ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.535 by sf-exg, Mon May 17 15:41:10 2021 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
91# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
92# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
97# endif 136# endif
98 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
99#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
100 155
101#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
102#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
103#include <fcntl.h> 206#include <fcntl.h>
104#include <stddef.h> 207#include <stddef.h>
105 208
106#include <stdio.h> 209#include <stdio.h>
107 210
108#include <assert.h> 211#include <assert.h>
109#include <errno.h> 212#include <errno.h>
110#include <sys/types.h> 213#include <sys/types.h>
111#include <time.h> 214#include <time.h>
215#include <limits.h>
112 216
113#include <signal.h> 217#include <signal.h>
114 218
219#ifdef EV_H
220# include EV_H
221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
235
115#ifndef _WIN32 236#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 237# include <sys/time.h>
118# include <sys/wait.h> 238# include <sys/wait.h>
239# include <unistd.h>
119#else 240#else
241# include <io.h>
120# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
121# include <windows.h> 244# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
124# endif 247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
125#endif 287# endif
288#endif
126 289
127/**/ 290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
128 298
129#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
130# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
304# endif
131#endif 305#endif
132 306
133#ifndef EV_USE_REALTIME 307#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
310
311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
135#endif 317#endif
136 318
137#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 321#endif
140 322
141#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
142# ifdef _WIN32 324# ifdef _WIN32
143# define EV_USE_POLL 0 325# define EV_USE_POLL 0
144# else 326# else
145# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 328# endif
147#endif 329#endif
148 330
149#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
150# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
336# endif
151#endif 337#endif
152 338
153#ifndef EV_USE_KQUEUE 339#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 340# define EV_USE_KQUEUE 0
155#endif 341#endif
156 342
157#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 344# define EV_USE_PORT 0
159#endif 345#endif
160 346
161/**/ 347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
371#ifndef EV_PID_HASHSIZE
372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
382# else
383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
449# endif
450#endif
451
452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 453
163#ifndef CLOCK_MONOTONIC 454#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 455# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 456# define EV_USE_MONOTONIC 0
166#endif 457#endif
168#ifndef CLOCK_REALTIME 459#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 460# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 461# define EV_USE_REALTIME 0
171#endif 462#endif
172 463
173#if EV_SELECT_IS_WINSOCKET 464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
468
469#if __linux && EV_USE_IOURING
174# include <winsock.h> 470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
175#endif 474# endif
475#endif
176 476
177/**/ 477#if !EV_USE_NANOSLEEP
478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
480# include <sys/select.h>
481# endif
482#endif
178 483
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 484#if EV_USE_LINUXAIO
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 485# include <sys/syscall.h>
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
183 493
184#ifdef EV_H 494#if EV_USE_IOURING
185# include EV_H 495# include <sys/syscall.h>
496# if !SYS_io_uring_register && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_register 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
509#if EV_USE_INOTIFY
510# include <sys/statfs.h>
511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
518
519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
566
567/*****************************************************************************/
568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
186#else 571#else
187# include "ev.h" 572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#if defined (_WIN32) && !defined (__MINGW32__)
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
667 #if __GNUC__
668 typedef signed long long int64_t;
669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
188#endif 673 #endif
189 674 typedef int64_t int_fast64_t;
190#if __GNUC__ >= 3 675 typedef uint64_t uint_fast64_t;
191# define expect(expr,value) __builtin_expect ((expr),(value)) 676 #ifdef _WIN64
192# define inline static inline 677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
193#else 685#else
686 #include <inttypes.h>
687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 #define ECB_PTRSIZE 8
689 #else
690 #define ECB_PTRSIZE 4
691 #endif
692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
702 #endif
703#endif
704
705/* work around x32 idiocy by defining proper macros */
706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
713
714/* many compilers define _GNUC_ to some versions but then only implement
715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
194# define expect(expr,value) (expr) 978 #define ecb_expect(expr,value) (expr)
195# define inline static
196#endif 979#endif
197 980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
200 1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
1776#endif
1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
203 1851
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206 1853
207typedef struct ev_watcher *W; 1854typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
210 1857
1858#define ev_active(w) ((W)(w))->active
1859#define ev_at(w) ((WT)(w))->at
1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
1867#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
1879#endif
212 1880
213#ifdef _WIN32 1881#ifdef _WIN32
214# include "ev_win32.c" 1882# include "ev_win32.c"
215#endif 1883#endif
216 1884
217/*****************************************************************************/ 1885/*****************************************************************************/
218 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
219static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
220 1993
1994ecb_cold
1995void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
222{ 1997{
223 syserr_cb = cb; 1998 syserr_cb = cb;
224} 1999}
225 2000
2001ecb_noinline ecb_cold
226static void 2002static void
227syserr (const char *msg) 2003ev_syserr (const char *msg)
228{ 2004{
229 if (!msg) 2005 if (!msg)
230 msg = "(libev) system error"; 2006 msg = "(libev) system error";
231 2007
232 if (syserr_cb) 2008 if (syserr_cb)
233 syserr_cb (msg); 2009 syserr_cb (msg);
234 else 2010 else
235 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
236 perror (msg); 2018 perror (msg);
2019#endif
237 abort (); 2020 abort ();
238 } 2021 }
239} 2022}
240 2023
241static void *(*alloc)(void *ptr, long size); 2024static void *
2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026{
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
242 2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039}
2040
2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042
2043ecb_cold
2044void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
244{ 2046{
245 alloc = cb; 2047 alloc = cb;
246} 2048}
247 2049
248static void * 2050inline_speed void *
249ev_realloc (void *ptr, long size) 2051ev_realloc (void *ptr, long size)
250{ 2052{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 2053 ptr = alloc (ptr, size);
252 2054
253 if (!ptr && size) 2055 if (!ptr && size)
254 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
256 abort (); 2062 abort ();
257 } 2063 }
258 2064
259 return ptr; 2065 return ptr;
260} 2066}
262#define ev_malloc(size) ev_realloc (0, (size)) 2068#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 2069#define ev_free(ptr) ev_realloc ((ptr), 0)
264 2070
265/*****************************************************************************/ 2071/*****************************************************************************/
266 2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
267typedef struct 2077typedef struct
268{ 2078{
269 WL head; 2079 WL head;
270 unsigned char events; 2080 unsigned char events; /* the events watched for */
271 unsigned char reify; 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
272#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 2088 SOCKET handle;
274#endif 2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
275} ANFD; 2093} ANFD;
276 2094
2095/* stores the pending event set for a given watcher */
277typedef struct 2096typedef struct
278{ 2097{
279 W w; 2098 W w;
280 int events; 2099 int events; /* the pending event set for the given watcher */
281} ANPENDING; 2100} ANPENDING;
2101
2102#if EV_USE_INOTIFY
2103/* hash table entry per inotify-id */
2104typedef struct
2105{
2106 WL head;
2107} ANFS;
2108#endif
2109
2110/* Heap Entry */
2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121#else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
2128#endif
282 2129
283#if EV_MULTIPLICITY 2130#if EV_MULTIPLICITY
284 2131
285 struct ev_loop 2132 struct ev_loop
286 { 2133 {
291 #undef VAR 2138 #undef VAR
292 }; 2139 };
293 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
294 2141
295 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 2144
298#else 2145#else
299 2146
300 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 2149 #include "ev_vars.h"
303 #undef VAR 2150 #undef VAR
304 2151
305 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
306 2153
307#endif 2154#endif
308 2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
309/*****************************************************************************/ 2168/*****************************************************************************/
310 2169
2170#ifndef EV_HAVE_EV_TIME
311ev_tstamp 2171ev_tstamp
312ev_time (void) 2172ev_time (void) EV_NOEXCEPT
313{ 2173{
314#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
315 struct timespec ts; 2177 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
318#else 2180 }
2181#endif
2182
2183 {
319 struct timeval tv; 2184 struct timeval tv;
320 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
322#endif 2187 }
323} 2188}
2189#endif
324 2190
325inline ev_tstamp 2191inline_size ev_tstamp
326get_clock (void) 2192get_clock (void)
327{ 2193{
328#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
330 { 2196 {
331 struct timespec ts; 2197 struct timespec ts;
332 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
333 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
334 } 2200 }
335#endif 2201#endif
336 2202
337 return ev_time (); 2203 return ev_time ();
338} 2204}
339 2205
340#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
341ev_tstamp 2207ev_tstamp
342ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
343{ 2209{
344 return ev_rt_now; 2210 return ev_rt_now;
345} 2211}
346#endif 2212#endif
347 2213
348#define array_roundsize(type,n) (((n) | 4) & ~3) 2214void
2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2216{
2217 if (delay > EV_TS_CONST (0.))
2218 {
2219#if EV_USE_NANOSLEEP
2220 struct timespec ts;
2221
2222 EV_TS_SET (ts, delay);
2223 nanosleep (&ts, 0);
2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228#else
2229 struct timeval tv;
2230
2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 /* something not guaranteed by newer posix versions, but guaranteed */
2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
2235 select (0, 0, 0, 0, &tv);
2236#endif
2237 }
2238}
2239
2240/*****************************************************************************/
2241
2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2243
2244/* find a suitable new size for the given array, */
2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
2247array_nextsize (int elem, int cur, int cnt)
2248{
2249 int ncur = cur + 1;
2250
2251 do
2252 ncur <<= 1;
2253 while (cnt > ncur);
2254
2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 {
2258 ncur *= elem;
2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 ncur = ncur - sizeof (void *) * 4;
2261 ncur /= elem;
2262 }
2263
2264 return ncur;
2265}
2266
2267ecb_noinline ecb_cold
2268static void *
2269array_realloc (int elem, void *base, int *cur, int cnt)
2270{
2271 *cur = array_nextsize (elem, *cur, cnt);
2272 return ev_realloc (base, elem * *cur);
2273}
2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
349 2279
350#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
352 { \ 2282 { \
353 int newcnt = cur; \ 2283 ecb_unused int ocur_ = (cur); \
354 do \ 2284 (base) = (type *)array_realloc \
355 { \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 2287 }
364 2288
2289#if 0
365#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 2292 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2293 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 2296 }
2297#endif
372 2298
373#define array_free(stem, idx) \ 2299#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 2301
376/*****************************************************************************/ 2302/*****************************************************************************/
377 2303
2304/* dummy callback for pending events */
2305ecb_noinline
378static void 2306static void
379anfds_init (ANFD *base, int count) 2307pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 2308{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 2309}
390 2310
2311ecb_noinline
391void 2312void
392ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
393{ 2314{
394 W w_ = (W)w; 2315 W w_ = (W)w;
2316 int pri = ABSPRI (w_);
395 2317
396 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
2319 pendings [pri][w_->pending - 1].events |= revents;
2320 else
397 { 2321 {
2322 w_->pending = ++pendingcnt [pri];
2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2324 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2325 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 2326 }
401 2327
402 if (expect_false (!w_->cb)) 2328 pendingpri = NUMPRI - 1;
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 2329}
410 2330
411static void 2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 2348{
414 int i; 2349 int i;
415 2350
416 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
418} 2353}
419 2354
2355/*****************************************************************************/
2356
420inline void 2357inline_speed void
421fd_event (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
422{ 2359{
423 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 2361 ev_io *w;
425 2362
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 2364 {
428 int ev = w->events & revents; 2365 int ev = w->events & revents;
429 2366
430 if (ev) 2367 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
432 } 2369 }
433} 2370}
434 2371
2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
2378
2379 if (ecb_expect_true (!anfd->reify))
2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
2382
435void 2383void
436ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
437{ 2385{
2386 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
439} 2388}
440 2389
441/*****************************************************************************/ 2390/* make sure the external fd watch events are in-sync */
442 2391/* with the kernel/libev internal state */
443inline void 2392inline_size void
444fd_reify (EV_P) 2393fd_reify (EV_P)
445{ 2394{
446 int i; 2395 int i;
447 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
448 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
449 { 2411 {
450 int fd = fdchanges [i]; 2412 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 2413 ANFD *anfd = anfds + fd;
452 struct ev_io *w;
453 2414
454 int events = 0; 2415 if (anfd->reify & EV__IOFDSET && anfd->head)
455
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
457 events |= w->events;
458
459#if EV_SELECT_IS_WINSOCKET
460 if (events)
461 { 2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
462 unsigned long argp; 2421 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 2422
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
465 } 2430 }
2431 }
466#endif 2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
2435 {
2436 int fd = fdchanges [i];
2437 ANFD *anfd = anfds + fd;
2438 ev_io *w;
2439
2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
467 2442
468 anfd->reify = 0; 2443 anfd->reify = 0;
469 2444
2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2446 {
2447 anfd->events = 0;
2448
2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
2454 }
2455
2456 if (o_reify & EV__IOFDSET)
470 backend_modify (EV_A_ fd, anfd->events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
471 anfd->events = events;
472 } 2458 }
473 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
474 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
475} 2468}
476 2469
477static void 2470/* something about the given fd changed */
2471inline_size
2472void
478fd_change (EV_P_ int fd) 2473fd_change (EV_P_ int fd, int flags)
479{ 2474{
480 if (expect_false (anfds [fd].reify)) 2475 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 2476 anfds [fd].reify = reify | flags;
484 2477
2478 if (ecb_expect_true (!reify))
2479 {
485 ++fdchangecnt; 2480 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
487 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
2483 }
488} 2484}
489 2485
490static void 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
491fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
492{ 2489{
493 struct ev_io *w; 2490 ev_io *w;
494 2491
495 while ((w = (struct ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
496 { 2493 {
497 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 2496 }
500} 2497}
501 2498
502inline int 2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
503fd_valid (int fd) 2501fd_valid (int fd)
504{ 2502{
505#ifdef _WIN32 2503#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
507#else 2505#else
508 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
509#endif 2507#endif
510} 2508}
511 2509
512/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
2511ecb_noinline ecb_cold
513static void 2512static void
514fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
515{ 2514{
516 int fd; 2515 int fd;
517 2516
518 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 2518 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
522} 2521}
523 2522
524/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
2524ecb_noinline ecb_cold
525static void 2525static void
526fd_enomem (EV_P) 2526fd_enomem (EV_P)
527{ 2527{
528 int fd; 2528 int fd;
529 2529
530 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 2531 if (anfds [fd].events)
532 { 2532 {
533 fd_kill (EV_A_ fd); 2533 fd_kill (EV_A_ fd);
534 return; 2534 break;
535 } 2535 }
536} 2536}
537 2537
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
2539ecb_noinline
539static void 2540static void
540fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
541{ 2542{
542 int fd; 2543 int fd;
543 2544
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 2546 if (anfds [fd].events)
547 { 2547 {
548 anfds [fd].events = 0; 2548 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 2549 anfds [fd].emask = 0;
2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 2551 }
551} 2552}
552 2553
553/*****************************************************************************/ 2554/* used to prepare libev internal fd's */
554 2555/* this is not fork-safe */
555static void
556upheap (WT *heap, int k)
557{
558 WT w = heap [k];
559
560 while (k && heap [k >> 1]->at > w->at)
561 {
562 heap [k] = heap [k >> 1];
563 ((W)heap [k])->active = k + 1;
564 k >>= 1;
565 }
566
567 heap [k] = w;
568 ((W)heap [k])->active = k + 1;
569
570}
571
572static void
573downheap (WT *heap, int N, int k)
574{
575 WT w = heap [k];
576
577 while (k < (N >> 1))
578 {
579 int j = k << 1;
580
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break;
586
587 heap [k] = heap [j];
588 ((W)heap [k])->active = k + 1;
589 k = j;
590 }
591
592 heap [k] = w;
593 ((W)heap [k])->active = k + 1;
594}
595
596inline void 2556inline_speed void
597adjustheap (WT *heap, int N, int k)
598{
599 upheap (heap, k);
600 downheap (heap, N, k);
601}
602
603/*****************************************************************************/
604
605typedef struct
606{
607 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG;
610
611static ANSIG *signals;
612static int signalmax;
613
614static int sigpipe [2];
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617
618static void
619signals_init (ANSIG *base, int count)
620{
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 2557fd_intern (int fd)
683{ 2558{
684#ifdef _WIN32 2559#ifdef _WIN32
685 int arg = 1; 2560 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
687#else 2562#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 2564 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 2565#endif
691} 2566}
692 2567
2568/*****************************************************************************/
2569
2570/*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
2575
2576/*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582#if EV_USE_4HEAP
2583
2584#define DHEAP 4
2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587#define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589/* away from the root */
2590inline_speed void
2591downheap (ANHE *heap, int N, int k)
2592{
2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
2597 {
2598 ev_tstamp minat;
2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 {
2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 }
2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631}
2632
2633#else /* not 4HEAP */
2634
2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
2638
2639/* away from the root */
2640inline_speed void
2641downheap (ANHE *heap, int N, int k)
2642{
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666}
2667#endif
2668
2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
2693adjustheap (ANHE *heap, int N, int k)
2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711}
2712
2713/*****************************************************************************/
2714
2715/* associate signal watchers to a signal */
2716typedef struct
2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
2722 WL head;
2723} ANSIG;
2724
2725static ANSIG signals [EV_NSIG - 1];
2726
2727/*****************************************************************************/
2728
2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731ecb_noinline ecb_cold
693static void 2732static void
694siginit (EV_P) 2733evpipe_init (EV_P)
695{ 2734{
696 fd_intern (sigpipe [0]); 2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
697 fd_intern (sigpipe [1]); 2769 fd_intern (evpipe [1]);
698 2770
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
700 ev_io_start (EV_A_ &sigev); 2772 ev_io_start (EV_A_ &pipe_w);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
2801#if EV_USE_EVENTFD
2802 if (evpipe [0] < 0)
2803 {
2804 uint64_t counter = 1;
2805 write (evpipe [1], &counter, sizeof (uint64_t));
2806 }
2807 else
2808#endif
2809 {
2810#ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
2819 }
2820
2821 errno = old_errno;
2822 }
2823}
2824
2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
2834#if EV_USE_EVENTFD
2835 if (evpipe [0] < 0)
2836 {
2837 uint64_t counter;
2838 read (evpipe [1], &counter, sizeof (uint64_t));
2839 }
2840 else
2841#endif
2842 {
2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
2863 {
2864 sig_pending = 0;
2865
2866 ECB_MEMORY_FENCE;
2867
2868 for (i = EV_NSIG - 1; i--; )
2869 if (ecb_expect_false (signals [i].pending))
2870 ev_feed_signal_event (EV_A_ i + 1);
2871 }
2872#endif
2873
2874#if EV_ASYNC_ENABLE
2875 if (async_pending)
2876 {
2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
2880
2881 for (i = asynccnt; i--; )
2882 if (asyncs [i]->sent)
2883 {
2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2887 }
2888 }
2889#endif
702} 2890}
703 2891
704/*****************************************************************************/ 2892/*****************************************************************************/
705 2893
706static struct ev_child *childs [PID_HASHSIZE]; 2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
707 2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
2910static void
2911ev_sighandler (int signum)
2912{
708#ifndef _WIN32 2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
709 2916
2917 ev_feed_signal (signum);
2918}
2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
2931#if EV_MULTIPLICITY
2932 /* it is permissible to try to feed a signal to the wrong loop */
2933 /* or, likely more useful, feeding a signal nobody is waiting for */
2934
2935 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 return;
2937#endif
2938
2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
2941
2942 for (w = signals [signum].head; w; w = w->next)
2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944}
2945
2946#if EV_USE_SIGNALFD
2947static void
2948sigfdcb (EV_P_ ev_io *iow, int revents)
2949{
2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2951
2952 for (;;)
2953 {
2954 ssize_t res = read (sigfd, si, sizeof (si));
2955
2956 /* not ISO-C, as res might be -1, but works with SuS */
2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2959
2960 if (res < (ssize_t)sizeof (si))
2961 break;
2962 }
2963}
2964#endif
2965
2966#endif
2967
2968/*****************************************************************************/
2969
2970#if EV_CHILD_ENABLE
2971static WL childs [EV_PID_HASHSIZE];
2972
710static struct ev_signal childev; 2973static ev_signal childev;
2974
2975#ifndef WIFCONTINUED
2976# define WIFCONTINUED(status) 0
2977#endif
2978
2979/* handle a single child status event */
2980inline_speed void
2981child_reap (EV_P_ int chain, int pid, int status)
2982{
2983 ev_child *w;
2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2985
2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 {
2988 if ((w->pid == pid || !w->pid)
2989 && (!traced || (w->flags & 1)))
2990 {
2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2992 w->rpid = pid;
2993 w->rstatus = status;
2994 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2995 }
2996 }
2997}
711 2998
712#ifndef WCONTINUED 2999#ifndef WCONTINUED
713# define WCONTINUED 0 3000# define WCONTINUED 0
714#endif 3001#endif
715 3002
3003/* called on sigchld etc., calls waitpid */
716static void 3004static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 3005childcb (EV_P_ ev_signal *sw, int revents)
718{ 3006{
719 struct ev_child *w; 3007 int pid, status;
720 3008
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 3009 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
722 if (w->pid == pid || !w->pid) 3010 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
723 { 3011 if (!WCONTINUED
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 3012 || errno != EINVAL
725 w->rpid = pid; 3013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
726 w->rstatus = status; 3014 return;
3015
3016 /* make sure we are called again until all children have been reaped */
3017 /* we need to do it this way so that the callback gets called before we continue */
727 ev_feed_event (EV_A_ (W)w, EV_CHILD); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
728 } 3019
3020 child_reap (EV_A_ pid, pid, status);
3021 if ((EV_PID_HASHSIZE) > 1)
3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
729} 3023}
3024
3025#endif
3026
3027/*****************************************************************************/
3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
730 3032
731static void 3033static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 3034timerfdcb (EV_P_ ev_io *iow, int revents)
733{ 3035{
734 int pid, status; 3036 struct itimerspec its = { 0 };
735 3037
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
737 { 3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
738 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 3040
742 child_reap (EV_A_ sw, pid, pid, status); 3041 ev_rt_now = ev_time ();
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
744 } 3073 }
745} 3074}
746 3075
747#endif 3076#endif
748 3077
749/*****************************************************************************/ 3078/*****************************************************************************/
750 3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
751#if EV_USE_PORT 3083#if EV_USE_PORT
752# include "ev_port.c" 3084# include "ev_port.c"
753#endif 3085#endif
754#if EV_USE_KQUEUE 3086#if EV_USE_KQUEUE
755# include "ev_kqueue.c" 3087# include "ev_kqueue.c"
756#endif 3088#endif
757#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
758# include "ev_epoll.c" 3090# include "ev_epoll.c"
759#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
760#if EV_USE_POLL 3098#if EV_USE_POLL
761# include "ev_poll.c" 3099# include "ev_poll.c"
762#endif 3100#endif
763#if EV_USE_SELECT 3101#if EV_USE_SELECT
764# include "ev_select.c" 3102# include "ev_select.c"
765#endif 3103#endif
766 3104
767int 3105ecb_cold int
768ev_version_major (void) 3106ev_version_major (void) EV_NOEXCEPT
769{ 3107{
770 return EV_VERSION_MAJOR; 3108 return EV_VERSION_MAJOR;
771} 3109}
772 3110
773int 3111ecb_cold int
774ev_version_minor (void) 3112ev_version_minor (void) EV_NOEXCEPT
775{ 3113{
776 return EV_VERSION_MINOR; 3114 return EV_VERSION_MINOR;
777} 3115}
778 3116
779/* return true if we are running with elevated privileges and should ignore env variables */ 3117/* return true if we are running with elevated privileges and should ignore env variables */
780static int 3118inline_size ecb_cold int
781enable_secure (void) 3119enable_secure (void)
782{ 3120{
783#ifdef _WIN32 3121#ifdef _WIN32
784 return 0; 3122 return 0;
785#else 3123#else
786 return getuid () != geteuid () 3124 return getuid () != geteuid ()
787 || getgid () != getegid (); 3125 || getgid () != getegid ();
788#endif 3126#endif
789} 3127}
790 3128
3129ecb_cold
791unsigned int 3130unsigned int
792ev_supported_backends (void) 3131ev_supported_backends (void) EV_NOEXCEPT
793{ 3132{
794 unsigned int flags = 0; 3133 unsigned int flags = 0;
795 3134
796 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
797 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
798 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
799 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
800 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
801 3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
802 return flags; 3143 return flags;
803} 3144}
804 3145
3146ecb_cold
805unsigned int 3147unsigned int
806ev_recommended_backends (void) 3148ev_recommended_backends (void) EV_NOEXCEPT
807{ 3149{
808 unsigned int flags = ev_supported_backends (); 3150 unsigned int flags = ev_supported_backends ();
809 3151
810#ifndef __NetBSD__ 3152#ifndef __NetBSD__
811 /* kqueue is borked on everything but netbsd apparently */ 3153 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 3154 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 3155 flags &= ~EVBACKEND_KQUEUE;
814#endif 3156#endif
815#ifdef __APPLE__ 3157#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: iouring is super experimental */
3171#if !EV_RECOMMEND_IOURING
817 flags &= ~EVBACKEND_POLL; 3172 flags &= ~EVBACKEND_IOURING;
818#endif 3173#endif
819 3174
820 return flags; 3175 return flags;
821} 3176}
822 3177
3178ecb_cold
823unsigned int 3179unsigned int
824ev_embeddable_backends (void) 3180ev_embeddable_backends (void) EV_NOEXCEPT
825{ 3181{
826 return EVBACKEND_EPOLL 3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
827 | EVBACKEND_KQUEUE 3183
828 | EVBACKEND_PORT; 3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3189
3190 return flags;
829} 3191}
830 3192
831unsigned int 3193unsigned int
832ev_backend (EV_P) 3194ev_backend (EV_P) EV_NOEXCEPT
833{ 3195{
834 return backend; 3196 return backend;
835} 3197}
836 3198
3199#if EV_FEATURE_API
3200unsigned int
3201ev_iteration (EV_P) EV_NOEXCEPT
3202{
3203 return loop_count;
3204}
3205
3206unsigned int
3207ev_depth (EV_P) EV_NOEXCEPT
3208{
3209 return loop_depth;
3210}
3211
3212void
3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3214{
3215 io_blocktime = interval;
3216}
3217
3218void
3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3220{
3221 timeout_blocktime = interval;
3222}
3223
3224void
3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226{
3227 userdata = data;
3228}
3229
3230void *
3231ev_userdata (EV_P) EV_NOEXCEPT
3232{
3233 return userdata;
3234}
3235
3236void
3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238{
3239 invoke_cb = invoke_pending_cb;
3240}
3241
3242void
3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244{
3245 release_cb = release;
3246 acquire_cb = acquire;
3247}
3248#endif
3249
3250/* initialise a loop structure, must be zero-initialised */
3251ecb_noinline ecb_cold
837static void 3252static void
838loop_init (EV_P_ unsigned int flags) 3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
839{ 3254{
840 if (!backend) 3255 if (!backend)
841 { 3256 {
3257 origflags = flags;
3258
3259#if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267#endif
3268
842#if EV_USE_MONOTONIC 3269#if EV_USE_MONOTONIC
3270 if (!have_monotonic)
843 { 3271 {
844 struct timespec ts; 3272 struct timespec ts;
3273
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 3275 have_monotonic = 1;
847 } 3276 }
848#endif 3277#endif
849 3278
850 ev_rt_now = ev_time (); 3279 /* pid check not overridable via env */
851 mn_now = get_clock (); 3280#ifndef _WIN32
852 now_floor = mn_now; 3281 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 3282 curpid = getpid ();
3283#endif
854 3284
855 if (!(flags & EVFLAG_NOENV) 3285 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 3286 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 3287 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 3288 flags = atoi (getenv ("LIBEV_FLAGS"));
859 3289
860 if (!(flags & 0x0000ffffUL)) 3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294#if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296#endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303#if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310#if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312#endif
3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318#endif
3319
3320 if (!(flags & EVBACKEND_MASK))
861 flags |= ev_recommended_backends (); 3321 flags |= ev_recommended_backends ();
862 3322
863 backend = 0; 3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
864#if EV_USE_PORT 3326#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 3328#endif
867#if EV_USE_KQUEUE 3329#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
869#endif 3337#endif
870#if EV_USE_EPOLL 3338#if EV_USE_EPOLL
871 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
872#endif 3340#endif
873#if EV_USE_POLL 3341#if EV_USE_POLL
874 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
875#endif 3343#endif
876#if EV_USE_SELECT 3344#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
878#endif 3346#endif
879 3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
880 ev_init (&sigev, sigcb); 3351 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 3352 ev_set_priority (&pipe_w, EV_MAXPRI);
882 }
883}
884
885static void
886loop_destroy (EV_P)
887{
888 int i;
889
890#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 3353#endif
893#if EV_USE_KQUEUE
894 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
895#endif
896#if EV_USE_EPOLL
897 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
898#endif
899#if EV_USE_POLL
900 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
901#endif
902#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif
905
906 for (i = NUMPRI; i--; )
907 array_free (pending, [i]);
908
909 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0);
911 array_free (timer, EMPTY0);
912#if EV_PERIODICS
913 array_free (periodic, EMPTY0);
914#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0);
917 array_free (check, EMPTY0);
918
919 backend = 0;
920}
921
922static void
923loop_fork (EV_P)
924{
925#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif
928#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif
931#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif
934
935 if (ev_is_active (&sigev))
936 { 3354 }
937 /* default loop */
938
939 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A);
948 }
949
950 postfork = 0;
951} 3355}
952 3356
953#if EV_MULTIPLICITY 3357/* free up a loop structure */
954struct ev_loop * 3358ecb_cold
955ev_loop_new (unsigned int flags)
956{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958
959 memset (loop, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags);
962
963 if (ev_backend (EV_A))
964 return loop;
965
966 return 0;
967}
968
969void 3359void
970ev_loop_destroy (EV_P) 3360ev_loop_destroy (EV_P)
971{ 3361{
972 loop_destroy (EV_A); 3362 int i;
973 ev_free (loop);
974}
975
976void
977ev_loop_fork (EV_P)
978{
979 postfork = 1;
980}
981
982#endif
983 3363
984#if EV_MULTIPLICITY 3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
3386
3387 if (ev_is_active (&pipe_w))
3388 {
3389 /*ev_ref (EV_A);*/
3390 /*ev_io_stop (EV_A_ &pipe_w);*/
3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396#if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399#endif
3400
3401#if EV_USE_TIMERFD
3402 if (ev_is_active (&timerfd_w))
3403 close (timerfd);
3404#endif
3405
3406#if EV_USE_INOTIFY
3407 if (fs_fd >= 0)
3408 close (fs_fd);
3409#endif
3410
3411 if (backend_fd >= 0)
3412 close (backend_fd);
3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
3417#if EV_USE_PORT
3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3419#endif
3420#if EV_USE_KQUEUE
3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3428#endif
3429#if EV_USE_EPOLL
3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3431#endif
3432#if EV_USE_POLL
3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3434#endif
3435#if EV_USE_SELECT
3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3437#endif
3438
3439 for (i = NUMPRI; i--; )
3440 {
3441 array_free (pending, [i]);
3442#if EV_IDLE_ENABLE
3443 array_free (idle, [i]);
3444#endif
3445 }
3446
3447 ev_free (anfds); anfds = 0; anfdmax = 0;
3448
3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
3451 array_free (fdchange, EMPTY);
3452 array_free (timer, EMPTY);
3453#if EV_PERIODIC_ENABLE
3454 array_free (periodic, EMPTY);
3455#endif
3456#if EV_FORK_ENABLE
3457 array_free (fork, EMPTY);
3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
3462 array_free (prepare, EMPTY);
3463 array_free (check, EMPTY);
3464#if EV_ASYNC_ENABLE
3465 array_free (async, EMPTY);
3466#endif
3467
3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
3478}
3479
3480#if EV_USE_INOTIFY
3481inline_size void infy_fork (EV_P);
3482#endif
3483
3484inline_size void
3485loop_fork (EV_P)
3486{
3487#if EV_USE_PORT
3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3489#endif
3490#if EV_USE_KQUEUE
3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3498#endif
3499#if EV_USE_EPOLL
3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3501#endif
3502#if EV_USE_INOTIFY
3503 infy_fork (EV_A);
3504#endif
3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
3543 }
3544
3545 postfork = 0;
3546}
3547
3548#if EV_MULTIPLICITY
3549
3550ecb_cold
985struct ev_loop * 3551struct ev_loop *
986ev_default_loop_init (unsigned int flags) 3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553{
3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555
3556 memset (EV_A, 0, sizeof (struct ev_loop));
3557 loop_init (EV_A_ flags);
3558
3559 if (ev_backend (EV_A))
3560 return EV_A;
3561
3562 ev_free (EV_A);
3563 return 0;
3564}
3565
3566#endif /* multiplicity */
3567
3568#if EV_VERIFY
3569ecb_noinline ecb_cold
3570static void
3571verify_watcher (EV_P_ W w)
3572{
3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574
3575 if (w->pending)
3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577}
3578
3579ecb_noinline ecb_cold
3580static void
3581verify_heap (EV_P_ ANHE *heap, int N)
3582{
3583 int i;
3584
3585 for (i = HEAP0; i < N + HEAP0; ++i)
3586 {
3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590
3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592 }
3593}
3594
3595ecb_noinline ecb_cold
3596static void
3597array_verify (EV_P_ W *ws, int cnt)
3598{
3599 while (cnt--)
3600 {
3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 verify_watcher (EV_A_ ws [cnt]);
3603 }
3604}
3605#endif
3606
3607#if EV_FEATURE_API
3608void ecb_cold
3609ev_verify (EV_P) EV_NOEXCEPT
3610{
3611#if EV_VERIFY
3612 int i;
3613 WL w, w2;
3614
3615 assert (activecnt >= -1);
3616
3617 assert (fdchangemax >= fdchangecnt);
3618 for (i = 0; i < fdchangecnt; ++i)
3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620
3621 assert (anfdmax >= 0);
3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
3626 for (w = w2 = anfds [i].head; w; w = w->next)
3627 {
3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638 }
3639 }
3640
3641 assert (timermax >= timercnt);
3642 verify_heap (EV_A_ timers, timercnt);
3643
3644#if EV_PERIODIC_ENABLE
3645 assert (periodicmax >= periodiccnt);
3646 verify_heap (EV_A_ periodics, periodiccnt);
3647#endif
3648
3649 for (i = NUMPRI; i--; )
3650 {
3651 assert (pendingmax [i] >= pendingcnt [i]);
3652#if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
3654 assert (idlemax [i] >= idlecnt [i]);
3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656#endif
3657 }
3658
3659#if EV_FORK_ENABLE
3660 assert (forkmax >= forkcnt);
3661 array_verify (EV_A_ (W *)forks, forkcnt);
3662#endif
3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
3669#if EV_ASYNC_ENABLE
3670 assert (asyncmax >= asynccnt);
3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
3672#endif
3673
3674#if EV_PREPARE_ENABLE
3675 assert (preparemax >= preparecnt);
3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
3678
3679#if EV_CHECK_ENABLE
3680 assert (checkmax >= checkcnt);
3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
3683
3684# if 0
3685#if EV_CHILD_ENABLE
3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
3689# endif
3690#endif
3691}
3692#endif
3693
3694#if EV_MULTIPLICITY
3695ecb_cold
3696struct ev_loop *
987#else 3697#else
988int 3698int
3699#endif
989ev_default_loop (unsigned int flags) 3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
990#endif
991{ 3701{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 3702 if (!ev_default_loop_ptr)
997 { 3703 {
998#if EV_MULTIPLICITY 3704#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 3706#else
1001 ev_default_loop_ptr = 1; 3707 ev_default_loop_ptr = 1;
1002#endif 3708#endif
1003 3709
1004 loop_init (EV_A_ flags); 3710 loop_init (EV_A_ flags);
1005 3711
1006 if (ev_backend (EV_A)) 3712 if (ev_backend (EV_A))
1007 { 3713 {
1008 siginit (EV_A); 3714#if EV_CHILD_ENABLE
1009
1010#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 3715 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 3716 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 3717 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#endif 3719#endif
1020 3724
1021 return ev_default_loop_ptr; 3725 return ev_default_loop_ptr;
1022} 3726}
1023 3727
1024void 3728void
1025ev_default_destroy (void) 3729ev_loop_fork (EV_P) EV_NOEXCEPT
1026{ 3730{
1027#if EV_MULTIPLICITY 3731 postfork = 1;
1028 struct ev_loop *loop = ev_default_loop_ptr; 3732}
3733
3734/*****************************************************************************/
3735
3736void
3737ev_invoke (EV_P_ void *w, int revents)
3738{
3739 EV_CB_INVOKE ((W)w, revents);
3740}
3741
3742unsigned int
3743ev_pending_count (EV_P) EV_NOEXCEPT
3744{
3745 int pri;
3746 unsigned int count = 0;
3747
3748 for (pri = NUMPRI; pri--; )
3749 count += pendingcnt [pri];
3750
3751 return count;
3752}
3753
3754ecb_noinline
3755void
3756ev_invoke_pending (EV_P)
3757{
3758 pendingpri = NUMPRI;
3759
3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
3765 while (pendingcnt [pendingpri])
3766 {
3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3768
3769 p->w->pending = 0;
3770 EV_CB_INVOKE (p->w, p->events);
3771 EV_FREQUENT_CHECK;
3772 }
3773 }
3774 while (pendingpri);
3775}
3776
3777#if EV_IDLE_ENABLE
3778/* make idle watchers pending. this handles the "call-idle */
3779/* only when higher priorities are idle" logic */
3780inline_size void
3781idle_reify (EV_P)
3782{
3783 if (ecb_expect_false (idleall))
3784 {
3785 int pri;
3786
3787 for (pri = NUMPRI; pri--; )
3788 {
3789 if (pendingcnt [pri])
3790 break;
3791
3792 if (idlecnt [pri])
3793 {
3794 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3795 break;
3796 }
3797 }
3798 }
3799}
3800#endif
3801
3802/* make timers pending */
3803inline_size void
3804timers_reify (EV_P)
3805{
3806 EV_FREQUENT_CHECK;
3807
3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3809 {
3810 do
3811 {
3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
3819 ev_at (w) += w->repeat;
3820 if (ev_at (w) < mn_now)
3821 ev_at (w) = mn_now;
3822
3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3824
3825 ANHE_at_cache (timers [HEAP0]);
3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
3833 }
3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3835
3836 feed_reverse_done (EV_A_ EV_TIMER);
3837 }
3838}
3839
3840#if EV_PERIODIC_ENABLE
3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
3867/* make periodics pending */
3868inline_size void
3869periodics_reify (EV_P)
3870{
3871 EV_FREQUENT_CHECK;
3872
3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3874 {
3875 do
3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878
3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880
3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885
3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887
3888 ANHE_at_cache (periodics [HEAP0]);
3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
3902 }
3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3904
3905 feed_reverse_done (EV_A_ EV_PERIODIC);
3906 }
3907}
3908
3909/* simply recalculate all periodics */
3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
3911ecb_noinline ecb_cold
3912static void
3913periodics_reschedule (EV_P)
3914{
3915 int i;
3916
3917 /* adjust periodics after time jump */
3918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3919 {
3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3921
3922 if (w->reschedule_cb)
3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3924 else if (w->interval)
3925 periodic_recalc (EV_A_ w);
3926
3927 ANHE_at_cache (periodics [i]);
3928 }
3929
3930 reheap (periodics, periodiccnt);
3931}
3932#endif
3933
3934/* adjust all timers by a given offset */
3935ecb_noinline ecb_cold
3936static void
3937timers_reschedule (EV_P_ ev_tstamp adjust)
3938{
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
3942 {
3943 ANHE *he = timers + i + HEAP0;
3944 ANHE_w (*he)->at += adjust;
3945 ANHE_at_cache (*he);
3946 }
3947}
3948
3949/* fetch new monotonic and realtime times from the kernel */
3950/* also detect if there was a timejump, and act accordingly */
3951inline_speed void
3952time_update (EV_P_ ev_tstamp max_block)
3953{
3954#if EV_USE_MONOTONIC
3955 if (ecb_expect_true (have_monotonic))
3956 {
3957 int i;
3958 ev_tstamp odiff = rtmn_diff;
3959
3960 mn_now = get_clock ();
3961
3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3963 /* interpolate in the meantime */
3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3965 {
3966 ev_rt_now = rtmn_diff + mn_now;
3967 return;
3968 }
3969
3970 now_floor = mn_now;
3971 ev_rt_now = ev_time ();
3972
3973 /* loop a few times, before making important decisions.
3974 * on the choice of "4": one iteration isn't enough,
3975 * in case we get preempted during the calls to
3976 * ev_time and get_clock. a second call is almost guaranteed
3977 * to succeed in that case, though. and looping a few more times
3978 * doesn't hurt either as we only do this on time-jumps or
3979 * in the unlikely event of having been preempted here.
3980 */
3981 for (i = 4; --i; )
3982 {
3983 ev_tstamp diff;
3984 rtmn_diff = ev_rt_now - mn_now;
3985
3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3989 return; /* all is well */
3990
3991 ev_rt_now = ev_time ();
3992 mn_now = get_clock ();
3993 now_floor = mn_now;
3994 }
3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3998# if EV_PERIODIC_ENABLE
3999 periodics_reschedule (EV_A);
4000# endif
4001 }
4002 else
4003#endif
4004 {
4005 ev_rt_now = ev_time ();
4006
4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
4011#if EV_PERIODIC_ENABLE
4012 periodics_reschedule (EV_A);
4013#endif
4014 }
4015
4016 mn_now = ev_rt_now;
4017 }
4018}
4019
4020int
4021ev_run (EV_P_ int flags)
4022{
4023#if EV_FEATURE_API
4024 ++loop_depth;
4025#endif
4026
4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4028
4029 loop_done = EVBREAK_CANCEL;
4030
4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4032
4033 do
4034 {
4035#if EV_VERIFY >= 2
4036 ev_verify (EV_A);
1029#endif 4037#endif
1030 4038
1031#ifndef _WIN32 4039#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1033 ev_signal_stop (EV_A_ &childev); 4041 if (ecb_expect_false (getpid () != curpid))
4042 {
4043 curpid = getpid ();
4044 postfork = 1;
4045 }
1034#endif 4046#endif
1035 4047
1036 ev_ref (EV_A); /* signal watcher */ 4048#if EV_FORK_ENABLE
1037 ev_io_stop (EV_A_ &sigev); 4049 /* we might have forked, so queue fork handlers */
4050 if (ecb_expect_false (postfork))
4051 if (forkcnt)
4052 {
4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4054 EV_INVOKE_PENDING;
4055 }
4056#endif
1038 4057
1039 close (sigpipe [0]); sigpipe [0] = 0; 4058#if EV_PREPARE_ENABLE
1040 close (sigpipe [1]); sigpipe [1] = 0; 4059 /* queue prepare watchers (and execute them) */
4060 if (ecb_expect_false (preparecnt))
4061 {
4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4063 EV_INVOKE_PENDING;
4064 }
4065#endif
1041 4066
1042 loop_destroy (EV_A); 4067 if (ecb_expect_false (loop_done))
4068 break;
4069
4070 /* we might have forked, so reify kernel state if necessary */
4071 if (ecb_expect_false (postfork))
4072 loop_fork (EV_A);
4073
4074 /* update fd-related kernel structures */
4075 fd_reify (EV_A);
4076
4077 /* calculate blocking time */
4078 {
4079 ev_tstamp waittime = 0.;
4080 ev_tstamp sleeptime = 0.;
4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4094 {
4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
4097#if EV_USE_MONOTONIC
4098 if (ecb_expect_true (have_monotonic))
4099 {
4100#if EV_USE_TIMERFD
4101 /* sleep a lot longer when we can reliably detect timejumps */
4102 if (ecb_expect_true (timerfd != -1))
4103 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4104#endif
4105#if !EV_PERIODIC_ENABLE
4106 /* without periodics but with monotonic clock there is no need */
4107 /* for any time jump detection, so sleep longer */
4108 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4109#endif
4110 }
4111#endif
4112
4113 if (timercnt)
4114 {
4115 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4116 if (waittime > to) waittime = to;
4117 }
4118
4119#if EV_PERIODIC_ENABLE
4120 if (periodiccnt)
4121 {
4122 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4123 if (waittime > to) waittime = to;
4124 }
4125#endif
4126
4127 /* don't let timeouts decrease the waittime below timeout_blocktime */
4128 if (ecb_expect_false (waittime < timeout_blocktime))
4129 waittime = timeout_blocktime;
4130
4131 /* now there are two more special cases left, either we have
4132 * already-expired timers, so we should not sleep, or we have timers
4133 * that expire very soon, in which case we need to wait for a minimum
4134 * amount of time for some event loop backends.
4135 */
4136 if (ecb_expect_false (waittime < backend_mintime))
4137 waittime = waittime <= EV_TS_CONST (0.)
4138 ? EV_TS_CONST (0.)
4139 : backend_mintime;
4140
4141 /* extra check because io_blocktime is commonly 0 */
4142 if (ecb_expect_false (io_blocktime))
4143 {
4144 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4145
4146 if (sleeptime > waittime - backend_mintime)
4147 sleeptime = waittime - backend_mintime;
4148
4149 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4150 {
4151 ev_sleep (sleeptime);
4152 waittime -= sleeptime;
4153 }
4154 }
4155 }
4156
4157#if EV_FEATURE_API
4158 ++loop_count;
4159#endif
4160 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4161 backend_poll (EV_A_ waittime);
4162 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4163
4164 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4165
4166 ECB_MEMORY_FENCE_ACQUIRE;
4167 if (pipe_write_skipped)
4168 {
4169 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4170 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4171 }
4172
4173 /* update ev_rt_now, do magic */
4174 time_update (EV_A_ waittime + sleeptime);
4175 }
4176
4177 /* queue pending timers and reschedule them */
4178 timers_reify (EV_A); /* relative timers called last */
4179#if EV_PERIODIC_ENABLE
4180 periodics_reify (EV_A); /* absolute timers called first */
4181#endif
4182
4183#if EV_IDLE_ENABLE
4184 /* queue idle watchers unless other events are pending */
4185 idle_reify (EV_A);
4186#endif
4187
4188#if EV_CHECK_ENABLE
4189 /* queue check watchers, to be executed first */
4190 if (ecb_expect_false (checkcnt))
4191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4192#endif
4193
4194 EV_INVOKE_PENDING;
4195 }
4196 while (ecb_expect_true (
4197 activecnt
4198 && !loop_done
4199 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4200 ));
4201
4202 if (loop_done == EVBREAK_ONE)
4203 loop_done = EVBREAK_CANCEL;
4204
4205#if EV_FEATURE_API
4206 --loop_depth;
4207#endif
4208
4209 return activecnt;
1043} 4210}
1044 4211
1045void 4212void
1046ev_default_fork (void) 4213ev_break (EV_P_ int how) EV_NOEXCEPT
1047{ 4214{
1048#if EV_MULTIPLICITY 4215 loop_done = how;
1049 struct ev_loop *loop = ev_default_loop_ptr; 4216}
1050#endif
1051 4217
1052 if (backend) 4218void
1053 postfork = 1; 4219ev_ref (EV_P) EV_NOEXCEPT
4220{
4221 ++activecnt;
4222}
4223
4224void
4225ev_unref (EV_P) EV_NOEXCEPT
4226{
4227 --activecnt;
4228}
4229
4230void
4231ev_now_update (EV_P) EV_NOEXCEPT
4232{
4233 time_update (EV_A_ EV_TSTAMP_HUGE);
4234}
4235
4236void
4237ev_suspend (EV_P) EV_NOEXCEPT
4238{
4239 ev_now_update (EV_A);
4240}
4241
4242void
4243ev_resume (EV_P) EV_NOEXCEPT
4244{
4245 ev_tstamp mn_prev = mn_now;
4246
4247 ev_now_update (EV_A);
4248 timers_reschedule (EV_A_ mn_now - mn_prev);
4249#if EV_PERIODIC_ENABLE
4250 /* TODO: really do this? */
4251 periodics_reschedule (EV_A);
4252#endif
1054} 4253}
1055 4254
1056/*****************************************************************************/ 4255/*****************************************************************************/
4256/* singly-linked list management, used when the expected list length is short */
1057 4257
1058static int 4258inline_size void
1059any_pending (EV_P) 4259wlist_add (WL *head, WL elem)
1060{ 4260{
1061 int pri; 4261 elem->next = *head;
4262 *head = elem;
4263}
1062 4264
1063 for (pri = NUMPRI; pri--; ) 4265inline_size void
1064 if (pendingcnt [pri]) 4266wlist_del (WL *head, WL elem)
1065 return 1; 4267{
4268 while (*head)
4269 {
4270 if (ecb_expect_true (*head == elem))
4271 {
4272 *head = elem->next;
4273 break;
4274 }
1066 4275
4276 head = &(*head)->next;
4277 }
4278}
4279
4280/* internal, faster, version of ev_clear_pending */
4281inline_speed void
4282clear_pending (EV_P_ W w)
4283{
4284 if (w->pending)
4285 {
4286 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4287 w->pending = 0;
4288 }
4289}
4290
4291int
4292ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4293{
4294 W w_ = (W)w;
4295 int pending = w_->pending;
4296
4297 if (ecb_expect_true (pending))
4298 {
4299 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4300 p->w = (W)&pending_w;
4301 w_->pending = 0;
4302 return p->events;
4303 }
4304 else
1067 return 0; 4305 return 0;
1068} 4306}
1069 4307
1070inline void 4308inline_size void
1071call_pending (EV_P) 4309pri_adjust (EV_P_ W w)
1072{ 4310{
1073 int pri; 4311 int pri = ev_priority (w);
4312 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4313 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4314 ev_set_priority (w, pri);
4315}
1074 4316
1075 for (pri = NUMPRI; pri--; ) 4317inline_speed void
1076 while (pendingcnt [pri]) 4318ev_start (EV_P_ W w, int active)
4319{
4320 pri_adjust (EV_A_ w);
4321 w->active = active;
4322 ev_ref (EV_A);
4323}
4324
4325inline_size void
4326ev_stop (EV_P_ W w)
4327{
4328 ev_unref (EV_A);
4329 w->active = 0;
4330}
4331
4332/*****************************************************************************/
4333
4334ecb_noinline
4335void
4336ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4337{
4338 int fd = w->fd;
4339
4340 if (ecb_expect_false (ev_is_active (w)))
4341 return;
4342
4343 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4344 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4345
4346#if EV_VERIFY >= 2
4347 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4348#endif
4349 EV_FREQUENT_CHECK;
4350
4351 ev_start (EV_A_ (W)w, 1);
4352 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4353 wlist_add (&anfds[fd].head, (WL)w);
4354
4355 /* common bug, apparently */
4356 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4357
4358 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4359 w->events &= ~EV__IOFDSET;
4360
4361 EV_FREQUENT_CHECK;
4362}
4363
4364ecb_noinline
4365void
4366ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4367{
4368 clear_pending (EV_A_ (W)w);
4369 if (ecb_expect_false (!ev_is_active (w)))
4370 return;
4371
4372 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4373
4374#if EV_VERIFY >= 2
4375 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4376#endif
4377 EV_FREQUENT_CHECK;
4378
4379 wlist_del (&anfds[w->fd].head, (WL)w);
4380 ev_stop (EV_A_ (W)w);
4381
4382 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4383
4384 EV_FREQUENT_CHECK;
4385}
4386
4387ecb_noinline
4388void
4389ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4390{
4391 if (ecb_expect_false (ev_is_active (w)))
4392 return;
4393
4394 ev_at (w) += mn_now;
4395
4396 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4397
4398 EV_FREQUENT_CHECK;
4399
4400 ++timercnt;
4401 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4402 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4403 ANHE_w (timers [ev_active (w)]) = (WT)w;
4404 ANHE_at_cache (timers [ev_active (w)]);
4405 upheap (timers, ev_active (w));
4406
4407 EV_FREQUENT_CHECK;
4408
4409 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4410}
4411
4412ecb_noinline
4413void
4414ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4415{
4416 clear_pending (EV_A_ (W)w);
4417 if (ecb_expect_false (!ev_is_active (w)))
4418 return;
4419
4420 EV_FREQUENT_CHECK;
4421
4422 {
4423 int active = ev_active (w);
4424
4425 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4426
4427 --timercnt;
4428
4429 if (ecb_expect_true (active < timercnt + HEAP0))
1077 { 4430 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4431 timers [active] = timers [timercnt + HEAP0];
1079 4432 adjustheap (timers, timercnt, active);
1080 if (expect_true (p->w))
1081 {
1082 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events);
1084 }
1085 } 4433 }
1086} 4434 }
1087 4435
1088inline void 4436 ev_at (w) -= mn_now;
1089timers_reify (EV_P)
1090{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 {
1093 struct ev_timer *w = timers [0];
1094 4437
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4438 ev_stop (EV_A_ (W)w);
1096 4439
1097 /* first reschedule or stop timer */ 4440 EV_FREQUENT_CHECK;
4441}
4442
4443ecb_noinline
4444void
4445ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4446{
4447 EV_FREQUENT_CHECK;
4448
4449 clear_pending (EV_A_ (W)w);
4450
4451 if (ev_is_active (w))
4452 {
1098 if (w->repeat) 4453 if (w->repeat)
1099 { 4454 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101
1102 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0);
1107 }
1108 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 }
1113}
1114
1115#if EV_PERIODICS
1116inline void
1117periodics_reify (EV_P)
1118{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 {
1121 struct ev_periodic *w = periodics [0];
1122
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1124
1125 /* first reschedule or stop timer */
1126 if (w->reschedule_cb)
1127 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now;
1180 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184
1185inline void
1186time_update (EV_P)
1187{
1188 int i;
1189
1190#if EV_USE_MONOTONIC
1191 if (expect_true (have_monotonic))
1192 {
1193 if (time_update_monotonic (EV_A))
1194 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now;
1200
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */
1203
1204 ev_rt_now = ev_time ();
1205 mn_now = get_clock ();
1206 now_floor = mn_now;
1207 }
1208
1209# if EV_PERIODICS
1210 periodics_reschedule (EV_A);
1211# endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231
1232 mn_now = ev_rt_now;
1233 }
1234}
1235
1236void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags)
1252{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256
1257 while (activecnt)
1258 {
1259 /* queue check watchers (and execute them) */
1260 if (expect_false (preparecnt))
1261 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A);
1264 }
1265
1266 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork))
1268 loop_fork (EV_A);
1269
1270 /* update fd-related kernel structures */
1271 fd_reify (EV_A);
1272
1273 /* calculate blocking time */
1274 {
1275 double block;
1276
1277 if (flags & EVLOOP_NONBLOCK || idlecnt)
1278 block = 0.; /* do not block at all */
1279 else
1280 {
1281 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291
1292 block = MAX_BLOCKTIME;
1293
1294 if (timercnt)
1295 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to;
1298 }
1299
1300#if EV_PERIODICS
1301 if (periodiccnt)
1302 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to;
1305 }
1306#endif
1307
1308 if (expect_false (block < 0.)) block = 0.;
1309 }
1310
1311 backend_poll (EV_A_ block);
1312 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316
1317 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS
1320 periodics_reify (EV_A); /* absolute timers called first */
1321#endif
1322
1323 /* queue idle watchers unless io or timers are pending */
1324 if (idlecnt && !any_pending (EV_A))
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1326
1327 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330
1331 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 }
1336
1337 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL;
1339}
1340
1341void
1342ev_unloop (EV_P_ int how)
1343{
1344 loop_done = how;
1345}
1346
1347/*****************************************************************************/
1348
1349inline void
1350wlist_add (WL *head, WL elem)
1351{
1352 elem->next = *head;
1353 *head = elem;
1354}
1355
1356inline void
1357wlist_del (WL *head, WL elem)
1358{
1359 while (*head)
1360 {
1361 if (*head == elem)
1362 {
1363 *head = elem->next;
1364 return;
1365 }
1366
1367 head = &(*head)->next;
1368 }
1369}
1370
1371inline void
1372ev_clear_pending (EV_P_ W w)
1373{
1374 if (w->pending)
1375 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0;
1378 }
1379}
1380
1381inline void
1382ev_start (EV_P_ W w, int active)
1383{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active;
1388 ev_ref (EV_A);
1389}
1390
1391inline void
1392ev_stop (EV_P_ W w)
1393{
1394 ev_unref (EV_A);
1395 w->active = 0;
1396}
1397
1398/*****************************************************************************/
1399
1400void
1401ev_io_start (EV_P_ struct ev_io *w)
1402{
1403 int fd = w->fd;
1404
1405 if (expect_false (ev_is_active (w)))
1406 return;
1407
1408 assert (("ev_io_start called with negative fd", fd >= 0));
1409
1410 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1413
1414 fd_change (EV_A_ fd);
1415}
1416
1417void
1418ev_io_stop (EV_P_ struct ev_io *w)
1419{
1420 ev_clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w)))
1422 return;
1423
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w);
1428
1429 fd_change (EV_A_ w->fd);
1430}
1431
1432void
1433ev_timer_start (EV_P_ struct ev_timer *w)
1434{
1435 if (expect_false (ev_is_active (w)))
1436 return;
1437
1438 ((WT)w)->at += mn_now;
1439
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441
1442 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w;
1445 upheap ((WT *)timers, timercnt - 1);
1446
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1448}
1449
1450void
1451ev_timer_stop (EV_P_ struct ev_timer *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w)))
1455 return;
1456
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1458
1459 if (expect_true (((W)w)->active < timercnt--))
1460 {
1461 timers [((W)w)->active - 1] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1463 }
1464
1465 ((WT)w)->at -= mn_now;
1466
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_timer_again (EV_P_ struct ev_timer *w)
1472{
1473 if (ev_is_active (w))
1474 {
1475 if (w->repeat)
1476 {
1477 ((WT)w)->at = mn_now + w->repeat; 4455 ev_at (w) = mn_now + w->repeat;
4456 ANHE_at_cache (timers [ev_active (w)]);
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4457 adjustheap (timers, timercnt, ev_active (w));
1479 } 4458 }
1480 else 4459 else
1481 ev_timer_stop (EV_A_ w); 4460 ev_timer_stop (EV_A_ w);
1482 } 4461 }
1483 else if (w->repeat) 4462 else if (w->repeat)
1484 { 4463 {
1485 w->at = w->repeat; 4464 ev_at (w) = w->repeat;
1486 ev_timer_start (EV_A_ w); 4465 ev_timer_start (EV_A_ w);
1487 } 4466 }
1488}
1489 4467
4468 EV_FREQUENT_CHECK;
4469}
4470
4471ev_tstamp
4472ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4473{
4474 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4475}
4476
1490#if EV_PERIODICS 4477#if EV_PERIODIC_ENABLE
4478ecb_noinline
1491void 4479void
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 4480ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1493{ 4481{
1494 if (expect_false (ev_is_active (w))) 4482 if (ecb_expect_false (ev_is_active (w)))
1495 return; 4483 return;
1496 4484
4485#if EV_USE_TIMERFD
4486 if (timerfd == -2)
4487 evtimerfd_init (EV_A);
4488#endif
4489
1497 if (w->reschedule_cb) 4490 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4491 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 4492 else if (w->interval)
1500 { 4493 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4494 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 4495 periodic_recalc (EV_A_ w);
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1504 } 4496 }
4497 else
4498 ev_at (w) = w->offset;
1505 4499
4500 EV_FREQUENT_CHECK;
4501
4502 ++periodiccnt;
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 4503 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4504 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1508 periodics [periodiccnt - 1] = w; 4505 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 4506 ANHE_at_cache (periodics [ev_active (w)]);
4507 upheap (periodics, ev_active (w));
1510 4508
4509 EV_FREQUENT_CHECK;
4510
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4511 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1512} 4512}
1513 4513
4514ecb_noinline
1514void 4515void
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 4516ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1516{ 4517{
1517 ev_clear_pending (EV_A_ (W)w); 4518 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 4519 if (ecb_expect_false (!ev_is_active (w)))
1519 return; 4520 return;
1520 4521
4522 EV_FREQUENT_CHECK;
4523
4524 {
4525 int active = ev_active (w);
4526
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4527 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1522 4528
4529 --periodiccnt;
4530
1523 if (expect_true (((W)w)->active < periodiccnt--)) 4531 if (ecb_expect_true (active < periodiccnt + HEAP0))
1524 { 4532 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4533 periodics [active] = periodics [periodiccnt + HEAP0];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4534 adjustheap (periodics, periodiccnt, active);
1527 } 4535 }
4536 }
1528 4537
1529 ev_stop (EV_A_ (W)w); 4538 ev_stop (EV_A_ (W)w);
1530}
1531 4539
4540 EV_FREQUENT_CHECK;
4541}
4542
4543ecb_noinline
1532void 4544void
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 4545ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1534{ 4546{
1535 /* TODO: use adjustheap and recalculation */ 4547 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 4548 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 4549 ev_periodic_start (EV_A_ w);
1538} 4550}
1539#endif 4551#endif
1540 4552
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 4553#ifndef SA_RESTART
1608# define SA_RESTART 0 4554# define SA_RESTART 0
1609#endif 4555#endif
1610 4556
4557#if EV_SIGNAL_ENABLE
4558
4559ecb_noinline
1611void 4560void
1612ev_signal_start (EV_P_ struct ev_signal *w) 4561ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1613{ 4562{
4563 if (ecb_expect_false (ev_is_active (w)))
4564 return;
4565
4566 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4567
1614#if EV_MULTIPLICITY 4568#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4569 assert (("libev: a signal must not be attached to two different loops",
4570 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4571
4572 signals [w->signum - 1].loop = EV_A;
4573 ECB_MEMORY_FENCE_RELEASE;
4574#endif
4575
4576 EV_FREQUENT_CHECK;
4577
4578#if EV_USE_SIGNALFD
4579 if (sigfd == -2)
4580 {
4581 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4582 if (sigfd < 0 && errno == EINVAL)
4583 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4584
4585 if (sigfd >= 0)
4586 {
4587 fd_intern (sigfd); /* doing it twice will not hurt */
4588
4589 sigemptyset (&sigfd_set);
4590
4591 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4592 ev_set_priority (&sigfd_w, EV_MAXPRI);
4593 ev_io_start (EV_A_ &sigfd_w);
4594 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4595 }
4596 }
4597
4598 if (sigfd >= 0)
4599 {
4600 /* TODO: check .head */
4601 sigaddset (&sigfd_set, w->signum);
4602 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4603
4604 signalfd (sigfd, &sigfd_set, 0);
4605 }
4606#endif
4607
4608 ev_start (EV_A_ (W)w, 1);
4609 wlist_add (&signals [w->signum - 1].head, (WL)w);
4610
4611 if (!((WL)w)->next)
4612# if EV_USE_SIGNALFD
4613 if (sigfd < 0) /*TODO*/
1616#endif 4614# endif
4615 {
4616# ifdef _WIN32
4617 evpipe_init (EV_A);
4618
4619 signal (w->signum, ev_sighandler);
4620# else
4621 struct sigaction sa;
4622
4623 evpipe_init (EV_A);
4624
4625 sa.sa_handler = ev_sighandler;
4626 sigfillset (&sa.sa_mask);
4627 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4628 sigaction (w->signum, &sa, 0);
4629
4630 if (origflags & EVFLAG_NOSIGMASK)
4631 {
4632 sigemptyset (&sa.sa_mask);
4633 sigaddset (&sa.sa_mask, w->signum);
4634 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4635 }
4636#endif
4637 }
4638
4639 EV_FREQUENT_CHECK;
4640}
4641
4642ecb_noinline
4643void
4644ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4645{
4646 clear_pending (EV_A_ (W)w);
1617 if (expect_false (ev_is_active (w))) 4647 if (ecb_expect_false (!ev_is_active (w)))
1618 return; 4648 return;
1619 4649
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4650 EV_FREQUENT_CHECK;
4651
4652 wlist_del (&signals [w->signum - 1].head, (WL)w);
4653 ev_stop (EV_A_ (W)w);
4654
4655 if (!signals [w->signum - 1].head)
4656 {
4657#if EV_MULTIPLICITY
4658 signals [w->signum - 1].loop = 0; /* unattach from signal */
4659#endif
4660#if EV_USE_SIGNALFD
4661 if (sigfd >= 0)
4662 {
4663 sigset_t ss;
4664
4665 sigemptyset (&ss);
4666 sigaddset (&ss, w->signum);
4667 sigdelset (&sigfd_set, w->signum);
4668
4669 signalfd (sigfd, &sigfd_set, 0);
4670 sigprocmask (SIG_UNBLOCK, &ss, 0);
4671 }
4672 else
4673#endif
4674 signal (w->signum, SIG_DFL);
4675 }
4676
4677 EV_FREQUENT_CHECK;
4678}
4679
4680#endif
4681
4682#if EV_CHILD_ENABLE
4683
4684void
4685ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4686{
4687#if EV_MULTIPLICITY
4688 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4689#endif
4690 if (ecb_expect_false (ev_is_active (w)))
4691 return;
4692
4693 EV_FREQUENT_CHECK;
1621 4694
1622 ev_start (EV_A_ (W)w, 1); 4695 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4696 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1625 4697
1626 if (!((WL)w)->next) 4698 EV_FREQUENT_CHECK;
4699}
4700
4701void
4702ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4703{
4704 clear_pending (EV_A_ (W)w);
4705 if (ecb_expect_false (!ev_is_active (w)))
4706 return;
4707
4708 EV_FREQUENT_CHECK;
4709
4710 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4711 ev_stop (EV_A_ (W)w);
4712
4713 EV_FREQUENT_CHECK;
4714}
4715
4716#endif
4717
4718#if EV_STAT_ENABLE
4719
4720# ifdef _WIN32
4721# undef lstat
4722# define lstat(a,b) _stati64 (a,b)
4723# endif
4724
4725#define DEF_STAT_INTERVAL 5.0074891
4726#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4727#define MIN_STAT_INTERVAL 0.1074891
4728
4729ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4730
4731#if EV_USE_INOTIFY
4732
4733/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4734# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4735
4736ecb_noinline
4737static void
4738infy_add (EV_P_ ev_stat *w)
4739{
4740 w->wd = inotify_add_watch (fs_fd, w->path,
4741 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4742 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4743 | IN_DONT_FOLLOW | IN_MASK_ADD);
4744
4745 if (w->wd >= 0)
4746 {
4747 struct statfs sfs;
4748
4749 /* now local changes will be tracked by inotify, but remote changes won't */
4750 /* unless the filesystem is known to be local, we therefore still poll */
4751 /* also do poll on <2.6.25, but with normal frequency */
4752
4753 if (!fs_2625)
4754 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4755 else if (!statfs (w->path, &sfs)
4756 && (sfs.f_type == 0x1373 /* devfs */
4757 || sfs.f_type == 0x4006 /* fat */
4758 || sfs.f_type == 0x4d44 /* msdos */
4759 || sfs.f_type == 0xEF53 /* ext2/3 */
4760 || sfs.f_type == 0x72b6 /* jffs2 */
4761 || sfs.f_type == 0x858458f6 /* ramfs */
4762 || sfs.f_type == 0x5346544e /* ntfs */
4763 || sfs.f_type == 0x3153464a /* jfs */
4764 || sfs.f_type == 0x9123683e /* btrfs */
4765 || sfs.f_type == 0x52654973 /* reiser3 */
4766 || sfs.f_type == 0x01021994 /* tmpfs */
4767 || sfs.f_type == 0x58465342 /* xfs */))
4768 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4769 else
4770 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1627 { 4771 }
4772 else
4773 {
4774 /* can't use inotify, continue to stat */
4775 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4776
4777 /* if path is not there, monitor some parent directory for speedup hints */
4778 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4779 /* but an efficiency issue only */
4780 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4781 {
4782 char path [4096];
4783 strcpy (path, w->path);
4784
4785 do
4786 {
4787 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4788 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4789
4790 char *pend = strrchr (path, '/');
4791
4792 if (!pend || pend == path)
4793 break;
4794
4795 *pend = 0;
4796 w->wd = inotify_add_watch (fs_fd, path, mask);
4797 }
4798 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4799 }
4800 }
4801
4802 if (w->wd >= 0)
4803 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4804
4805 /* now re-arm timer, if required */
4806 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4807 ev_timer_again (EV_A_ &w->timer);
4808 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4809}
4810
4811ecb_noinline
4812static void
4813infy_del (EV_P_ ev_stat *w)
4814{
4815 int slot;
4816 int wd = w->wd;
4817
4818 if (wd < 0)
4819 return;
4820
4821 w->wd = -2;
4822 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4823 wlist_del (&fs_hash [slot].head, (WL)w);
4824
4825 /* remove this watcher, if others are watching it, they will rearm */
4826 inotify_rm_watch (fs_fd, wd);
4827}
4828
4829ecb_noinline
4830static void
4831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4832{
4833 if (slot < 0)
4834 /* overflow, need to check for all hash slots */
4835 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4836 infy_wd (EV_A_ slot, wd, ev);
4837 else
4838 {
4839 WL w_;
4840
4841 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4842 {
4843 ev_stat *w = (ev_stat *)w_;
4844 w_ = w_->next; /* lets us remove this watcher and all before it */
4845
4846 if (w->wd == wd || wd == -1)
4847 {
4848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4849 {
4850 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4851 w->wd = -1;
4852 infy_add (EV_A_ w); /* re-add, no matter what */
4853 }
4854
4855 stat_timer_cb (EV_A_ &w->timer, 0);
4856 }
4857 }
4858 }
4859}
4860
4861static void
4862infy_cb (EV_P_ ev_io *w, int revents)
4863{
4864 char buf [EV_INOTIFY_BUFSIZE];
4865 int ofs;
4866 int len = read (fs_fd, buf, sizeof (buf));
4867
4868 for (ofs = 0; ofs < len; )
4869 {
4870 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4871 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4872 ofs += sizeof (struct inotify_event) + ev->len;
4873 }
4874}
4875
4876inline_size ecb_cold
4877void
4878ev_check_2625 (EV_P)
4879{
4880 /* kernels < 2.6.25 are borked
4881 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4882 */
4883 if (ev_linux_version () < 0x020619)
4884 return;
4885
4886 fs_2625 = 1;
4887}
4888
4889inline_size int
4890infy_newfd (void)
4891{
4892#if defined IN_CLOEXEC && defined IN_NONBLOCK
4893 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4894 if (fd >= 0)
4895 return fd;
4896#endif
4897 return inotify_init ();
4898}
4899
4900inline_size void
4901infy_init (EV_P)
4902{
4903 if (fs_fd != -2)
4904 return;
4905
4906 fs_fd = -1;
4907
4908 ev_check_2625 (EV_A);
4909
4910 fs_fd = infy_newfd ();
4911
4912 if (fs_fd >= 0)
4913 {
4914 fd_intern (fs_fd);
4915 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4916 ev_set_priority (&fs_w, EV_MAXPRI);
4917 ev_io_start (EV_A_ &fs_w);
4918 ev_unref (EV_A);
4919 }
4920}
4921
4922inline_size void
4923infy_fork (EV_P)
4924{
4925 int slot;
4926
4927 if (fs_fd < 0)
4928 return;
4929
4930 ev_ref (EV_A);
4931 ev_io_stop (EV_A_ &fs_w);
4932 close (fs_fd);
4933 fs_fd = infy_newfd ();
4934
4935 if (fs_fd >= 0)
4936 {
4937 fd_intern (fs_fd);
4938 ev_io_set (&fs_w, fs_fd, EV_READ);
4939 ev_io_start (EV_A_ &fs_w);
4940 ev_unref (EV_A);
4941 }
4942
4943 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4944 {
4945 WL w_ = fs_hash [slot].head;
4946 fs_hash [slot].head = 0;
4947
4948 while (w_)
4949 {
4950 ev_stat *w = (ev_stat *)w_;
4951 w_ = w_->next; /* lets us add this watcher */
4952
4953 w->wd = -1;
4954
4955 if (fs_fd >= 0)
4956 infy_add (EV_A_ w); /* re-add, no matter what */
4957 else
4958 {
4959 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4960 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4961 ev_timer_again (EV_A_ &w->timer);
4962 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4963 }
4964 }
4965 }
4966}
4967
4968#endif
4969
1628#if _WIN32 4970#ifdef _WIN32
1629 signal (w->signum, sighandler); 4971# define EV_LSTAT(p,b) _stati64 (p, b)
1630#else 4972#else
1631 struct sigaction sa; 4973# define EV_LSTAT(p,b) lstat (p, b)
1632 sa.sa_handler = sighandler;
1633 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0);
1636#endif 4974#endif
1637 }
1638}
1639 4975
1640void 4976void
1641ev_signal_stop (EV_P_ struct ev_signal *w) 4977ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1642{ 4978{
1643 ev_clear_pending (EV_A_ (W)w); 4979 if (lstat (w->path, &w->attr) < 0)
4980 w->attr.st_nlink = 0;
4981 else if (!w->attr.st_nlink)
4982 w->attr.st_nlink = 1;
4983}
4984
4985ecb_noinline
4986static void
4987stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4988{
4989 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4990
4991 ev_statdata prev = w->attr;
4992 ev_stat_stat (EV_A_ w);
4993
4994 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4995 if (
4996 prev.st_dev != w->attr.st_dev
4997 || prev.st_ino != w->attr.st_ino
4998 || prev.st_mode != w->attr.st_mode
4999 || prev.st_nlink != w->attr.st_nlink
5000 || prev.st_uid != w->attr.st_uid
5001 || prev.st_gid != w->attr.st_gid
5002 || prev.st_rdev != w->attr.st_rdev
5003 || prev.st_size != w->attr.st_size
5004 || prev.st_atime != w->attr.st_atime
5005 || prev.st_mtime != w->attr.st_mtime
5006 || prev.st_ctime != w->attr.st_ctime
5007 ) {
5008 /* we only update w->prev on actual differences */
5009 /* in case we test more often than invoke the callback, */
5010 /* to ensure that prev is always different to attr */
5011 w->prev = prev;
5012
5013 #if EV_USE_INOTIFY
5014 if (fs_fd >= 0)
5015 {
5016 infy_del (EV_A_ w);
5017 infy_add (EV_A_ w);
5018 ev_stat_stat (EV_A_ w); /* avoid race... */
5019 }
5020 #endif
5021
5022 ev_feed_event (EV_A_ w, EV_STAT);
5023 }
5024}
5025
5026void
5027ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5028{
1644 if (expect_false (!ev_is_active (w))) 5029 if (ecb_expect_false (ev_is_active (w)))
1645 return; 5030 return;
1646 5031
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 5032 ev_stat_stat (EV_A_ w);
5033
5034 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5035 w->interval = MIN_STAT_INTERVAL;
5036
5037 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5038 ev_set_priority (&w->timer, ev_priority (w));
5039
5040#if EV_USE_INOTIFY
5041 infy_init (EV_A);
5042
5043 if (fs_fd >= 0)
5044 infy_add (EV_A_ w);
5045 else
5046#endif
5047 {
5048 ev_timer_again (EV_A_ &w->timer);
5049 ev_unref (EV_A);
5050 }
5051
5052 ev_start (EV_A_ (W)w, 1);
5053
5054 EV_FREQUENT_CHECK;
5055}
5056
5057void
5058ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5059{
5060 clear_pending (EV_A_ (W)w);
5061 if (ecb_expect_false (!ev_is_active (w)))
5062 return;
5063
5064 EV_FREQUENT_CHECK;
5065
5066#if EV_USE_INOTIFY
5067 infy_del (EV_A_ w);
5068#endif
5069
5070 if (ev_is_active (&w->timer))
5071 {
5072 ev_ref (EV_A);
5073 ev_timer_stop (EV_A_ &w->timer);
5074 }
5075
1648 ev_stop (EV_A_ (W)w); 5076 ev_stop (EV_A_ (W)w);
1649 5077
1650 if (!signals [w->signum - 1].head) 5078 EV_FREQUENT_CHECK;
1651 signal (w->signum, SIG_DFL);
1652} 5079}
5080#endif
1653 5081
5082#if EV_IDLE_ENABLE
1654void 5083void
1655ev_child_start (EV_P_ struct ev_child *w) 5084ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
1656{ 5085{
1657#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif
1660 if (expect_false (ev_is_active (w))) 5086 if (ecb_expect_false (ev_is_active (w)))
1661 return; 5087 return;
1662 5088
5089 pri_adjust (EV_A_ (W)w);
5090
5091 EV_FREQUENT_CHECK;
5092
5093 {
5094 int active = ++idlecnt [ABSPRI (w)];
5095
5096 ++idleall;
5097 ev_start (EV_A_ (W)w, active);
5098
5099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5100 idles [ABSPRI (w)][active - 1] = w;
5101 }
5102
5103 EV_FREQUENT_CHECK;
5104}
5105
5106void
5107ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5108{
5109 clear_pending (EV_A_ (W)w);
5110 if (ecb_expect_false (!ev_is_active (w)))
5111 return;
5112
5113 EV_FREQUENT_CHECK;
5114
5115 {
5116 int active = ev_active (w);
5117
5118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5119 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5120
5121 ev_stop (EV_A_ (W)w);
5122 --idleall;
5123 }
5124
5125 EV_FREQUENT_CHECK;
5126}
5127#endif
5128
5129#if EV_PREPARE_ENABLE
5130void
5131ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5132{
5133 if (ecb_expect_false (ev_is_active (w)))
5134 return;
5135
5136 EV_FREQUENT_CHECK;
5137
5138 ev_start (EV_A_ (W)w, ++preparecnt);
5139 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5140 prepares [preparecnt - 1] = w;
5141
5142 EV_FREQUENT_CHECK;
5143}
5144
5145void
5146ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5147{
5148 clear_pending (EV_A_ (W)w);
5149 if (ecb_expect_false (!ev_is_active (w)))
5150 return;
5151
5152 EV_FREQUENT_CHECK;
5153
5154 {
5155 int active = ev_active (w);
5156
5157 prepares [active - 1] = prepares [--preparecnt];
5158 ev_active (prepares [active - 1]) = active;
5159 }
5160
5161 ev_stop (EV_A_ (W)w);
5162
5163 EV_FREQUENT_CHECK;
5164}
5165#endif
5166
5167#if EV_CHECK_ENABLE
5168void
5169ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5170{
5171 if (ecb_expect_false (ev_is_active (w)))
5172 return;
5173
5174 EV_FREQUENT_CHECK;
5175
5176 ev_start (EV_A_ (W)w, ++checkcnt);
5177 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5178 checks [checkcnt - 1] = w;
5179
5180 EV_FREQUENT_CHECK;
5181}
5182
5183void
5184ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5185{
5186 clear_pending (EV_A_ (W)w);
5187 if (ecb_expect_false (!ev_is_active (w)))
5188 return;
5189
5190 EV_FREQUENT_CHECK;
5191
5192 {
5193 int active = ev_active (w);
5194
5195 checks [active - 1] = checks [--checkcnt];
5196 ev_active (checks [active - 1]) = active;
5197 }
5198
5199 ev_stop (EV_A_ (W)w);
5200
5201 EV_FREQUENT_CHECK;
5202}
5203#endif
5204
5205#if EV_EMBED_ENABLE
5206ecb_noinline
5207void
5208ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5209{
5210 ev_run (w->other, EVRUN_NOWAIT);
5211}
5212
5213static void
5214embed_io_cb (EV_P_ ev_io *io, int revents)
5215{
5216 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5217
5218 if (ev_cb (w))
5219 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5220 else
5221 ev_run (w->other, EVRUN_NOWAIT);
5222}
5223
5224static void
5225embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5226{
5227 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5228
5229 {
5230 EV_P = w->other;
5231
5232 while (fdchangecnt)
5233 {
5234 fd_reify (EV_A);
5235 ev_run (EV_A_ EVRUN_NOWAIT);
5236 }
5237 }
5238}
5239
5240#if EV_FORK_ENABLE
5241static void
5242embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5243{
5244 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5245
5246 ev_embed_stop (EV_A_ w);
5247
5248 {
5249 EV_P = w->other;
5250
5251 ev_loop_fork (EV_A);
5252 ev_run (EV_A_ EVRUN_NOWAIT);
5253 }
5254
5255 ev_embed_start (EV_A_ w);
5256}
5257#endif
5258
5259#if 0
5260static void
5261embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5262{
5263 ev_idle_stop (EV_A_ idle);
5264}
5265#endif
5266
5267void
5268ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5269{
5270 if (ecb_expect_false (ev_is_active (w)))
5271 return;
5272
5273 {
5274 EV_P = w->other;
5275 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5276 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5277 }
5278
5279 EV_FREQUENT_CHECK;
5280
5281 ev_set_priority (&w->io, ev_priority (w));
5282 ev_io_start (EV_A_ &w->io);
5283
5284 ev_prepare_init (&w->prepare, embed_prepare_cb);
5285 ev_set_priority (&w->prepare, EV_MINPRI);
5286 ev_prepare_start (EV_A_ &w->prepare);
5287
5288#if EV_FORK_ENABLE
5289 ev_fork_init (&w->fork, embed_fork_cb);
5290 ev_fork_start (EV_A_ &w->fork);
5291#endif
5292
5293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5294
1663 ev_start (EV_A_ (W)w, 1); 5295 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5296
5297 EV_FREQUENT_CHECK;
1665} 5298}
1666 5299
1667void 5300void
1668ev_child_stop (EV_P_ struct ev_child *w) 5301ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1669{ 5302{
1670 ev_clear_pending (EV_A_ (W)w); 5303 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 5304 if (ecb_expect_false (!ev_is_active (w)))
1672 return; 5305 return;
1673 5306
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 5307 EV_FREQUENT_CHECK;
5308
5309 ev_io_stop (EV_A_ &w->io);
5310 ev_prepare_stop (EV_A_ &w->prepare);
5311#if EV_FORK_ENABLE
5312 ev_fork_stop (EV_A_ &w->fork);
5313#endif
5314
1675 ev_stop (EV_A_ (W)w); 5315 ev_stop (EV_A_ (W)w);
1676}
1677 5316
1678#if EV_MULTIPLICITY 5317 EV_FREQUENT_CHECK;
1679static void
1680embed_cb (EV_P_ struct ev_io *io, int revents)
1681{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1683
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 5318}
5319#endif
1687 5320
5321#if EV_FORK_ENABLE
1688void 5322void
1689ev_embed_start (EV_P_ struct ev_embed *w) 5323ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
1690{ 5324{
1691 if (expect_false (ev_is_active (w))) 5325 if (ecb_expect_false (ev_is_active (w)))
1692 return; 5326 return;
1693 5327
5328 EV_FREQUENT_CHECK;
5329
5330 ev_start (EV_A_ (W)w, ++forkcnt);
5331 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5332 forks [forkcnt - 1] = w;
5333
5334 EV_FREQUENT_CHECK;
5335}
5336
5337void
5338ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5339{
5340 clear_pending (EV_A_ (W)w);
5341 if (ecb_expect_false (!ev_is_active (w)))
5342 return;
5343
5344 EV_FREQUENT_CHECK;
5345
1694 { 5346 {
1695 struct ev_loop *loop = w->loop; 5347 int active = ev_active (w);
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5348
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 5349 forks [active - 1] = forks [--forkcnt];
5350 ev_active (forks [active - 1]) = active;
1698 } 5351 }
1699 5352
1700 ev_io_start (EV_A_ &w->io);
1701 ev_start (EV_A_ (W)w, 1); 5353 ev_stop (EV_A_ (W)w);
1702}
1703 5354
5355 EV_FREQUENT_CHECK;
5356}
5357#endif
5358
5359#if EV_CLEANUP_ENABLE
1704void 5360void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 5361ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
1706{ 5362{
1707 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 5363 if (ecb_expect_false (ev_is_active (w)))
1709 return; 5364 return;
1710 5365
1711 ev_io_stop (EV_A_ &w->io); 5366 EV_FREQUENT_CHECK;
5367
5368 ev_start (EV_A_ (W)w, ++cleanupcnt);
5369 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5370 cleanups [cleanupcnt - 1] = w;
5371
5372 /* cleanup watchers should never keep a refcount on the loop */
5373 ev_unref (EV_A);
5374 EV_FREQUENT_CHECK;
5375}
5376
5377void
5378ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5379{
5380 clear_pending (EV_A_ (W)w);
5381 if (ecb_expect_false (!ev_is_active (w)))
5382 return;
5383
5384 EV_FREQUENT_CHECK;
5385 ev_ref (EV_A);
5386
5387 {
5388 int active = ev_active (w);
5389
5390 cleanups [active - 1] = cleanups [--cleanupcnt];
5391 ev_active (cleanups [active - 1]) = active;
5392 }
5393
1712 ev_stop (EV_A_ (W)w); 5394 ev_stop (EV_A_ (W)w);
5395
5396 EV_FREQUENT_CHECK;
5397}
5398#endif
5399
5400#if EV_ASYNC_ENABLE
5401void
5402ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5403{
5404 if (ecb_expect_false (ev_is_active (w)))
5405 return;
5406
5407 w->sent = 0;
5408
5409 evpipe_init (EV_A);
5410
5411 EV_FREQUENT_CHECK;
5412
5413 ev_start (EV_A_ (W)w, ++asynccnt);
5414 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5415 asyncs [asynccnt - 1] = w;
5416
5417 EV_FREQUENT_CHECK;
5418}
5419
5420void
5421ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5422{
5423 clear_pending (EV_A_ (W)w);
5424 if (ecb_expect_false (!ev_is_active (w)))
5425 return;
5426
5427 EV_FREQUENT_CHECK;
5428
5429 {
5430 int active = ev_active (w);
5431
5432 asyncs [active - 1] = asyncs [--asynccnt];
5433 ev_active (asyncs [active - 1]) = active;
5434 }
5435
5436 ev_stop (EV_A_ (W)w);
5437
5438 EV_FREQUENT_CHECK;
5439}
5440
5441void
5442ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5443{
5444 w->sent = 1;
5445 evpipe_write (EV_A_ &async_pending);
1713} 5446}
1714#endif 5447#endif
1715 5448
1716/*****************************************************************************/ 5449/*****************************************************************************/
1717 5450
1718struct ev_once 5451struct ev_once
1719{ 5452{
1720 struct ev_io io; 5453 ev_io io;
1721 struct ev_timer to; 5454 ev_timer to;
1722 void (*cb)(int revents, void *arg); 5455 void (*cb)(int revents, void *arg);
1723 void *arg; 5456 void *arg;
1724}; 5457};
1725 5458
1726static void 5459static void
1727once_cb (EV_P_ struct ev_once *once, int revents) 5460once_cb (EV_P_ struct ev_once *once, int revents)
1728{ 5461{
1729 void (*cb)(int revents, void *arg) = once->cb; 5462 void (*cb)(int revents, void *arg) = once->cb;
1730 void *arg = once->arg; 5463 void *arg = once->arg;
1731 5464
1732 ev_io_stop (EV_A_ &once->io); 5465 ev_io_stop (EV_A_ &once->io);
1733 ev_timer_stop (EV_A_ &once->to); 5466 ev_timer_stop (EV_A_ &once->to);
1734 ev_free (once); 5467 ev_free (once);
1735 5468
1736 cb (revents, arg); 5469 cb (revents, arg);
1737} 5470}
1738 5471
1739static void 5472static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 5473once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 5474{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5476
5477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1743} 5478}
1744 5479
1745static void 5480static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 5481once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 5482{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5483 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5484
5485 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1749} 5486}
1750 5487
1751void 5488void
1752ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5489ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1753{ 5490{
1754 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5491 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1755
1756 if (expect_false (!once))
1757 {
1758 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1759 return;
1760 }
1761 5492
1762 once->cb = cb; 5493 once->cb = cb;
1763 once->arg = arg; 5494 once->arg = arg;
1764 5495
1765 ev_init (&once->io, once_cb_io); 5496 ev_init (&once->io, once_cb_io);
1775 ev_timer_set (&once->to, timeout, 0.); 5506 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 5507 ev_timer_start (EV_A_ &once->to);
1777 } 5508 }
1778} 5509}
1779 5510
1780#ifdef __cplusplus 5511/*****************************************************************************/
1781} 5512
5513#if EV_WALK_ENABLE
5514ecb_cold
5515void
5516ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5517{
5518 int i, j;
5519 ev_watcher_list *wl, *wn;
5520
5521 if (types & (EV_IO | EV_EMBED))
5522 for (i = 0; i < anfdmax; ++i)
5523 for (wl = anfds [i].head; wl; )
5524 {
5525 wn = wl->next;
5526
5527#if EV_EMBED_ENABLE
5528 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5529 {
5530 if (types & EV_EMBED)
5531 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5532 }
5533 else
5534#endif
5535#if EV_USE_INOTIFY
5536 if (ev_cb ((ev_io *)wl) == infy_cb)
5537 ;
5538 else
5539#endif
5540 if ((ev_io *)wl != &pipe_w)
5541 if (types & EV_IO)
5542 cb (EV_A_ EV_IO, wl);
5543
5544 wl = wn;
5545 }
5546
5547 if (types & (EV_TIMER | EV_STAT))
5548 for (i = timercnt + HEAP0; i-- > HEAP0; )
5549#if EV_STAT_ENABLE
5550 /*TODO: timer is not always active*/
5551 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5552 {
5553 if (types & EV_STAT)
5554 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5555 }
5556 else
5557#endif
5558 if (types & EV_TIMER)
5559 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5560
5561#if EV_PERIODIC_ENABLE
5562 if (types & EV_PERIODIC)
5563 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5564 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5565#endif
5566
5567#if EV_IDLE_ENABLE
5568 if (types & EV_IDLE)
5569 for (j = NUMPRI; j--; )
5570 for (i = idlecnt [j]; i--; )
5571 cb (EV_A_ EV_IDLE, idles [j][i]);
5572#endif
5573
5574#if EV_FORK_ENABLE
5575 if (types & EV_FORK)
5576 for (i = forkcnt; i--; )
5577 if (ev_cb (forks [i]) != embed_fork_cb)
5578 cb (EV_A_ EV_FORK, forks [i]);
5579#endif
5580
5581#if EV_ASYNC_ENABLE
5582 if (types & EV_ASYNC)
5583 for (i = asynccnt; i--; )
5584 cb (EV_A_ EV_ASYNC, asyncs [i]);
5585#endif
5586
5587#if EV_PREPARE_ENABLE
5588 if (types & EV_PREPARE)
5589 for (i = preparecnt; i--; )
5590# if EV_EMBED_ENABLE
5591 if (ev_cb (prepares [i]) != embed_prepare_cb)
1782#endif 5592# endif
5593 cb (EV_A_ EV_PREPARE, prepares [i]);
5594#endif
1783 5595
5596#if EV_CHECK_ENABLE
5597 if (types & EV_CHECK)
5598 for (i = checkcnt; i--; )
5599 cb (EV_A_ EV_CHECK, checks [i]);
5600#endif
5601
5602#if EV_SIGNAL_ENABLE
5603 if (types & EV_SIGNAL)
5604 for (i = 0; i < EV_NSIG - 1; ++i)
5605 for (wl = signals [i].head; wl; )
5606 {
5607 wn = wl->next;
5608 cb (EV_A_ EV_SIGNAL, wl);
5609 wl = wn;
5610 }
5611#endif
5612
5613#if EV_CHILD_ENABLE
5614 if (types & EV_CHILD)
5615 for (i = (EV_PID_HASHSIZE); i--; )
5616 for (wl = childs [i]; wl; )
5617 {
5618 wn = wl->next;
5619 cb (EV_A_ EV_CHILD, wl);
5620 wl = wn;
5621 }
5622#endif
5623/* EV_STAT 0x00001000 /* stat data changed */
5624/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5625}
5626#endif
5627
5628#if EV_MULTIPLICITY
5629 #include "ev_wrap.h"
5630#endif
5631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines