy_wd (EV_A_ slot, wd, ev);
2668 else
2669 {
2670 WL w_;
2671
2672 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2673 {
2674 ev_stat *w = (ev_stat *)w_;
2675 w_ = w_->next; /* lets us remove this watcher and all before it */
2676
2677 if (w->wd == wd || wd == -1)
2678 {
2679 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2680 {
2681 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682 w->wd = -1;
2683 infy_add (EV_A_ w); /* re-add, no matter what */
2684 }
2685
2686 stat_timer_cb (EV_A_ &w->timer, 0);
2687 }
2688 }
2689 }
2690}
2691
1679static void 2692static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2693infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2694{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2695 char buf [EV_INOTIFY_BUFSIZE];
2696 struct inotify_event *ev = (struct inotify_event *)buf;
2697 int ofs;
2698 int len = read (fs_fd, buf, sizeof (buf));
1683 2699
2700 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2702}
2703
2704inline_size void
2705check_2625 (EV_P)
2706{
2707 /* kernels < 2.6.25 are borked
2708 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2709 */
2710 struct utsname buf;
2711 int major, minor, micro;
2712
2713 if (uname (&buf))
2714 return;
2715
2716 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2717 return;
2718
2719 if (major < 2
2720 || (major == 2 && minor < 6)
2721 || (major == 2 && minor == 6 && micro < 25))
2722 return;
2723
2724 fs_2625 = 1;
2725}
2726
2727inline_size void
2728infy_init (EV_P)
2729{
2730 if (fs_fd != -2)
2731 return;
2732
2733 fs_fd = -1;
2734
2735 check_2625 (EV_A);
2736
2737 fs_fd = inotify_init ();
2738
2739 if (fs_fd >= 0)
2740 {
2741 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2742 ev_set_priority (&fs_w, EV_MAXPRI);
2743 ev_io_start (EV_A_ &fs_w);
2744 }
2745}
2746
2747inline_size void
2748infy_fork (EV_P)
2749{
2750 int slot;
2751
2752 if (fs_fd < 0)
2753 return;
2754
2755 close (fs_fd);
2756 fs_fd = inotify_init ();
2757
2758 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2759 {
2760 WL w_ = fs_hash [slot].head;
2761 fs_hash [slot].head = 0;
2762
2763 while (w_)
2764 {
2765 ev_stat *w = (ev_stat *)w_;
2766 w_ = w_->next; /* lets us add this watcher */
2767
2768 w->wd = -1;
2769
2770 if (fs_fd >= 0)
2771 infy_add (EV_A_ w); /* re-add, no matter what */
2772 else
2773 ev_timer_again (EV_A_ &w->timer);
2774 }
2775 }
2776}
2777
2778#endif
2779
2780#ifdef _WIN32
2781# define EV_LSTAT(p,b) _stati64 (p, b)
2782#else
2783# define EV_LSTAT(p,b) lstat (p, b)
2784#endif
2785
2786void
2787ev_stat_stat (EV_P_ ev_stat *w)
2788{
2789 if (lstat (w->path, &w->attr) < 0)
2790 w->attr.st_nlink = 0;
2791 else if (!w->attr.st_nlink)
2792 w->attr.st_nlink = 1;
2793}
2794
2795static void noinline
2796stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2797{
2798 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2799
2800 /* we copy this here each the time so that */
2801 /* prev has the old value when the callback gets invoked */
2802 w->prev = w->attr;
2803 ev_stat_stat (EV_A_ w);
2804
2805 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2806 if (
2807 w->prev.st_dev != w->attr.st_dev
2808 || w->prev.st_ino != w->attr.st_ino
2809 || w->prev.st_mode != w->attr.st_mode
2810 || w->prev.st_nlink != w->attr.st_nlink
2811 || w->prev.st_uid != w->attr.st_uid
2812 || w->prev.st_gid != w->attr.st_gid
2813 || w->prev.st_rdev != w->attr.st_rdev
2814 || w->prev.st_size != w->attr.st_size
2815 || w->prev.st_atime != w->attr.st_atime
2816 || w->prev.st_mtime != w->attr.st_mtime
2817 || w->prev.st_ctime != w->attr.st_ctime
2818 ) {
2819 #if EV_USE_INOTIFY
2820 if (fs_fd >= 0)
2821 {
2822 infy_del (EV_A_ w);
2823 infy_add (EV_A_ w);
2824 ev_stat_stat (EV_A_ w); /* avoid race... */
2825 }
2826 #endif
2827
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2828 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2829 }
1686} 2830}
1687 2831
1688void 2832void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2833ev_stat_start (EV_P_ ev_stat *w)
1690{ 2834{
1691 if (expect_false (ev_is_active (w))) 2835 if (expect_false (ev_is_active (w)))
1692 return; 2836 return;
1693 2837
1694 { 2838 ev_stat_stat (EV_A_ w);
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 2839
1700 ev_io_start (EV_A_ &w->io); 2840 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2841 w->interval = MIN_STAT_INTERVAL;
2842
2843 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2844 ev_set_priority (&w->timer, ev_priority (w));
2845
2846#if EV_USE_INOTIFY
2847 infy_init (EV_A);
2848
2849 if (fs_fd >= 0)
2850 infy_add (EV_A_ w);
2851 else
2852#endif
2853 ev_timer_again (EV_A_ &w->timer);
2854
1701 ev_start (EV_A_ (W)w, 1); 2855 ev_start (EV_A_ (W)w, 1);
1702}
1703 2856
2857 EV_FREQUENT_CHECK;
2858}
2859
1704void 2860void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2861ev_stat_stop (EV_P_ ev_stat *w)
1706{ 2862{
1707 ev_clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
1709 return; 2865 return;
1710 2866
2867 EV_FREQUENT_CHECK;
2868
2869#if EV_USE_INOTIFY
2870 infy_del (EV_A_ w);
2871#endif
1711 ev_io_stop (EV_A_ &w->io); 2872 ev_timer_stop (EV_A_ &w->timer);
2873
1712 ev_stop (EV_A_ (W)w); 2874 ev_stop (EV_A_ (W)w);
2875
2876 EV_FREQUENT_CHECK;
2877}
2878#endif
2879
2880#if EV_IDLE_ENABLE
2881void
2882ev_idle_start (EV_P_ ev_idle *w)
2883{
2884 if (expect_false (ev_is_active (w)))
2885 return;
2886
2887 pri_adjust (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890
2891 {
2892 int active = ++idlecnt [ABSPRI (w)];
2893
2894 ++idleall;
2895 ev_start (EV_A_ (W)w, active);
2896
2897 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2898 idles [ABSPRI (w)][active - 1] = w;
2899 }
2900
2901 EV_FREQUENT_CHECK;
2902}
2903
2904void
2905ev_idle_stop (EV_P_ ev_idle *w)
2906{
2907 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 {
2914 int active = ev_active (w);
2915
2916 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2917 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2918
2919 ev_stop (EV_A_ (W)w);
2920 --idleall;
2921 }
2922
2923 EV_FREQUENT_CHECK;
2924}
2925#endif
2926
2927void
2928ev_prepare_start (EV_P_ ev_prepare *w)
2929{
2930 if (expect_false (ev_is_active (w)))
2931 return;
2932
2933 EV_FREQUENT_CHECK;
2934
2935 ev_start (EV_A_ (W)w, ++preparecnt);
2936 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2937 prepares [preparecnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2940}
2941
2942void
2943ev_prepare_stop (EV_P_ ev_prepare *w)
2944{
2945 clear_pending (EV_A_ (W)w);
2946 if (expect_false (!ev_is_active (w)))
2947 return;
2948
2949 EV_FREQUENT_CHECK;
2950
2951 {
2952 int active = ev_active (w);
2953
2954 prepares [active - 1] = prepares [--preparecnt];
2955 ev_active (prepares [active - 1]) = active;
2956 }
2957
2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2961}
2962
2963void
2964ev_check_start (EV_P_ ev_check *w)
2965{
2966 if (expect_false (ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 ev_start (EV_A_ (W)w, ++checkcnt);
2972 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2973 checks [checkcnt - 1] = w;
2974
2975 EV_FREQUENT_CHECK;
2976}
2977
2978void
2979ev_check_stop (EV_P_ ev_check *w)
2980{
2981 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w)))
2983 return;
2984
2985 EV_FREQUENT_CHECK;
2986
2987 {
2988 int active = ev_active (w);
2989
2990 checks [active - 1] = checks [--checkcnt];
2991 ev_active (checks [active - 1]) = active;
2992 }
2993
2994 ev_stop (EV_A_ (W)w);
2995
2996 EV_FREQUENT_CHECK;
2997}
2998
2999#if EV_EMBED_ENABLE
3000void noinline
3001ev_embed_sweep (EV_P_ ev_embed *w)
3002{
3003 ev_loop (w->other, EVLOOP_NONBLOCK);
3004}
3005
3006static void
3007embed_io_cb (EV_P_ ev_io *io, int revents)
3008{
3009 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3010
3011 if (ev_cb (w))
3012 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3013 else
3014 ev_loop (w->other, EVLOOP_NONBLOCK);
3015}
3016
3017static void
3018embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3021
3022 {
3023 struct ev_loop *loop = w->other;
3024
3025 while (fdchangecnt)
3026 {
3027 fd_reify (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030 }
3031}
3032
3033static void
3034embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3035{
3036 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3037
3038 ev_embed_stop (EV_A_ w);
3039
3040 {
3041 struct ev_loop *loop = w->other;
3042
3043 ev_loop_fork (EV_A);
3044 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3045 }
3046
3047 ev_embed_start (EV_A_ w);
3048}
3049
3050#if 0
3051static void
3052embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3053{
3054 ev_idle_stop (EV_A_ idle);
3055}
3056#endif
3057
3058void
3059ev_embed_start (EV_P_ ev_embed *w)
3060{
3061 if (expect_false (ev_is_active (w)))
3062 return;
3063
3064 {
3065 struct ev_loop *loop = w->other;
3066 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3067 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3068 }
3069
3070 EV_FREQUENT_CHECK;
3071
3072 ev_set_priority (&w->io, ev_priority (w));
3073 ev_io_start (EV_A_ &w->io);
3074
3075 ev_prepare_init (&w->prepare, embed_prepare_cb);
3076 ev_set_priority (&w->prepare, EV_MINPRI);
3077 ev_prepare_start (EV_A_ &w->prepare);
3078
3079 ev_fork_init (&w->fork, embed_fork_cb);
3080 ev_fork_start (EV_A_ &w->fork);
3081
3082 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3083
3084 ev_start (EV_A_ (W)w, 1);
3085
3086 EV_FREQUENT_CHECK;
3087}
3088
3089void
3090ev_embed_stop (EV_P_ ev_embed *w)
3091{
3092 clear_pending (EV_A_ (W)w);
3093 if (expect_false (!ev_is_active (w)))
3094 return;
3095
3096 EV_FREQUENT_CHECK;
3097
3098 ev_io_stop (EV_A_ &w->io);
3099 ev_prepare_stop (EV_A_ &w->prepare);
3100 ev_fork_stop (EV_A_ &w->fork);
3101
3102 EV_FREQUENT_CHECK;
3103}
3104#endif
3105
3106#if EV_FORK_ENABLE
3107void
3108ev_fork_start (EV_P_ ev_fork *w)
3109{
3110 if (expect_false (ev_is_active (w)))
3111 return;
3112
3113 EV_FREQUENT_CHECK;
3114
3115 ev_start (EV_A_ (W)w, ++forkcnt);
3116 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3117 forks [forkcnt - 1] = w;
3118
3119 EV_FREQUENT_CHECK;
3120}
3121
3122void
3123ev_fork_stop (EV_P_ ev_fork *w)
3124{
3125 clear_pending (EV_A_ (W)w);
3126 if (expect_false (!ev_is_active (w)))
3127 return;
3128
3129 EV_FREQUENT_CHECK;
3130
3131 {
3132 int active = ev_active (w);
3133
3134 forks [active - 1] = forks [--forkcnt];
3135 ev_active (forks [active - 1]) = active;
3136 }
3137
3138 ev_stop (EV_A_ (W)w);
3139
3140 EV_FREQUENT_CHECK;
3141}
3142#endif
3143
3144#if EV_ASYNC_ENABLE
3145void
3146ev_async_start (EV_P_ ev_async *w)
3147{
3148 if (expect_false (ev_is_active (w)))
3149 return;
3150
3151 evpipe_init (EV_A);
3152
3153 EV_FREQUENT_CHECK;
3154
3155 ev_start (EV_A_ (W)w, ++asynccnt);
3156 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3157 asyncs [asynccnt - 1] = w;
3158
3159 EV_FREQUENT_CHECK;
3160}
3161
3162void
3163ev_async_stop (EV_P_ ev_async *w)
3164{
3165 clear_pending (EV_A_ (W)w);
3166 if (expect_false (!ev_is_active (w)))
3167 return;
3168
3169 EV_FREQUENT_CHECK;
3170
3171 {
3172 int active = ev_active (w);
3173
3174 asyncs [active - 1] = asyncs [--asynccnt];
3175 ev_active (asyncs [active - 1]) = active;
3176 }
3177
3178 ev_stop (EV_A_ (W)w);
3179
3180 EV_FREQUENT_CHECK;
3181}
3182
3183void
3184ev_async_send (EV_P_ ev_async *w)
3185{
3186 w->sent = 1;
3187 evpipe_write (EV_A_ &gotasync);
1713} 3188}
1714#endif 3189#endif
1715 3190
1716/*****************************************************************************/ 3191/*****************************************************************************/
1717 3192
1718struct ev_once 3193struct ev_once
1719{ 3194{
1720 struct ev_io io; 3195 ev_io io;
1721 struct ev_timer to; 3196 ev_timer to;
1722 void (*cb)(int revents, void *arg); 3197 void (*cb)(int revents, void *arg);
1723 void *arg; 3198 void *arg;
1724}; 3199};
1725 3200
1726static void 3201static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 3202once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 3203{
1729 void (*cb)(int revents, void *arg) = once->cb; 3204 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 3205 void *arg = once->arg;
1731 3206
1732 ev_io_stop (EV_A_ &once->io); 3207 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 3208 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 3209 ev_free (once);
1735 3210
1736 cb (revents, arg); 3211 cb (revents, arg);
1737} 3212}
1738 3213
1739static void 3214static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 3215once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 3216{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 3220}
1744 3221
1745static void 3222static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 3223once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 3224{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 3228}
1750 3229
1751void 3230void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3231ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1753{ 3232{
1775 ev_timer_set (&once->to, timeout, 0.); 3254 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 3255 ev_timer_start (EV_A_ &once->to);
1777 } 3256 }
1778} 3257}
1779 3258
3259/*****************************************************************************/
3260
3261#if EV_WALK_ENABLE
3262void
3263ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3264{
3265 int i, j;
3266 ev_watcher_list *wl, *wn;
3267
3268 if (types & (EV_IO | EV_EMBED))
3269 for (i = 0; i < anfdmax; ++i)
3270 for (wl = anfds [i].head; wl; )
3271 {
3272 wn = wl->next;
3273
3274#if EV_EMBED_ENABLE
3275 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3276 {
3277 if (types & EV_EMBED)
3278 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3279 }
3280 else
3281#endif
3282#if EV_USE_INOTIFY
3283 if (ev_cb ((ev_io *)wl) == infy_cb)
3284 ;
3285 else
3286#endif
3287 if ((ev_io *)wl != &pipe_w)
3288 if (types & EV_IO)
3289 cb (EV_A_ EV_IO, wl);
3290
3291 wl = wn;
3292 }
3293
3294 if (types & (EV_TIMER | EV_STAT))
3295 for (i = timercnt + HEAP0; i-- > HEAP0; )
3296#if EV_STAT_ENABLE
3297 /*TODO: timer is not always active*/
3298 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3299 {
3300 if (types & EV_STAT)
3301 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3302 }
3303 else
3304#endif
3305 if (types & EV_TIMER)
3306 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3307
3308#if EV_PERIODIC_ENABLE
3309 if (types & EV_PERIODIC)
3310 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3311 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3312#endif
3313
3314#if EV_IDLE_ENABLE
3315 if (types & EV_IDLE)
3316 for (j = NUMPRI; i--; )
3317 for (i = idlecnt [j]; i--; )
3318 cb (EV_A_ EV_IDLE, idles [j][i]);
3319#endif
3320
3321#if EV_FORK_ENABLE
3322 if (types & EV_FORK)
3323 for (i = forkcnt; i--; )
3324 if (ev_cb (forks [i]) != embed_fork_cb)
3325 cb (EV_A_ EV_FORK, forks [i]);
3326#endif
3327
3328#if EV_ASYNC_ENABLE
3329 if (types & EV_ASYNC)
3330 for (i = asynccnt; i--; )
3331 cb (EV_A_ EV_ASYNC, asyncs [i]);
3332#endif
3333
3334 if (types & EV_PREPARE)
3335 for (i = preparecnt; i--; )
3336#if EV_EMBED_ENABLE
3337 if (ev_cb (prepares [i]) != embed_prepare_cb)
3338#endif
3339 cb (EV_A_ EV_PREPARE, prepares [i]);
3340
3341 if (types & EV_CHECK)
3342 for (i = checkcnt; i--; )
3343 cb (EV_A_ EV_CHECK, checks [i]);
3344
3345 if (types & EV_SIGNAL)
3346 for (i = 0; i < signalmax; ++i)
3347 for (wl = signals [i].head; wl; )
3348 {
3349 wn = wl->next;
3350 cb (EV_A_ EV_SIGNAL, wl);
3351 wl = wn;
3352 }
3353
3354 if (types & EV_CHILD)
3355 for (i = EV_PID_HASHSIZE; i--; )
3356 for (wl = childs [i]; wl; )
3357 {
3358 wn = wl->next;
3359 cb (EV_A_ EV_CHILD, wl);
3360 wl = wn;
3361 }
3362/* EV_STAT 0x00001000 /* stat data changed */
3363/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3364}
3365#endif
3366
3367#if EV_MULTIPLICITY
3368 #include "ev_wrap.h"
3369#endif
3370
1780#ifdef __cplusplus 3371#ifdef __cplusplus
1781} 3372}
1782#endif 3373#endif
1783 3374

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines