ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.412 by root, Wed Feb 22 01:53:00 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
99#endif 145# endif
100 146
101#include <math.h> 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
102#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
103#include <fcntl.h> 169#include <fcntl.h>
104#include <stddef.h> 170#include <stddef.h>
105 171
106#include <stdio.h> 172#include <stdio.h>
107 173
108#include <assert.h> 174#include <assert.h>
109#include <errno.h> 175#include <errno.h>
110#include <sys/types.h> 176#include <sys/types.h>
111#include <time.h> 177#include <time.h>
178#include <limits.h>
112 179
113#include <signal.h> 180#include <signal.h>
114 181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
115#ifndef _WIN32 199#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 200# include <sys/time.h>
118# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
119#else 203#else
204# include <io.h>
120# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 206# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
124# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
125#endif 260# endif
126 261#endif
127/**/
128 262
129#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
130# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
131#endif 269#endif
132 270
133#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
135#endif 281#endif
136 282
137#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 285#endif
140 286
141#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
142# ifdef _WIN32 288# ifdef _WIN32
143# define EV_USE_POLL 0 289# define EV_USE_POLL 0
144# else 290# else
145# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 292# endif
147#endif 293#endif
148 294
149#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
150# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
151#endif 301#endif
152 302
153#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
155#endif 305#endif
156 306
157#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 308# define EV_USE_PORT 0
159#endif 309#endif
160 310
161/**/ 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
318
319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
162 382
163#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
166#endif 386#endif
168#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
171#endif 391#endif
172 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
173#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 416# include <winsock.h>
175#endif 417#endif
176 418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
177/**/ 457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
178 471
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
184#ifdef EV_H 509#ifndef ECB_H
185# include EV_H 510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
186#else 526#else
187# include "ev.h" 527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
188#endif 542 #endif
543#endif
189 544
190#if __GNUC__ >= 3 545/*****************************************************************************/
191# define expect(expr,value) __builtin_expect ((expr),(value)) 546
192# define inline static inline 547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #endif
607#endif
608
609#ifndef ECB_MEMORY_FENCE
610 #if !ECB_AVOID_PTHREADS
611 /*
612 * if you get undefined symbol references to pthread_mutex_lock,
613 * or failure to find pthread.h, then you should implement
614 * the ECB_MEMORY_FENCE operations for your cpu/compiler
615 * OR provide pthread.h and link against the posix thread library
616 * of your system.
617 */
618 #include <pthread.h>
619 #define ECB_NEEDS_PTHREADS 1
620 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621
622 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624 #endif
625#endif
626
627#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629#endif
630
631#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633#endif
634
635/*****************************************************************************/
636
637#define ECB_C99 (__STDC_VERSION__ >= 199901L)
638
639#if __cplusplus
640 #define ecb_inline static inline
641#elif ECB_GCC_VERSION(2,5)
642 #define ecb_inline static __inline__
643#elif ECB_C99
644 #define ecb_inline static inline
193#else 645#else
646 #define ecb_inline static
647#endif
648
649#if ECB_GCC_VERSION(3,3)
650 #define ecb_restrict __restrict__
651#elif ECB_C99
652 #define ecb_restrict restrict
653#else
654 #define ecb_restrict
655#endif
656
657typedef int ecb_bool;
658
659#define ECB_CONCAT_(a, b) a ## b
660#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661#define ECB_STRINGIFY_(a) # a
662#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663
664#define ecb_function_ ecb_inline
665
666#if ECB_GCC_VERSION(3,1)
667 #define ecb_attribute(attrlist) __attribute__(attrlist)
668 #define ecb_is_constant(expr) __builtin_constant_p (expr)
669 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671#else
672 #define ecb_attribute(attrlist)
673 #define ecb_is_constant(expr) 0
194# define expect(expr,value) (expr) 674 #define ecb_expect(expr,value) (expr)
195# define inline static 675 #define ecb_prefetch(addr,rw,locality)
196#endif 676#endif
197 677
678/* no emulation for ecb_decltype */
679#if ECB_GCC_VERSION(4,5)
680 #define ecb_decltype(x) __decltype(x)
681#elif ECB_GCC_VERSION(3,0)
682 #define ecb_decltype(x) __typeof(x)
683#endif
684
685#define ecb_noinline ecb_attribute ((__noinline__))
686#define ecb_noreturn ecb_attribute ((__noreturn__))
687#define ecb_unused ecb_attribute ((__unused__))
688#define ecb_const ecb_attribute ((__const__))
689#define ecb_pure ecb_attribute ((__pure__))
690
691#if ECB_GCC_VERSION(4,3)
692 #define ecb_artificial ecb_attribute ((__artificial__))
693 #define ecb_hot ecb_attribute ((__hot__))
694 #define ecb_cold ecb_attribute ((__cold__))
695#else
696 #define ecb_artificial
697 #define ecb_hot
698 #define ecb_cold
699#endif
700
701/* put around conditional expressions if you are very sure that the */
702/* expression is mostly true or mostly false. note that these return */
703/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 704#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 705#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706/* for compatibility to the rest of the world */
707#define ecb_likely(expr) ecb_expect_true (expr)
708#define ecb_unlikely(expr) ecb_expect_false (expr)
200 709
710/* count trailing zero bits and count # of one bits */
711#if ECB_GCC_VERSION(3,4)
712 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715 #define ecb_ctz32(x) __builtin_ctz (x)
716 #define ecb_ctz64(x) __builtin_ctzll (x)
717 #define ecb_popcount32(x) __builtin_popcount (x)
718 /* no popcountll */
719#else
720 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721 ecb_function_ int
722 ecb_ctz32 (uint32_t x)
723 {
724 int r = 0;
725
726 x &= ~x + 1; /* this isolates the lowest bit */
727
728#if ECB_branchless_on_i386
729 r += !!(x & 0xaaaaaaaa) << 0;
730 r += !!(x & 0xcccccccc) << 1;
731 r += !!(x & 0xf0f0f0f0) << 2;
732 r += !!(x & 0xff00ff00) << 3;
733 r += !!(x & 0xffff0000) << 4;
734#else
735 if (x & 0xaaaaaaaa) r += 1;
736 if (x & 0xcccccccc) r += 2;
737 if (x & 0xf0f0f0f0) r += 4;
738 if (x & 0xff00ff00) r += 8;
739 if (x & 0xffff0000) r += 16;
740#endif
741
742 return r;
743 }
744
745 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746 ecb_function_ int
747 ecb_ctz64 (uint64_t x)
748 {
749 int shift = x & 0xffffffffU ? 0 : 32;
750 return ecb_ctz32 (x >> shift) + shift;
751 }
752
753 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754 ecb_function_ int
755 ecb_popcount32 (uint32_t x)
756 {
757 x -= (x >> 1) & 0x55555555;
758 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759 x = ((x >> 4) + x) & 0x0f0f0f0f;
760 x *= 0x01010101;
761
762 return x >> 24;
763 }
764
765 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766 ecb_function_ int ecb_ld32 (uint32_t x)
767 {
768 int r = 0;
769
770 if (x >> 16) { x >>= 16; r += 16; }
771 if (x >> 8) { x >>= 8; r += 8; }
772 if (x >> 4) { x >>= 4; r += 4; }
773 if (x >> 2) { x >>= 2; r += 2; }
774 if (x >> 1) { r += 1; }
775
776 return r;
777 }
778
779 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780 ecb_function_ int ecb_ld64 (uint64_t x)
781 {
782 int r = 0;
783
784 if (x >> 32) { x >>= 32; r += 32; }
785
786 return r + ecb_ld32 (x);
787 }
788#endif
789
790ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792{
793 return ( (x * 0x0802U & 0x22110U)
794 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795}
796
797ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799{
800 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803 x = ( x >> 8 ) | ( x << 8);
804
805 return x;
806}
807
808ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810{
811 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815 x = ( x >> 16 ) | ( x << 16);
816
817 return x;
818}
819
820/* popcount64 is only available on 64 bit cpus as gcc builtin */
821/* so for this version we are lazy */
822ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823ecb_function_ int
824ecb_popcount64 (uint64_t x)
825{
826 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827}
828
829ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837
838ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846
847#if ECB_GCC_VERSION(4,3)
848 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849 #define ecb_bswap32(x) __builtin_bswap32 (x)
850 #define ecb_bswap64(x) __builtin_bswap64 (x)
851#else
852 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853 ecb_function_ uint16_t
854 ecb_bswap16 (uint16_t x)
855 {
856 return ecb_rotl16 (x, 8);
857 }
858
859 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860 ecb_function_ uint32_t
861 ecb_bswap32 (uint32_t x)
862 {
863 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864 }
865
866 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867 ecb_function_ uint64_t
868 ecb_bswap64 (uint64_t x)
869 {
870 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871 }
872#endif
873
874#if ECB_GCC_VERSION(4,5)
875 #define ecb_unreachable() __builtin_unreachable ()
876#else
877 /* this seems to work fine, but gcc always emits a warning for it :/ */
878 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879 ecb_inline void ecb_unreachable (void) { }
880#endif
881
882/* try to tell the compiler that some condition is definitely true */
883#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884
885ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886ecb_inline unsigned char
887ecb_byteorder_helper (void)
888{
889 const uint32_t u = 0x11223344;
890 return *(unsigned char *)&u;
891}
892
893ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897
898#if ECB_GCC_VERSION(3,0) || ECB_C99
899 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900#else
901 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902#endif
903
904#if __cplusplus
905 template<typename T>
906 static inline T ecb_div_rd (T val, T div)
907 {
908 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909 }
910 template<typename T>
911 static inline T ecb_div_ru (T val, T div)
912 {
913 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914 }
915#else
916 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918#endif
919
920#if ecb_cplusplus_does_not_suck
921 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922 template<typename T, int N>
923 static inline int ecb_array_length (const T (&arr)[N])
924 {
925 return N;
926 }
927#else
928 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929#endif
930
931#endif
932
933/* ECB.H END */
934
935#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936/* if your architecture doesn't need memory fences, e.g. because it is
937 * single-cpu/core, or if you use libev in a project that doesn't use libev
938 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 * libev, in which cases the memory fences become nops.
940 * alternatively, you can remove this #error and link against libpthread,
941 * which will then provide the memory fences.
942 */
943# error "memory fences not defined for your architecture, please report"
944#endif
945
946#ifndef ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE do { } while (0)
948# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950#endif
951
952#define expect_false(cond) ecb_expect_false (cond)
953#define expect_true(cond) ecb_expect_true (cond)
954#define noinline ecb_noinline
955
956#define inline_size ecb_inline
957
958#if EV_FEATURE_CODE
959# define inline_speed ecb_inline
960#else
961# define inline_speed static noinline
962#endif
963
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 964#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965
966#if EV_MINPRI == EV_MAXPRI
967# define ABSPRI(w) (((W)w), 0)
968#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 969# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970#endif
203 971
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 972#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 973#define EMPTY2(a,b) /* used to suppress some warnings */
206 974
207typedef struct ev_watcher *W; 975typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 976typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 977typedef ev_watcher_time *WT;
210 978
979#define ev_active(w) ((W)(w))->active
980#define ev_at(w) ((WT)(w))->at
981
982#if EV_USE_REALTIME
983/* sig_atomic_t is used to avoid per-thread variables or locking but still */
984/* giving it a reasonably high chance of working on typical architectures */
985static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986#endif
987
988#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 989static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990#endif
991
992#ifndef EV_FD_TO_WIN32_HANDLE
993# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994#endif
995#ifndef EV_WIN32_HANDLE_TO_FD
996# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997#endif
998#ifndef EV_WIN32_CLOSE_FD
999# define EV_WIN32_CLOSE_FD(fd) close (fd)
1000#endif
212 1001
213#ifdef _WIN32 1002#ifdef _WIN32
214# include "ev_win32.c" 1003# include "ev_win32.c"
215#endif 1004#endif
216 1005
217/*****************************************************************************/ 1006/*****************************************************************************/
218 1007
1008/* define a suitable floor function (only used by periodics atm) */
1009
1010#if EV_USE_FLOOR
1011# include <math.h>
1012# define ev_floor(v) floor (v)
1013#else
1014
1015#include <float.h>
1016
1017/* a floor() replacement function, should be independent of ev_tstamp type */
1018static ev_tstamp noinline
1019ev_floor (ev_tstamp v)
1020{
1021 /* the choice of shift factor is not terribly important */
1022#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024#else
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026#endif
1027
1028 /* argument too large for an unsigned long? */
1029 if (expect_false (v >= shift))
1030 {
1031 ev_tstamp f;
1032
1033 if (v == v - 1.)
1034 return v; /* very large number */
1035
1036 f = shift * ev_floor (v * (1. / shift));
1037 return f + ev_floor (v - f);
1038 }
1039
1040 /* special treatment for negative args? */
1041 if (expect_false (v < 0.))
1042 {
1043 ev_tstamp f = -ev_floor (-v);
1044
1045 return f - (f == v ? 0 : 1);
1046 }
1047
1048 /* fits into an unsigned long */
1049 return (unsigned long)v;
1050}
1051
1052#endif
1053
1054/*****************************************************************************/
1055
1056#ifdef __linux
1057# include <sys/utsname.h>
1058#endif
1059
1060static unsigned int noinline ecb_cold
1061ev_linux_version (void)
1062{
1063#ifdef __linux
1064 unsigned int v = 0;
1065 struct utsname buf;
1066 int i;
1067 char *p = buf.release;
1068
1069 if (uname (&buf))
1070 return 0;
1071
1072 for (i = 3+1; --i; )
1073 {
1074 unsigned int c = 0;
1075
1076 for (;;)
1077 {
1078 if (*p >= '0' && *p <= '9')
1079 c = c * 10 + *p++ - '0';
1080 else
1081 {
1082 p += *p == '.';
1083 break;
1084 }
1085 }
1086
1087 v = (v << 8) | c;
1088 }
1089
1090 return v;
1091#else
1092 return 0;
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098#if EV_AVOID_STDIO
1099static void noinline ecb_cold
1100ev_printerr (const char *msg)
1101{
1102 write (STDERR_FILENO, msg, strlen (msg));
1103}
1104#endif
1105
219static void (*syserr_cb)(const char *msg); 1106static void (*syserr_cb)(const char *msg);
220 1107
1108void ecb_cold
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1109ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 1110{
223 syserr_cb = cb; 1111 syserr_cb = cb;
224} 1112}
225 1113
226static void 1114static void noinline ecb_cold
227syserr (const char *msg) 1115ev_syserr (const char *msg)
228{ 1116{
229 if (!msg) 1117 if (!msg)
230 msg = "(libev) system error"; 1118 msg = "(libev) system error";
231 1119
232 if (syserr_cb) 1120 if (syserr_cb)
233 syserr_cb (msg); 1121 syserr_cb (msg);
234 else 1122 else
235 { 1123 {
1124#if EV_AVOID_STDIO
1125 ev_printerr (msg);
1126 ev_printerr (": ");
1127 ev_printerr (strerror (errno));
1128 ev_printerr ("\n");
1129#else
236 perror (msg); 1130 perror (msg);
1131#endif
237 abort (); 1132 abort ();
238 } 1133 }
239} 1134}
240 1135
1136static void *
1137ev_realloc_emul (void *ptr, long size)
1138{
1139#if __GLIBC__
1140 return realloc (ptr, size);
1141#else
1142 /* some systems, notably openbsd and darwin, fail to properly
1143 * implement realloc (x, 0) (as required by both ansi c-89 and
1144 * the single unix specification, so work around them here.
1145 */
1146
1147 if (size)
1148 return realloc (ptr, size);
1149
1150 free (ptr);
1151 return 0;
1152#endif
1153}
1154
241static void *(*alloc)(void *ptr, long size); 1155static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 1156
1157void ecb_cold
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1158ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 1159{
245 alloc = cb; 1160 alloc = cb;
246} 1161}
247 1162
248static void * 1163inline_speed void *
249ev_realloc (void *ptr, long size) 1164ev_realloc (void *ptr, long size)
250{ 1165{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1166 ptr = alloc (ptr, size);
252 1167
253 if (!ptr && size) 1168 if (!ptr && size)
254 { 1169 {
1170#if EV_AVOID_STDIO
1171 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1173 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174#endif
256 abort (); 1175 abort ();
257 } 1176 }
258 1177
259 return ptr; 1178 return ptr;
260} 1179}
262#define ev_malloc(size) ev_realloc (0, (size)) 1181#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 1182#define ev_free(ptr) ev_realloc ((ptr), 0)
264 1183
265/*****************************************************************************/ 1184/*****************************************************************************/
266 1185
1186/* set in reify when reification needed */
1187#define EV_ANFD_REIFY 1
1188
1189/* file descriptor info structure */
267typedef struct 1190typedef struct
268{ 1191{
269 WL head; 1192 WL head;
270 unsigned char events; 1193 unsigned char events; /* the events watched for */
1194 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 1196 unsigned char unused;
1197#if EV_USE_EPOLL
1198 unsigned int egen; /* generation counter to counter epoll bugs */
1199#endif
272#if EV_SELECT_IS_WINSOCKET 1200#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 1201 SOCKET handle;
274#endif 1202#endif
1203#if EV_USE_IOCP
1204 OVERLAPPED or, ow;
1205#endif
275} ANFD; 1206} ANFD;
276 1207
1208/* stores the pending event set for a given watcher */
277typedef struct 1209typedef struct
278{ 1210{
279 W w; 1211 W w;
280 int events; 1212 int events; /* the pending event set for the given watcher */
281} ANPENDING; 1213} ANPENDING;
1214
1215#if EV_USE_INOTIFY
1216/* hash table entry per inotify-id */
1217typedef struct
1218{
1219 WL head;
1220} ANFS;
1221#endif
1222
1223/* Heap Entry */
1224#if EV_HEAP_CACHE_AT
1225 /* a heap element */
1226 typedef struct {
1227 ev_tstamp at;
1228 WT w;
1229 } ANHE;
1230
1231 #define ANHE_w(he) (he).w /* access watcher, read-write */
1232 #define ANHE_at(he) (he).at /* access cached at, read-only */
1233 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1234#else
1235 /* a heap element */
1236 typedef WT ANHE;
1237
1238 #define ANHE_w(he) (he)
1239 #define ANHE_at(he) (he)->at
1240 #define ANHE_at_cache(he)
1241#endif
282 1242
283#if EV_MULTIPLICITY 1243#if EV_MULTIPLICITY
284 1244
285 struct ev_loop 1245 struct ev_loop
286 { 1246 {
291 #undef VAR 1251 #undef VAR
292 }; 1252 };
293 #include "ev_wrap.h" 1253 #include "ev_wrap.h"
294 1254
295 static struct ev_loop default_loop_struct; 1255 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 1256 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 1257
298#else 1258#else
299 1259
300 ev_tstamp ev_rt_now; 1260 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 1261 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 1262 #include "ev_vars.h"
303 #undef VAR 1263 #undef VAR
304 1264
305 static int ev_default_loop_ptr; 1265 static int ev_default_loop_ptr;
306 1266
307#endif 1267#endif
308 1268
1269#if EV_FEATURE_API
1270# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272# define EV_INVOKE_PENDING invoke_cb (EV_A)
1273#else
1274# define EV_RELEASE_CB (void)0
1275# define EV_ACQUIRE_CB (void)0
1276# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277#endif
1278
1279#define EVBREAK_RECURSE 0x80
1280
309/*****************************************************************************/ 1281/*****************************************************************************/
310 1282
1283#ifndef EV_HAVE_EV_TIME
311ev_tstamp 1284ev_tstamp
312ev_time (void) 1285ev_time (void)
313{ 1286{
314#if EV_USE_REALTIME 1287#if EV_USE_REALTIME
1288 if (expect_true (have_realtime))
1289 {
315 struct timespec ts; 1290 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 1291 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 1292 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 1293 }
1294#endif
1295
319 struct timeval tv; 1296 struct timeval tv;
320 gettimeofday (&tv, 0); 1297 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 1298 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 1299}
1300#endif
324 1301
325inline ev_tstamp 1302inline_size ev_tstamp
326get_clock (void) 1303get_clock (void)
327{ 1304{
328#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 1306 if (expect_true (have_monotonic))
330 { 1307 {
343{ 1320{
344 return ev_rt_now; 1321 return ev_rt_now;
345} 1322}
346#endif 1323#endif
347 1324
348#define array_roundsize(type,n) (((n) | 4) & ~3) 1325void
1326ev_sleep (ev_tstamp delay)
1327{
1328 if (delay > 0.)
1329 {
1330#if EV_USE_NANOSLEEP
1331 struct timespec ts;
1332
1333 EV_TS_SET (ts, delay);
1334 nanosleep (&ts, 0);
1335#elif defined(_WIN32)
1336 Sleep ((unsigned long)(delay * 1e3));
1337#else
1338 struct timeval tv;
1339
1340 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1341 /* something not guaranteed by newer posix versions, but guaranteed */
1342 /* by older ones */
1343 EV_TV_SET (tv, delay);
1344 select (0, 0, 0, 0, &tv);
1345#endif
1346 }
1347}
1348
1349/*****************************************************************************/
1350
1351#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1352
1353/* find a suitable new size for the given array, */
1354/* hopefully by rounding to a nice-to-malloc size */
1355inline_size int
1356array_nextsize (int elem, int cur, int cnt)
1357{
1358 int ncur = cur + 1;
1359
1360 do
1361 ncur <<= 1;
1362 while (cnt > ncur);
1363
1364 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1365 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1366 {
1367 ncur *= elem;
1368 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1369 ncur = ncur - sizeof (void *) * 4;
1370 ncur /= elem;
1371 }
1372
1373 return ncur;
1374}
1375
1376static void * noinline ecb_cold
1377array_realloc (int elem, void *base, int *cur, int cnt)
1378{
1379 *cur = array_nextsize (elem, *cur, cnt);
1380 return ev_realloc (base, elem * *cur);
1381}
1382
1383#define array_init_zero(base,count) \
1384 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 1385
350#define array_needsize(type,base,cur,cnt,init) \ 1386#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 1387 if (expect_false ((cnt) > (cur))) \
352 { \ 1388 { \
353 int newcnt = cur; \ 1389 int ecb_unused ocur_ = (cur); \
354 do \ 1390 (base) = (type *)array_realloc \
355 { \ 1391 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 1392 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 1393 }
364 1394
1395#if 0
365#define array_slim(type,stem) \ 1396#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1397 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 1398 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1399 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1400 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1401 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 1402 }
1403#endif
372 1404
373#define array_free(stem, idx) \ 1405#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1406 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 1407
376/*****************************************************************************/ 1408/*****************************************************************************/
377 1409
378static void 1410/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 1411static void noinline
1412pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 1413{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 1414}
390 1415
391void 1416void noinline
392ev_feed_event (EV_P_ void *w, int revents) 1417ev_feed_event (EV_P_ void *w, int revents)
393{ 1418{
394 W w_ = (W)w; 1419 W w_ = (W)w;
1420 int pri = ABSPRI (w_);
395 1421
396 if (expect_false (w_->pending)) 1422 if (expect_false (w_->pending))
1423 pendings [pri][w_->pending - 1].events |= revents;
1424 else
397 { 1425 {
1426 w_->pending = ++pendingcnt [pri];
1427 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1428 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1429 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 1430 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 1431}
410 1432
411static void 1433inline_speed void
1434feed_reverse (EV_P_ W w)
1435{
1436 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437 rfeeds [rfeedcnt++] = w;
1438}
1439
1440inline_size void
1441feed_reverse_done (EV_P_ int revents)
1442{
1443 do
1444 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445 while (rfeedcnt);
1446}
1447
1448inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 1449queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 1450{
414 int i; 1451 int i;
415 1452
416 for (i = 0; i < eventcnt; ++i) 1453 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 1454 ev_feed_event (EV_A_ events [i], type);
418} 1455}
419 1456
1457/*****************************************************************************/
1458
420inline void 1459inline_speed void
421fd_event (EV_P_ int fd, int revents) 1460fd_event_nocheck (EV_P_ int fd, int revents)
422{ 1461{
423 ANFD *anfd = anfds + fd; 1462 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 1463 ev_io *w;
425 1464
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1465 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 1466 {
428 int ev = w->events & revents; 1467 int ev = w->events & revents;
429 1468
430 if (ev) 1469 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 1470 ev_feed_event (EV_A_ (W)w, ev);
432 } 1471 }
433} 1472}
434 1473
1474/* do not submit kernel events for fds that have reify set */
1475/* because that means they changed while we were polling for new events */
1476inline_speed void
1477fd_event (EV_P_ int fd, int revents)
1478{
1479 ANFD *anfd = anfds + fd;
1480
1481 if (expect_true (!anfd->reify))
1482 fd_event_nocheck (EV_A_ fd, revents);
1483}
1484
435void 1485void
436ev_feed_fd_event (EV_P_ int fd, int revents) 1486ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 1487{
1488 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 1489 fd_event_nocheck (EV_A_ fd, revents);
439} 1490}
440 1491
441/*****************************************************************************/ 1492/* make sure the external fd watch events are in-sync */
442 1493/* with the kernel/libev internal state */
443inline void 1494inline_size void
444fd_reify (EV_P) 1495fd_reify (EV_P)
445{ 1496{
446 int i; 1497 int i;
447 1498
1499#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 for (i = 0; i < fdchangecnt; ++i) 1500 for (i = 0; i < fdchangecnt; ++i)
449 { 1501 {
450 int fd = fdchanges [i]; 1502 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 1503 ANFD *anfd = anfds + fd;
452 struct ev_io *w;
453 1504
454 int events = 0; 1505 if (anfd->reify & EV__IOFDSET && anfd->head)
455
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
457 events |= w->events;
458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 { 1506 {
1507 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508
1509 if (handle != anfd->handle)
1510 {
462 unsigned long argp; 1511 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 1512
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1513 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514
1515 /* handle changed, but fd didn't - we need to do it in two steps */
1516 backend_modify (EV_A_ fd, anfd->events, 0);
1517 anfd->events = 0;
1518 anfd->handle = handle;
1519 }
465 } 1520 }
1521 }
466#endif 1522#endif
467 1523
1524 for (i = 0; i < fdchangecnt; ++i)
1525 {
1526 int fd = fdchanges [i];
1527 ANFD *anfd = anfds + fd;
1528 ev_io *w;
1529
1530 unsigned char o_events = anfd->events;
1531 unsigned char o_reify = anfd->reify;
1532
468 anfd->reify = 0; 1533 anfd->reify = 0;
469 1534
1535 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1536 {
1537 anfd->events = 0;
1538
1539 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1540 anfd->events |= (unsigned char)w->events;
1541
1542 if (o_events != anfd->events)
1543 o_reify = EV__IOFDSET; /* actually |= */
1544 }
1545
1546 if (o_reify & EV__IOFDSET)
470 backend_modify (EV_A_ fd, anfd->events, events); 1547 backend_modify (EV_A_ fd, o_events, anfd->events);
471 anfd->events = events;
472 } 1548 }
473 1549
474 fdchangecnt = 0; 1550 fdchangecnt = 0;
475} 1551}
476 1552
477static void 1553/* something about the given fd changed */
1554inline_size void
478fd_change (EV_P_ int fd) 1555fd_change (EV_P_ int fd, int flags)
479{ 1556{
480 if (expect_false (anfds [fd].reify)) 1557 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 1558 anfds [fd].reify |= flags;
484 1559
1560 if (expect_true (!reify))
1561 {
485 ++fdchangecnt; 1562 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1563 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 1564 fdchanges [fdchangecnt - 1] = fd;
1565 }
488} 1566}
489 1567
490static void 1568/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569inline_speed void ecb_cold
491fd_kill (EV_P_ int fd) 1570fd_kill (EV_P_ int fd)
492{ 1571{
493 struct ev_io *w; 1572 ev_io *w;
494 1573
495 while ((w = (struct ev_io *)anfds [fd].head)) 1574 while ((w = (ev_io *)anfds [fd].head))
496 { 1575 {
497 ev_io_stop (EV_A_ w); 1576 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1577 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 1578 }
500} 1579}
501 1580
502inline int 1581/* check whether the given fd is actually valid, for error recovery */
1582inline_size int ecb_cold
503fd_valid (int fd) 1583fd_valid (int fd)
504{ 1584{
505#ifdef _WIN32 1585#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 1586 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 1587#else
508 return fcntl (fd, F_GETFD) != -1; 1588 return fcntl (fd, F_GETFD) != -1;
509#endif 1589#endif
510} 1590}
511 1591
512/* called on EBADF to verify fds */ 1592/* called on EBADF to verify fds */
513static void 1593static void noinline ecb_cold
514fd_ebadf (EV_P) 1594fd_ebadf (EV_P)
515{ 1595{
516 int fd; 1596 int fd;
517 1597
518 for (fd = 0; fd < anfdmax; ++fd) 1598 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 1599 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 1600 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 1601 fd_kill (EV_A_ fd);
522} 1602}
523 1603
524/* called on ENOMEM in select/poll to kill some fds and retry */ 1604/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 1605static void noinline ecb_cold
526fd_enomem (EV_P) 1606fd_enomem (EV_P)
527{ 1607{
528 int fd; 1608 int fd;
529 1609
530 for (fd = anfdmax; fd--; ) 1610 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 1611 if (anfds [fd].events)
532 { 1612 {
533 fd_kill (EV_A_ fd); 1613 fd_kill (EV_A_ fd);
534 return; 1614 break;
535 } 1615 }
536} 1616}
537 1617
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1618/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1619static void noinline
540fd_rearm_all (EV_P) 1620fd_rearm_all (EV_P)
541{ 1621{
542 int fd; 1622 int fd;
543 1623
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1624 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1625 if (anfds [fd].events)
547 { 1626 {
548 anfds [fd].events = 0; 1627 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1628 anfds [fd].emask = 0;
1629 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 1630 }
551} 1631}
552 1632
553/*****************************************************************************/ 1633/* used to prepare libev internal fd's */
554 1634/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 1635inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1636fd_intern (int fd)
683{ 1637{
684#ifdef _WIN32 1638#ifdef _WIN32
685 int arg = 1; 1639 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1640 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 1641#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1642 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1643 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1644#endif
691} 1645}
692 1646
1647/*****************************************************************************/
1648
1649/*
1650 * the heap functions want a real array index. array index 0 is guaranteed to not
1651 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1652 * the branching factor of the d-tree.
1653 */
1654
1655/*
1656 * at the moment we allow libev the luxury of two heaps,
1657 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1658 * which is more cache-efficient.
1659 * the difference is about 5% with 50000+ watchers.
1660 */
1661#if EV_USE_4HEAP
1662
1663#define DHEAP 4
1664#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1665#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1666#define UPHEAP_DONE(p,k) ((p) == (k))
1667
1668/* away from the root */
1669inline_speed void
1670downheap (ANHE *heap, int N, int k)
1671{
1672 ANHE he = heap [k];
1673 ANHE *E = heap + N + HEAP0;
1674
1675 for (;;)
1676 {
1677 ev_tstamp minat;
1678 ANHE *minpos;
1679 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1680
1681 /* find minimum child */
1682 if (expect_true (pos + DHEAP - 1 < E))
1683 {
1684 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1686 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1688 }
1689 else if (pos < E)
1690 {
1691 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else
1697 break;
1698
1699 if (ANHE_at (he) <= minat)
1700 break;
1701
1702 heap [k] = *minpos;
1703 ev_active (ANHE_w (*minpos)) = k;
1704
1705 k = minpos - heap;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712#else /* 4HEAP */
1713
1714#define HEAP0 1
1715#define HPARENT(k) ((k) >> 1)
1716#define UPHEAP_DONE(p,k) (!(p))
1717
1718/* away from the root */
1719inline_speed void
1720downheap (ANHE *heap, int N, int k)
1721{
1722 ANHE he = heap [k];
1723
1724 for (;;)
1725 {
1726 int c = k << 1;
1727
1728 if (c >= N + HEAP0)
1729 break;
1730
1731 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1732 ? 1 : 0;
1733
1734 if (ANHE_at (he) <= ANHE_at (heap [c]))
1735 break;
1736
1737 heap [k] = heap [c];
1738 ev_active (ANHE_w (heap [k])) = k;
1739
1740 k = c;
1741 }
1742
1743 heap [k] = he;
1744 ev_active (ANHE_w (he)) = k;
1745}
1746#endif
1747
1748/* towards the root */
1749inline_speed void
1750upheap (ANHE *heap, int k)
1751{
1752 ANHE he = heap [k];
1753
1754 for (;;)
1755 {
1756 int p = HPARENT (k);
1757
1758 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1759 break;
1760
1761 heap [k] = heap [p];
1762 ev_active (ANHE_w (heap [k])) = k;
1763 k = p;
1764 }
1765
1766 heap [k] = he;
1767 ev_active (ANHE_w (he)) = k;
1768}
1769
1770/* move an element suitably so it is in a correct place */
1771inline_size void
1772adjustheap (ANHE *heap, int N, int k)
1773{
1774 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1775 upheap (heap, k);
1776 else
1777 downheap (heap, N, k);
1778}
1779
1780/* rebuild the heap: this function is used only once and executed rarely */
1781inline_size void
1782reheap (ANHE *heap, int N)
1783{
1784 int i;
1785
1786 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1787 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1788 for (i = 0; i < N; ++i)
1789 upheap (heap, i + HEAP0);
1790}
1791
1792/*****************************************************************************/
1793
1794/* associate signal watchers to a signal signal */
1795typedef struct
1796{
1797 EV_ATOMIC_T pending;
1798#if EV_MULTIPLICITY
1799 EV_P;
1800#endif
1801 WL head;
1802} ANSIG;
1803
1804static ANSIG signals [EV_NSIG - 1];
1805
1806/*****************************************************************************/
1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809
1810static void noinline ecb_cold
1811evpipe_init (EV_P)
1812{
1813 if (!ev_is_active (&pipe_w))
1814 {
1815# if EV_USE_EVENTFD
1816 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817 if (evfd < 0 && errno == EINVAL)
1818 evfd = eventfd (0, 0);
1819
1820 if (evfd >= 0)
1821 {
1822 evpipe [0] = -1;
1823 fd_intern (evfd); /* doing it twice doesn't hurt */
1824 ev_io_set (&pipe_w, evfd, EV_READ);
1825 }
1826 else
1827# endif
1828 {
1829 while (pipe (evpipe))
1830 ev_syserr ("(libev) error creating signal/async pipe");
1831
1832 fd_intern (evpipe [0]);
1833 fd_intern (evpipe [1]);
1834 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1835 }
1836
1837 ev_io_start (EV_A_ &pipe_w);
1838 ev_unref (EV_A); /* watcher should not keep loop alive */
1839 }
1840}
1841
1842inline_speed void
1843evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1844{
1845 if (expect_true (*flag))
1846 return;
1847
1848 *flag = 1;
1849
1850 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851
1852 pipe_write_skipped = 1;
1853
1854 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855
1856 if (pipe_write_wanted)
1857 {
1858 int old_errno;
1859
1860 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861
1862 old_errno = errno; /* save errno because write will clobber it */
1863
1864#if EV_USE_EVENTFD
1865 if (evfd >= 0)
1866 {
1867 uint64_t counter = 1;
1868 write (evfd, &counter, sizeof (uint64_t));
1869 }
1870 else
1871#endif
1872 {
1873 /* win32 people keep sending patches that change this write() to send() */
1874 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875 /* so when you think this write should be a send instead, please find out */
1876 /* where your send() is from - it's definitely not the microsoft send, and */
1877 /* tell me. thank you. */
1878 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879 /* check the ev documentation on how to use this flag */
1880 write (evpipe [1], &(evpipe [1]), 1);
1881 }
1882
1883 errno = old_errno;
1884 }
1885}
1886
1887/* called whenever the libev signal pipe */
1888/* got some events (signal, async) */
693static void 1889static void
694siginit (EV_P) 1890pipecb (EV_P_ ev_io *iow, int revents)
695{ 1891{
696 fd_intern (sigpipe [0]); 1892 int i;
697 fd_intern (sigpipe [1]);
698 1893
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1894 if (revents & EV_READ)
700 ev_io_start (EV_A_ &sigev); 1895 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896#if EV_USE_EVENTFD
1897 if (evfd >= 0)
1898 {
1899 uint64_t counter;
1900 read (evfd, &counter, sizeof (uint64_t));
1901 }
1902 else
1903#endif
1904 {
1905 char dummy;
1906 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1907 read (evpipe [0], &dummy, 1);
1908 }
1909 }
1910
1911 pipe_write_skipped = 0;
1912
1913#if EV_SIGNAL_ENABLE
1914 if (sig_pending)
1915 {
1916 sig_pending = 0;
1917
1918 for (i = EV_NSIG - 1; i--; )
1919 if (expect_false (signals [i].pending))
1920 ev_feed_signal_event (EV_A_ i + 1);
1921 }
1922#endif
1923
1924#if EV_ASYNC_ENABLE
1925 if (async_pending)
1926 {
1927 async_pending = 0;
1928
1929 for (i = asynccnt; i--; )
1930 if (asyncs [i]->sent)
1931 {
1932 asyncs [i]->sent = 0;
1933 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1934 }
1935 }
1936#endif
702} 1937}
703 1938
704/*****************************************************************************/ 1939/*****************************************************************************/
705 1940
706static struct ev_child *childs [PID_HASHSIZE]; 1941void
1942ev_feed_signal (int signum)
1943{
1944#if EV_MULTIPLICITY
1945 EV_P = signals [signum - 1].loop;
707 1946
1947 if (!EV_A)
1948 return;
1949#endif
1950
1951 if (!ev_active (&pipe_w))
1952 return;
1953
1954 signals [signum - 1].pending = 1;
1955 evpipe_write (EV_A_ &sig_pending);
1956}
1957
1958static void
1959ev_sighandler (int signum)
1960{
708#ifndef _WIN32 1961#ifdef _WIN32
1962 signal (signum, ev_sighandler);
1963#endif
709 1964
1965 ev_feed_signal (signum);
1966}
1967
1968void noinline
1969ev_feed_signal_event (EV_P_ int signum)
1970{
1971 WL w;
1972
1973 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974 return;
1975
1976 --signum;
1977
1978#if EV_MULTIPLICITY
1979 /* it is permissible to try to feed a signal to the wrong loop */
1980 /* or, likely more useful, feeding a signal nobody is waiting for */
1981
1982 if (expect_false (signals [signum].loop != EV_A))
1983 return;
1984#endif
1985
1986 signals [signum].pending = 0;
1987
1988 for (w = signals [signum].head; w; w = w->next)
1989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1990}
1991
1992#if EV_USE_SIGNALFD
1993static void
1994sigfdcb (EV_P_ ev_io *iow, int revents)
1995{
1996 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1997
1998 for (;;)
1999 {
2000 ssize_t res = read (sigfd, si, sizeof (si));
2001
2002 /* not ISO-C, as res might be -1, but works with SuS */
2003 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2004 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2005
2006 if (res < (ssize_t)sizeof (si))
2007 break;
2008 }
2009}
2010#endif
2011
2012#endif
2013
2014/*****************************************************************************/
2015
2016#if EV_CHILD_ENABLE
2017static WL childs [EV_PID_HASHSIZE];
2018
710static struct ev_signal childev; 2019static ev_signal childev;
2020
2021#ifndef WIFCONTINUED
2022# define WIFCONTINUED(status) 0
2023#endif
2024
2025/* handle a single child status event */
2026inline_speed void
2027child_reap (EV_P_ int chain, int pid, int status)
2028{
2029 ev_child *w;
2030 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2031
2032 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2033 {
2034 if ((w->pid == pid || !w->pid)
2035 && (!traced || (w->flags & 1)))
2036 {
2037 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2038 w->rpid = pid;
2039 w->rstatus = status;
2040 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2041 }
2042 }
2043}
711 2044
712#ifndef WCONTINUED 2045#ifndef WCONTINUED
713# define WCONTINUED 0 2046# define WCONTINUED 0
714#endif 2047#endif
715 2048
2049/* called on sigchld etc., calls waitpid */
716static void 2050static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 2051childcb (EV_P_ ev_signal *sw, int revents)
733{ 2052{
734 int pid, status; 2053 int pid, status;
735 2054
2055 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2056 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 2057 if (!WCONTINUED
2058 || errno != EINVAL
2059 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2060 return;
2061
738 /* make sure we are called again until all childs have been reaped */ 2062 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 2063 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 2065
742 child_reap (EV_A_ sw, pid, pid, status); 2066 child_reap (EV_A_ pid, pid, status);
2067 if ((EV_PID_HASHSIZE) > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2068 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 2069}
746 2070
747#endif 2071#endif
748 2072
749/*****************************************************************************/ 2073/*****************************************************************************/
750 2074
2075#if EV_USE_IOCP
2076# include "ev_iocp.c"
2077#endif
751#if EV_USE_PORT 2078#if EV_USE_PORT
752# include "ev_port.c" 2079# include "ev_port.c"
753#endif 2080#endif
754#if EV_USE_KQUEUE 2081#if EV_USE_KQUEUE
755# include "ev_kqueue.c" 2082# include "ev_kqueue.c"
762#endif 2089#endif
763#if EV_USE_SELECT 2090#if EV_USE_SELECT
764# include "ev_select.c" 2091# include "ev_select.c"
765#endif 2092#endif
766 2093
767int 2094int ecb_cold
768ev_version_major (void) 2095ev_version_major (void)
769{ 2096{
770 return EV_VERSION_MAJOR; 2097 return EV_VERSION_MAJOR;
771} 2098}
772 2099
773int 2100int ecb_cold
774ev_version_minor (void) 2101ev_version_minor (void)
775{ 2102{
776 return EV_VERSION_MINOR; 2103 return EV_VERSION_MINOR;
777} 2104}
778 2105
779/* return true if we are running with elevated privileges and should ignore env variables */ 2106/* return true if we are running with elevated privileges and should ignore env variables */
780static int 2107int inline_size ecb_cold
781enable_secure (void) 2108enable_secure (void)
782{ 2109{
783#ifdef _WIN32 2110#ifdef _WIN32
784 return 0; 2111 return 0;
785#else 2112#else
786 return getuid () != geteuid () 2113 return getuid () != geteuid ()
787 || getgid () != getegid (); 2114 || getgid () != getegid ();
788#endif 2115#endif
789} 2116}
790 2117
791unsigned int 2118unsigned int ecb_cold
792ev_supported_backends (void) 2119ev_supported_backends (void)
793{ 2120{
794 unsigned int flags = 0; 2121 unsigned int flags = 0;
795 2122
796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2123 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2127 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
801 2128
802 return flags; 2129 return flags;
803} 2130}
804 2131
805unsigned int 2132unsigned int ecb_cold
806ev_recommended_backends (void) 2133ev_recommended_backends (void)
807{ 2134{
808 unsigned int flags = ev_supported_backends (); 2135 unsigned int flags = ev_supported_backends ();
809 2136
810#ifndef __NetBSD__ 2137#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */ 2138 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 2139 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 2140 flags &= ~EVBACKEND_KQUEUE;
814#endif 2141#endif
815#ifdef __APPLE__ 2142#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 2143 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 2144 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146#endif
2147#ifdef __FreeBSD__
2148 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
818#endif 2149#endif
819 2150
820 return flags; 2151 return flags;
821} 2152}
822 2153
823unsigned int 2154unsigned int ecb_cold
824ev_embeddable_backends (void) 2155ev_embeddable_backends (void)
825{ 2156{
826 return EVBACKEND_EPOLL 2157 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 2158
828 | EVBACKEND_PORT; 2159 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2160 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2161 flags &= ~EVBACKEND_EPOLL;
2162
2163 return flags;
829} 2164}
830 2165
831unsigned int 2166unsigned int
832ev_backend (EV_P) 2167ev_backend (EV_P)
833{ 2168{
834 return backend; 2169 return backend;
835} 2170}
836 2171
837static void 2172#if EV_FEATURE_API
2173unsigned int
2174ev_iteration (EV_P)
2175{
2176 return loop_count;
2177}
2178
2179unsigned int
2180ev_depth (EV_P)
2181{
2182 return loop_depth;
2183}
2184
2185void
2186ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2187{
2188 io_blocktime = interval;
2189}
2190
2191void
2192ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2193{
2194 timeout_blocktime = interval;
2195}
2196
2197void
2198ev_set_userdata (EV_P_ void *data)
2199{
2200 userdata = data;
2201}
2202
2203void *
2204ev_userdata (EV_P)
2205{
2206 return userdata;
2207}
2208
2209void
2210ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211{
2212 invoke_cb = invoke_pending_cb;
2213}
2214
2215void
2216ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217{
2218 release_cb = release;
2219 acquire_cb = acquire;
2220}
2221#endif
2222
2223/* initialise a loop structure, must be zero-initialised */
2224static void noinline ecb_cold
838loop_init (EV_P_ unsigned int flags) 2225loop_init (EV_P_ unsigned int flags)
839{ 2226{
840 if (!backend) 2227 if (!backend)
841 { 2228 {
2229 origflags = flags;
2230
2231#if EV_USE_REALTIME
2232 if (!have_realtime)
2233 {
2234 struct timespec ts;
2235
2236 if (!clock_gettime (CLOCK_REALTIME, &ts))
2237 have_realtime = 1;
2238 }
2239#endif
2240
842#if EV_USE_MONOTONIC 2241#if EV_USE_MONOTONIC
2242 if (!have_monotonic)
843 { 2243 {
844 struct timespec ts; 2244 struct timespec ts;
2245
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2246 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 2247 have_monotonic = 1;
847 } 2248 }
848#endif 2249#endif
849 2250
850 ev_rt_now = ev_time (); 2251 /* pid check not overridable via env */
851 mn_now = get_clock (); 2252#ifndef _WIN32
852 now_floor = mn_now; 2253 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 2254 curpid = getpid ();
2255#endif
854 2256
855 if (!(flags & EVFLAG_NOENV) 2257 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 2258 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 2259 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 2260 flags = atoi (getenv ("LIBEV_FLAGS"));
859 2261
860 if (!(flags & 0x0000ffffUL)) 2262 ev_rt_now = ev_time ();
2263 mn_now = get_clock ();
2264 now_floor = mn_now;
2265 rtmn_diff = ev_rt_now - mn_now;
2266#if EV_FEATURE_API
2267 invoke_cb = ev_invoke_pending;
2268#endif
2269
2270 io_blocktime = 0.;
2271 timeout_blocktime = 0.;
2272 backend = 0;
2273 backend_fd = -1;
2274 sig_pending = 0;
2275#if EV_ASYNC_ENABLE
2276 async_pending = 0;
2277#endif
2278 pipe_write_skipped = 0;
2279 pipe_write_wanted = 0;
2280#if EV_USE_INOTIFY
2281 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282#endif
2283#if EV_USE_SIGNALFD
2284 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285#endif
2286
2287 if (!(flags & EVBACKEND_MASK))
861 flags |= ev_recommended_backends (); 2288 flags |= ev_recommended_backends ();
862 2289
863 backend = 0; 2290#if EV_USE_IOCP
2291 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292#endif
864#if EV_USE_PORT 2293#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2294 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 2295#endif
867#if EV_USE_KQUEUE 2296#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2297 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 2304#endif
876#if EV_USE_SELECT 2305#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2306 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 2307#endif
879 2308
2309 ev_prepare_init (&pending_w, pendingcb);
2310
2311#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 2312 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 2313 ev_set_priority (&pipe_w, EV_MAXPRI);
2314#endif
882 } 2315 }
883} 2316}
884 2317
885static void 2318/* free up a loop structure */
2319void ecb_cold
886loop_destroy (EV_P) 2320ev_loop_destroy (EV_P)
887{ 2321{
888 int i; 2322 int i;
889 2323
2324#if EV_MULTIPLICITY
2325 /* mimic free (0) */
2326 if (!EV_A)
2327 return;
2328#endif
2329
2330#if EV_CLEANUP_ENABLE
2331 /* queue cleanup watchers (and execute them) */
2332 if (expect_false (cleanupcnt))
2333 {
2334 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335 EV_INVOKE_PENDING;
2336 }
2337#endif
2338
2339#if EV_CHILD_ENABLE
2340 if (ev_is_active (&childev))
2341 {
2342 ev_ref (EV_A); /* child watcher */
2343 ev_signal_stop (EV_A_ &childev);
2344 }
2345#endif
2346
2347 if (ev_is_active (&pipe_w))
2348 {
2349 /*ev_ref (EV_A);*/
2350 /*ev_io_stop (EV_A_ &pipe_w);*/
2351
2352#if EV_USE_EVENTFD
2353 if (evfd >= 0)
2354 close (evfd);
2355#endif
2356
2357 if (evpipe [0] >= 0)
2358 {
2359 EV_WIN32_CLOSE_FD (evpipe [0]);
2360 EV_WIN32_CLOSE_FD (evpipe [1]);
2361 }
2362 }
2363
2364#if EV_USE_SIGNALFD
2365 if (ev_is_active (&sigfd_w))
2366 close (sigfd);
2367#endif
2368
2369#if EV_USE_INOTIFY
2370 if (fs_fd >= 0)
2371 close (fs_fd);
2372#endif
2373
2374 if (backend_fd >= 0)
2375 close (backend_fd);
2376
2377#if EV_USE_IOCP
2378 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379#endif
890#if EV_USE_PORT 2380#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 2382#endif
893#if EV_USE_KQUEUE 2383#if EV_USE_KQUEUE
894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
902#if EV_USE_SELECT 2392#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 2394#endif
905 2395
906 for (i = NUMPRI; i--; ) 2396 for (i = NUMPRI; i--; )
2397 {
907 array_free (pending, [i]); 2398 array_free (pending, [i]);
2399#if EV_IDLE_ENABLE
2400 array_free (idle, [i]);
2401#endif
2402 }
2403
2404 ev_free (anfds); anfds = 0; anfdmax = 0;
908 2405
909 /* have to use the microsoft-never-gets-it-right macro */ 2406 /* have to use the microsoft-never-gets-it-right macro */
2407 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 2408 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 2409 array_free (timer, EMPTY);
912#if EV_PERIODICS 2410#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 2411 array_free (periodic, EMPTY);
914#endif 2412#endif
2413#if EV_FORK_ENABLE
2414 array_free (fork, EMPTY);
2415#endif
2416#if EV_CLEANUP_ENABLE
915 array_free (idle, EMPTY0); 2417 array_free (cleanup, EMPTY);
2418#endif
916 array_free (prepare, EMPTY0); 2419 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 2420 array_free (check, EMPTY);
2421#if EV_ASYNC_ENABLE
2422 array_free (async, EMPTY);
2423#endif
918 2424
919 backend = 0; 2425 backend = 0;
920}
921 2426
922static void 2427#if EV_MULTIPLICITY
2428 if (ev_is_default_loop (EV_A))
2429#endif
2430 ev_default_loop_ptr = 0;
2431#if EV_MULTIPLICITY
2432 else
2433 ev_free (EV_A);
2434#endif
2435}
2436
2437#if EV_USE_INOTIFY
2438inline_size void infy_fork (EV_P);
2439#endif
2440
2441inline_size void
923loop_fork (EV_P) 2442loop_fork (EV_P)
924{ 2443{
925#if EV_USE_PORT 2444#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 2446#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 2448 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 2449#endif
931#if EV_USE_EPOLL 2450#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 2451 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 2452#endif
2453#if EV_USE_INOTIFY
2454 infy_fork (EV_A);
2455#endif
934 2456
935 if (ev_is_active (&sigev)) 2457 if (ev_is_active (&pipe_w))
936 { 2458 {
937 /* default loop */ 2459 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
938 2460
939 ev_ref (EV_A); 2461 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 2462 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 2463
944 while (pipe (sigpipe)) 2464#if EV_USE_EVENTFD
945 syserr ("(libev) error creating pipe"); 2465 if (evfd >= 0)
2466 close (evfd);
2467#endif
946 2468
2469 if (evpipe [0] >= 0)
2470 {
2471 EV_WIN32_CLOSE_FD (evpipe [0]);
2472 EV_WIN32_CLOSE_FD (evpipe [1]);
2473 }
2474
2475#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
947 siginit (EV_A); 2476 evpipe_init (EV_A);
2477 /* now iterate over everything, in case we missed something */
2478 pipecb (EV_A_ &pipe_w, EV_READ);
2479#endif
948 } 2480 }
949 2481
950 postfork = 0; 2482 postfork = 0;
951} 2483}
952 2484
953#if EV_MULTIPLICITY 2485#if EV_MULTIPLICITY
2486
954struct ev_loop * 2487struct ev_loop * ecb_cold
955ev_loop_new (unsigned int flags) 2488ev_loop_new (unsigned int flags)
956{ 2489{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2490 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 2491
959 memset (loop, 0, sizeof (struct ev_loop)); 2492 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 2493 loop_init (EV_A_ flags);
962 2494
963 if (ev_backend (EV_A)) 2495 if (ev_backend (EV_A))
964 return loop; 2496 return EV_A;
965 2497
2498 ev_free (EV_A);
966 return 0; 2499 return 0;
967} 2500}
968 2501
969void 2502#endif /* multiplicity */
970ev_loop_destroy (EV_P)
971{
972 loop_destroy (EV_A);
973 ev_free (loop);
974}
975 2503
976void 2504#if EV_VERIFY
977ev_loop_fork (EV_P) 2505static void noinline ecb_cold
2506verify_watcher (EV_P_ W w)
978{ 2507{
979 postfork = 1; 2508 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
980}
981 2509
2510 if (w->pending)
2511 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2512}
2513
2514static void noinline ecb_cold
2515verify_heap (EV_P_ ANHE *heap, int N)
2516{
2517 int i;
2518
2519 for (i = HEAP0; i < N + HEAP0; ++i)
2520 {
2521 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2522 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2523 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2524
2525 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2526 }
2527}
2528
2529static void noinline ecb_cold
2530array_verify (EV_P_ W *ws, int cnt)
2531{
2532 while (cnt--)
2533 {
2534 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2535 verify_watcher (EV_A_ ws [cnt]);
2536 }
2537}
2538#endif
2539
2540#if EV_FEATURE_API
2541void ecb_cold
2542ev_verify (EV_P)
2543{
2544#if EV_VERIFY
2545 int i;
2546 WL w;
2547
2548 assert (activecnt >= -1);
2549
2550 assert (fdchangemax >= fdchangecnt);
2551 for (i = 0; i < fdchangecnt; ++i)
2552 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2553
2554 assert (anfdmax >= 0);
2555 for (i = 0; i < anfdmax; ++i)
2556 for (w = anfds [i].head; w; w = w->next)
2557 {
2558 verify_watcher (EV_A_ (W)w);
2559 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2560 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2561 }
2562
2563 assert (timermax >= timercnt);
2564 verify_heap (EV_A_ timers, timercnt);
2565
2566#if EV_PERIODIC_ENABLE
2567 assert (periodicmax >= periodiccnt);
2568 verify_heap (EV_A_ periodics, periodiccnt);
2569#endif
2570
2571 for (i = NUMPRI; i--; )
2572 {
2573 assert (pendingmax [i] >= pendingcnt [i]);
2574#if EV_IDLE_ENABLE
2575 assert (idleall >= 0);
2576 assert (idlemax [i] >= idlecnt [i]);
2577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2578#endif
2579 }
2580
2581#if EV_FORK_ENABLE
2582 assert (forkmax >= forkcnt);
2583 array_verify (EV_A_ (W *)forks, forkcnt);
2584#endif
2585
2586#if EV_CLEANUP_ENABLE
2587 assert (cleanupmax >= cleanupcnt);
2588 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589#endif
2590
2591#if EV_ASYNC_ENABLE
2592 assert (asyncmax >= asynccnt);
2593 array_verify (EV_A_ (W *)asyncs, asynccnt);
2594#endif
2595
2596#if EV_PREPARE_ENABLE
2597 assert (preparemax >= preparecnt);
2598 array_verify (EV_A_ (W *)prepares, preparecnt);
2599#endif
2600
2601#if EV_CHECK_ENABLE
2602 assert (checkmax >= checkcnt);
2603 array_verify (EV_A_ (W *)checks, checkcnt);
2604#endif
2605
2606# if 0
2607#if EV_CHILD_ENABLE
2608 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2609 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610#endif
2611# endif
2612#endif
2613}
982#endif 2614#endif
983 2615
984#if EV_MULTIPLICITY 2616#if EV_MULTIPLICITY
985struct ev_loop * 2617struct ev_loop * ecb_cold
986ev_default_loop_init (unsigned int flags)
987#else 2618#else
988int 2619int
2620#endif
989ev_default_loop (unsigned int flags) 2621ev_default_loop (unsigned int flags)
990#endif
991{ 2622{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 2623 if (!ev_default_loop_ptr)
997 { 2624 {
998#if EV_MULTIPLICITY 2625#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2626 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 2627#else
1001 ev_default_loop_ptr = 1; 2628 ev_default_loop_ptr = 1;
1002#endif 2629#endif
1003 2630
1004 loop_init (EV_A_ flags); 2631 loop_init (EV_A_ flags);
1005 2632
1006 if (ev_backend (EV_A)) 2633 if (ev_backend (EV_A))
1007 { 2634 {
1008 siginit (EV_A); 2635#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 2636 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 2637 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 2638 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2639 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 2640#endif
1020 2645
1021 return ev_default_loop_ptr; 2646 return ev_default_loop_ptr;
1022} 2647}
1023 2648
1024void 2649void
1025ev_default_destroy (void) 2650ev_loop_fork (EV_P)
1026{ 2651{
1027#if EV_MULTIPLICITY 2652 postfork = 1; /* must be in line with ev_default_fork */
1028 struct ev_loop *loop = ev_default_loop_ptr;
1029#endif
1030
1031#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev);
1034#endif
1035
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A);
1043} 2653}
2654
2655/*****************************************************************************/
1044 2656
1045void 2657void
1046ev_default_fork (void) 2658ev_invoke (EV_P_ void *w, int revents)
1047{ 2659{
1048#if EV_MULTIPLICITY 2660 EV_CB_INVOKE ((W)w, revents);
1049 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif
1051
1052 if (backend)
1053 postfork = 1;
1054} 2661}
1055 2662
1056/*****************************************************************************/ 2663unsigned int
1057 2664ev_pending_count (EV_P)
1058static int
1059any_pending (EV_P)
1060{ 2665{
1061 int pri; 2666 int pri;
2667 unsigned int count = 0;
1062 2668
1063 for (pri = NUMPRI; pri--; ) 2669 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 2670 count += pendingcnt [pri];
1065 return 1;
1066 2671
1067 return 0; 2672 return count;
1068} 2673}
1069 2674
1070inline void 2675void noinline
1071call_pending (EV_P) 2676ev_invoke_pending (EV_P)
1072{ 2677{
1073 int pri; 2678 int pri;
1074 2679
1075 for (pri = NUMPRI; pri--; ) 2680 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 2681 while (pendingcnt [pri])
1077 { 2682 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 2684
1080 if (expect_true (p->w))
1081 {
1082 p->w->pending = 0; 2685 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 2686 EV_CB_INVOKE (p->w, p->events);
1084 } 2687 EV_FREQUENT_CHECK;
1085 } 2688 }
1086} 2689}
1087 2690
2691#if EV_IDLE_ENABLE
2692/* make idle watchers pending. this handles the "call-idle */
2693/* only when higher priorities are idle" logic */
1088inline void 2694inline_size void
2695idle_reify (EV_P)
2696{
2697 if (expect_false (idleall))
2698 {
2699 int pri;
2700
2701 for (pri = NUMPRI; pri--; )
2702 {
2703 if (pendingcnt [pri])
2704 break;
2705
2706 if (idlecnt [pri])
2707 {
2708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2709 break;
2710 }
2711 }
2712 }
2713}
2714#endif
2715
2716/* make timers pending */
2717inline_size void
1089timers_reify (EV_P) 2718timers_reify (EV_P)
1090{ 2719{
2720 EV_FREQUENT_CHECK;
2721
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 2722 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 2723 {
1093 struct ev_timer *w = timers [0]; 2724 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 2725 {
2726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727
2728 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729
2730 /* first reschedule or stop timer */
2731 if (w->repeat)
2732 {
2733 ev_at (w) += w->repeat;
2734 if (ev_at (w) < mn_now)
2735 ev_at (w) = mn_now;
2736
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2737 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 2738
1102 ((WT)w)->at += w->repeat; 2739 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 2740 downheap (timers, timercnt, HEAP0);
2741 }
2742 else
2743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744
2745 EV_FREQUENT_CHECK;
2746 feed_reverse (EV_A_ (W)w);
1107 } 2747 }
1108 else 2748 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 2749
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2750 feed_reverse_done (EV_A_ EV_TIMER);
2751 }
2752}
2753
2754#if EV_PERIODIC_ENABLE
2755
2756static void noinline
2757periodic_recalc (EV_P_ ev_periodic *w)
2758{
2759 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761
2762 /* the above almost always errs on the low side */
2763 while (at <= ev_rt_now)
1112 } 2764 {
1113} 2765 ev_tstamp nat = at + w->interval;
1114 2766
1115#if EV_PERIODICS 2767 /* when resolution fails us, we use ev_rt_now */
2768 if (expect_false (nat == at))
2769 {
2770 at = ev_rt_now;
2771 break;
2772 }
2773
2774 at = nat;
2775 }
2776
2777 ev_at (w) = at;
2778}
2779
2780/* make periodics pending */
1116inline void 2781inline_size void
1117periodics_reify (EV_P) 2782periodics_reify (EV_P)
1118{ 2783{
2784 EV_FREQUENT_CHECK;
2785
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 2787 {
1121 struct ev_periodic *w = periodics [0]; 2788 int feed_count = 0;
1122 2789
2790 do
2791 {
2792 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2794 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 2795
1125 /* first reschedule or stop timer */ 2796 /* first reschedule or stop timer */
2797 if (w->reschedule_cb)
2798 {
2799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2800
2801 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2802
2803 ANHE_at_cache (periodics [HEAP0]);
2804 downheap (periodics, periodiccnt, HEAP0);
2805 }
2806 else if (w->interval)
2807 {
2808 periodic_recalc (EV_A_ w);
2809 ANHE_at_cache (periodics [HEAP0]);
2810 downheap (periodics, periodiccnt, HEAP0);
2811 }
2812 else
2813 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814
2815 EV_FREQUENT_CHECK;
2816 feed_reverse (EV_A_ (W)w);
2817 }
2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2819
2820 feed_reverse_done (EV_A_ EV_PERIODIC);
2821 }
2822}
2823
2824/* simply recalculate all periodics */
2825/* TODO: maybe ensure that at least one event happens when jumping forward? */
2826static void noinline ecb_cold
2827periodics_reschedule (EV_P)
2828{
2829 int i;
2830
2831 /* adjust periodics after time jump */
2832 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2833 {
2834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2835
1126 if (w->reschedule_cb) 2836 if (w->reschedule_cb)
2837 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2838 else if (w->interval)
2839 periodic_recalc (EV_A_ w);
2840
2841 ANHE_at_cache (periodics [i]);
2842 }
2843
2844 reheap (periodics, periodiccnt);
2845}
2846#endif
2847
2848/* adjust all timers by a given offset */
2849static void noinline ecb_cold
2850timers_reschedule (EV_P_ ev_tstamp adjust)
2851{
2852 int i;
2853
2854 for (i = 0; i < timercnt; ++i)
2855 {
2856 ANHE *he = timers + i + HEAP0;
2857 ANHE_w (*he)->at += adjust;
2858 ANHE_at_cache (*he);
2859 }
2860}
2861
2862/* fetch new monotonic and realtime times from the kernel */
2863/* also detect if there was a timejump, and act accordingly */
2864inline_speed void
2865time_update (EV_P_ ev_tstamp max_block)
2866{
2867#if EV_USE_MONOTONIC
2868 if (expect_true (have_monotonic))
2869 {
2870 int i;
2871 ev_tstamp odiff = rtmn_diff;
2872
2873 mn_now = get_clock ();
2874
2875 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2876 /* interpolate in the meantime */
2877 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 2878 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2879 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2880 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 2881 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 2882
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 2883 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 2884 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 2885
1185inline void 2886 /* loop a few times, before making important decisions.
1186time_update (EV_P) 2887 * on the choice of "4": one iteration isn't enough,
1187{ 2888 * in case we get preempted during the calls to
1188 int i; 2889 * ev_time and get_clock. a second call is almost guaranteed
1189 2890 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 2891 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 2892 * in the unlikely event of having been preempted here.
1192 { 2893 */
1193 if (time_update_monotonic (EV_A)) 2894 for (i = 4; --i; )
1194 { 2895 {
1195 ev_tstamp odiff = rtmn_diff; 2896 ev_tstamp diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 2897 rtmn_diff = ev_rt_now - mn_now;
1200 2898
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2899 diff = odiff - rtmn_diff;
2900
2901 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 2902 return; /* all is well */
1203 2903
1204 ev_rt_now = ev_time (); 2904 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 2905 mn_now = get_clock ();
1206 now_floor = mn_now; 2906 now_floor = mn_now;
1207 } 2907 }
1208 2908
2909 /* no timer adjustment, as the monotonic clock doesn't jump */
2910 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2911# if EV_PERIODIC_ENABLE
2912 periodics_reschedule (EV_A);
2913# endif
2914 }
2915 else
2916#endif
2917 {
2918 ev_rt_now = ev_time ();
2919
2920 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2921 {
2922 /* adjust timers. this is easy, as the offset is the same for all of them */
2923 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2924#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2925 periodics_reschedule (EV_A);
1211# endif 2926#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2927 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2928
1232 mn_now = ev_rt_now; 2929 mn_now = ev_rt_now;
1233 } 2930 }
1234} 2931}
1235 2932
1236void 2933void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 2934ev_run (EV_P_ int flags)
1252{ 2935{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2936#if EV_FEATURE_API
1254 ? EVUNLOOP_ONE 2937 ++loop_depth;
1255 : EVUNLOOP_CANCEL; 2938#endif
1256 2939
1257 while (activecnt) 2940 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941
2942 loop_done = EVBREAK_CANCEL;
2943
2944 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2945
2946 do
1258 { 2947 {
2948#if EV_VERIFY >= 2
2949 ev_verify (EV_A);
2950#endif
2951
2952#ifndef _WIN32
2953 if (expect_false (curpid)) /* penalise the forking check even more */
2954 if (expect_false (getpid () != curpid))
2955 {
2956 curpid = getpid ();
2957 postfork = 1;
2958 }
2959#endif
2960
2961#if EV_FORK_ENABLE
2962 /* we might have forked, so queue fork handlers */
2963 if (expect_false (postfork))
2964 if (forkcnt)
2965 {
2966 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2967 EV_INVOKE_PENDING;
2968 }
2969#endif
2970
2971#if EV_PREPARE_ENABLE
1259 /* queue check watchers (and execute them) */ 2972 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 2973 if (expect_false (preparecnt))
1261 { 2974 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2975 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 2976 EV_INVOKE_PENDING;
1264 } 2977 }
2978#endif
2979
2980 if (expect_false (loop_done))
2981 break;
1265 2982
1266 /* we might have forked, so reify kernel state if necessary */ 2983 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 2984 if (expect_false (postfork))
1268 loop_fork (EV_A); 2985 loop_fork (EV_A);
1269 2986
1270 /* update fd-related kernel structures */ 2987 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 2988 fd_reify (EV_A);
1272 2989
1273 /* calculate blocking time */ 2990 /* calculate blocking time */
1274 { 2991 {
1275 double block; 2992 ev_tstamp waittime = 0.;
2993 ev_tstamp sleeptime = 0.;
1276 2994
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 2995 /* remember old timestamp for io_blocktime calculation */
1278 block = 0.; /* do not block at all */ 2996 ev_tstamp prev_mn_now = mn_now;
1279 else 2997
2998 /* update time to cancel out callback processing overhead */
2999 time_update (EV_A_ 1e100);
3000
3001 /* from now on, we want a pipe-wake-up */
3002 pipe_write_wanted = 1;
3003
3004 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005
3006 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1280 { 3007 {
1281 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291
1292 block = MAX_BLOCKTIME; 3008 waittime = MAX_BLOCKTIME;
1293 3009
1294 if (timercnt) 3010 if (timercnt)
1295 { 3011 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3012 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1297 if (block > to) block = to; 3013 if (waittime > to) waittime = to;
1298 } 3014 }
1299 3015
1300#if EV_PERIODICS 3016#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 3017 if (periodiccnt)
1302 { 3018 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3019 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1304 if (block > to) block = to; 3020 if (waittime > to) waittime = to;
1305 } 3021 }
1306#endif 3022#endif
1307 3023
3024 /* don't let timeouts decrease the waittime below timeout_blocktime */
3025 if (expect_false (waittime < timeout_blocktime))
3026 waittime = timeout_blocktime;
3027
3028 /* at this point, we NEED to wait, so we have to ensure */
3029 /* to pass a minimum nonzero value to the backend */
3030 if (expect_false (waittime < backend_mintime))
3031 waittime = backend_mintime;
3032
3033 /* extra check because io_blocktime is commonly 0 */
1308 if (expect_false (block < 0.)) block = 0.; 3034 if (expect_false (io_blocktime))
3035 {
3036 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037
3038 if (sleeptime > waittime - backend_mintime)
3039 sleeptime = waittime - backend_mintime;
3040
3041 if (expect_true (sleeptime > 0.))
3042 {
3043 ev_sleep (sleeptime);
3044 waittime -= sleeptime;
3045 }
3046 }
1309 } 3047 }
1310 3048
3049#if EV_FEATURE_API
3050 ++loop_count;
3051#endif
3052 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1311 backend_poll (EV_A_ block); 3053 backend_poll (EV_A_ waittime);
3054 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3055
3056 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057
3058 if (pipe_write_skipped)
3059 {
3060 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062 }
3063
3064
3065 /* update ev_rt_now, do magic */
3066 time_update (EV_A_ waittime + sleeptime);
1312 } 3067 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 3068
1317 /* queue pending timers and reschedule them */ 3069 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 3070 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 3071#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 3072 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 3073#endif
1322 3074
3075#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 3076 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 3077 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3078#endif
1326 3079
3080#if EV_CHECK_ENABLE
1327 /* queue check watchers, to be executed first */ 3081 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 3082 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3083 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084#endif
1330 3085
1331 call_pending (EV_A); 3086 EV_INVOKE_PENDING;
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 3087 }
3088 while (expect_true (
3089 activecnt
3090 && !loop_done
3091 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3092 ));
1336 3093
1337 if (loop_done == EVUNLOOP_ONE) 3094 if (loop_done == EVBREAK_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 3095 loop_done = EVBREAK_CANCEL;
3096
3097#if EV_FEATURE_API
3098 --loop_depth;
3099#endif
1339} 3100}
1340 3101
1341void 3102void
1342ev_unloop (EV_P_ int how) 3103ev_break (EV_P_ int how)
1343{ 3104{
1344 loop_done = how; 3105 loop_done = how;
1345} 3106}
1346 3107
3108void
3109ev_ref (EV_P)
3110{
3111 ++activecnt;
3112}
3113
3114void
3115ev_unref (EV_P)
3116{
3117 --activecnt;
3118}
3119
3120void
3121ev_now_update (EV_P)
3122{
3123 time_update (EV_A_ 1e100);
3124}
3125
3126void
3127ev_suspend (EV_P)
3128{
3129 ev_now_update (EV_A);
3130}
3131
3132void
3133ev_resume (EV_P)
3134{
3135 ev_tstamp mn_prev = mn_now;
3136
3137 ev_now_update (EV_A);
3138 timers_reschedule (EV_A_ mn_now - mn_prev);
3139#if EV_PERIODIC_ENABLE
3140 /* TODO: really do this? */
3141 periodics_reschedule (EV_A);
3142#endif
3143}
3144
1347/*****************************************************************************/ 3145/*****************************************************************************/
3146/* singly-linked list management, used when the expected list length is short */
1348 3147
1349inline void 3148inline_size void
1350wlist_add (WL *head, WL elem) 3149wlist_add (WL *head, WL elem)
1351{ 3150{
1352 elem->next = *head; 3151 elem->next = *head;
1353 *head = elem; 3152 *head = elem;
1354} 3153}
1355 3154
1356inline void 3155inline_size void
1357wlist_del (WL *head, WL elem) 3156wlist_del (WL *head, WL elem)
1358{ 3157{
1359 while (*head) 3158 while (*head)
1360 { 3159 {
1361 if (*head == elem) 3160 if (expect_true (*head == elem))
1362 { 3161 {
1363 *head = elem->next; 3162 *head = elem->next;
1364 return; 3163 break;
1365 } 3164 }
1366 3165
1367 head = &(*head)->next; 3166 head = &(*head)->next;
1368 } 3167 }
1369} 3168}
1370 3169
3170/* internal, faster, version of ev_clear_pending */
1371inline void 3171inline_speed void
1372ev_clear_pending (EV_P_ W w) 3172clear_pending (EV_P_ W w)
1373{ 3173{
1374 if (w->pending) 3174 if (w->pending)
1375 { 3175 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3176 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1377 w->pending = 0; 3177 w->pending = 0;
1378 } 3178 }
1379} 3179}
1380 3180
3181int
3182ev_clear_pending (EV_P_ void *w)
3183{
3184 W w_ = (W)w;
3185 int pending = w_->pending;
3186
3187 if (expect_true (pending))
3188 {
3189 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 p->w = (W)&pending_w;
3191 w_->pending = 0;
3192 return p->events;
3193 }
3194 else
3195 return 0;
3196}
3197
1381inline void 3198inline_size void
3199pri_adjust (EV_P_ W w)
3200{
3201 int pri = ev_priority (w);
3202 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3203 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3204 ev_set_priority (w, pri);
3205}
3206
3207inline_speed void
1382ev_start (EV_P_ W w, int active) 3208ev_start (EV_P_ W w, int active)
1383{ 3209{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3210 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 3211 w->active = active;
1388 ev_ref (EV_A); 3212 ev_ref (EV_A);
1389} 3213}
1390 3214
1391inline void 3215inline_size void
1392ev_stop (EV_P_ W w) 3216ev_stop (EV_P_ W w)
1393{ 3217{
1394 ev_unref (EV_A); 3218 ev_unref (EV_A);
1395 w->active = 0; 3219 w->active = 0;
1396} 3220}
1397 3221
1398/*****************************************************************************/ 3222/*****************************************************************************/
1399 3223
1400void 3224void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 3225ev_io_start (EV_P_ ev_io *w)
1402{ 3226{
1403 int fd = w->fd; 3227 int fd = w->fd;
1404 3228
1405 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
1406 return; 3230 return;
1407 3231
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 3232 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3234
3235 EV_FREQUENT_CHECK;
1409 3236
1410 ev_start (EV_A_ (W)w, 1); 3237 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3238 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3239 wlist_add (&anfds[fd].head, (WL)w);
1413 3240
1414 fd_change (EV_A_ fd); 3241 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1415} 3242 w->events &= ~EV__IOFDSET;
1416 3243
1417void 3244 EV_FREQUENT_CHECK;
3245}
3246
3247void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 3248ev_io_stop (EV_P_ ev_io *w)
1419{ 3249{
1420 ev_clear_pending (EV_A_ (W)w); 3250 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 3251 if (expect_false (!ev_is_active (w)))
1422 return; 3252 return;
1423 3253
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3254 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 3255
3256 EV_FREQUENT_CHECK;
3257
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3258 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
1428 3260
1429 fd_change (EV_A_ w->fd); 3261 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1430}
1431 3262
1432void 3263 EV_FREQUENT_CHECK;
3264}
3265
3266void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 3267ev_timer_start (EV_P_ ev_timer *w)
1434{ 3268{
1435 if (expect_false (ev_is_active (w))) 3269 if (expect_false (ev_is_active (w)))
1436 return; 3270 return;
1437 3271
1438 ((WT)w)->at += mn_now; 3272 ev_at (w) += mn_now;
1439 3273
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3274 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 3275
3276 EV_FREQUENT_CHECK;
3277
3278 ++timercnt;
1442 ev_start (EV_A_ (W)w, ++timercnt); 3279 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 3280 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 3281 ANHE_w (timers [ev_active (w)]) = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 3282 ANHE_at_cache (timers [ev_active (w)]);
3283 upheap (timers, ev_active (w));
1446 3284
3285 EV_FREQUENT_CHECK;
3286
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3287 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1448} 3288}
1449 3289
1450void 3290void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 3291ev_timer_stop (EV_P_ ev_timer *w)
1452{ 3292{
1453 ev_clear_pending (EV_A_ (W)w); 3293 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 3294 if (expect_false (!ev_is_active (w)))
1455 return; 3295 return;
1456 3296
3297 EV_FREQUENT_CHECK;
3298
3299 {
3300 int active = ev_active (w);
3301
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3302 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1458 3303
3304 --timercnt;
3305
1459 if (expect_true (((W)w)->active < timercnt--)) 3306 if (expect_true (active < timercnt + HEAP0))
1460 { 3307 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 3308 timers [active] = timers [timercnt + HEAP0];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3309 adjustheap (timers, timercnt, active);
1463 } 3310 }
3311 }
1464 3312
1465 ((WT)w)->at -= mn_now; 3313 ev_at (w) -= mn_now;
1466 3314
1467 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
1468}
1469 3316
1470void 3317 EV_FREQUENT_CHECK;
3318}
3319
3320void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 3321ev_timer_again (EV_P_ ev_timer *w)
1472{ 3322{
3323 EV_FREQUENT_CHECK;
3324
3325 clear_pending (EV_A_ (W)w);
3326
1473 if (ev_is_active (w)) 3327 if (ev_is_active (w))
1474 { 3328 {
1475 if (w->repeat) 3329 if (w->repeat)
1476 { 3330 {
1477 ((WT)w)->at = mn_now + w->repeat; 3331 ev_at (w) = mn_now + w->repeat;
3332 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3333 adjustheap (timers, timercnt, ev_active (w));
1479 } 3334 }
1480 else 3335 else
1481 ev_timer_stop (EV_A_ w); 3336 ev_timer_stop (EV_A_ w);
1482 } 3337 }
1483 else if (w->repeat) 3338 else if (w->repeat)
1484 { 3339 {
1485 w->at = w->repeat; 3340 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 3341 ev_timer_start (EV_A_ w);
1487 } 3342 }
1488}
1489 3343
3344 EV_FREQUENT_CHECK;
3345}
3346
3347ev_tstamp
3348ev_timer_remaining (EV_P_ ev_timer *w)
3349{
3350 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3351}
3352
1490#if EV_PERIODICS 3353#if EV_PERIODIC_ENABLE
1491void 3354void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 3355ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 3356{
1494 if (expect_false (ev_is_active (w))) 3357 if (expect_false (ev_is_active (w)))
1495 return; 3358 return;
1496 3359
1497 if (w->reschedule_cb) 3360 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3361 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 3362 else if (w->interval)
1500 { 3363 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3364 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 3365 periodic_recalc (EV_A_ w);
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 3366 }
3367 else
3368 ev_at (w) = w->offset;
1505 3369
3370 EV_FREQUENT_CHECK;
3371
3372 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 3373 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3374 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 3375 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 3376 ANHE_at_cache (periodics [ev_active (w)]);
3377 upheap (periodics, ev_active (w));
1510 3378
3379 EV_FREQUENT_CHECK;
3380
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3381 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 3382}
1513 3383
1514void 3384void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 3385ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 3386{
1517 ev_clear_pending (EV_A_ (W)w); 3387 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 3388 if (expect_false (!ev_is_active (w)))
1519 return; 3389 return;
1520 3390
3391 EV_FREQUENT_CHECK;
3392
3393 {
3394 int active = ev_active (w);
3395
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3396 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 3397
3398 --periodiccnt;
3399
1523 if (expect_true (((W)w)->active < periodiccnt--)) 3400 if (expect_true (active < periodiccnt + HEAP0))
1524 { 3401 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3402 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3403 adjustheap (periodics, periodiccnt, active);
1527 } 3404 }
3405 }
1528 3406
1529 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
1530}
1531 3408
1532void 3409 EV_FREQUENT_CHECK;
3410}
3411
3412void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 3413ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 3414{
1535 /* TODO: use adjustheap and recalculation */ 3415 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 3416 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 3417 ev_periodic_start (EV_A_ w);
1538} 3418}
1539#endif 3419#endif
1540 3420
1541void 3421#ifndef SA_RESTART
1542ev_idle_start (EV_P_ struct ev_idle *w) 3422# define SA_RESTART 0
3423#endif
3424
3425#if EV_SIGNAL_ENABLE
3426
3427void noinline
3428ev_signal_start (EV_P_ ev_signal *w)
1543{ 3429{
1544 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
1545 return; 3431 return;
1546 3432
3433 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3434
3435#if EV_MULTIPLICITY
3436 assert (("libev: a signal must not be attached to two different loops",
3437 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3438
3439 signals [w->signum - 1].loop = EV_A;
3440#endif
3441
3442 EV_FREQUENT_CHECK;
3443
3444#if EV_USE_SIGNALFD
3445 if (sigfd == -2)
3446 {
3447 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3448 if (sigfd < 0 && errno == EINVAL)
3449 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3450
3451 if (sigfd >= 0)
3452 {
3453 fd_intern (sigfd); /* doing it twice will not hurt */
3454
3455 sigemptyset (&sigfd_set);
3456
3457 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458 ev_set_priority (&sigfd_w, EV_MAXPRI);
3459 ev_io_start (EV_A_ &sigfd_w);
3460 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461 }
3462 }
3463
3464 if (sigfd >= 0)
3465 {
3466 /* TODO: check .head */
3467 sigaddset (&sigfd_set, w->signum);
3468 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469
3470 signalfd (sigfd, &sigfd_set, 0);
3471 }
3472#endif
3473
1547 ev_start (EV_A_ (W)w, ++idlecnt); 3474 ev_start (EV_A_ (W)w, 1);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3475 wlist_add (&signals [w->signum - 1].head, (WL)w);
1549 idles [idlecnt - 1] = w;
1550}
1551 3476
1552void 3477 if (!((WL)w)->next)
1553ev_idle_stop (EV_P_ struct ev_idle *w) 3478# if EV_USE_SIGNALFD
3479 if (sigfd < 0) /*TODO*/
3480# endif
3481 {
3482# ifdef _WIN32
3483 evpipe_init (EV_A);
3484
3485 signal (w->signum, ev_sighandler);
3486# else
3487 struct sigaction sa;
3488
3489 evpipe_init (EV_A);
3490
3491 sa.sa_handler = ev_sighandler;
3492 sigfillset (&sa.sa_mask);
3493 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3494 sigaction (w->signum, &sa, 0);
3495
3496 if (origflags & EVFLAG_NOSIGMASK)
3497 {
3498 sigemptyset (&sa.sa_mask);
3499 sigaddset (&sa.sa_mask, w->signum);
3500 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501 }
3502#endif
3503 }
3504
3505 EV_FREQUENT_CHECK;
3506}
3507
3508void noinline
3509ev_signal_stop (EV_P_ ev_signal *w)
1554{ 3510{
1555 ev_clear_pending (EV_A_ (W)w); 3511 clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w))) 3512 if (expect_false (!ev_is_active (w)))
1557 return; 3513 return;
1558 3514
1559 idles [((W)w)->active - 1] = idles [--idlecnt]; 3515 EV_FREQUENT_CHECK;
3516
3517 wlist_del (&signals [w->signum - 1].head, (WL)w);
1560 ev_stop (EV_A_ (W)w); 3518 ev_stop (EV_A_ (W)w);
3519
3520 if (!signals [w->signum - 1].head)
3521 {
3522#if EV_MULTIPLICITY
3523 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524#endif
3525#if EV_USE_SIGNALFD
3526 if (sigfd >= 0)
3527 {
3528 sigset_t ss;
3529
3530 sigemptyset (&ss);
3531 sigaddset (&ss, w->signum);
3532 sigdelset (&sigfd_set, w->signum);
3533
3534 signalfd (sigfd, &sigfd_set, 0);
3535 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 }
3537 else
3538#endif
3539 signal (w->signum, SIG_DFL);
3540 }
3541
3542 EV_FREQUENT_CHECK;
1561} 3543}
3544
3545#endif
3546
3547#if EV_CHILD_ENABLE
1562 3548
1563void 3549void
1564ev_prepare_start (EV_P_ struct ev_prepare *w) 3550ev_child_start (EV_P_ ev_child *w)
1565{ 3551{
3552#if EV_MULTIPLICITY
3553 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3554#endif
1566 if (expect_false (ev_is_active (w))) 3555 if (expect_false (ev_is_active (w)))
1567 return; 3556 return;
1568 3557
3558 EV_FREQUENT_CHECK;
3559
1569 ev_start (EV_A_ (W)w, ++preparecnt); 3560 ev_start (EV_A_ (W)w, 1);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3561 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1571 prepares [preparecnt - 1] = w; 3562
3563 EV_FREQUENT_CHECK;
1572} 3564}
1573 3565
1574void 3566void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w) 3567ev_child_stop (EV_P_ ev_child *w)
1576{ 3568{
1577 ev_clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
1579 return; 3571 return;
1580 3572
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3573 EV_FREQUENT_CHECK;
3574
3575 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
1583} 3579}
3580
3581#endif
3582
3583#if EV_STAT_ENABLE
3584
3585# ifdef _WIN32
3586# undef lstat
3587# define lstat(a,b) _stati64 (a,b)
3588# endif
3589
3590#define DEF_STAT_INTERVAL 5.0074891
3591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3592#define MIN_STAT_INTERVAL 0.1074891
3593
3594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3595
3596#if EV_USE_INOTIFY
3597
3598/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3600
3601static void noinline
3602infy_add (EV_P_ ev_stat *w)
3603{
3604 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3605
3606 if (w->wd >= 0)
3607 {
3608 struct statfs sfs;
3609
3610 /* now local changes will be tracked by inotify, but remote changes won't */
3611 /* unless the filesystem is known to be local, we therefore still poll */
3612 /* also do poll on <2.6.25, but with normal frequency */
3613
3614 if (!fs_2625)
3615 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616 else if (!statfs (w->path, &sfs)
3617 && (sfs.f_type == 0x1373 /* devfs */
3618 || sfs.f_type == 0xEF53 /* ext2/3 */
3619 || sfs.f_type == 0x3153464a /* jfs */
3620 || sfs.f_type == 0x52654973 /* reiser3 */
3621 || sfs.f_type == 0x01021994 /* tempfs */
3622 || sfs.f_type == 0x58465342 /* xfs */))
3623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624 else
3625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3626 }
3627 else
3628 {
3629 /* can't use inotify, continue to stat */
3630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3631
3632 /* if path is not there, monitor some parent directory for speedup hints */
3633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3634 /* but an efficiency issue only */
3635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3636 {
3637 char path [4096];
3638 strcpy (path, w->path);
3639
3640 do
3641 {
3642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3644
3645 char *pend = strrchr (path, '/');
3646
3647 if (!pend || pend == path)
3648 break;
3649
3650 *pend = 0;
3651 w->wd = inotify_add_watch (fs_fd, path, mask);
3652 }
3653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3654 }
3655 }
3656
3657 if (w->wd >= 0)
3658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659
3660 /* now re-arm timer, if required */
3661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662 ev_timer_again (EV_A_ &w->timer);
3663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3664}
3665
3666static void noinline
3667infy_del (EV_P_ ev_stat *w)
3668{
3669 int slot;
3670 int wd = w->wd;
3671
3672 if (wd < 0)
3673 return;
3674
3675 w->wd = -2;
3676 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3677 wlist_del (&fs_hash [slot].head, (WL)w);
3678
3679 /* remove this watcher, if others are watching it, they will rearm */
3680 inotify_rm_watch (fs_fd, wd);
3681}
3682
3683static void noinline
3684infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3685{
3686 if (slot < 0)
3687 /* overflow, need to check for all hash slots */
3688 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3689 infy_wd (EV_A_ slot, wd, ev);
3690 else
3691 {
3692 WL w_;
3693
3694 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3695 {
3696 ev_stat *w = (ev_stat *)w_;
3697 w_ = w_->next; /* lets us remove this watcher and all before it */
3698
3699 if (w->wd == wd || wd == -1)
3700 {
3701 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3702 {
3703 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3704 w->wd = -1;
3705 infy_add (EV_A_ w); /* re-add, no matter what */
3706 }
3707
3708 stat_timer_cb (EV_A_ &w->timer, 0);
3709 }
3710 }
3711 }
3712}
3713
3714static void
3715infy_cb (EV_P_ ev_io *w, int revents)
3716{
3717 char buf [EV_INOTIFY_BUFSIZE];
3718 int ofs;
3719 int len = read (fs_fd, buf, sizeof (buf));
3720
3721 for (ofs = 0; ofs < len; )
3722 {
3723 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3724 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725 ofs += sizeof (struct inotify_event) + ev->len;
3726 }
3727}
3728
3729inline_size void ecb_cold
3730ev_check_2625 (EV_P)
3731{
3732 /* kernels < 2.6.25 are borked
3733 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734 */
3735 if (ev_linux_version () < 0x020619)
3736 return;
3737
3738 fs_2625 = 1;
3739}
3740
3741inline_size int
3742infy_newfd (void)
3743{
3744#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746 if (fd >= 0)
3747 return fd;
3748#endif
3749 return inotify_init ();
3750}
3751
3752inline_size void
3753infy_init (EV_P)
3754{
3755 if (fs_fd != -2)
3756 return;
3757
3758 fs_fd = -1;
3759
3760 ev_check_2625 (EV_A);
3761
3762 fs_fd = infy_newfd ();
3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3768 ev_set_priority (&fs_w, EV_MAXPRI);
3769 ev_io_start (EV_A_ &fs_w);
3770 ev_unref (EV_A);
3771 }
3772}
3773
3774inline_size void
3775infy_fork (EV_P)
3776{
3777 int slot;
3778
3779 if (fs_fd < 0)
3780 return;
3781
3782 ev_ref (EV_A);
3783 ev_io_stop (EV_A_ &fs_w);
3784 close (fs_fd);
3785 fs_fd = infy_newfd ();
3786
3787 if (fs_fd >= 0)
3788 {
3789 fd_intern (fs_fd);
3790 ev_io_set (&fs_w, fs_fd, EV_READ);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794
3795 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3796 {
3797 WL w_ = fs_hash [slot].head;
3798 fs_hash [slot].head = 0;
3799
3800 while (w_)
3801 {
3802 ev_stat *w = (ev_stat *)w_;
3803 w_ = w_->next; /* lets us add this watcher */
3804
3805 w->wd = -1;
3806
3807 if (fs_fd >= 0)
3808 infy_add (EV_A_ w); /* re-add, no matter what */
3809 else
3810 {
3811 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3813 ev_timer_again (EV_A_ &w->timer);
3814 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815 }
3816 }
3817 }
3818}
3819
3820#endif
3821
3822#ifdef _WIN32
3823# define EV_LSTAT(p,b) _stati64 (p, b)
3824#else
3825# define EV_LSTAT(p,b) lstat (p, b)
3826#endif
1584 3827
1585void 3828void
1586ev_check_start (EV_P_ struct ev_check *w) 3829ev_stat_stat (EV_P_ ev_stat *w)
3830{
3831 if (lstat (w->path, &w->attr) < 0)
3832 w->attr.st_nlink = 0;
3833 else if (!w->attr.st_nlink)
3834 w->attr.st_nlink = 1;
3835}
3836
3837static void noinline
3838stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3839{
3840 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3841
3842 ev_statdata prev = w->attr;
3843 ev_stat_stat (EV_A_ w);
3844
3845 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3846 if (
3847 prev.st_dev != w->attr.st_dev
3848 || prev.st_ino != w->attr.st_ino
3849 || prev.st_mode != w->attr.st_mode
3850 || prev.st_nlink != w->attr.st_nlink
3851 || prev.st_uid != w->attr.st_uid
3852 || prev.st_gid != w->attr.st_gid
3853 || prev.st_rdev != w->attr.st_rdev
3854 || prev.st_size != w->attr.st_size
3855 || prev.st_atime != w->attr.st_atime
3856 || prev.st_mtime != w->attr.st_mtime
3857 || prev.st_ctime != w->attr.st_ctime
3858 ) {
3859 /* we only update w->prev on actual differences */
3860 /* in case we test more often than invoke the callback, */
3861 /* to ensure that prev is always different to attr */
3862 w->prev = prev;
3863
3864 #if EV_USE_INOTIFY
3865 if (fs_fd >= 0)
3866 {
3867 infy_del (EV_A_ w);
3868 infy_add (EV_A_ w);
3869 ev_stat_stat (EV_A_ w); /* avoid race... */
3870 }
3871 #endif
3872
3873 ev_feed_event (EV_A_ w, EV_STAT);
3874 }
3875}
3876
3877void
3878ev_stat_start (EV_P_ ev_stat *w)
1587{ 3879{
1588 if (expect_false (ev_is_active (w))) 3880 if (expect_false (ev_is_active (w)))
1589 return; 3881 return;
1590 3882
3883 ev_stat_stat (EV_A_ w);
3884
3885 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3886 w->interval = MIN_STAT_INTERVAL;
3887
3888 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3889 ev_set_priority (&w->timer, ev_priority (w));
3890
3891#if EV_USE_INOTIFY
3892 infy_init (EV_A);
3893
3894 if (fs_fd >= 0)
3895 infy_add (EV_A_ w);
3896 else
3897#endif
3898 {
3899 ev_timer_again (EV_A_ &w->timer);
3900 ev_unref (EV_A);
3901 }
3902
1591 ev_start (EV_A_ (W)w, ++checkcnt); 3903 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2); 3904
1593 checks [checkcnt - 1] = w; 3905 EV_FREQUENT_CHECK;
1594} 3906}
1595 3907
1596void 3908void
1597ev_check_stop (EV_P_ struct ev_check *w) 3909ev_stat_stop (EV_P_ ev_stat *w)
1598{ 3910{
1599 ev_clear_pending (EV_A_ (W)w); 3911 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 3912 if (expect_false (!ev_is_active (w)))
1601 return; 3913 return;
1602 3914
1603 checks [((W)w)->active - 1] = checks [--checkcnt]; 3915 EV_FREQUENT_CHECK;
3916
3917#if EV_USE_INOTIFY
3918 infy_del (EV_A_ w);
3919#endif
3920
3921 if (ev_is_active (&w->timer))
3922 {
3923 ev_ref (EV_A);
3924 ev_timer_stop (EV_A_ &w->timer);
3925 }
3926
1604 ev_stop (EV_A_ (W)w); 3927 ev_stop (EV_A_ (W)w);
1605}
1606 3928
1607#ifndef SA_RESTART 3929 EV_FREQUENT_CHECK;
1608# define SA_RESTART 0 3930}
1609#endif 3931#endif
1610 3932
3933#if EV_IDLE_ENABLE
1611void 3934void
1612ev_signal_start (EV_P_ struct ev_signal *w) 3935ev_idle_start (EV_P_ ev_idle *w)
1613{ 3936{
1614#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif
1617 if (expect_false (ev_is_active (w))) 3937 if (expect_false (ev_is_active (w)))
1618 return; 3938 return;
1619 3939
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3940 pri_adjust (EV_A_ (W)w);
1621 3941
3942 EV_FREQUENT_CHECK;
3943
3944 {
3945 int active = ++idlecnt [ABSPRI (w)];
3946
3947 ++idleall;
1622 ev_start (EV_A_ (W)w, 1); 3948 ev_start (EV_A_ (W)w, active);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1625 3949
1626 if (!((WL)w)->next) 3950 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1627 { 3951 idles [ABSPRI (w)][active - 1] = w;
1628#if _WIN32
1629 signal (w->signum, sighandler);
1630#else
1631 struct sigaction sa;
1632 sa.sa_handler = sighandler;
1633 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0);
1636#endif
1637 } 3952 }
3953
3954 EV_FREQUENT_CHECK;
1638} 3955}
1639 3956
1640void 3957void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 3958ev_idle_stop (EV_P_ ev_idle *w)
1642{ 3959{
1643 ev_clear_pending (EV_A_ (W)w); 3960 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 3961 if (expect_false (!ev_is_active (w)))
1645 return; 3962 return;
1646 3963
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3964 EV_FREQUENT_CHECK;
3965
3966 {
3967 int active = ev_active (w);
3968
3969 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3970 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3971
1648 ev_stop (EV_A_ (W)w); 3972 ev_stop (EV_A_ (W)w);
3973 --idleall;
3974 }
1649 3975
1650 if (!signals [w->signum - 1].head) 3976 EV_FREQUENT_CHECK;
1651 signal (w->signum, SIG_DFL);
1652} 3977}
3978#endif
1653 3979
3980#if EV_PREPARE_ENABLE
1654void 3981void
1655ev_child_start (EV_P_ struct ev_child *w) 3982ev_prepare_start (EV_P_ ev_prepare *w)
1656{ 3983{
1657#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif
1660 if (expect_false (ev_is_active (w))) 3984 if (expect_false (ev_is_active (w)))
1661 return; 3985 return;
1662 3986
3987 EV_FREQUENT_CHECK;
3988
1663 ev_start (EV_A_ (W)w, 1); 3989 ev_start (EV_A_ (W)w, ++preparecnt);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3990 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3991 prepares [preparecnt - 1] = w;
3992
3993 EV_FREQUENT_CHECK;
1665} 3994}
1666 3995
1667void 3996void
1668ev_child_stop (EV_P_ struct ev_child *w) 3997ev_prepare_stop (EV_P_ ev_prepare *w)
1669{ 3998{
1670 ev_clear_pending (EV_A_ (W)w); 3999 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 4000 if (expect_false (!ev_is_active (w)))
1672 return; 4001 return;
1673 4002
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4003 EV_FREQUENT_CHECK;
4004
4005 {
4006 int active = ev_active (w);
4007
4008 prepares [active - 1] = prepares [--preparecnt];
4009 ev_active (prepares [active - 1]) = active;
4010 }
4011
1675 ev_stop (EV_A_ (W)w); 4012 ev_stop (EV_A_ (W)w);
1676}
1677 4013
1678#if EV_MULTIPLICITY 4014 EV_FREQUENT_CHECK;
1679static void
1680embed_cb (EV_P_ struct ev_io *io, int revents)
1681{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1683
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 4015}
4016#endif
1687 4017
4018#if EV_CHECK_ENABLE
1688void 4019void
1689ev_embed_start (EV_P_ struct ev_embed *w) 4020ev_check_start (EV_P_ ev_check *w)
1690{ 4021{
1691 if (expect_false (ev_is_active (w))) 4022 if (expect_false (ev_is_active (w)))
1692 return; 4023 return;
1693 4024
1694 { 4025 EV_FREQUENT_CHECK;
1695 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 }
1699 4026
1700 ev_io_start (EV_A_ &w->io);
1701 ev_start (EV_A_ (W)w, 1); 4027 ev_start (EV_A_ (W)w, ++checkcnt);
4028 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4029 checks [checkcnt - 1] = w;
4030
4031 EV_FREQUENT_CHECK;
1702} 4032}
1703 4033
1704void 4034void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 4035ev_check_stop (EV_P_ ev_check *w)
1706{ 4036{
1707 ev_clear_pending (EV_A_ (W)w); 4037 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 4038 if (expect_false (!ev_is_active (w)))
1709 return; 4039 return;
1710 4040
1711 ev_io_stop (EV_A_ &w->io); 4041 EV_FREQUENT_CHECK;
4042
4043 {
4044 int active = ev_active (w);
4045
4046 checks [active - 1] = checks [--checkcnt];
4047 ev_active (checks [active - 1]) = active;
4048 }
4049
1712 ev_stop (EV_A_ (W)w); 4050 ev_stop (EV_A_ (W)w);
4051
4052 EV_FREQUENT_CHECK;
4053}
4054#endif
4055
4056#if EV_EMBED_ENABLE
4057void noinline
4058ev_embed_sweep (EV_P_ ev_embed *w)
4059{
4060 ev_run (w->other, EVRUN_NOWAIT);
4061}
4062
4063static void
4064embed_io_cb (EV_P_ ev_io *io, int revents)
4065{
4066 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4067
4068 if (ev_cb (w))
4069 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4070 else
4071 ev_run (w->other, EVRUN_NOWAIT);
4072}
4073
4074static void
4075embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4076{
4077 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4078
4079 {
4080 EV_P = w->other;
4081
4082 while (fdchangecnt)
4083 {
4084 fd_reify (EV_A);
4085 ev_run (EV_A_ EVRUN_NOWAIT);
4086 }
4087 }
4088}
4089
4090static void
4091embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092{
4093 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094
4095 ev_embed_stop (EV_A_ w);
4096
4097 {
4098 EV_P = w->other;
4099
4100 ev_loop_fork (EV_A);
4101 ev_run (EV_A_ EVRUN_NOWAIT);
4102 }
4103
4104 ev_embed_start (EV_A_ w);
4105}
4106
4107#if 0
4108static void
4109embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4110{
4111 ev_idle_stop (EV_A_ idle);
4112}
4113#endif
4114
4115void
4116ev_embed_start (EV_P_ ev_embed *w)
4117{
4118 if (expect_false (ev_is_active (w)))
4119 return;
4120
4121 {
4122 EV_P = w->other;
4123 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4124 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4125 }
4126
4127 EV_FREQUENT_CHECK;
4128
4129 ev_set_priority (&w->io, ev_priority (w));
4130 ev_io_start (EV_A_ &w->io);
4131
4132 ev_prepare_init (&w->prepare, embed_prepare_cb);
4133 ev_set_priority (&w->prepare, EV_MINPRI);
4134 ev_prepare_start (EV_A_ &w->prepare);
4135
4136 ev_fork_init (&w->fork, embed_fork_cb);
4137 ev_fork_start (EV_A_ &w->fork);
4138
4139 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4140
4141 ev_start (EV_A_ (W)w, 1);
4142
4143 EV_FREQUENT_CHECK;
4144}
4145
4146void
4147ev_embed_stop (EV_P_ ev_embed *w)
4148{
4149 clear_pending (EV_A_ (W)w);
4150 if (expect_false (!ev_is_active (w)))
4151 return;
4152
4153 EV_FREQUENT_CHECK;
4154
4155 ev_io_stop (EV_A_ &w->io);
4156 ev_prepare_stop (EV_A_ &w->prepare);
4157 ev_fork_stop (EV_A_ &w->fork);
4158
4159 ev_stop (EV_A_ (W)w);
4160
4161 EV_FREQUENT_CHECK;
4162}
4163#endif
4164
4165#if EV_FORK_ENABLE
4166void
4167ev_fork_start (EV_P_ ev_fork *w)
4168{
4169 if (expect_false (ev_is_active (w)))
4170 return;
4171
4172 EV_FREQUENT_CHECK;
4173
4174 ev_start (EV_A_ (W)w, ++forkcnt);
4175 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4176 forks [forkcnt - 1] = w;
4177
4178 EV_FREQUENT_CHECK;
4179}
4180
4181void
4182ev_fork_stop (EV_P_ ev_fork *w)
4183{
4184 clear_pending (EV_A_ (W)w);
4185 if (expect_false (!ev_is_active (w)))
4186 return;
4187
4188 EV_FREQUENT_CHECK;
4189
4190 {
4191 int active = ev_active (w);
4192
4193 forks [active - 1] = forks [--forkcnt];
4194 ev_active (forks [active - 1]) = active;
4195 }
4196
4197 ev_stop (EV_A_ (W)w);
4198
4199 EV_FREQUENT_CHECK;
4200}
4201#endif
4202
4203#if EV_CLEANUP_ENABLE
4204void
4205ev_cleanup_start (EV_P_ ev_cleanup *w)
4206{
4207 if (expect_false (ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 ev_start (EV_A_ (W)w, ++cleanupcnt);
4213 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214 cleanups [cleanupcnt - 1] = w;
4215
4216 /* cleanup watchers should never keep a refcount on the loop */
4217 ev_unref (EV_A);
4218 EV_FREQUENT_CHECK;
4219}
4220
4221void
4222ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223{
4224 clear_pending (EV_A_ (W)w);
4225 if (expect_false (!ev_is_active (w)))
4226 return;
4227
4228 EV_FREQUENT_CHECK;
4229 ev_ref (EV_A);
4230
4231 {
4232 int active = ev_active (w);
4233
4234 cleanups [active - 1] = cleanups [--cleanupcnt];
4235 ev_active (cleanups [active - 1]) = active;
4236 }
4237
4238 ev_stop (EV_A_ (W)w);
4239
4240 EV_FREQUENT_CHECK;
4241}
4242#endif
4243
4244#if EV_ASYNC_ENABLE
4245void
4246ev_async_start (EV_P_ ev_async *w)
4247{
4248 if (expect_false (ev_is_active (w)))
4249 return;
4250
4251 w->sent = 0;
4252
4253 evpipe_init (EV_A);
4254
4255 EV_FREQUENT_CHECK;
4256
4257 ev_start (EV_A_ (W)w, ++asynccnt);
4258 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4259 asyncs [asynccnt - 1] = w;
4260
4261 EV_FREQUENT_CHECK;
4262}
4263
4264void
4265ev_async_stop (EV_P_ ev_async *w)
4266{
4267 clear_pending (EV_A_ (W)w);
4268 if (expect_false (!ev_is_active (w)))
4269 return;
4270
4271 EV_FREQUENT_CHECK;
4272
4273 {
4274 int active = ev_active (w);
4275
4276 asyncs [active - 1] = asyncs [--asynccnt];
4277 ev_active (asyncs [active - 1]) = active;
4278 }
4279
4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
4283}
4284
4285void
4286ev_async_send (EV_P_ ev_async *w)
4287{
4288 w->sent = 1;
4289 evpipe_write (EV_A_ &async_pending);
1713} 4290}
1714#endif 4291#endif
1715 4292
1716/*****************************************************************************/ 4293/*****************************************************************************/
1717 4294
1718struct ev_once 4295struct ev_once
1719{ 4296{
1720 struct ev_io io; 4297 ev_io io;
1721 struct ev_timer to; 4298 ev_timer to;
1722 void (*cb)(int revents, void *arg); 4299 void (*cb)(int revents, void *arg);
1723 void *arg; 4300 void *arg;
1724}; 4301};
1725 4302
1726static void 4303static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 4304once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 4305{
1729 void (*cb)(int revents, void *arg) = once->cb; 4306 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 4307 void *arg = once->arg;
1731 4308
1732 ev_io_stop (EV_A_ &once->io); 4309 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 4310 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 4311 ev_free (once);
1735 4312
1736 cb (revents, arg); 4313 cb (revents, arg);
1737} 4314}
1738 4315
1739static void 4316static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 4317once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 4318{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4319 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320
4321 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 4322}
1744 4323
1745static void 4324static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 4325once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 4326{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4327 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328
4329 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 4330}
1750 4331
1751void 4332void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1753{ 4334{
1754 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4335 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1755 4336
1756 if (expect_false (!once)) 4337 if (expect_false (!once))
1757 { 4338 {
1758 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4339 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1759 return; 4340 return;
1760 } 4341 }
1761 4342
1762 once->cb = cb; 4343 once->cb = cb;
1763 once->arg = arg; 4344 once->arg = arg;
1775 ev_timer_set (&once->to, timeout, 0.); 4356 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 4357 ev_timer_start (EV_A_ &once->to);
1777 } 4358 }
1778} 4359}
1779 4360
1780#ifdef __cplusplus 4361/*****************************************************************************/
1781} 4362
4363#if EV_WALK_ENABLE
4364void ecb_cold
4365ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366{
4367 int i, j;
4368 ev_watcher_list *wl, *wn;
4369
4370 if (types & (EV_IO | EV_EMBED))
4371 for (i = 0; i < anfdmax; ++i)
4372 for (wl = anfds [i].head; wl; )
4373 {
4374 wn = wl->next;
4375
4376#if EV_EMBED_ENABLE
4377 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378 {
4379 if (types & EV_EMBED)
4380 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381 }
4382 else
4383#endif
4384#if EV_USE_INOTIFY
4385 if (ev_cb ((ev_io *)wl) == infy_cb)
4386 ;
4387 else
4388#endif
4389 if ((ev_io *)wl != &pipe_w)
4390 if (types & EV_IO)
4391 cb (EV_A_ EV_IO, wl);
4392
4393 wl = wn;
4394 }
4395
4396 if (types & (EV_TIMER | EV_STAT))
4397 for (i = timercnt + HEAP0; i-- > HEAP0; )
4398#if EV_STAT_ENABLE
4399 /*TODO: timer is not always active*/
4400 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4401 {
4402 if (types & EV_STAT)
4403 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4404 }
4405 else
4406#endif
4407 if (types & EV_TIMER)
4408 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4409
4410#if EV_PERIODIC_ENABLE
4411 if (types & EV_PERIODIC)
4412 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414#endif
4415
4416#if EV_IDLE_ENABLE
4417 if (types & EV_IDLE)
4418 for (j = NUMPRI; j--; )
4419 for (i = idlecnt [j]; i--; )
4420 cb (EV_A_ EV_IDLE, idles [j][i]);
4421#endif
4422
4423#if EV_FORK_ENABLE
4424 if (types & EV_FORK)
4425 for (i = forkcnt; i--; )
4426 if (ev_cb (forks [i]) != embed_fork_cb)
4427 cb (EV_A_ EV_FORK, forks [i]);
4428#endif
4429
4430#if EV_ASYNC_ENABLE
4431 if (types & EV_ASYNC)
4432 for (i = asynccnt; i--; )
4433 cb (EV_A_ EV_ASYNC, asyncs [i]);
4434#endif
4435
4436#if EV_PREPARE_ENABLE
4437 if (types & EV_PREPARE)
4438 for (i = preparecnt; i--; )
4439# if EV_EMBED_ENABLE
4440 if (ev_cb (prepares [i]) != embed_prepare_cb)
1782#endif 4441# endif
4442 cb (EV_A_ EV_PREPARE, prepares [i]);
4443#endif
1783 4444
4445#if EV_CHECK_ENABLE
4446 if (types & EV_CHECK)
4447 for (i = checkcnt; i--; )
4448 cb (EV_A_ EV_CHECK, checks [i]);
4449#endif
4450
4451#if EV_SIGNAL_ENABLE
4452 if (types & EV_SIGNAL)
4453 for (i = 0; i < EV_NSIG - 1; ++i)
4454 for (wl = signals [i].head; wl; )
4455 {
4456 wn = wl->next;
4457 cb (EV_A_ EV_SIGNAL, wl);
4458 wl = wn;
4459 }
4460#endif
4461
4462#if EV_CHILD_ENABLE
4463 if (types & EV_CHILD)
4464 for (i = (EV_PID_HASHSIZE); i--; )
4465 for (wl = childs [i]; wl; )
4466 {
4467 wn = wl->next;
4468 cb (EV_A_ EV_CHILD, wl);
4469 wl = wn;
4470 }
4471#endif
4472/* EV_STAT 0x00001000 /* stat data changed */
4473/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474}
4475#endif
4476
4477#if EV_MULTIPLICITY
4478 #include "ev_wrap.h"
4479#endif
4480

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines