ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.387 by root, Wed Jul 20 01:04:43 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
114 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
115#ifndef _WIN32 190#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 191# include <sys/time.h>
118# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
119#else 194#else
195# include <io.h>
120# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 197# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
124# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
125#endif 251# endif
126 252#endif
127/**/
128 253
129#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
130# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
131#endif 260#endif
132 261
133#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
135#endif 272#endif
136 273
137#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 276#endif
140 277
141#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
142# ifdef _WIN32 279# ifdef _WIN32
143# define EV_USE_POLL 0 280# define EV_USE_POLL 0
144# else 281# else
145# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 283# endif
147#endif 284#endif
148 285
149#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
150# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
151#endif 292#endif
152 293
153#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
155#endif 296#endif
156 297
157#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 299# define EV_USE_PORT 0
159#endif 300#endif
160 301
161/**/ 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
162 373
163#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
166#endif 377#endif
168#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
171#endif 382#endif
172 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
173#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 407# include <winsock.h>
175#endif 408#endif
176 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
177/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 462
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 465
184#ifdef EV_H 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484 #endif
485#endif
486
487#if __cplusplus
488 #define ecb_inline static inline
489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
186#else 493#else
187# include "ev.h" 494 #define ecb_inline static
495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
188#endif 508 #endif
509#endif
189 510
190#if __GNUC__ >= 3 511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif defined(_WIN32) && defined(MemoryBarrier)
517 #define ECB_MEMORY_FENCE MemoryBarrier ()
518 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520 #endif
521#endif
522
523#ifndef ECB_MEMORY_FENCE
524 #include <pthread.h>
525
526 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
527 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
528 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
529 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
530#endif
531
532#if ECB_GCC_VERSION(3,1)
533 #define ecb_attribute(attrlist) __attribute__(attrlist)
534 #define ecb_is_constant(expr) __builtin_constant_p (expr)
191# define expect(expr,value) __builtin_expect ((expr),(value)) 535 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 536 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
193#else 537#else
538 #define ecb_attribute(attrlist)
539 #define ecb_is_constant(expr) 0
194# define expect(expr,value) (expr) 540 #define ecb_expect(expr,value) (expr)
195# define inline static 541 #define ecb_prefetch(addr,rw,locality)
196#endif 542#endif
197 543
544#define ecb_noinline ecb_attribute ((__noinline__))
545#define ecb_noreturn ecb_attribute ((__noreturn__))
546#define ecb_unused ecb_attribute ((__unused__))
547#define ecb_const ecb_attribute ((__const__))
548#define ecb_pure ecb_attribute ((__pure__))
549
550#if ECB_GCC_VERSION(4,3)
551 #define ecb_artificial ecb_attribute ((__artificial__))
552 #define ecb_hot ecb_attribute ((__hot__))
553 #define ecb_cold ecb_attribute ((__cold__))
554#else
555 #define ecb_artificial
556 #define ecb_hot
557 #define ecb_cold
558#endif
559
560/* put around conditional expressions if you are very sure that the */
561/* expression is mostly true or mostly false. note that these return */
562/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 563#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 564#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
565/* ecb.h end */
200 566
567#define expect_false(cond) ecb_expect_false (cond)
568#define expect_true(cond) ecb_expect_true (cond)
569#define noinline ecb_noinline
570
571#define inline_size ecb_inline
572
573#if EV_FEATURE_CODE
574# define inline_speed ecb_inline
575#else
576# define inline_speed static noinline
577#endif
578
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 579#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
580
581#if EV_MINPRI == EV_MAXPRI
582# define ABSPRI(w) (((W)w), 0)
583#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 584# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
585#endif
203 586
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 587#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 588#define EMPTY2(a,b) /* used to suppress some warnings */
206 589
207typedef struct ev_watcher *W; 590typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 591typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 592typedef ev_watcher_time *WT;
210 593
594#define ev_active(w) ((W)(w))->active
595#define ev_at(w) ((WT)(w))->at
596
597#if EV_USE_REALTIME
598/* sig_atomic_t is used to avoid per-thread variables or locking but still */
599/* giving it a reasonably high chance of working on typical architectures */
600static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
601#endif
602
603#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 604static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
605#endif
606
607#ifndef EV_FD_TO_WIN32_HANDLE
608# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
609#endif
610#ifndef EV_WIN32_HANDLE_TO_FD
611# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
612#endif
613#ifndef EV_WIN32_CLOSE_FD
614# define EV_WIN32_CLOSE_FD(fd) close (fd)
615#endif
212 616
213#ifdef _WIN32 617#ifdef _WIN32
214# include "ev_win32.c" 618# include "ev_win32.c"
215#endif 619#endif
216 620
217/*****************************************************************************/ 621/*****************************************************************************/
218 622
623/* define a suitable floor function (only used by periodics atm) */
624
625#if EV_USE_FLOOR
626# include <math.h>
627# define ev_floor(v) floor (v)
628#else
629
630#include <float.h>
631
632/* a floor() replacement function, should be independent of ev_tstamp type */
633static ev_tstamp noinline
634ev_floor (ev_tstamp v)
635{
636 /* the choice of shift factor is not terribly important */
637#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
638 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
639#else
640 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
641#endif
642
643 /* argument too large for an unsigned long? */
644 if (expect_false (v >= shift))
645 {
646 ev_tstamp f;
647
648 if (v == v - 1.)
649 return v; /* very large number */
650
651 f = shift * ev_floor (v * (1. / shift));
652 return f + ev_floor (v - f);
653 }
654
655 /* special treatment for negative args? */
656 if (expect_false (v < 0.))
657 {
658 ev_tstamp f = -ev_floor (-v);
659
660 return f - (f == v ? 0 : 1);
661 }
662
663 /* fits into an unsigned long */
664 return (unsigned long)v;
665}
666
667#endif
668
669/*****************************************************************************/
670
671#ifdef __linux
672# include <sys/utsname.h>
673#endif
674
675static unsigned int noinline ecb_cold
676ev_linux_version (void)
677{
678#ifdef __linux
679 unsigned int v = 0;
680 struct utsname buf;
681 int i;
682 char *p = buf.release;
683
684 if (uname (&buf))
685 return 0;
686
687 for (i = 3+1; --i; )
688 {
689 unsigned int c = 0;
690
691 for (;;)
692 {
693 if (*p >= '0' && *p <= '9')
694 c = c * 10 + *p++ - '0';
695 else
696 {
697 p += *p == '.';
698 break;
699 }
700 }
701
702 v = (v << 8) | c;
703 }
704
705 return v;
706#else
707 return 0;
708#endif
709}
710
711/*****************************************************************************/
712
713#if EV_AVOID_STDIO
714static void noinline ecb_cold
715ev_printerr (const char *msg)
716{
717 write (STDERR_FILENO, msg, strlen (msg));
718}
719#endif
720
219static void (*syserr_cb)(const char *msg); 721static void (*syserr_cb)(const char *msg);
220 722
723void ecb_cold
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 724ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 725{
223 syserr_cb = cb; 726 syserr_cb = cb;
224} 727}
225 728
226static void 729static void noinline ecb_cold
227syserr (const char *msg) 730ev_syserr (const char *msg)
228{ 731{
229 if (!msg) 732 if (!msg)
230 msg = "(libev) system error"; 733 msg = "(libev) system error";
231 734
232 if (syserr_cb) 735 if (syserr_cb)
233 syserr_cb (msg); 736 syserr_cb (msg);
234 else 737 else
235 { 738 {
739#if EV_AVOID_STDIO
740 ev_printerr (msg);
741 ev_printerr (": ");
742 ev_printerr (strerror (errno));
743 ev_printerr ("\n");
744#else
236 perror (msg); 745 perror (msg);
746#endif
237 abort (); 747 abort ();
238 } 748 }
239} 749}
240 750
751static void *
752ev_realloc_emul (void *ptr, long size)
753{
754#if __GLIBC__
755 return realloc (ptr, size);
756#else
757 /* some systems, notably openbsd and darwin, fail to properly
758 * implement realloc (x, 0) (as required by both ansi c-89 and
759 * the single unix specification, so work around them here.
760 */
761
762 if (size)
763 return realloc (ptr, size);
764
765 free (ptr);
766 return 0;
767#endif
768}
769
241static void *(*alloc)(void *ptr, long size); 770static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 771
772void ecb_cold
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 773ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 774{
245 alloc = cb; 775 alloc = cb;
246} 776}
247 777
248static void * 778inline_speed void *
249ev_realloc (void *ptr, long size) 779ev_realloc (void *ptr, long size)
250{ 780{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 781 ptr = alloc (ptr, size);
252 782
253 if (!ptr && size) 783 if (!ptr && size)
254 { 784 {
785#if EV_AVOID_STDIO
786 ev_printerr ("(libev) memory allocation failed, aborting.\n");
787#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 788 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
789#endif
256 abort (); 790 abort ();
257 } 791 }
258 792
259 return ptr; 793 return ptr;
260} 794}
262#define ev_malloc(size) ev_realloc (0, (size)) 796#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 797#define ev_free(ptr) ev_realloc ((ptr), 0)
264 798
265/*****************************************************************************/ 799/*****************************************************************************/
266 800
801/* set in reify when reification needed */
802#define EV_ANFD_REIFY 1
803
804/* file descriptor info structure */
267typedef struct 805typedef struct
268{ 806{
269 WL head; 807 WL head;
270 unsigned char events; 808 unsigned char events; /* the events watched for */
809 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
810 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 811 unsigned char unused;
812#if EV_USE_EPOLL
813 unsigned int egen; /* generation counter to counter epoll bugs */
814#endif
272#if EV_SELECT_IS_WINSOCKET 815#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 816 SOCKET handle;
274#endif 817#endif
818#if EV_USE_IOCP
819 OVERLAPPED or, ow;
820#endif
275} ANFD; 821} ANFD;
276 822
823/* stores the pending event set for a given watcher */
277typedef struct 824typedef struct
278{ 825{
279 W w; 826 W w;
280 int events; 827 int events; /* the pending event set for the given watcher */
281} ANPENDING; 828} ANPENDING;
829
830#if EV_USE_INOTIFY
831/* hash table entry per inotify-id */
832typedef struct
833{
834 WL head;
835} ANFS;
836#endif
837
838/* Heap Entry */
839#if EV_HEAP_CACHE_AT
840 /* a heap element */
841 typedef struct {
842 ev_tstamp at;
843 WT w;
844 } ANHE;
845
846 #define ANHE_w(he) (he).w /* access watcher, read-write */
847 #define ANHE_at(he) (he).at /* access cached at, read-only */
848 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
849#else
850 /* a heap element */
851 typedef WT ANHE;
852
853 #define ANHE_w(he) (he)
854 #define ANHE_at(he) (he)->at
855 #define ANHE_at_cache(he)
856#endif
282 857
283#if EV_MULTIPLICITY 858#if EV_MULTIPLICITY
284 859
285 struct ev_loop 860 struct ev_loop
286 { 861 {
304 879
305 static int ev_default_loop_ptr; 880 static int ev_default_loop_ptr;
306 881
307#endif 882#endif
308 883
884#if EV_FEATURE_API
885# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
886# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
887# define EV_INVOKE_PENDING invoke_cb (EV_A)
888#else
889# define EV_RELEASE_CB (void)0
890# define EV_ACQUIRE_CB (void)0
891# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
892#endif
893
894#define EVBREAK_RECURSE 0x80
895
309/*****************************************************************************/ 896/*****************************************************************************/
310 897
898#ifndef EV_HAVE_EV_TIME
311ev_tstamp 899ev_tstamp
312ev_time (void) 900ev_time (void)
313{ 901{
314#if EV_USE_REALTIME 902#if EV_USE_REALTIME
903 if (expect_true (have_realtime))
904 {
315 struct timespec ts; 905 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 906 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 907 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 908 }
909#endif
910
319 struct timeval tv; 911 struct timeval tv;
320 gettimeofday (&tv, 0); 912 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 913 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 914}
915#endif
324 916
325inline ev_tstamp 917inline_size ev_tstamp
326get_clock (void) 918get_clock (void)
327{ 919{
328#if EV_USE_MONOTONIC 920#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 921 if (expect_true (have_monotonic))
330 { 922 {
343{ 935{
344 return ev_rt_now; 936 return ev_rt_now;
345} 937}
346#endif 938#endif
347 939
348#define array_roundsize(type,n) (((n) | 4) & ~3) 940void
941ev_sleep (ev_tstamp delay)
942{
943 if (delay > 0.)
944 {
945#if EV_USE_NANOSLEEP
946 struct timespec ts;
947
948 EV_TS_SET (ts, delay);
949 nanosleep (&ts, 0);
950#elif defined(_WIN32)
951 Sleep ((unsigned long)(delay * 1e3));
952#else
953 struct timeval tv;
954
955 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
956 /* something not guaranteed by newer posix versions, but guaranteed */
957 /* by older ones */
958 EV_TV_SET (tv, delay);
959 select (0, 0, 0, 0, &tv);
960#endif
961 }
962}
963
964/*****************************************************************************/
965
966#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
967
968/* find a suitable new size for the given array, */
969/* hopefully by rounding to a nice-to-malloc size */
970inline_size int
971array_nextsize (int elem, int cur, int cnt)
972{
973 int ncur = cur + 1;
974
975 do
976 ncur <<= 1;
977 while (cnt > ncur);
978
979 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
980 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
981 {
982 ncur *= elem;
983 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
984 ncur = ncur - sizeof (void *) * 4;
985 ncur /= elem;
986 }
987
988 return ncur;
989}
990
991static void * noinline ecb_cold
992array_realloc (int elem, void *base, int *cur, int cnt)
993{
994 *cur = array_nextsize (elem, *cur, cnt);
995 return ev_realloc (base, elem * *cur);
996}
997
998#define array_init_zero(base,count) \
999 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 1000
350#define array_needsize(type,base,cur,cnt,init) \ 1001#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 1002 if (expect_false ((cnt) > (cur))) \
352 { \ 1003 { \
353 int newcnt = cur; \ 1004 int ecb_unused ocur_ = (cur); \
354 do \ 1005 (base) = (type *)array_realloc \
355 { \ 1006 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 1007 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 1008 }
364 1009
1010#if 0
365#define array_slim(type,stem) \ 1011#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 1013 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1014 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1015 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 1017 }
1018#endif
372 1019
373#define array_free(stem, idx) \ 1020#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 1022
376/*****************************************************************************/ 1023/*****************************************************************************/
377 1024
378static void 1025/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 1026static void noinline
1027pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 1028{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 1029}
390 1030
391void 1031void noinline
392ev_feed_event (EV_P_ void *w, int revents) 1032ev_feed_event (EV_P_ void *w, int revents)
393{ 1033{
394 W w_ = (W)w; 1034 W w_ = (W)w;
1035 int pri = ABSPRI (w_);
395 1036
396 if (expect_false (w_->pending)) 1037 if (expect_false (w_->pending))
1038 pendings [pri][w_->pending - 1].events |= revents;
1039 else
397 { 1040 {
1041 w_->pending = ++pendingcnt [pri];
1042 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1043 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1044 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 1045 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 1046}
410 1047
411static void 1048inline_speed void
1049feed_reverse (EV_P_ W w)
1050{
1051 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1052 rfeeds [rfeedcnt++] = w;
1053}
1054
1055inline_size void
1056feed_reverse_done (EV_P_ int revents)
1057{
1058 do
1059 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1060 while (rfeedcnt);
1061}
1062
1063inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 1064queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 1065{
414 int i; 1066 int i;
415 1067
416 for (i = 0; i < eventcnt; ++i) 1068 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 1069 ev_feed_event (EV_A_ events [i], type);
418} 1070}
419 1071
1072/*****************************************************************************/
1073
420inline void 1074inline_speed void
421fd_event (EV_P_ int fd, int revents) 1075fd_event_nocheck (EV_P_ int fd, int revents)
422{ 1076{
423 ANFD *anfd = anfds + fd; 1077 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 1078 ev_io *w;
425 1079
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1080 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 1081 {
428 int ev = w->events & revents; 1082 int ev = w->events & revents;
429 1083
430 if (ev) 1084 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 1085 ev_feed_event (EV_A_ (W)w, ev);
432 } 1086 }
433} 1087}
434 1088
1089/* do not submit kernel events for fds that have reify set */
1090/* because that means they changed while we were polling for new events */
1091inline_speed void
1092fd_event (EV_P_ int fd, int revents)
1093{
1094 ANFD *anfd = anfds + fd;
1095
1096 if (expect_true (!anfd->reify))
1097 fd_event_nocheck (EV_A_ fd, revents);
1098}
1099
435void 1100void
436ev_feed_fd_event (EV_P_ int fd, int revents) 1101ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 1102{
1103 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 1104 fd_event_nocheck (EV_A_ fd, revents);
439} 1105}
440 1106
441/*****************************************************************************/ 1107/* make sure the external fd watch events are in-sync */
442 1108/* with the kernel/libev internal state */
443inline void 1109inline_size void
444fd_reify (EV_P) 1110fd_reify (EV_P)
445{ 1111{
446 int i; 1112 int i;
447 1113
1114#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 for (i = 0; i < fdchangecnt; ++i) 1115 for (i = 0; i < fdchangecnt; ++i)
449 { 1116 {
450 int fd = fdchanges [i]; 1117 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 1118 ANFD *anfd = anfds + fd;
452 struct ev_io *w;
453 1119
454 int events = 0; 1120 if (anfd->reify & EV__IOFDSET && anfd->head)
455
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
457 events |= w->events;
458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 { 1121 {
1122 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1123
1124 if (handle != anfd->handle)
1125 {
462 unsigned long argp; 1126 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 1127
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1128 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1129
1130 /* handle changed, but fd didn't - we need to do it in two steps */
1131 backend_modify (EV_A_ fd, anfd->events, 0);
1132 anfd->events = 0;
1133 anfd->handle = handle;
1134 }
465 } 1135 }
1136 }
466#endif 1137#endif
467 1138
1139 for (i = 0; i < fdchangecnt; ++i)
1140 {
1141 int fd = fdchanges [i];
1142 ANFD *anfd = anfds + fd;
1143 ev_io *w;
1144
1145 unsigned char o_events = anfd->events;
1146 unsigned char o_reify = anfd->reify;
1147
468 anfd->reify = 0; 1148 anfd->reify = 0;
469 1149
1150 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1151 {
1152 anfd->events = 0;
1153
1154 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1155 anfd->events |= (unsigned char)w->events;
1156
1157 if (o_events != anfd->events)
1158 o_reify = EV__IOFDSET; /* actually |= */
1159 }
1160
1161 if (o_reify & EV__IOFDSET)
470 backend_modify (EV_A_ fd, anfd->events, events); 1162 backend_modify (EV_A_ fd, o_events, anfd->events);
471 anfd->events = events;
472 } 1163 }
473 1164
474 fdchangecnt = 0; 1165 fdchangecnt = 0;
475} 1166}
476 1167
477static void 1168/* something about the given fd changed */
1169inline_size void
478fd_change (EV_P_ int fd) 1170fd_change (EV_P_ int fd, int flags)
479{ 1171{
480 if (expect_false (anfds [fd].reify)) 1172 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 1173 anfds [fd].reify |= flags;
484 1174
1175 if (expect_true (!reify))
1176 {
485 ++fdchangecnt; 1177 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1178 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 1179 fdchanges [fdchangecnt - 1] = fd;
1180 }
488} 1181}
489 1182
490static void 1183/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1184inline_speed void ecb_cold
491fd_kill (EV_P_ int fd) 1185fd_kill (EV_P_ int fd)
492{ 1186{
493 struct ev_io *w; 1187 ev_io *w;
494 1188
495 while ((w = (struct ev_io *)anfds [fd].head)) 1189 while ((w = (ev_io *)anfds [fd].head))
496 { 1190 {
497 ev_io_stop (EV_A_ w); 1191 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1192 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 1193 }
500} 1194}
501 1195
502inline int 1196/* check whether the given fd is actually valid, for error recovery */
1197inline_size int ecb_cold
503fd_valid (int fd) 1198fd_valid (int fd)
504{ 1199{
505#ifdef _WIN32 1200#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 1201 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 1202#else
508 return fcntl (fd, F_GETFD) != -1; 1203 return fcntl (fd, F_GETFD) != -1;
509#endif 1204#endif
510} 1205}
511 1206
512/* called on EBADF to verify fds */ 1207/* called on EBADF to verify fds */
513static void 1208static void noinline ecb_cold
514fd_ebadf (EV_P) 1209fd_ebadf (EV_P)
515{ 1210{
516 int fd; 1211 int fd;
517 1212
518 for (fd = 0; fd < anfdmax; ++fd) 1213 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1214 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 1215 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 1216 fd_kill (EV_A_ fd);
522} 1217}
523 1218
524/* called on ENOMEM in select/poll to kill some fds and retry */ 1219/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 1220static void noinline ecb_cold
526fd_enomem (EV_P) 1221fd_enomem (EV_P)
527{ 1222{
528 int fd; 1223 int fd;
529 1224
530 for (fd = anfdmax; fd--; ) 1225 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 1226 if (anfds [fd].events)
532 { 1227 {
533 fd_kill (EV_A_ fd); 1228 fd_kill (EV_A_ fd);
534 return; 1229 break;
535 } 1230 }
536} 1231}
537 1232
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1233/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1234static void noinline
540fd_rearm_all (EV_P) 1235fd_rearm_all (EV_P)
541{ 1236{
542 int fd; 1237 int fd;
543 1238
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1239 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1240 if (anfds [fd].events)
547 { 1241 {
548 anfds [fd].events = 0; 1242 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1243 anfds [fd].emask = 0;
1244 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 1245 }
551} 1246}
552 1247
553/*****************************************************************************/ 1248/* used to prepare libev internal fd's */
554 1249/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 1250inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1251fd_intern (int fd)
683{ 1252{
684#ifdef _WIN32 1253#ifdef _WIN32
685 int arg = 1; 1254 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1255 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 1256#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1257 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1258 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1259#endif
691} 1260}
692 1261
1262/*****************************************************************************/
1263
1264/*
1265 * the heap functions want a real array index. array index 0 is guaranteed to not
1266 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1267 * the branching factor of the d-tree.
1268 */
1269
1270/*
1271 * at the moment we allow libev the luxury of two heaps,
1272 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1273 * which is more cache-efficient.
1274 * the difference is about 5% with 50000+ watchers.
1275 */
1276#if EV_USE_4HEAP
1277
1278#define DHEAP 4
1279#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1280#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1281#define UPHEAP_DONE(p,k) ((p) == (k))
1282
1283/* away from the root */
1284inline_speed void
1285downheap (ANHE *heap, int N, int k)
1286{
1287 ANHE he = heap [k];
1288 ANHE *E = heap + N + HEAP0;
1289
1290 for (;;)
1291 {
1292 ev_tstamp minat;
1293 ANHE *minpos;
1294 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1295
1296 /* find minimum child */
1297 if (expect_true (pos + DHEAP - 1 < E))
1298 {
1299 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1300 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1301 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1302 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1303 }
1304 else if (pos < E)
1305 {
1306 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1307 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1308 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1309 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1310 }
1311 else
1312 break;
1313
1314 if (ANHE_at (he) <= minat)
1315 break;
1316
1317 heap [k] = *minpos;
1318 ev_active (ANHE_w (*minpos)) = k;
1319
1320 k = minpos - heap;
1321 }
1322
1323 heap [k] = he;
1324 ev_active (ANHE_w (he)) = k;
1325}
1326
1327#else /* 4HEAP */
1328
1329#define HEAP0 1
1330#define HPARENT(k) ((k) >> 1)
1331#define UPHEAP_DONE(p,k) (!(p))
1332
1333/* away from the root */
1334inline_speed void
1335downheap (ANHE *heap, int N, int k)
1336{
1337 ANHE he = heap [k];
1338
1339 for (;;)
1340 {
1341 int c = k << 1;
1342
1343 if (c >= N + HEAP0)
1344 break;
1345
1346 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1347 ? 1 : 0;
1348
1349 if (ANHE_at (he) <= ANHE_at (heap [c]))
1350 break;
1351
1352 heap [k] = heap [c];
1353 ev_active (ANHE_w (heap [k])) = k;
1354
1355 k = c;
1356 }
1357
1358 heap [k] = he;
1359 ev_active (ANHE_w (he)) = k;
1360}
1361#endif
1362
1363/* towards the root */
1364inline_speed void
1365upheap (ANHE *heap, int k)
1366{
1367 ANHE he = heap [k];
1368
1369 for (;;)
1370 {
1371 int p = HPARENT (k);
1372
1373 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1374 break;
1375
1376 heap [k] = heap [p];
1377 ev_active (ANHE_w (heap [k])) = k;
1378 k = p;
1379 }
1380
1381 heap [k] = he;
1382 ev_active (ANHE_w (he)) = k;
1383}
1384
1385/* move an element suitably so it is in a correct place */
1386inline_size void
1387adjustheap (ANHE *heap, int N, int k)
1388{
1389 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1390 upheap (heap, k);
1391 else
1392 downheap (heap, N, k);
1393}
1394
1395/* rebuild the heap: this function is used only once and executed rarely */
1396inline_size void
1397reheap (ANHE *heap, int N)
1398{
1399 int i;
1400
1401 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1402 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1403 for (i = 0; i < N; ++i)
1404 upheap (heap, i + HEAP0);
1405}
1406
1407/*****************************************************************************/
1408
1409/* associate signal watchers to a signal signal */
1410typedef struct
1411{
1412 EV_ATOMIC_T pending;
1413#if EV_MULTIPLICITY
1414 EV_P;
1415#endif
1416 WL head;
1417} ANSIG;
1418
1419static ANSIG signals [EV_NSIG - 1];
1420
1421/*****************************************************************************/
1422
1423#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1424
1425static void noinline ecb_cold
1426evpipe_init (EV_P)
1427{
1428 if (!ev_is_active (&pipe_w))
1429 {
1430# if EV_USE_EVENTFD
1431 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1432 if (evfd < 0 && errno == EINVAL)
1433 evfd = eventfd (0, 0);
1434
1435 if (evfd >= 0)
1436 {
1437 evpipe [0] = -1;
1438 fd_intern (evfd); /* doing it twice doesn't hurt */
1439 ev_io_set (&pipe_w, evfd, EV_READ);
1440 }
1441 else
1442# endif
1443 {
1444 while (pipe (evpipe))
1445 ev_syserr ("(libev) error creating signal/async pipe");
1446
1447 fd_intern (evpipe [0]);
1448 fd_intern (evpipe [1]);
1449 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1450 }
1451
1452 ev_io_start (EV_A_ &pipe_w);
1453 ev_unref (EV_A); /* watcher should not keep loop alive */
1454 }
1455}
1456
1457inline_speed void
1458evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1459{
1460 if (expect_true (*flag))
1461 return;
1462
1463 *flag = 1;
1464
1465 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1466
1467 pipe_write_skipped = 1;
1468
1469 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1470
1471 if (pipe_write_wanted)
1472 {
1473 int old_errno;
1474
1475 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1476
1477 old_errno = errno; /* save errno because write will clobber it */
1478
1479#if EV_USE_EVENTFD
1480 if (evfd >= 0)
1481 {
1482 uint64_t counter = 1;
1483 write (evfd, &counter, sizeof (uint64_t));
1484 }
1485 else
1486#endif
1487 {
1488 /* win32 people keep sending patches that change this write() to send() */
1489 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1490 /* so when you think this write should be a send instead, please find out */
1491 /* where your send() is from - it's definitely not the microsoft send, and */
1492 /* tell me. thank you. */
1493 write (evpipe [1], &(evpipe [1]), 1);
1494 }
1495
1496 errno = old_errno;
1497 }
1498}
1499
1500/* called whenever the libev signal pipe */
1501/* got some events (signal, async) */
693static void 1502static void
694siginit (EV_P) 1503pipecb (EV_P_ ev_io *iow, int revents)
695{ 1504{
696 fd_intern (sigpipe [0]); 1505 int i;
697 fd_intern (sigpipe [1]);
698 1506
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1507 if (revents & EV_READ)
700 ev_io_start (EV_A_ &sigev); 1508 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1509#if EV_USE_EVENTFD
1510 if (evfd >= 0)
1511 {
1512 uint64_t counter;
1513 read (evfd, &counter, sizeof (uint64_t));
1514 }
1515 else
1516#endif
1517 {
1518 char dummy;
1519 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1520 read (evpipe [0], &dummy, 1);
1521 }
1522 }
1523
1524 pipe_write_skipped = 0;
1525
1526#if EV_SIGNAL_ENABLE
1527 if (sig_pending)
1528 {
1529 sig_pending = 0;
1530
1531 for (i = EV_NSIG - 1; i--; )
1532 if (expect_false (signals [i].pending))
1533 ev_feed_signal_event (EV_A_ i + 1);
1534 }
1535#endif
1536
1537#if EV_ASYNC_ENABLE
1538 if (async_pending)
1539 {
1540 async_pending = 0;
1541
1542 for (i = asynccnt; i--; )
1543 if (asyncs [i]->sent)
1544 {
1545 asyncs [i]->sent = 0;
1546 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1547 }
1548 }
1549#endif
702} 1550}
703 1551
704/*****************************************************************************/ 1552/*****************************************************************************/
705 1553
706static struct ev_child *childs [PID_HASHSIZE]; 1554void
1555ev_feed_signal (int signum)
1556{
1557#if EV_MULTIPLICITY
1558 EV_P = signals [signum - 1].loop;
707 1559
1560 if (!EV_A)
1561 return;
1562#endif
1563
1564 if (!ev_active (&pipe_w))
1565 return;
1566
1567 signals [signum - 1].pending = 1;
1568 evpipe_write (EV_A_ &sig_pending);
1569}
1570
1571static void
1572ev_sighandler (int signum)
1573{
708#ifndef _WIN32 1574#ifdef _WIN32
1575 signal (signum, ev_sighandler);
1576#endif
709 1577
1578 ev_feed_signal (signum);
1579}
1580
1581void noinline
1582ev_feed_signal_event (EV_P_ int signum)
1583{
1584 WL w;
1585
1586 if (expect_false (signum <= 0 || signum > EV_NSIG))
1587 return;
1588
1589 --signum;
1590
1591#if EV_MULTIPLICITY
1592 /* it is permissible to try to feed a signal to the wrong loop */
1593 /* or, likely more useful, feeding a signal nobody is waiting for */
1594
1595 if (expect_false (signals [signum].loop != EV_A))
1596 return;
1597#endif
1598
1599 signals [signum].pending = 0;
1600
1601 for (w = signals [signum].head; w; w = w->next)
1602 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1603}
1604
1605#if EV_USE_SIGNALFD
1606static void
1607sigfdcb (EV_P_ ev_io *iow, int revents)
1608{
1609 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1610
1611 for (;;)
1612 {
1613 ssize_t res = read (sigfd, si, sizeof (si));
1614
1615 /* not ISO-C, as res might be -1, but works with SuS */
1616 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1617 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1618
1619 if (res < (ssize_t)sizeof (si))
1620 break;
1621 }
1622}
1623#endif
1624
1625#endif
1626
1627/*****************************************************************************/
1628
1629#if EV_CHILD_ENABLE
1630static WL childs [EV_PID_HASHSIZE];
1631
710static struct ev_signal childev; 1632static ev_signal childev;
1633
1634#ifndef WIFCONTINUED
1635# define WIFCONTINUED(status) 0
1636#endif
1637
1638/* handle a single child status event */
1639inline_speed void
1640child_reap (EV_P_ int chain, int pid, int status)
1641{
1642 ev_child *w;
1643 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1644
1645 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1646 {
1647 if ((w->pid == pid || !w->pid)
1648 && (!traced || (w->flags & 1)))
1649 {
1650 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1651 w->rpid = pid;
1652 w->rstatus = status;
1653 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1654 }
1655 }
1656}
711 1657
712#ifndef WCONTINUED 1658#ifndef WCONTINUED
713# define WCONTINUED 0 1659# define WCONTINUED 0
714#endif 1660#endif
715 1661
1662/* called on sigchld etc., calls waitpid */
716static void 1663static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1664childcb (EV_P_ ev_signal *sw, int revents)
733{ 1665{
734 int pid, status; 1666 int pid, status;
735 1667
1668 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1669 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1670 if (!WCONTINUED
1671 || errno != EINVAL
1672 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1673 return;
1674
738 /* make sure we are called again until all childs have been reaped */ 1675 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1676 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1678
742 child_reap (EV_A_ sw, pid, pid, status); 1679 child_reap (EV_A_ pid, pid, status);
1680 if ((EV_PID_HASHSIZE) > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1681 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1682}
746 1683
747#endif 1684#endif
748 1685
749/*****************************************************************************/ 1686/*****************************************************************************/
750 1687
1688#if EV_USE_IOCP
1689# include "ev_iocp.c"
1690#endif
751#if EV_USE_PORT 1691#if EV_USE_PORT
752# include "ev_port.c" 1692# include "ev_port.c"
753#endif 1693#endif
754#if EV_USE_KQUEUE 1694#if EV_USE_KQUEUE
755# include "ev_kqueue.c" 1695# include "ev_kqueue.c"
762#endif 1702#endif
763#if EV_USE_SELECT 1703#if EV_USE_SELECT
764# include "ev_select.c" 1704# include "ev_select.c"
765#endif 1705#endif
766 1706
767int 1707int ecb_cold
768ev_version_major (void) 1708ev_version_major (void)
769{ 1709{
770 return EV_VERSION_MAJOR; 1710 return EV_VERSION_MAJOR;
771} 1711}
772 1712
773int 1713int ecb_cold
774ev_version_minor (void) 1714ev_version_minor (void)
775{ 1715{
776 return EV_VERSION_MINOR; 1716 return EV_VERSION_MINOR;
777} 1717}
778 1718
779/* return true if we are running with elevated privileges and should ignore env variables */ 1719/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1720int inline_size ecb_cold
781enable_secure (void) 1721enable_secure (void)
782{ 1722{
783#ifdef _WIN32 1723#ifdef _WIN32
784 return 0; 1724 return 0;
785#else 1725#else
786 return getuid () != geteuid () 1726 return getuid () != geteuid ()
787 || getgid () != getegid (); 1727 || getgid () != getegid ();
788#endif 1728#endif
789} 1729}
790 1730
791unsigned int 1731unsigned int ecb_cold
792ev_supported_backends (void) 1732ev_supported_backends (void)
793{ 1733{
794 unsigned int flags = 0; 1734 unsigned int flags = 0;
795 1735
796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1736 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 1740 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801 1741
802 return flags; 1742 return flags;
803} 1743}
804 1744
805unsigned int 1745unsigned int ecb_cold
806ev_recommended_backends (void) 1746ev_recommended_backends (void)
807{ 1747{
808 unsigned int flags = ev_supported_backends (); 1748 unsigned int flags = ev_supported_backends ();
809 1749
810#ifndef __NetBSD__ 1750#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */ 1751 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1752 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1753 flags &= ~EVBACKEND_KQUEUE;
814#endif 1754#endif
815#ifdef __APPLE__ 1755#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1756 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 1757 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1758 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1759#endif
1760#ifdef __FreeBSD__
1761 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
818#endif 1762#endif
819 1763
820 return flags; 1764 return flags;
821} 1765}
822 1766
823unsigned int 1767unsigned int ecb_cold
824ev_embeddable_backends (void) 1768ev_embeddable_backends (void)
825{ 1769{
826 return EVBACKEND_EPOLL 1770 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1771
828 | EVBACKEND_PORT; 1772 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1773 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1774 flags &= ~EVBACKEND_EPOLL;
1775
1776 return flags;
829} 1777}
830 1778
831unsigned int 1779unsigned int
832ev_backend (EV_P) 1780ev_backend (EV_P)
833{ 1781{
834 return backend; 1782 return backend;
835} 1783}
836 1784
837static void 1785#if EV_FEATURE_API
1786unsigned int
1787ev_iteration (EV_P)
1788{
1789 return loop_count;
1790}
1791
1792unsigned int
1793ev_depth (EV_P)
1794{
1795 return loop_depth;
1796}
1797
1798void
1799ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1800{
1801 io_blocktime = interval;
1802}
1803
1804void
1805ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1806{
1807 timeout_blocktime = interval;
1808}
1809
1810void
1811ev_set_userdata (EV_P_ void *data)
1812{
1813 userdata = data;
1814}
1815
1816void *
1817ev_userdata (EV_P)
1818{
1819 return userdata;
1820}
1821
1822void
1823ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1824{
1825 invoke_cb = invoke_pending_cb;
1826}
1827
1828void
1829ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1830{
1831 release_cb = release;
1832 acquire_cb = acquire;
1833}
1834#endif
1835
1836/* initialise a loop structure, must be zero-initialised */
1837static void noinline ecb_cold
838loop_init (EV_P_ unsigned int flags) 1838loop_init (EV_P_ unsigned int flags)
839{ 1839{
840 if (!backend) 1840 if (!backend)
841 { 1841 {
1842 origflags = flags;
1843
1844#if EV_USE_REALTIME
1845 if (!have_realtime)
1846 {
1847 struct timespec ts;
1848
1849 if (!clock_gettime (CLOCK_REALTIME, &ts))
1850 have_realtime = 1;
1851 }
1852#endif
1853
842#if EV_USE_MONOTONIC 1854#if EV_USE_MONOTONIC
1855 if (!have_monotonic)
843 { 1856 {
844 struct timespec ts; 1857 struct timespec ts;
1858
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1859 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1860 have_monotonic = 1;
847 } 1861 }
848#endif 1862#endif
849 1863
850 ev_rt_now = ev_time (); 1864 /* pid check not overridable via env */
851 mn_now = get_clock (); 1865#ifndef _WIN32
852 now_floor = mn_now; 1866 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 1867 curpid = getpid ();
1868#endif
854 1869
855 if (!(flags & EVFLAG_NOENV) 1870 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1871 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1872 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1873 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1874
860 if (!(flags & 0x0000ffffUL)) 1875 ev_rt_now = ev_time ();
1876 mn_now = get_clock ();
1877 now_floor = mn_now;
1878 rtmn_diff = ev_rt_now - mn_now;
1879#if EV_FEATURE_API
1880 invoke_cb = ev_invoke_pending;
1881#endif
1882
1883 io_blocktime = 0.;
1884 timeout_blocktime = 0.;
1885 backend = 0;
1886 backend_fd = -1;
1887 sig_pending = 0;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 0;
1890#endif
1891 pipe_write_skipped = 0;
1892 pipe_write_wanted = 0;
1893#if EV_USE_INOTIFY
1894 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1895#endif
1896#if EV_USE_SIGNALFD
1897 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1898#endif
1899
1900 if (!(flags & EVBACKEND_MASK))
861 flags |= ev_recommended_backends (); 1901 flags |= ev_recommended_backends ();
862 1902
863 backend = 0; 1903#if EV_USE_IOCP
1904 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1905#endif
864#if EV_USE_PORT 1906#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1907 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1908#endif
867#if EV_USE_KQUEUE 1909#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1910 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1917#endif
876#if EV_USE_SELECT 1918#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1919 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1920#endif
879 1921
1922 ev_prepare_init (&pending_w, pendingcb);
1923
1924#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 1925 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1926 ev_set_priority (&pipe_w, EV_MAXPRI);
1927#endif
882 } 1928 }
883} 1929}
884 1930
885static void 1931/* free up a loop structure */
1932void ecb_cold
886loop_destroy (EV_P) 1933ev_loop_destroy (EV_P)
887{ 1934{
888 int i; 1935 int i;
889 1936
1937#if EV_MULTIPLICITY
1938 /* mimic free (0) */
1939 if (!EV_A)
1940 return;
1941#endif
1942
1943#if EV_CLEANUP_ENABLE
1944 /* queue cleanup watchers (and execute them) */
1945 if (expect_false (cleanupcnt))
1946 {
1947 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1948 EV_INVOKE_PENDING;
1949 }
1950#endif
1951
1952#if EV_CHILD_ENABLE
1953 if (ev_is_active (&childev))
1954 {
1955 ev_ref (EV_A); /* child watcher */
1956 ev_signal_stop (EV_A_ &childev);
1957 }
1958#endif
1959
1960 if (ev_is_active (&pipe_w))
1961 {
1962 /*ev_ref (EV_A);*/
1963 /*ev_io_stop (EV_A_ &pipe_w);*/
1964
1965#if EV_USE_EVENTFD
1966 if (evfd >= 0)
1967 close (evfd);
1968#endif
1969
1970 if (evpipe [0] >= 0)
1971 {
1972 EV_WIN32_CLOSE_FD (evpipe [0]);
1973 EV_WIN32_CLOSE_FD (evpipe [1]);
1974 }
1975 }
1976
1977#if EV_USE_SIGNALFD
1978 if (ev_is_active (&sigfd_w))
1979 close (sigfd);
1980#endif
1981
1982#if EV_USE_INOTIFY
1983 if (fs_fd >= 0)
1984 close (fs_fd);
1985#endif
1986
1987 if (backend_fd >= 0)
1988 close (backend_fd);
1989
1990#if EV_USE_IOCP
1991 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1992#endif
890#if EV_USE_PORT 1993#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1995#endif
893#if EV_USE_KQUEUE 1996#if EV_USE_KQUEUE
894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
902#if EV_USE_SELECT 2005#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2006 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 2007#endif
905 2008
906 for (i = NUMPRI; i--; ) 2009 for (i = NUMPRI; i--; )
2010 {
907 array_free (pending, [i]); 2011 array_free (pending, [i]);
2012#if EV_IDLE_ENABLE
2013 array_free (idle, [i]);
2014#endif
2015 }
2016
2017 ev_free (anfds); anfds = 0; anfdmax = 0;
908 2018
909 /* have to use the microsoft-never-gets-it-right macro */ 2019 /* have to use the microsoft-never-gets-it-right macro */
2020 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 2021 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 2022 array_free (timer, EMPTY);
912#if EV_PERIODICS 2023#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 2024 array_free (periodic, EMPTY);
914#endif 2025#endif
2026#if EV_FORK_ENABLE
2027 array_free (fork, EMPTY);
2028#endif
2029#if EV_CLEANUP_ENABLE
915 array_free (idle, EMPTY0); 2030 array_free (cleanup, EMPTY);
2031#endif
916 array_free (prepare, EMPTY0); 2032 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 2033 array_free (check, EMPTY);
2034#if EV_ASYNC_ENABLE
2035 array_free (async, EMPTY);
2036#endif
918 2037
919 backend = 0; 2038 backend = 0;
920}
921 2039
922static void 2040#if EV_MULTIPLICITY
2041 if (ev_is_default_loop (EV_A))
2042#endif
2043 ev_default_loop_ptr = 0;
2044#if EV_MULTIPLICITY
2045 else
2046 ev_free (EV_A);
2047#endif
2048}
2049
2050#if EV_USE_INOTIFY
2051inline_size void infy_fork (EV_P);
2052#endif
2053
2054inline_size void
923loop_fork (EV_P) 2055loop_fork (EV_P)
924{ 2056{
925#if EV_USE_PORT 2057#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2058 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 2059#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2061 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 2062#endif
931#if EV_USE_EPOLL 2063#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2064 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 2065#endif
2066#if EV_USE_INOTIFY
2067 infy_fork (EV_A);
2068#endif
934 2069
935 if (ev_is_active (&sigev)) 2070 if (ev_is_active (&pipe_w))
936 { 2071 {
937 /* default loop */ 2072 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
938 2073
939 ev_ref (EV_A); 2074 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 2075 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 2076
944 while (pipe (sigpipe)) 2077#if EV_USE_EVENTFD
945 syserr ("(libev) error creating pipe"); 2078 if (evfd >= 0)
2079 close (evfd);
2080#endif
946 2081
2082 if (evpipe [0] >= 0)
2083 {
2084 EV_WIN32_CLOSE_FD (evpipe [0]);
2085 EV_WIN32_CLOSE_FD (evpipe [1]);
2086 }
2087
2088#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
947 siginit (EV_A); 2089 evpipe_init (EV_A);
2090 /* now iterate over everything, in case we missed something */
2091 pipecb (EV_A_ &pipe_w, EV_READ);
2092#endif
948 } 2093 }
949 2094
950 postfork = 0; 2095 postfork = 0;
951} 2096}
952 2097
953#if EV_MULTIPLICITY 2098#if EV_MULTIPLICITY
2099
954struct ev_loop * 2100struct ev_loop * ecb_cold
955ev_loop_new (unsigned int flags) 2101ev_loop_new (unsigned int flags)
956{ 2102{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 2104
959 memset (loop, 0, sizeof (struct ev_loop)); 2105 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 2106 loop_init (EV_A_ flags);
962 2107
963 if (ev_backend (EV_A)) 2108 if (ev_backend (EV_A))
964 return loop; 2109 return EV_A;
965 2110
2111 ev_free (EV_A);
966 return 0; 2112 return 0;
967} 2113}
968 2114
969void 2115#endif /* multiplicity */
970ev_loop_destroy (EV_P)
971{
972 loop_destroy (EV_A);
973 ev_free (loop);
974}
975 2116
976void 2117#if EV_VERIFY
977ev_loop_fork (EV_P) 2118static void noinline ecb_cold
2119verify_watcher (EV_P_ W w)
978{ 2120{
979 postfork = 1; 2121 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
980}
981 2122
2123 if (w->pending)
2124 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2125}
2126
2127static void noinline ecb_cold
2128verify_heap (EV_P_ ANHE *heap, int N)
2129{
2130 int i;
2131
2132 for (i = HEAP0; i < N + HEAP0; ++i)
2133 {
2134 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2135 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2136 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2137
2138 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2139 }
2140}
2141
2142static void noinline ecb_cold
2143array_verify (EV_P_ W *ws, int cnt)
2144{
2145 while (cnt--)
2146 {
2147 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2148 verify_watcher (EV_A_ ws [cnt]);
2149 }
2150}
2151#endif
2152
2153#if EV_FEATURE_API
2154void ecb_cold
2155ev_verify (EV_P)
2156{
2157#if EV_VERIFY
2158 int i;
2159 WL w;
2160
2161 assert (activecnt >= -1);
2162
2163 assert (fdchangemax >= fdchangecnt);
2164 for (i = 0; i < fdchangecnt; ++i)
2165 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2166
2167 assert (anfdmax >= 0);
2168 for (i = 0; i < anfdmax; ++i)
2169 for (w = anfds [i].head; w; w = w->next)
2170 {
2171 verify_watcher (EV_A_ (W)w);
2172 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2173 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2174 }
2175
2176 assert (timermax >= timercnt);
2177 verify_heap (EV_A_ timers, timercnt);
2178
2179#if EV_PERIODIC_ENABLE
2180 assert (periodicmax >= periodiccnt);
2181 verify_heap (EV_A_ periodics, periodiccnt);
2182#endif
2183
2184 for (i = NUMPRI; i--; )
2185 {
2186 assert (pendingmax [i] >= pendingcnt [i]);
2187#if EV_IDLE_ENABLE
2188 assert (idleall >= 0);
2189 assert (idlemax [i] >= idlecnt [i]);
2190 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2191#endif
2192 }
2193
2194#if EV_FORK_ENABLE
2195 assert (forkmax >= forkcnt);
2196 array_verify (EV_A_ (W *)forks, forkcnt);
2197#endif
2198
2199#if EV_CLEANUP_ENABLE
2200 assert (cleanupmax >= cleanupcnt);
2201 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2202#endif
2203
2204#if EV_ASYNC_ENABLE
2205 assert (asyncmax >= asynccnt);
2206 array_verify (EV_A_ (W *)asyncs, asynccnt);
2207#endif
2208
2209#if EV_PREPARE_ENABLE
2210 assert (preparemax >= preparecnt);
2211 array_verify (EV_A_ (W *)prepares, preparecnt);
2212#endif
2213
2214#if EV_CHECK_ENABLE
2215 assert (checkmax >= checkcnt);
2216 array_verify (EV_A_ (W *)checks, checkcnt);
2217#endif
2218
2219# if 0
2220#if EV_CHILD_ENABLE
2221 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2222 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2223#endif
2224# endif
2225#endif
2226}
982#endif 2227#endif
983 2228
984#if EV_MULTIPLICITY 2229#if EV_MULTIPLICITY
985struct ev_loop * 2230struct ev_loop * ecb_cold
986ev_default_loop_init (unsigned int flags)
987#else 2231#else
988int 2232int
2233#endif
989ev_default_loop (unsigned int flags) 2234ev_default_loop (unsigned int flags)
990#endif
991{ 2235{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 2236 if (!ev_default_loop_ptr)
997 { 2237 {
998#if EV_MULTIPLICITY 2238#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2239 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 2240#else
1001 ev_default_loop_ptr = 1; 2241 ev_default_loop_ptr = 1;
1002#endif 2242#endif
1003 2243
1004 loop_init (EV_A_ flags); 2244 loop_init (EV_A_ flags);
1005 2245
1006 if (ev_backend (EV_A)) 2246 if (ev_backend (EV_A))
1007 { 2247 {
1008 siginit (EV_A); 2248#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 2249 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 2250 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 2251 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2252 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 2253#endif
1020 2258
1021 return ev_default_loop_ptr; 2259 return ev_default_loop_ptr;
1022} 2260}
1023 2261
1024void 2262void
1025ev_default_destroy (void) 2263ev_loop_fork (EV_P)
1026{ 2264{
1027#if EV_MULTIPLICITY 2265 postfork = 1; /* must be in line with ev_default_fork */
1028 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif
1030
1031#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev);
1034#endif
1035
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A);
1043} 2266}
2267
2268/*****************************************************************************/
1044 2269
1045void 2270void
1046ev_default_fork (void) 2271ev_invoke (EV_P_ void *w, int revents)
1047{ 2272{
1048#if EV_MULTIPLICITY 2273 EV_CB_INVOKE ((W)w, revents);
1049 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif
1051
1052 if (backend)
1053 postfork = 1;
1054} 2274}
1055 2275
1056/*****************************************************************************/ 2276unsigned int
1057 2277ev_pending_count (EV_P)
1058static int
1059any_pending (EV_P)
1060{ 2278{
1061 int pri; 2279 int pri;
2280 unsigned int count = 0;
1062 2281
1063 for (pri = NUMPRI; pri--; ) 2282 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 2283 count += pendingcnt [pri];
1065 return 1;
1066 2284
1067 return 0; 2285 return count;
1068} 2286}
1069 2287
1070inline void 2288void noinline
1071call_pending (EV_P) 2289ev_invoke_pending (EV_P)
1072{ 2290{
1073 int pri; 2291 int pri;
1074 2292
1075 for (pri = NUMPRI; pri--; ) 2293 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 2294 while (pendingcnt [pri])
1077 { 2295 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 2297
1080 if (expect_true (p->w))
1081 {
1082 p->w->pending = 0; 2298 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 2299 EV_CB_INVOKE (p->w, p->events);
1084 } 2300 EV_FREQUENT_CHECK;
1085 } 2301 }
1086} 2302}
1087 2303
2304#if EV_IDLE_ENABLE
2305/* make idle watchers pending. this handles the "call-idle */
2306/* only when higher priorities are idle" logic */
1088inline void 2307inline_size void
2308idle_reify (EV_P)
2309{
2310 if (expect_false (idleall))
2311 {
2312 int pri;
2313
2314 for (pri = NUMPRI; pri--; )
2315 {
2316 if (pendingcnt [pri])
2317 break;
2318
2319 if (idlecnt [pri])
2320 {
2321 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2322 break;
2323 }
2324 }
2325 }
2326}
2327#endif
2328
2329/* make timers pending */
2330inline_size void
1089timers_reify (EV_P) 2331timers_reify (EV_P)
1090{ 2332{
2333 EV_FREQUENT_CHECK;
2334
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 2335 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 2336 {
1093 struct ev_timer *w = timers [0]; 2337 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 2338 {
2339 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2340
2341 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2342
2343 /* first reschedule or stop timer */
2344 if (w->repeat)
2345 {
2346 ev_at (w) += w->repeat;
2347 if (ev_at (w) < mn_now)
2348 ev_at (w) = mn_now;
2349
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2350 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 2351
1102 ((WT)w)->at += w->repeat; 2352 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 2353 downheap (timers, timercnt, HEAP0);
2354 }
2355 else
2356 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2357
2358 EV_FREQUENT_CHECK;
2359 feed_reverse (EV_A_ (W)w);
1107 } 2360 }
1108 else 2361 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 2362
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2363 feed_reverse_done (EV_A_ EV_TIMER);
2364 }
2365}
2366
2367#if EV_PERIODIC_ENABLE
2368
2369static void noinline
2370periodic_recalc (EV_P_ ev_periodic *w)
2371{
2372 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2373 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2374
2375 /* the above almost always errs on the low side */
2376 while (at <= ev_rt_now)
1112 } 2377 {
1113} 2378 ev_tstamp nat = at + w->interval;
1114 2379
1115#if EV_PERIODICS 2380 /* when resolution fails us, we use ev_rt_now */
2381 if (expect_false (nat == at))
2382 {
2383 at = ev_rt_now;
2384 break;
2385 }
2386
2387 at = nat;
2388 }
2389
2390 ev_at (w) = at;
2391}
2392
2393/* make periodics pending */
1116inline void 2394inline_size void
1117periodics_reify (EV_P) 2395periodics_reify (EV_P)
1118{ 2396{
2397 EV_FREQUENT_CHECK;
2398
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2399 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 2400 {
1121 struct ev_periodic *w = periodics [0]; 2401 int feed_count = 0;
1122 2402
2403 do
2404 {
2405 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2406
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2407 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 2408
1125 /* first reschedule or stop timer */ 2409 /* first reschedule or stop timer */
2410 if (w->reschedule_cb)
2411 {
2412 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2413
2414 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2415
2416 ANHE_at_cache (periodics [HEAP0]);
2417 downheap (periodics, periodiccnt, HEAP0);
2418 }
2419 else if (w->interval)
2420 {
2421 periodic_recalc (EV_A_ w);
2422 ANHE_at_cache (periodics [HEAP0]);
2423 downheap (periodics, periodiccnt, HEAP0);
2424 }
2425 else
2426 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2427
2428 EV_FREQUENT_CHECK;
2429 feed_reverse (EV_A_ (W)w);
2430 }
2431 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2432
2433 feed_reverse_done (EV_A_ EV_PERIODIC);
2434 }
2435}
2436
2437/* simply recalculate all periodics */
2438/* TODO: maybe ensure that at least one event happens when jumping forward? */
2439static void noinline ecb_cold
2440periodics_reschedule (EV_P)
2441{
2442 int i;
2443
2444 /* adjust periodics after time jump */
2445 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2446 {
2447 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2448
1126 if (w->reschedule_cb) 2449 if (w->reschedule_cb)
2450 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2451 else if (w->interval)
2452 periodic_recalc (EV_A_ w);
2453
2454 ANHE_at_cache (periodics [i]);
2455 }
2456
2457 reheap (periodics, periodiccnt);
2458}
2459#endif
2460
2461/* adjust all timers by a given offset */
2462static void noinline ecb_cold
2463timers_reschedule (EV_P_ ev_tstamp adjust)
2464{
2465 int i;
2466
2467 for (i = 0; i < timercnt; ++i)
2468 {
2469 ANHE *he = timers + i + HEAP0;
2470 ANHE_w (*he)->at += adjust;
2471 ANHE_at_cache (*he);
2472 }
2473}
2474
2475/* fetch new monotonic and realtime times from the kernel */
2476/* also detect if there was a timejump, and act accordingly */
2477inline_speed void
2478time_update (EV_P_ ev_tstamp max_block)
2479{
2480#if EV_USE_MONOTONIC
2481 if (expect_true (have_monotonic))
2482 {
2483 int i;
2484 ev_tstamp odiff = rtmn_diff;
2485
2486 mn_now = get_clock ();
2487
2488 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2489 /* interpolate in the meantime */
2490 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 2491 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2492 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2493 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 2494 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 2495
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 2496 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 2497 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 2498
1185inline void 2499 /* loop a few times, before making important decisions.
1186time_update (EV_P) 2500 * on the choice of "4": one iteration isn't enough,
1187{ 2501 * in case we get preempted during the calls to
1188 int i; 2502 * ev_time and get_clock. a second call is almost guaranteed
1189 2503 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 2504 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 2505 * in the unlikely event of having been preempted here.
1192 { 2506 */
1193 if (time_update_monotonic (EV_A)) 2507 for (i = 4; --i; )
1194 { 2508 {
1195 ev_tstamp odiff = rtmn_diff; 2509 ev_tstamp diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 2510 rtmn_diff = ev_rt_now - mn_now;
1200 2511
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2512 diff = odiff - rtmn_diff;
2513
2514 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 2515 return; /* all is well */
1203 2516
1204 ev_rt_now = ev_time (); 2517 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 2518 mn_now = get_clock ();
1206 now_floor = mn_now; 2519 now_floor = mn_now;
1207 } 2520 }
1208 2521
2522 /* no timer adjustment, as the monotonic clock doesn't jump */
2523 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2524# if EV_PERIODIC_ENABLE
2525 periodics_reschedule (EV_A);
2526# endif
2527 }
2528 else
2529#endif
2530 {
2531 ev_rt_now = ev_time ();
2532
2533 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2534 {
2535 /* adjust timers. this is easy, as the offset is the same for all of them */
2536 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2537#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2538 periodics_reschedule (EV_A);
1211# endif 2539#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2540 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2541
1232 mn_now = ev_rt_now; 2542 mn_now = ev_rt_now;
1233 } 2543 }
1234} 2544}
1235 2545
1236void 2546void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 2547ev_run (EV_P_ int flags)
1252{ 2548{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2549#if EV_FEATURE_API
1254 ? EVUNLOOP_ONE 2550 ++loop_depth;
1255 : EVUNLOOP_CANCEL; 2551#endif
1256 2552
1257 while (activecnt) 2553 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2554
2555 loop_done = EVBREAK_CANCEL;
2556
2557 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2558
2559 do
1258 { 2560 {
2561#if EV_VERIFY >= 2
2562 ev_verify (EV_A);
2563#endif
2564
2565#ifndef _WIN32
2566 if (expect_false (curpid)) /* penalise the forking check even more */
2567 if (expect_false (getpid () != curpid))
2568 {
2569 curpid = getpid ();
2570 postfork = 1;
2571 }
2572#endif
2573
2574#if EV_FORK_ENABLE
2575 /* we might have forked, so queue fork handlers */
2576 if (expect_false (postfork))
2577 if (forkcnt)
2578 {
2579 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2580 EV_INVOKE_PENDING;
2581 }
2582#endif
2583
2584#if EV_PREPARE_ENABLE
1259 /* queue check watchers (and execute them) */ 2585 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 2586 if (expect_false (preparecnt))
1261 { 2587 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2588 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 2589 EV_INVOKE_PENDING;
1264 } 2590 }
2591#endif
2592
2593 if (expect_false (loop_done))
2594 break;
1265 2595
1266 /* we might have forked, so reify kernel state if necessary */ 2596 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 2597 if (expect_false (postfork))
1268 loop_fork (EV_A); 2598 loop_fork (EV_A);
1269 2599
1270 /* update fd-related kernel structures */ 2600 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 2601 fd_reify (EV_A);
1272 2602
1273 /* calculate blocking time */ 2603 /* calculate blocking time */
1274 { 2604 {
1275 double block; 2605 ev_tstamp waittime = 0.;
2606 ev_tstamp sleeptime = 0.;
1276 2607
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 2608 /* remember old timestamp for io_blocktime calculation */
1278 block = 0.; /* do not block at all */ 2609 ev_tstamp prev_mn_now = mn_now;
1279 else 2610
2611 /* update time to cancel out callback processing overhead */
2612 time_update (EV_A_ 1e100);
2613
2614 /* from now on, we want a pipe-wake-up */
2615 pipe_write_wanted = 1;
2616
2617 ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2618
2619 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1280 { 2620 {
1281 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291
1292 block = MAX_BLOCKTIME; 2621 waittime = MAX_BLOCKTIME;
1293 2622
1294 if (timercnt) 2623 if (timercnt)
1295 { 2624 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2625 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1297 if (block > to) block = to; 2626 if (waittime > to) waittime = to;
1298 } 2627 }
1299 2628
1300#if EV_PERIODICS 2629#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 2630 if (periodiccnt)
1302 { 2631 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2632 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1304 if (block > to) block = to; 2633 if (waittime > to) waittime = to;
1305 } 2634 }
1306#endif 2635#endif
1307 2636
2637 /* don't let timeouts decrease the waittime below timeout_blocktime */
2638 if (expect_false (waittime < timeout_blocktime))
2639 waittime = timeout_blocktime;
2640
2641 /* at this point, we NEED to wait, so we have to ensure */
2642 /* to pass a minimum nonzero value to the backend */
2643 if (expect_false (waittime < backend_mintime))
2644 waittime = backend_mintime;
2645
2646 /* extra check because io_blocktime is commonly 0 */
1308 if (expect_false (block < 0.)) block = 0.; 2647 if (expect_false (io_blocktime))
2648 {
2649 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2650
2651 if (sleeptime > waittime - backend_mintime)
2652 sleeptime = waittime - backend_mintime;
2653
2654 if (expect_true (sleeptime > 0.))
2655 {
2656 ev_sleep (sleeptime);
2657 waittime -= sleeptime;
2658 }
2659 }
1309 } 2660 }
1310 2661
2662#if EV_FEATURE_API
2663 ++loop_count;
2664#endif
2665 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1311 backend_poll (EV_A_ block); 2666 backend_poll (EV_A_ waittime);
2667 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2668
2669 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2670
2671 if (pipe_write_skipped)
2672 {
2673 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2674 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2675 }
2676
2677
2678 /* update ev_rt_now, do magic */
2679 time_update (EV_A_ waittime + sleeptime);
1312 } 2680 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 2681
1317 /* queue pending timers and reschedule them */ 2682 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 2683 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 2684#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 2685 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 2686#endif
1322 2687
2688#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 2689 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 2690 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2691#endif
1326 2692
2693#if EV_CHECK_ENABLE
1327 /* queue check watchers, to be executed first */ 2694 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 2695 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2696 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2697#endif
1330 2698
1331 call_pending (EV_A); 2699 EV_INVOKE_PENDING;
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 2700 }
2701 while (expect_true (
2702 activecnt
2703 && !loop_done
2704 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2705 ));
1336 2706
1337 if (loop_done == EVUNLOOP_ONE) 2707 if (loop_done == EVBREAK_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 2708 loop_done = EVBREAK_CANCEL;
2709
2710#if EV_FEATURE_API
2711 --loop_depth;
2712#endif
1339} 2713}
1340 2714
1341void 2715void
1342ev_unloop (EV_P_ int how) 2716ev_break (EV_P_ int how)
1343{ 2717{
1344 loop_done = how; 2718 loop_done = how;
1345} 2719}
1346 2720
2721void
2722ev_ref (EV_P)
2723{
2724 ++activecnt;
2725}
2726
2727void
2728ev_unref (EV_P)
2729{
2730 --activecnt;
2731}
2732
2733void
2734ev_now_update (EV_P)
2735{
2736 time_update (EV_A_ 1e100);
2737}
2738
2739void
2740ev_suspend (EV_P)
2741{
2742 ev_now_update (EV_A);
2743}
2744
2745void
2746ev_resume (EV_P)
2747{
2748 ev_tstamp mn_prev = mn_now;
2749
2750 ev_now_update (EV_A);
2751 timers_reschedule (EV_A_ mn_now - mn_prev);
2752#if EV_PERIODIC_ENABLE
2753 /* TODO: really do this? */
2754 periodics_reschedule (EV_A);
2755#endif
2756}
2757
1347/*****************************************************************************/ 2758/*****************************************************************************/
2759/* singly-linked list management, used when the expected list length is short */
1348 2760
1349inline void 2761inline_size void
1350wlist_add (WL *head, WL elem) 2762wlist_add (WL *head, WL elem)
1351{ 2763{
1352 elem->next = *head; 2764 elem->next = *head;
1353 *head = elem; 2765 *head = elem;
1354} 2766}
1355 2767
1356inline void 2768inline_size void
1357wlist_del (WL *head, WL elem) 2769wlist_del (WL *head, WL elem)
1358{ 2770{
1359 while (*head) 2771 while (*head)
1360 { 2772 {
1361 if (*head == elem) 2773 if (expect_true (*head == elem))
1362 { 2774 {
1363 *head = elem->next; 2775 *head = elem->next;
1364 return; 2776 break;
1365 } 2777 }
1366 2778
1367 head = &(*head)->next; 2779 head = &(*head)->next;
1368 } 2780 }
1369} 2781}
1370 2782
2783/* internal, faster, version of ev_clear_pending */
1371inline void 2784inline_speed void
1372ev_clear_pending (EV_P_ W w) 2785clear_pending (EV_P_ W w)
1373{ 2786{
1374 if (w->pending) 2787 if (w->pending)
1375 { 2788 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2789 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1377 w->pending = 0; 2790 w->pending = 0;
1378 } 2791 }
1379} 2792}
1380 2793
2794int
2795ev_clear_pending (EV_P_ void *w)
2796{
2797 W w_ = (W)w;
2798 int pending = w_->pending;
2799
2800 if (expect_true (pending))
2801 {
2802 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2803 p->w = (W)&pending_w;
2804 w_->pending = 0;
2805 return p->events;
2806 }
2807 else
2808 return 0;
2809}
2810
1381inline void 2811inline_size void
2812pri_adjust (EV_P_ W w)
2813{
2814 int pri = ev_priority (w);
2815 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2816 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2817 ev_set_priority (w, pri);
2818}
2819
2820inline_speed void
1382ev_start (EV_P_ W w, int active) 2821ev_start (EV_P_ W w, int active)
1383{ 2822{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2823 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 2824 w->active = active;
1388 ev_ref (EV_A); 2825 ev_ref (EV_A);
1389} 2826}
1390 2827
1391inline void 2828inline_size void
1392ev_stop (EV_P_ W w) 2829ev_stop (EV_P_ W w)
1393{ 2830{
1394 ev_unref (EV_A); 2831 ev_unref (EV_A);
1395 w->active = 0; 2832 w->active = 0;
1396} 2833}
1397 2834
1398/*****************************************************************************/ 2835/*****************************************************************************/
1399 2836
1400void 2837void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 2838ev_io_start (EV_P_ ev_io *w)
1402{ 2839{
1403 int fd = w->fd; 2840 int fd = w->fd;
1404 2841
1405 if (expect_false (ev_is_active (w))) 2842 if (expect_false (ev_is_active (w)))
1406 return; 2843 return;
1407 2844
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 2845 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2846 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2847
2848 EV_FREQUENT_CHECK;
1409 2849
1410 ev_start (EV_A_ (W)w, 1); 2850 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2851 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2852 wlist_add (&anfds[fd].head, (WL)w);
1413 2853
1414 fd_change (EV_A_ fd); 2854 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1415} 2855 w->events &= ~EV__IOFDSET;
1416 2856
1417void 2857 EV_FREQUENT_CHECK;
2858}
2859
2860void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 2861ev_io_stop (EV_P_ ev_io *w)
1419{ 2862{
1420 ev_clear_pending (EV_A_ (W)w); 2863 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 2864 if (expect_false (!ev_is_active (w)))
1422 return; 2865 return;
1423 2866
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2867 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 2868
2869 EV_FREQUENT_CHECK;
2870
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2871 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
1428 2873
1429 fd_change (EV_A_ w->fd); 2874 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1430}
1431 2875
1432void 2876 EV_FREQUENT_CHECK;
2877}
2878
2879void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 2880ev_timer_start (EV_P_ ev_timer *w)
1434{ 2881{
1435 if (expect_false (ev_is_active (w))) 2882 if (expect_false (ev_is_active (w)))
1436 return; 2883 return;
1437 2884
1438 ((WT)w)->at += mn_now; 2885 ev_at (w) += mn_now;
1439 2886
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2887 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 2888
2889 EV_FREQUENT_CHECK;
2890
2891 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 2892 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2893 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 2894 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 2895 ANHE_at_cache (timers [ev_active (w)]);
2896 upheap (timers, ev_active (w));
1446 2897
2898 EV_FREQUENT_CHECK;
2899
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2900 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 2901}
1449 2902
1450void 2903void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 2904ev_timer_stop (EV_P_ ev_timer *w)
1452{ 2905{
1453 ev_clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
1455 return; 2908 return;
1456 2909
2910 EV_FREQUENT_CHECK;
2911
2912 {
2913 int active = ev_active (w);
2914
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2915 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 2916
2917 --timercnt;
2918
1459 if (expect_true (((W)w)->active < timercnt--)) 2919 if (expect_true (active < timercnt + HEAP0))
1460 { 2920 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 2921 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2922 adjustheap (timers, timercnt, active);
1463 } 2923 }
2924 }
1464 2925
1465 ((WT)w)->at -= mn_now; 2926 ev_at (w) -= mn_now;
1466 2927
1467 ev_stop (EV_A_ (W)w); 2928 ev_stop (EV_A_ (W)w);
1468}
1469 2929
1470void 2930 EV_FREQUENT_CHECK;
2931}
2932
2933void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 2934ev_timer_again (EV_P_ ev_timer *w)
1472{ 2935{
2936 EV_FREQUENT_CHECK;
2937
1473 if (ev_is_active (w)) 2938 if (ev_is_active (w))
1474 { 2939 {
1475 if (w->repeat) 2940 if (w->repeat)
1476 { 2941 {
1477 ((WT)w)->at = mn_now + w->repeat; 2942 ev_at (w) = mn_now + w->repeat;
2943 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2944 adjustheap (timers, timercnt, ev_active (w));
1479 } 2945 }
1480 else 2946 else
1481 ev_timer_stop (EV_A_ w); 2947 ev_timer_stop (EV_A_ w);
1482 } 2948 }
1483 else if (w->repeat) 2949 else if (w->repeat)
1484 { 2950 {
1485 w->at = w->repeat; 2951 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 2952 ev_timer_start (EV_A_ w);
1487 } 2953 }
1488}
1489 2954
2955 EV_FREQUENT_CHECK;
2956}
2957
2958ev_tstamp
2959ev_timer_remaining (EV_P_ ev_timer *w)
2960{
2961 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2962}
2963
1490#if EV_PERIODICS 2964#if EV_PERIODIC_ENABLE
1491void 2965void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 2966ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 2967{
1494 if (expect_false (ev_is_active (w))) 2968 if (expect_false (ev_is_active (w)))
1495 return; 2969 return;
1496 2970
1497 if (w->reschedule_cb) 2971 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2972 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 2973 else if (w->interval)
1500 { 2974 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2975 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 2976 periodic_recalc (EV_A_ w);
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 2977 }
2978 else
2979 ev_at (w) = w->offset;
1505 2980
2981 EV_FREQUENT_CHECK;
2982
2983 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 2984 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2985 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 2986 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 2987 ANHE_at_cache (periodics [ev_active (w)]);
2988 upheap (periodics, ev_active (w));
1510 2989
2990 EV_FREQUENT_CHECK;
2991
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2992 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 2993}
1513 2994
1514void 2995void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 2996ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 2997{
1517 ev_clear_pending (EV_A_ (W)w); 2998 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2999 if (expect_false (!ev_is_active (w)))
1519 return; 3000 return;
1520 3001
3002 EV_FREQUENT_CHECK;
3003
3004 {
3005 int active = ev_active (w);
3006
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3007 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 3008
3009 --periodiccnt;
3010
1523 if (expect_true (((W)w)->active < periodiccnt--)) 3011 if (expect_true (active < periodiccnt + HEAP0))
1524 { 3012 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3013 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3014 adjustheap (periodics, periodiccnt, active);
1527 } 3015 }
3016 }
1528 3017
1529 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
1530}
1531 3019
1532void 3020 EV_FREQUENT_CHECK;
3021}
3022
3023void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 3024ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 3025{
1535 /* TODO: use adjustheap and recalculation */ 3026 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 3027 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 3028 ev_periodic_start (EV_A_ w);
1538} 3029}
1539#endif 3030#endif
1540 3031
1541void 3032#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 3033# define SA_RESTART 0
3034#endif
3035
3036#if EV_SIGNAL_ENABLE
3037
3038void noinline
3039ev_signal_start (EV_P_ ev_signal *w)
1543{ 3040{
1544 if (expect_false (ev_is_active (w))) 3041 if (expect_false (ev_is_active (w)))
1545 return; 3042 return;
1546 3043
3044 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3045
3046#if EV_MULTIPLICITY
3047 assert (("libev: a signal must not be attached to two different loops",
3048 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3049
3050 signals [w->signum - 1].loop = EV_A;
3051#endif
3052
3053 EV_FREQUENT_CHECK;
3054
3055#if EV_USE_SIGNALFD
3056 if (sigfd == -2)
3057 {
3058 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3059 if (sigfd < 0 && errno == EINVAL)
3060 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3061
3062 if (sigfd >= 0)
3063 {
3064 fd_intern (sigfd); /* doing it twice will not hurt */
3065
3066 sigemptyset (&sigfd_set);
3067
3068 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3069 ev_set_priority (&sigfd_w, EV_MAXPRI);
3070 ev_io_start (EV_A_ &sigfd_w);
3071 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3072 }
3073 }
3074
3075 if (sigfd >= 0)
3076 {
3077 /* TODO: check .head */
3078 sigaddset (&sigfd_set, w->signum);
3079 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3080
3081 signalfd (sigfd, &sigfd_set, 0);
3082 }
3083#endif
3084
1547 ev_start (EV_A_ (W)w, ++idlecnt); 3085 ev_start (EV_A_ (W)w, 1);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3086 wlist_add (&signals [w->signum - 1].head, (WL)w);
1549 idles [idlecnt - 1] = w;
1550}
1551 3087
1552void 3088 if (!((WL)w)->next)
1553ev_idle_stop (EV_P_ struct ev_idle *w) 3089# if EV_USE_SIGNALFD
3090 if (sigfd < 0) /*TODO*/
3091# endif
3092 {
3093# ifdef _WIN32
3094 evpipe_init (EV_A);
3095
3096 signal (w->signum, ev_sighandler);
3097# else
3098 struct sigaction sa;
3099
3100 evpipe_init (EV_A);
3101
3102 sa.sa_handler = ev_sighandler;
3103 sigfillset (&sa.sa_mask);
3104 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3105 sigaction (w->signum, &sa, 0);
3106
3107 if (origflags & EVFLAG_NOSIGMASK)
3108 {
3109 sigemptyset (&sa.sa_mask);
3110 sigaddset (&sa.sa_mask, w->signum);
3111 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3112 }
3113#endif
3114 }
3115
3116 EV_FREQUENT_CHECK;
3117}
3118
3119void noinline
3120ev_signal_stop (EV_P_ ev_signal *w)
1554{ 3121{
1555 ev_clear_pending (EV_A_ (W)w); 3122 clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w))) 3123 if (expect_false (!ev_is_active (w)))
1557 return; 3124 return;
1558 3125
1559 idles [((W)w)->active - 1] = idles [--idlecnt]; 3126 EV_FREQUENT_CHECK;
3127
3128 wlist_del (&signals [w->signum - 1].head, (WL)w);
1560 ev_stop (EV_A_ (W)w); 3129 ev_stop (EV_A_ (W)w);
3130
3131 if (!signals [w->signum - 1].head)
3132 {
3133#if EV_MULTIPLICITY
3134 signals [w->signum - 1].loop = 0; /* unattach from signal */
3135#endif
3136#if EV_USE_SIGNALFD
3137 if (sigfd >= 0)
3138 {
3139 sigset_t ss;
3140
3141 sigemptyset (&ss);
3142 sigaddset (&ss, w->signum);
3143 sigdelset (&sigfd_set, w->signum);
3144
3145 signalfd (sigfd, &sigfd_set, 0);
3146 sigprocmask (SIG_UNBLOCK, &ss, 0);
3147 }
3148 else
3149#endif
3150 signal (w->signum, SIG_DFL);
3151 }
3152
3153 EV_FREQUENT_CHECK;
1561} 3154}
3155
3156#endif
3157
3158#if EV_CHILD_ENABLE
1562 3159
1563void 3160void
1564ev_prepare_start (EV_P_ struct ev_prepare *w) 3161ev_child_start (EV_P_ ev_child *w)
1565{ 3162{
3163#if EV_MULTIPLICITY
3164 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3165#endif
1566 if (expect_false (ev_is_active (w))) 3166 if (expect_false (ev_is_active (w)))
1567 return; 3167 return;
1568 3168
3169 EV_FREQUENT_CHECK;
3170
1569 ev_start (EV_A_ (W)w, ++preparecnt); 3171 ev_start (EV_A_ (W)w, 1);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3172 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1571 prepares [preparecnt - 1] = w; 3173
3174 EV_FREQUENT_CHECK;
1572} 3175}
1573 3176
1574void 3177void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w) 3178ev_child_stop (EV_P_ ev_child *w)
1576{ 3179{
1577 ev_clear_pending (EV_A_ (W)w); 3180 clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 3181 if (expect_false (!ev_is_active (w)))
1579 return; 3182 return;
1580 3183
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3184 EV_FREQUENT_CHECK;
3185
3186 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
1583} 3190}
3191
3192#endif
3193
3194#if EV_STAT_ENABLE
3195
3196# ifdef _WIN32
3197# undef lstat
3198# define lstat(a,b) _stati64 (a,b)
3199# endif
3200
3201#define DEF_STAT_INTERVAL 5.0074891
3202#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3203#define MIN_STAT_INTERVAL 0.1074891
3204
3205static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3206
3207#if EV_USE_INOTIFY
3208
3209/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3210# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3211
3212static void noinline
3213infy_add (EV_P_ ev_stat *w)
3214{
3215 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3216
3217 if (w->wd >= 0)
3218 {
3219 struct statfs sfs;
3220
3221 /* now local changes will be tracked by inotify, but remote changes won't */
3222 /* unless the filesystem is known to be local, we therefore still poll */
3223 /* also do poll on <2.6.25, but with normal frequency */
3224
3225 if (!fs_2625)
3226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3227 else if (!statfs (w->path, &sfs)
3228 && (sfs.f_type == 0x1373 /* devfs */
3229 || sfs.f_type == 0xEF53 /* ext2/3 */
3230 || sfs.f_type == 0x3153464a /* jfs */
3231 || sfs.f_type == 0x52654973 /* reiser3 */
3232 || sfs.f_type == 0x01021994 /* tempfs */
3233 || sfs.f_type == 0x58465342 /* xfs */))
3234 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3235 else
3236 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3237 }
3238 else
3239 {
3240 /* can't use inotify, continue to stat */
3241 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3242
3243 /* if path is not there, monitor some parent directory for speedup hints */
3244 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3245 /* but an efficiency issue only */
3246 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3247 {
3248 char path [4096];
3249 strcpy (path, w->path);
3250
3251 do
3252 {
3253 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3254 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3255
3256 char *pend = strrchr (path, '/');
3257
3258 if (!pend || pend == path)
3259 break;
3260
3261 *pend = 0;
3262 w->wd = inotify_add_watch (fs_fd, path, mask);
3263 }
3264 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3265 }
3266 }
3267
3268 if (w->wd >= 0)
3269 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3270
3271 /* now re-arm timer, if required */
3272 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3273 ev_timer_again (EV_A_ &w->timer);
3274 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3275}
3276
3277static void noinline
3278infy_del (EV_P_ ev_stat *w)
3279{
3280 int slot;
3281 int wd = w->wd;
3282
3283 if (wd < 0)
3284 return;
3285
3286 w->wd = -2;
3287 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3288 wlist_del (&fs_hash [slot].head, (WL)w);
3289
3290 /* remove this watcher, if others are watching it, they will rearm */
3291 inotify_rm_watch (fs_fd, wd);
3292}
3293
3294static void noinline
3295infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3296{
3297 if (slot < 0)
3298 /* overflow, need to check for all hash slots */
3299 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3300 infy_wd (EV_A_ slot, wd, ev);
3301 else
3302 {
3303 WL w_;
3304
3305 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3306 {
3307 ev_stat *w = (ev_stat *)w_;
3308 w_ = w_->next; /* lets us remove this watcher and all before it */
3309
3310 if (w->wd == wd || wd == -1)
3311 {
3312 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3313 {
3314 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3315 w->wd = -1;
3316 infy_add (EV_A_ w); /* re-add, no matter what */
3317 }
3318
3319 stat_timer_cb (EV_A_ &w->timer, 0);
3320 }
3321 }
3322 }
3323}
3324
3325static void
3326infy_cb (EV_P_ ev_io *w, int revents)
3327{
3328 char buf [EV_INOTIFY_BUFSIZE];
3329 int ofs;
3330 int len = read (fs_fd, buf, sizeof (buf));
3331
3332 for (ofs = 0; ofs < len; )
3333 {
3334 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3335 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3336 ofs += sizeof (struct inotify_event) + ev->len;
3337 }
3338}
3339
3340inline_size void ecb_cold
3341ev_check_2625 (EV_P)
3342{
3343 /* kernels < 2.6.25 are borked
3344 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3345 */
3346 if (ev_linux_version () < 0x020619)
3347 return;
3348
3349 fs_2625 = 1;
3350}
3351
3352inline_size int
3353infy_newfd (void)
3354{
3355#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3356 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3357 if (fd >= 0)
3358 return fd;
3359#endif
3360 return inotify_init ();
3361}
3362
3363inline_size void
3364infy_init (EV_P)
3365{
3366 if (fs_fd != -2)
3367 return;
3368
3369 fs_fd = -1;
3370
3371 ev_check_2625 (EV_A);
3372
3373 fs_fd = infy_newfd ();
3374
3375 if (fs_fd >= 0)
3376 {
3377 fd_intern (fs_fd);
3378 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3379 ev_set_priority (&fs_w, EV_MAXPRI);
3380 ev_io_start (EV_A_ &fs_w);
3381 ev_unref (EV_A);
3382 }
3383}
3384
3385inline_size void
3386infy_fork (EV_P)
3387{
3388 int slot;
3389
3390 if (fs_fd < 0)
3391 return;
3392
3393 ev_ref (EV_A);
3394 ev_io_stop (EV_A_ &fs_w);
3395 close (fs_fd);
3396 fs_fd = infy_newfd ();
3397
3398 if (fs_fd >= 0)
3399 {
3400 fd_intern (fs_fd);
3401 ev_io_set (&fs_w, fs_fd, EV_READ);
3402 ev_io_start (EV_A_ &fs_w);
3403 ev_unref (EV_A);
3404 }
3405
3406 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3407 {
3408 WL w_ = fs_hash [slot].head;
3409 fs_hash [slot].head = 0;
3410
3411 while (w_)
3412 {
3413 ev_stat *w = (ev_stat *)w_;
3414 w_ = w_->next; /* lets us add this watcher */
3415
3416 w->wd = -1;
3417
3418 if (fs_fd >= 0)
3419 infy_add (EV_A_ w); /* re-add, no matter what */
3420 else
3421 {
3422 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3423 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3424 ev_timer_again (EV_A_ &w->timer);
3425 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3426 }
3427 }
3428 }
3429}
3430
3431#endif
3432
3433#ifdef _WIN32
3434# define EV_LSTAT(p,b) _stati64 (p, b)
3435#else
3436# define EV_LSTAT(p,b) lstat (p, b)
3437#endif
1584 3438
1585void 3439void
1586ev_check_start (EV_P_ struct ev_check *w) 3440ev_stat_stat (EV_P_ ev_stat *w)
3441{
3442 if (lstat (w->path, &w->attr) < 0)
3443 w->attr.st_nlink = 0;
3444 else if (!w->attr.st_nlink)
3445 w->attr.st_nlink = 1;
3446}
3447
3448static void noinline
3449stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3450{
3451 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3452
3453 ev_statdata prev = w->attr;
3454 ev_stat_stat (EV_A_ w);
3455
3456 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3457 if (
3458 prev.st_dev != w->attr.st_dev
3459 || prev.st_ino != w->attr.st_ino
3460 || prev.st_mode != w->attr.st_mode
3461 || prev.st_nlink != w->attr.st_nlink
3462 || prev.st_uid != w->attr.st_uid
3463 || prev.st_gid != w->attr.st_gid
3464 || prev.st_rdev != w->attr.st_rdev
3465 || prev.st_size != w->attr.st_size
3466 || prev.st_atime != w->attr.st_atime
3467 || prev.st_mtime != w->attr.st_mtime
3468 || prev.st_ctime != w->attr.st_ctime
3469 ) {
3470 /* we only update w->prev on actual differences */
3471 /* in case we test more often than invoke the callback, */
3472 /* to ensure that prev is always different to attr */
3473 w->prev = prev;
3474
3475 #if EV_USE_INOTIFY
3476 if (fs_fd >= 0)
3477 {
3478 infy_del (EV_A_ w);
3479 infy_add (EV_A_ w);
3480 ev_stat_stat (EV_A_ w); /* avoid race... */
3481 }
3482 #endif
3483
3484 ev_feed_event (EV_A_ w, EV_STAT);
3485 }
3486}
3487
3488void
3489ev_stat_start (EV_P_ ev_stat *w)
1587{ 3490{
1588 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
1589 return; 3492 return;
1590 3493
3494 ev_stat_stat (EV_A_ w);
3495
3496 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3497 w->interval = MIN_STAT_INTERVAL;
3498
3499 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3500 ev_set_priority (&w->timer, ev_priority (w));
3501
3502#if EV_USE_INOTIFY
3503 infy_init (EV_A);
3504
3505 if (fs_fd >= 0)
3506 infy_add (EV_A_ w);
3507 else
3508#endif
3509 {
3510 ev_timer_again (EV_A_ &w->timer);
3511 ev_unref (EV_A);
3512 }
3513
1591 ev_start (EV_A_ (W)w, ++checkcnt); 3514 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3515
1593 checks [checkcnt - 1] = w; 3516 EV_FREQUENT_CHECK;
1594} 3517}
1595 3518
1596void 3519void
1597ev_check_stop (EV_P_ struct ev_check *w) 3520ev_stat_stop (EV_P_ ev_stat *w)
1598{ 3521{
1599 ev_clear_pending (EV_A_ (W)w); 3522 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 3523 if (expect_false (!ev_is_active (w)))
1601 return; 3524 return;
1602 3525
1603 checks [((W)w)->active - 1] = checks [--checkcnt]; 3526 EV_FREQUENT_CHECK;
3527
3528#if EV_USE_INOTIFY
3529 infy_del (EV_A_ w);
3530#endif
3531
3532 if (ev_is_active (&w->timer))
3533 {
3534 ev_ref (EV_A);
3535 ev_timer_stop (EV_A_ &w->timer);
3536 }
3537
1604 ev_stop (EV_A_ (W)w); 3538 ev_stop (EV_A_ (W)w);
1605}
1606 3539
1607#ifndef SA_RESTART 3540 EV_FREQUENT_CHECK;
1608# define SA_RESTART 0 3541}
1609#endif 3542#endif
1610 3543
3544#if EV_IDLE_ENABLE
1611void 3545void
1612ev_signal_start (EV_P_ struct ev_signal *w) 3546ev_idle_start (EV_P_ ev_idle *w)
1613{ 3547{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w))) 3548 if (expect_false (ev_is_active (w)))
1618 return; 3549 return;
1619 3550
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3551 pri_adjust (EV_A_ (W)w);
1621 3552
3553 EV_FREQUENT_CHECK;
3554
3555 {
3556 int active = ++idlecnt [ABSPRI (w)];
3557
3558 ++idleall;
1622 ev_start (EV_A_ (W)w, 1); 3559 ev_start (EV_A_ (W)w, active);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1625 3560
1626 if (!((WL)w)->next) 3561 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1627 { 3562 idles [ABSPRI (w)][active - 1] = w;
1628#if _WIN32
1629 signal (w->signum, sighandler);
1630#else
1631 struct sigaction sa;
1632 sa.sa_handler = sighandler;
1633 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0);
1636#endif
1637 } 3563 }
3564
3565 EV_FREQUENT_CHECK;
1638} 3566}
1639 3567
1640void 3568void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 3569ev_idle_stop (EV_P_ ev_idle *w)
1642{ 3570{
1643 ev_clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
1645 return; 3573 return;
1646 3574
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3575 EV_FREQUENT_CHECK;
3576
3577 {
3578 int active = ev_active (w);
3579
3580 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3581 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3582
1648 ev_stop (EV_A_ (W)w); 3583 ev_stop (EV_A_ (W)w);
3584 --idleall;
3585 }
1649 3586
1650 if (!signals [w->signum - 1].head) 3587 EV_FREQUENT_CHECK;
1651 signal (w->signum, SIG_DFL);
1652} 3588}
3589#endif
1653 3590
3591#if EV_PREPARE_ENABLE
1654void 3592void
1655ev_child_start (EV_P_ struct ev_child *w) 3593ev_prepare_start (EV_P_ ev_prepare *w)
1656{ 3594{
1657#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif
1660 if (expect_false (ev_is_active (w))) 3595 if (expect_false (ev_is_active (w)))
1661 return; 3596 return;
1662 3597
3598 EV_FREQUENT_CHECK;
3599
1663 ev_start (EV_A_ (W)w, 1); 3600 ev_start (EV_A_ (W)w, ++preparecnt);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3601 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3602 prepares [preparecnt - 1] = w;
3603
3604 EV_FREQUENT_CHECK;
1665} 3605}
1666 3606
1667void 3607void
1668ev_child_stop (EV_P_ struct ev_child *w) 3608ev_prepare_stop (EV_P_ ev_prepare *w)
1669{ 3609{
1670 ev_clear_pending (EV_A_ (W)w); 3610 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 3611 if (expect_false (!ev_is_active (w)))
1672 return; 3612 return;
1673 3613
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3614 EV_FREQUENT_CHECK;
3615
3616 {
3617 int active = ev_active (w);
3618
3619 prepares [active - 1] = prepares [--preparecnt];
3620 ev_active (prepares [active - 1]) = active;
3621 }
3622
1675 ev_stop (EV_A_ (W)w); 3623 ev_stop (EV_A_ (W)w);
1676}
1677 3624
1678#if EV_MULTIPLICITY 3625 EV_FREQUENT_CHECK;
1679static void
1680embed_cb (EV_P_ struct ev_io *io, int revents)
1681{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1683
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 3626}
3627#endif
1687 3628
3629#if EV_CHECK_ENABLE
1688void 3630void
1689ev_embed_start (EV_P_ struct ev_embed *w) 3631ev_check_start (EV_P_ ev_check *w)
1690{ 3632{
1691 if (expect_false (ev_is_active (w))) 3633 if (expect_false (ev_is_active (w)))
1692 return; 3634 return;
1693 3635
1694 { 3636 EV_FREQUENT_CHECK;
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 3637
1700 ev_io_start (EV_A_ &w->io);
1701 ev_start (EV_A_ (W)w, 1); 3638 ev_start (EV_A_ (W)w, ++checkcnt);
3639 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3640 checks [checkcnt - 1] = w;
3641
3642 EV_FREQUENT_CHECK;
1702} 3643}
1703 3644
1704void 3645void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 3646ev_check_stop (EV_P_ ev_check *w)
1706{ 3647{
1707 ev_clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 3649 if (expect_false (!ev_is_active (w)))
1709 return; 3650 return;
1710 3651
1711 ev_io_stop (EV_A_ &w->io); 3652 EV_FREQUENT_CHECK;
3653
3654 {
3655 int active = ev_active (w);
3656
3657 checks [active - 1] = checks [--checkcnt];
3658 ev_active (checks [active - 1]) = active;
3659 }
3660
1712 ev_stop (EV_A_ (W)w); 3661 ev_stop (EV_A_ (W)w);
3662
3663 EV_FREQUENT_CHECK;
3664}
3665#endif
3666
3667#if EV_EMBED_ENABLE
3668void noinline
3669ev_embed_sweep (EV_P_ ev_embed *w)
3670{
3671 ev_run (w->other, EVRUN_NOWAIT);
3672}
3673
3674static void
3675embed_io_cb (EV_P_ ev_io *io, int revents)
3676{
3677 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3678
3679 if (ev_cb (w))
3680 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3681 else
3682 ev_run (w->other, EVRUN_NOWAIT);
3683}
3684
3685static void
3686embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3687{
3688 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3689
3690 {
3691 EV_P = w->other;
3692
3693 while (fdchangecnt)
3694 {
3695 fd_reify (EV_A);
3696 ev_run (EV_A_ EVRUN_NOWAIT);
3697 }
3698 }
3699}
3700
3701static void
3702embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3703{
3704 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3705
3706 ev_embed_stop (EV_A_ w);
3707
3708 {
3709 EV_P = w->other;
3710
3711 ev_loop_fork (EV_A);
3712 ev_run (EV_A_ EVRUN_NOWAIT);
3713 }
3714
3715 ev_embed_start (EV_A_ w);
3716}
3717
3718#if 0
3719static void
3720embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3721{
3722 ev_idle_stop (EV_A_ idle);
3723}
3724#endif
3725
3726void
3727ev_embed_start (EV_P_ ev_embed *w)
3728{
3729 if (expect_false (ev_is_active (w)))
3730 return;
3731
3732 {
3733 EV_P = w->other;
3734 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3735 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3736 }
3737
3738 EV_FREQUENT_CHECK;
3739
3740 ev_set_priority (&w->io, ev_priority (w));
3741 ev_io_start (EV_A_ &w->io);
3742
3743 ev_prepare_init (&w->prepare, embed_prepare_cb);
3744 ev_set_priority (&w->prepare, EV_MINPRI);
3745 ev_prepare_start (EV_A_ &w->prepare);
3746
3747 ev_fork_init (&w->fork, embed_fork_cb);
3748 ev_fork_start (EV_A_ &w->fork);
3749
3750 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3751
3752 ev_start (EV_A_ (W)w, 1);
3753
3754 EV_FREQUENT_CHECK;
3755}
3756
3757void
3758ev_embed_stop (EV_P_ ev_embed *w)
3759{
3760 clear_pending (EV_A_ (W)w);
3761 if (expect_false (!ev_is_active (w)))
3762 return;
3763
3764 EV_FREQUENT_CHECK;
3765
3766 ev_io_stop (EV_A_ &w->io);
3767 ev_prepare_stop (EV_A_ &w->prepare);
3768 ev_fork_stop (EV_A_ &w->fork);
3769
3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
3773}
3774#endif
3775
3776#if EV_FORK_ENABLE
3777void
3778ev_fork_start (EV_P_ ev_fork *w)
3779{
3780 if (expect_false (ev_is_active (w)))
3781 return;
3782
3783 EV_FREQUENT_CHECK;
3784
3785 ev_start (EV_A_ (W)w, ++forkcnt);
3786 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3787 forks [forkcnt - 1] = w;
3788
3789 EV_FREQUENT_CHECK;
3790}
3791
3792void
3793ev_fork_stop (EV_P_ ev_fork *w)
3794{
3795 clear_pending (EV_A_ (W)w);
3796 if (expect_false (!ev_is_active (w)))
3797 return;
3798
3799 EV_FREQUENT_CHECK;
3800
3801 {
3802 int active = ev_active (w);
3803
3804 forks [active - 1] = forks [--forkcnt];
3805 ev_active (forks [active - 1]) = active;
3806 }
3807
3808 ev_stop (EV_A_ (W)w);
3809
3810 EV_FREQUENT_CHECK;
3811}
3812#endif
3813
3814#if EV_CLEANUP_ENABLE
3815void
3816ev_cleanup_start (EV_P_ ev_cleanup *w)
3817{
3818 if (expect_false (ev_is_active (w)))
3819 return;
3820
3821 EV_FREQUENT_CHECK;
3822
3823 ev_start (EV_A_ (W)w, ++cleanupcnt);
3824 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3825 cleanups [cleanupcnt - 1] = w;
3826
3827 /* cleanup watchers should never keep a refcount on the loop */
3828 ev_unref (EV_A);
3829 EV_FREQUENT_CHECK;
3830}
3831
3832void
3833ev_cleanup_stop (EV_P_ ev_cleanup *w)
3834{
3835 clear_pending (EV_A_ (W)w);
3836 if (expect_false (!ev_is_active (w)))
3837 return;
3838
3839 EV_FREQUENT_CHECK;
3840 ev_ref (EV_A);
3841
3842 {
3843 int active = ev_active (w);
3844
3845 cleanups [active - 1] = cleanups [--cleanupcnt];
3846 ev_active (cleanups [active - 1]) = active;
3847 }
3848
3849 ev_stop (EV_A_ (W)w);
3850
3851 EV_FREQUENT_CHECK;
3852}
3853#endif
3854
3855#if EV_ASYNC_ENABLE
3856void
3857ev_async_start (EV_P_ ev_async *w)
3858{
3859 if (expect_false (ev_is_active (w)))
3860 return;
3861
3862 w->sent = 0;
3863
3864 evpipe_init (EV_A);
3865
3866 EV_FREQUENT_CHECK;
3867
3868 ev_start (EV_A_ (W)w, ++asynccnt);
3869 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3870 asyncs [asynccnt - 1] = w;
3871
3872 EV_FREQUENT_CHECK;
3873}
3874
3875void
3876ev_async_stop (EV_P_ ev_async *w)
3877{
3878 clear_pending (EV_A_ (W)w);
3879 if (expect_false (!ev_is_active (w)))
3880 return;
3881
3882 EV_FREQUENT_CHECK;
3883
3884 {
3885 int active = ev_active (w);
3886
3887 asyncs [active - 1] = asyncs [--asynccnt];
3888 ev_active (asyncs [active - 1]) = active;
3889 }
3890
3891 ev_stop (EV_A_ (W)w);
3892
3893 EV_FREQUENT_CHECK;
3894}
3895
3896void
3897ev_async_send (EV_P_ ev_async *w)
3898{
3899 w->sent = 1;
3900 evpipe_write (EV_A_ &async_pending);
1713} 3901}
1714#endif 3902#endif
1715 3903
1716/*****************************************************************************/ 3904/*****************************************************************************/
1717 3905
1718struct ev_once 3906struct ev_once
1719{ 3907{
1720 struct ev_io io; 3908 ev_io io;
1721 struct ev_timer to; 3909 ev_timer to;
1722 void (*cb)(int revents, void *arg); 3910 void (*cb)(int revents, void *arg);
1723 void *arg; 3911 void *arg;
1724}; 3912};
1725 3913
1726static void 3914static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 3915once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 3916{
1729 void (*cb)(int revents, void *arg) = once->cb; 3917 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 3918 void *arg = once->arg;
1731 3919
1732 ev_io_stop (EV_A_ &once->io); 3920 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 3921 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 3922 ev_free (once);
1735 3923
1736 cb (revents, arg); 3924 cb (revents, arg);
1737} 3925}
1738 3926
1739static void 3927static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 3928once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 3929{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3930 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3931
3932 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 3933}
1744 3934
1745static void 3935static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 3936once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 3937{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3938 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3939
3940 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 3941}
1750 3942
1751void 3943void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3944ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1753{ 3945{
1754 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3946 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1755 3947
1756 if (expect_false (!once)) 3948 if (expect_false (!once))
1757 { 3949 {
1758 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3950 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1759 return; 3951 return;
1760 } 3952 }
1761 3953
1762 once->cb = cb; 3954 once->cb = cb;
1763 once->arg = arg; 3955 once->arg = arg;
1775 ev_timer_set (&once->to, timeout, 0.); 3967 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 3968 ev_timer_start (EV_A_ &once->to);
1777 } 3969 }
1778} 3970}
1779 3971
1780#ifdef __cplusplus 3972/*****************************************************************************/
1781} 3973
3974#if EV_WALK_ENABLE
3975void ecb_cold
3976ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3977{
3978 int i, j;
3979 ev_watcher_list *wl, *wn;
3980
3981 if (types & (EV_IO | EV_EMBED))
3982 for (i = 0; i < anfdmax; ++i)
3983 for (wl = anfds [i].head; wl; )
3984 {
3985 wn = wl->next;
3986
3987#if EV_EMBED_ENABLE
3988 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3989 {
3990 if (types & EV_EMBED)
3991 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3992 }
3993 else
3994#endif
3995#if EV_USE_INOTIFY
3996 if (ev_cb ((ev_io *)wl) == infy_cb)
3997 ;
3998 else
3999#endif
4000 if ((ev_io *)wl != &pipe_w)
4001 if (types & EV_IO)
4002 cb (EV_A_ EV_IO, wl);
4003
4004 wl = wn;
4005 }
4006
4007 if (types & (EV_TIMER | EV_STAT))
4008 for (i = timercnt + HEAP0; i-- > HEAP0; )
4009#if EV_STAT_ENABLE
4010 /*TODO: timer is not always active*/
4011 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4012 {
4013 if (types & EV_STAT)
4014 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4015 }
4016 else
4017#endif
4018 if (types & EV_TIMER)
4019 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4020
4021#if EV_PERIODIC_ENABLE
4022 if (types & EV_PERIODIC)
4023 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4024 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4025#endif
4026
4027#if EV_IDLE_ENABLE
4028 if (types & EV_IDLE)
4029 for (j = NUMPRI; i--; )
4030 for (i = idlecnt [j]; i--; )
4031 cb (EV_A_ EV_IDLE, idles [j][i]);
4032#endif
4033
4034#if EV_FORK_ENABLE
4035 if (types & EV_FORK)
4036 for (i = forkcnt; i--; )
4037 if (ev_cb (forks [i]) != embed_fork_cb)
4038 cb (EV_A_ EV_FORK, forks [i]);
4039#endif
4040
4041#if EV_ASYNC_ENABLE
4042 if (types & EV_ASYNC)
4043 for (i = asynccnt; i--; )
4044 cb (EV_A_ EV_ASYNC, asyncs [i]);
4045#endif
4046
4047#if EV_PREPARE_ENABLE
4048 if (types & EV_PREPARE)
4049 for (i = preparecnt; i--; )
4050# if EV_EMBED_ENABLE
4051 if (ev_cb (prepares [i]) != embed_prepare_cb)
1782#endif 4052# endif
4053 cb (EV_A_ EV_PREPARE, prepares [i]);
4054#endif
1783 4055
4056#if EV_CHECK_ENABLE
4057 if (types & EV_CHECK)
4058 for (i = checkcnt; i--; )
4059 cb (EV_A_ EV_CHECK, checks [i]);
4060#endif
4061
4062#if EV_SIGNAL_ENABLE
4063 if (types & EV_SIGNAL)
4064 for (i = 0; i < EV_NSIG - 1; ++i)
4065 for (wl = signals [i].head; wl; )
4066 {
4067 wn = wl->next;
4068 cb (EV_A_ EV_SIGNAL, wl);
4069 wl = wn;
4070 }
4071#endif
4072
4073#if EV_CHILD_ENABLE
4074 if (types & EV_CHILD)
4075 for (i = (EV_PID_HASHSIZE); i--; )
4076 for (wl = childs [i]; wl; )
4077 {
4078 wn = wl->next;
4079 cb (EV_A_ EV_CHILD, wl);
4080 wl = wn;
4081 }
4082#endif
4083/* EV_STAT 0x00001000 /* stat data changed */
4084/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4085}
4086#endif
4087
4088#if EV_MULTIPLICITY
4089 #include "ev_wrap.h"
4090#endif
4091
4092EV_CPP(})
4093

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines