ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.136 by root, Sat Nov 24 07:14:26 2007 UTC vs.
Revision 1.514 by root, Fri Dec 20 05:20:50 2019 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
83# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
85# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
89# endif 127# endif
90 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
91# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
92# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
97# endif 136# endif
98 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
99#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
100 155
101#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183#endif
184
185/* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193#define _DARWIN_UNLIMITED_SELECT 1
194
102#include <stdlib.h> 195#include <stdlib.h>
196#include <string.h>
103#include <fcntl.h> 197#include <fcntl.h>
104#include <stddef.h> 198#include <stddef.h>
105 199
106#include <stdio.h> 200#include <stdio.h>
107 201
108#include <assert.h> 202#include <assert.h>
109#include <errno.h> 203#include <errno.h>
110#include <sys/types.h> 204#include <sys/types.h>
111#include <time.h> 205#include <time.h>
206#include <limits.h>
112 207
113#include <signal.h> 208#include <signal.h>
114 209
210#ifdef EV_H
211# include EV_H
212#else
213# include "ev.h"
214#endif
215
216#if EV_NO_THREADS
217# undef EV_NO_SMP
218# define EV_NO_SMP 1
219# undef ECB_NO_THREADS
220# define ECB_NO_THREADS 1
221#endif
222#if EV_NO_SMP
223# undef EV_NO_SMP
224# define ECB_NO_SMP 1
225#endif
226
115#ifndef _WIN32 227#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 228# include <sys/time.h>
118# include <sys/wait.h> 229# include <sys/wait.h>
230# include <unistd.h>
119#else 231#else
232# include <io.h>
120# define WIN32_LEAN_AND_MEAN 233# define WIN32_LEAN_AND_MEAN
234# include <winsock2.h>
121# include <windows.h> 235# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 236# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 237# define EV_SELECT_IS_WINSOCKET 1
124# endif 238# endif
239# undef EV_AVOID_STDIO
240#endif
241
242/* this block tries to deduce configuration from header-defined symbols and defaults */
243
244/* try to deduce the maximum number of signals on this platform */
245#if defined EV_NSIG
246/* use what's provided */
247#elif defined NSIG
248# define EV_NSIG (NSIG)
249#elif defined _NSIG
250# define EV_NSIG (_NSIG)
251#elif defined SIGMAX
252# define EV_NSIG (SIGMAX+1)
253#elif defined SIG_MAX
254# define EV_NSIG (SIG_MAX+1)
255#elif defined _SIG_MAX
256# define EV_NSIG (_SIG_MAX+1)
257#elif defined MAXSIG
258# define EV_NSIG (MAXSIG+1)
259#elif defined MAX_SIG
260# define EV_NSIG (MAX_SIG+1)
261#elif defined SIGARRAYSIZE
262# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263#elif defined _sys_nsig
264# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265#else
266# define EV_NSIG (8 * sizeof (sigset_t) + 1)
267#endif
268
269#ifndef EV_USE_FLOOR
270# define EV_USE_FLOOR 0
271#endif
272
273#ifndef EV_USE_CLOCK_SYSCALL
274# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276# else
277# define EV_USE_CLOCK_SYSCALL 0
125#endif 278# endif
279#endif
126 280
127/**/ 281#if !(_POSIX_TIMERS > 0)
282# ifndef EV_USE_MONOTONIC
283# define EV_USE_MONOTONIC 0
284# endif
285# ifndef EV_USE_REALTIME
286# define EV_USE_REALTIME 0
287# endif
288#endif
128 289
129#ifndef EV_USE_MONOTONIC 290#ifndef EV_USE_MONOTONIC
291# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
292# define EV_USE_MONOTONIC EV_FEATURE_OS
293# else
130# define EV_USE_MONOTONIC 0 294# define EV_USE_MONOTONIC 0
295# endif
131#endif 296#endif
132 297
133#ifndef EV_USE_REALTIME 298#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 299# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
300#endif
301
302#ifndef EV_USE_NANOSLEEP
303# if _POSIX_C_SOURCE >= 199309L
304# define EV_USE_NANOSLEEP EV_FEATURE_OS
305# else
306# define EV_USE_NANOSLEEP 0
307# endif
135#endif 308#endif
136 309
137#ifndef EV_USE_SELECT 310#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 311# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 312#endif
140 313
141#ifndef EV_USE_POLL 314#ifndef EV_USE_POLL
142# ifdef _WIN32 315# ifdef _WIN32
143# define EV_USE_POLL 0 316# define EV_USE_POLL 0
144# else 317# else
145# define EV_USE_POLL 1 318# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 319# endif
147#endif 320#endif
148 321
149#ifndef EV_USE_EPOLL 322#ifndef EV_USE_EPOLL
323# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
324# define EV_USE_EPOLL EV_FEATURE_BACKENDS
325# else
150# define EV_USE_EPOLL 0 326# define EV_USE_EPOLL 0
327# endif
151#endif 328#endif
152 329
153#ifndef EV_USE_KQUEUE 330#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 331# define EV_USE_KQUEUE 0
155#endif 332#endif
156 333
157#ifndef EV_USE_PORT 334#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 335# define EV_USE_PORT 0
159#endif 336#endif
160 337
161/**/ 338#ifndef EV_USE_LINUXAIO
339# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340# define EV_USE_LINUXAIO 1
341# else
342# define EV_USE_LINUXAIO 0
343# endif
344#endif
345
346#ifndef EV_USE_IOURING
347# if __linux /* later checks might disable again */
348# define EV_USE_IOURING 1
349# else
350# define EV_USE_IOURING 0
351# endif
352#endif
353
354#ifndef EV_USE_INOTIFY
355# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
356# define EV_USE_INOTIFY EV_FEATURE_OS
357# else
358# define EV_USE_INOTIFY 0
359# endif
360#endif
361
362#ifndef EV_PID_HASHSIZE
363# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
364#endif
365
366#ifndef EV_INOTIFY_HASHSIZE
367# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
368#endif
369
370#ifndef EV_USE_EVENTFD
371# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
372# define EV_USE_EVENTFD EV_FEATURE_OS
373# else
374# define EV_USE_EVENTFD 0
375# endif
376#endif
377
378#ifndef EV_USE_SIGNALFD
379# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380# define EV_USE_SIGNALFD EV_FEATURE_OS
381# else
382# define EV_USE_SIGNALFD 0
383# endif
384#endif
385
386#if 0 /* debugging */
387# define EV_VERIFY 3
388# define EV_USE_4HEAP 1
389# define EV_HEAP_CACHE_AT 1
390#endif
391
392#ifndef EV_VERIFY
393# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
394#endif
395
396#ifndef EV_USE_4HEAP
397# define EV_USE_4HEAP EV_FEATURE_DATA
398#endif
399
400#ifndef EV_HEAP_CACHE_AT
401# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402#endif
403
404#ifdef __ANDROID__
405/* supposedly, android doesn't typedef fd_mask */
406# undef EV_USE_SELECT
407# define EV_USE_SELECT 0
408/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409# undef EV_USE_CLOCK_SYSCALL
410# define EV_USE_CLOCK_SYSCALL 0
411#endif
412
413/* aix's poll.h seems to cause lots of trouble */
414#ifdef _AIX
415/* AIX has a completely broken poll.h header */
416# undef EV_USE_POLL
417# define EV_USE_POLL 0
418#endif
419
420/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421/* which makes programs even slower. might work on other unices, too. */
422#if EV_USE_CLOCK_SYSCALL
423# include <sys/syscall.h>
424# ifdef SYS_clock_gettime
425# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426# undef EV_USE_MONOTONIC
427# define EV_USE_MONOTONIC 1
428# define EV_NEED_SYSCALL 1
429# else
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432# endif
433#endif
434
435/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 436
163#ifndef CLOCK_MONOTONIC 437#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 438# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 439# define EV_USE_MONOTONIC 0
166#endif 440#endif
168#ifndef CLOCK_REALTIME 442#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 443# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 444# define EV_USE_REALTIME 0
171#endif 445#endif
172 446
173#if EV_SELECT_IS_WINSOCKET 447#if !EV_STAT_ENABLE
448# undef EV_USE_INOTIFY
449# define EV_USE_INOTIFY 0
450#endif
451
452#if __linux && EV_USE_IOURING
174# include <winsock.h> 453# include <linux/version.h>
454# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455# undef EV_USE_IOURING
456# define EV_USE_IOURING 0
175#endif 457# endif
458#endif
176 459
177/**/ 460#if !EV_USE_NANOSLEEP
461/* hp-ux has it in sys/time.h, which we unconditionally include above */
462# if !defined _WIN32 && !defined __hpux
463# include <sys/select.h>
464# endif
465#endif
178 466
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 467#if EV_USE_LINUXAIO
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 468# include <sys/syscall.h>
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 469# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 470# define EV_NEED_SYSCALL 1
471# else
472# undef EV_USE_LINUXAIO
473# define EV_USE_LINUXAIO 0
474# endif
475#endif
183 476
184#ifdef EV_H 477#if EV_USE_IOURING
185# include EV_H 478# include <sys/syscall.h>
479# if !SYS_io_uring_setup && __linux && !__alpha
480# define SYS_io_uring_setup 425
481# define SYS_io_uring_enter 426
482# define SYS_io_uring_wregister 427
483# endif
484# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485# define EV_NEED_SYSCALL 1
486# else
487# undef EV_USE_IOURING
488# define EV_USE_IOURING 0
489# endif
490#endif
491
492#if EV_USE_INOTIFY
493# include <sys/statfs.h>
494# include <sys/inotify.h>
495/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
496# ifndef IN_DONT_FOLLOW
497# undef EV_USE_INOTIFY
498# define EV_USE_INOTIFY 0
499# endif
500#endif
501
502#if EV_USE_EVENTFD
503/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
504# include <stdint.h>
505# ifndef EFD_NONBLOCK
506# define EFD_NONBLOCK O_NONBLOCK
507# endif
508# ifndef EFD_CLOEXEC
509# ifdef O_CLOEXEC
510# define EFD_CLOEXEC O_CLOEXEC
511# else
512# define EFD_CLOEXEC 02000000
513# endif
514# endif
515EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516#endif
517
518#if EV_USE_SIGNALFD
519/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520# include <stdint.h>
521# ifndef SFD_NONBLOCK
522# define SFD_NONBLOCK O_NONBLOCK
523# endif
524# ifndef SFD_CLOEXEC
525# ifdef O_CLOEXEC
526# define SFD_CLOEXEC O_CLOEXEC
527# else
528# define SFD_CLOEXEC 02000000
529# endif
530# endif
531EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
532
533struct signalfd_siginfo
534{
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537};
538#endif
539
540/*****************************************************************************/
541
542#if EV_VERIFY >= 3
543# define EV_FREQUENT_CHECK ev_verify (EV_A)
186#else 544#else
187# include "ev.h" 545# define EV_FREQUENT_CHECK do { } while (0)
546#endif
547
548/*
549 * This is used to work around floating point rounding problems.
550 * This value is good at least till the year 4000.
551 */
552#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
554
555#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
556#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
557
558/* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561#define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566#ifndef EV_TS_CONST
567# define EV_TS_CONST(nv) nv
568# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569# define EV_TS_FROM_USEC(us) us * 1e-6
570# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574#endif
575
576/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577/* ECB.H BEGIN */
578/*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618#ifndef ECB_H
619#define ECB_H
620
621/* 16 bits major, 16 bits minor */
622#define ECB_VERSION 0x00010006
623
624#ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
631 #if __GNUC__
632 typedef signed long long int64_t;
633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
188#endif 637 #endif
189 638 #ifdef _WIN64
190#if __GNUC__ >= 3 639 #define ECB_PTRSIZE 8
191# define expect(expr,value) __builtin_expect ((expr),(value)) 640 typedef uint64_t uintptr_t;
192# define inline static inline 641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
193#else 647#else
648 #include <inttypes.h>
649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
650 #define ECB_PTRSIZE 8
651 #else
652 #define ECB_PTRSIZE 4
653 #endif
654#endif
655
656#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659/* work around x32 idiocy by defining proper macros */
660#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
665 #endif
666#endif
667
668/* many compilers define _GNUC_ to some versions but then only implement
669 * what their idiot authors think are the "more important" extensions,
670 * causing enormous grief in return for some better fake benchmark numbers.
671 * or so.
672 * we try to detect these and simply assume they are not gcc - if they have
673 * an issue with that they should have done it right in the first place.
674 */
675#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
677#else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679#endif
680
681#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683#if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685#else
686 #define ECB_CLANG_BUILTIN(x) 0
687#endif
688
689#if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691#else
692 #define ECB_CLANG_EXTENSION(x) 0
693#endif
694
695#define ECB_CPP (__cplusplus+0)
696#define ECB_CPP11 (__cplusplus >= 201103L)
697#define ECB_CPP14 (__cplusplus >= 201402L)
698#define ECB_CPP17 (__cplusplus >= 201703L)
699
700#if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703#else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706#endif
707
708#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712#if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716#else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720#endif
721
722/*****************************************************************************/
723
724/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727#if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729#endif
730
731#if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733#endif
734
735/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736#if __xlC__ && ECB_CPP
737 #include <builtins.h>
738#endif
739
740#if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742#endif
743
744#ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798#endif
799
800#ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840#endif
841
842#ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851#endif
852
853#ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869#endif
870
871#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873#endif
874
875#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877#endif
878
879#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881#endif
882
883/*****************************************************************************/
884
885#if ECB_CPP
886 #define ecb_inline static inline
887#elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889#elif ECB_C99
890 #define ecb_inline static inline
891#else
892 #define ecb_inline static
893#endif
894
895#if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897#elif ECB_C99
898 #define ecb_restrict restrict
899#else
900 #define ecb_restrict
901#endif
902
903typedef int ecb_bool;
904
905#define ECB_CONCAT_(a, b) a ## b
906#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907#define ECB_STRINGIFY_(a) # a
908#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911#define ecb_function_ ecb_inline
912
913#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915#else
916 #define ecb_attribute(attrlist)
917#endif
918
919#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921#else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927#endif
928
929#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931#else
194# define expect(expr,value) (expr) 932 #define ecb_expect(expr,value) (expr)
195# define inline static
196#endif 933#endif
197 934
935#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937#else
938 #define ecb_prefetch(addr,rw,locality)
939#endif
940
941/* no emulation for ecb_decltype */
942#if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948#endif
949
950#if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952#else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954#endif
955
956#if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958#elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960#else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962#endif
963
964#if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966#else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968#endif
969
970#define ecb_unused ecb_attribute ((__unused__))
971#define ecb_const ecb_attribute ((__const__))
972#define ecb_pure ecb_attribute ((__pure__))
973
974#if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977#elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979#elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982#else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984#endif
985
986#if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990#else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994#endif
995
996/* put around conditional expressions if you are very sure that the */
997/* expression is mostly true or mostly false. note that these return */
998/* booleans, not the expression. */
198#define expect_false(expr) expect ((expr) != 0, 0) 999#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 1000#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001/* for compatibility to the rest of the world */
1002#define ecb_likely(expr) ecb_expect_true (expr)
1003#define ecb_unlikely(expr) ecb_expect_false (expr)
200 1004
1005/* count trailing zero bits and count # of one bits */
1006#if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017#else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026#else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031#if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037#else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043#endif
1044
1045 return r;
1046#endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057#else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060#endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082#else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102#else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108#endif
1109 }
1110#endif
1111
1112ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119{
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122}
1123
1124ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126{
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133}
1134
1135ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137{
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145}
1146
1147/* popcount64 is only available on 64 bit cpus as gcc builtin */
1148/* so for this version we are lazy */
1149ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150ecb_function_ ecb_const int
1151ecb_popcount64 (uint64_t x)
1152{
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154}
1155
1156ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182#elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187#else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208#endif
1209
1210#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212#else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216#endif
1217
1218/* try to tell the compiler that some condition is definitely true */
1219#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222ecb_inline ecb_const uint32_t
1223ecb_byteorder_helper (void)
1224{
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239#else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246#endif
1247}
1248
1249ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254#if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256#else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258#endif
1259
1260#if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271#else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274#endif
1275
1276#if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283#else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285#endif
1286
1287ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288ecb_function_ ecb_const uint32_t
1289ecb_binary16_to_binary32 (uint32_t x)
1290{
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317}
1318
1319ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320ecb_function_ ecb_const uint16_t
1321ecb_binary32_to_binary16 (uint32_t x)
1322{
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381}
1382
1383/*******************************************************************************/
1384/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386/* basically, everything uses "ieee pure-endian" floating point numbers */
1387/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388#if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405#else
1406 #define ECB_STDFP 0
1407#endif
1408
1409#ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590#endif
1591
1592#endif
1593
1594/* ECB.H END */
1595
1596#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597/* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604# error "memory fences not defined for your architecture, please report"
1605#endif
1606
1607#ifndef ECB_MEMORY_FENCE
1608# define ECB_MEMORY_FENCE do { } while (0)
1609# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611#endif
1612
1613#define inline_size ecb_inline
1614
1615#if EV_FEATURE_CODE
1616# define inline_speed ecb_inline
1617#else
1618# define inline_speed ecb_noinline static
1619#endif
1620
1621/*****************************************************************************/
1622/* raw syscall wrappers */
1623
1624#if EV_NEED_SYSCALL
1625
1626#include <sys/syscall.h>
1627
1628/*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636#if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663#endif
1664
1665#ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673#else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681#endif
1682
1683#endif
1684
1685/*****************************************************************************/
1686
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1687#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689#if EV_MINPRI == EV_MAXPRI
1690# define ABSPRI(w) (((W)w), 0)
1691#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1692# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693#endif
203 1694
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 1695#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206 1696
207typedef ev_watcher *W; 1697typedef ev_watcher *W;
208typedef ev_watcher_list *WL; 1698typedef ev_watcher_list *WL;
209typedef ev_watcher_time *WT; 1699typedef ev_watcher_time *WT;
210 1700
1701#define ev_active(w) ((W)(w))->active
1702#define ev_at(w) ((WT)(w))->at
1703
1704#if EV_USE_REALTIME
1705/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706/* giving it a reasonably high chance of working on typical architectures */
1707static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708#endif
1709
1710#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1711static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712#endif
1713
1714#ifndef EV_FD_TO_WIN32_HANDLE
1715# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716#endif
1717#ifndef EV_WIN32_HANDLE_TO_FD
1718# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719#endif
1720#ifndef EV_WIN32_CLOSE_FD
1721# define EV_WIN32_CLOSE_FD(fd) close (fd)
1722#endif
212 1723
213#ifdef _WIN32 1724#ifdef _WIN32
214# include "ev_win32.c" 1725# include "ev_win32.c"
215#endif 1726#endif
216 1727
217/*****************************************************************************/ 1728/*****************************************************************************/
218 1729
1730#if EV_USE_LINUXAIO
1731# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732#endif
1733
1734/* define a suitable floor function (only used by periodics atm) */
1735
1736#if EV_USE_FLOOR
1737# include <math.h>
1738# define ev_floor(v) floor (v)
1739#else
1740
1741#include <float.h>
1742
1743/* a floor() replacement function, should be independent of ev_tstamp type */
1744ecb_noinline
1745static ev_tstamp
1746ev_floor (ev_tstamp v)
1747{
1748 /* the choice of shift factor is not terribly important */
1749#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751#else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753#endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777}
1778
1779#endif
1780
1781/*****************************************************************************/
1782
1783#ifdef __linux
1784# include <sys/utsname.h>
1785#endif
1786
1787ecb_noinline ecb_cold
1788static unsigned int
1789ev_linux_version (void)
1790{
1791#ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819#else
1820 return 0;
1821#endif
1822}
1823
1824/*****************************************************************************/
1825
1826#if EV_AVOID_STDIO
1827ecb_noinline ecb_cold
1828static void
1829ev_printerr (const char *msg)
1830{
1831 write (STDERR_FILENO, msg, strlen (msg));
1832}
1833#endif
1834
219static void (*syserr_cb)(const char *msg); 1835static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
220 1836
1837ecb_cold
1838void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 1839ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
222{ 1840{
223 syserr_cb = cb; 1841 syserr_cb = cb;
224} 1842}
225 1843
1844ecb_noinline ecb_cold
226static void 1845static void
227syserr (const char *msg) 1846ev_syserr (const char *msg)
228{ 1847{
229 if (!msg) 1848 if (!msg)
230 msg = "(libev) system error"; 1849 msg = "(libev) system error";
231 1850
232 if (syserr_cb) 1851 if (syserr_cb)
233 syserr_cb (msg); 1852 syserr_cb (msg);
234 else 1853 else
235 { 1854 {
1855#if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860#else
236 perror (msg); 1861 perror (msg);
1862#endif
237 abort (); 1863 abort ();
238 } 1864 }
239} 1865}
240 1866
241static void *(*alloc)(void *ptr, long size); 1867static void *
1868ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1869{
1870 /* some systems, notably openbsd and darwin, fail to properly
1871 * implement realloc (x, 0) (as required by both ansi c-89 and
1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
1875 */
242 1876
1877 if (size)
1878 return realloc (ptr, size);
1879
1880 free (ptr);
1881 return 0;
1882}
1883
1884static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1885
1886ecb_cold
1887void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1888ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
244{ 1889{
245 alloc = cb; 1890 alloc = cb;
246} 1891}
247 1892
248static void * 1893inline_speed void *
249ev_realloc (void *ptr, long size) 1894ev_realloc (void *ptr, long size)
250{ 1895{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1896 ptr = alloc (ptr, size);
252 1897
253 if (!ptr && size) 1898 if (!ptr && size)
254 { 1899 {
1900#if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904#endif
256 abort (); 1905 abort ();
257 } 1906 }
258 1907
259 return ptr; 1908 return ptr;
260} 1909}
262#define ev_malloc(size) ev_realloc (0, (size)) 1911#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 1912#define ev_free(ptr) ev_realloc ((ptr), 0)
264 1913
265/*****************************************************************************/ 1914/*****************************************************************************/
266 1915
1916/* set in reify when reification needed */
1917#define EV_ANFD_REIFY 1
1918
1919/* file descriptor info structure */
267typedef struct 1920typedef struct
268{ 1921{
269 WL head; 1922 WL head;
270 unsigned char events; 1923 unsigned char events; /* the events watched for */
271 unsigned char reify; 1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1925 unsigned char emask; /* some backends store the actual kernel mask in here */
1926 unsigned char eflags; /* flags field for use by backends */
1927#if EV_USE_EPOLL
1928 unsigned int egen; /* generation counter to counter epoll bugs */
1929#endif
272#if EV_SELECT_IS_WINSOCKET 1930#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 1931 SOCKET handle;
274#endif 1932#endif
1933#if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935#endif
275} ANFD; 1936} ANFD;
276 1937
1938/* stores the pending event set for a given watcher */
277typedef struct 1939typedef struct
278{ 1940{
279 W w; 1941 W w;
280 int events; 1942 int events; /* the pending event set for the given watcher */
281} ANPENDING; 1943} ANPENDING;
1944
1945#if EV_USE_INOTIFY
1946/* hash table entry per inotify-id */
1947typedef struct
1948{
1949 WL head;
1950} ANFS;
1951#endif
1952
1953/* Heap Entry */
1954#if EV_HEAP_CACHE_AT
1955 /* a heap element */
1956 typedef struct {
1957 ev_tstamp at;
1958 WT w;
1959 } ANHE;
1960
1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1964#else
1965 /* a heap element */
1966 typedef WT ANHE;
1967
1968 #define ANHE_w(he) (he)
1969 #define ANHE_at(he) (he)->at
1970 #define ANHE_at_cache(he)
1971#endif
282 1972
283#if EV_MULTIPLICITY 1973#if EV_MULTIPLICITY
284 1974
285 struct ev_loop 1975 struct ev_loop
286 { 1976 {
291 #undef VAR 1981 #undef VAR
292 }; 1982 };
293 #include "ev_wrap.h" 1983 #include "ev_wrap.h"
294 1984
295 static struct ev_loop default_loop_struct; 1985 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr; 1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
297 1987
298#else 1988#else
299 1989
300 ev_tstamp ev_rt_now; 1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
301 #define VAR(name,decl) static decl; 1991 #define VAR(name,decl) static decl;
302 #include "ev_vars.h" 1992 #include "ev_vars.h"
303 #undef VAR 1993 #undef VAR
304 1994
305 static int ev_default_loop_ptr; 1995 static int ev_default_loop_ptr;
306 1996
307#endif 1997#endif
308 1998
1999#if EV_FEATURE_API
2000# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002# define EV_INVOKE_PENDING invoke_cb (EV_A)
2003#else
2004# define EV_RELEASE_CB (void)0
2005# define EV_ACQUIRE_CB (void)0
2006# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007#endif
2008
2009#define EVBREAK_RECURSE 0x80
2010
309/*****************************************************************************/ 2011/*****************************************************************************/
310 2012
2013#ifndef EV_HAVE_EV_TIME
311ev_tstamp 2014ev_tstamp
312ev_time (void) 2015ev_time (void) EV_NOEXCEPT
313{ 2016{
314#if EV_USE_REALTIME 2017#if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
315 struct timespec ts; 2020 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 2021 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 2022 return EV_TS_GET (ts);
318#else 2023 }
2024#endif
2025
2026 {
319 struct timeval tv; 2027 struct timeval tv;
320 gettimeofday (&tv, 0); 2028 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 2029 return EV_TV_GET (tv);
322#endif 2030 }
323} 2031}
2032#endif
324 2033
325inline ev_tstamp 2034inline_size ev_tstamp
326get_clock (void) 2035get_clock (void)
327{ 2036{
328#if EV_USE_MONOTONIC 2037#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 2038 if (ecb_expect_true (have_monotonic))
330 { 2039 {
331 struct timespec ts; 2040 struct timespec ts;
332 clock_gettime (CLOCK_MONOTONIC, &ts); 2041 clock_gettime (CLOCK_MONOTONIC, &ts);
333 return ts.tv_sec + ts.tv_nsec * 1e-9; 2042 return EV_TS_GET (ts);
334 } 2043 }
335#endif 2044#endif
336 2045
337 return ev_time (); 2046 return ev_time ();
338} 2047}
339 2048
340#if EV_MULTIPLICITY 2049#if EV_MULTIPLICITY
341ev_tstamp 2050ev_tstamp
342ev_now (EV_P) 2051ev_now (EV_P) EV_NOEXCEPT
343{ 2052{
344 return ev_rt_now; 2053 return ev_rt_now;
345} 2054}
346#endif 2055#endif
347 2056
348#define array_roundsize(type,n) (((n) | 4) & ~3) 2057void
2058ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2059{
2060 if (delay > EV_TS_CONST (0.))
2061 {
2062#if EV_USE_NANOSLEEP
2063 struct timespec ts;
2064
2065 EV_TS_SET (ts, delay);
2066 nanosleep (&ts, 0);
2067#elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2071#else
2072 struct timeval tv;
2073
2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2075 /* something not guaranteed by newer posix versions, but guaranteed */
2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
2078 select (0, 0, 0, 0, &tv);
2079#endif
2080 }
2081}
2082
2083/*****************************************************************************/
2084
2085#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2086
2087/* find a suitable new size for the given array, */
2088/* hopefully by rounding to a nice-to-malloc size */
2089inline_size int
2090array_nextsize (int elem, int cur, int cnt)
2091{
2092 int ncur = cur + 1;
2093
2094 do
2095 ncur <<= 1;
2096 while (cnt > ncur);
2097
2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2100 {
2101 ncur *= elem;
2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2103 ncur = ncur - sizeof (void *) * 4;
2104 ncur /= elem;
2105 }
2106
2107 return ncur;
2108}
2109
2110ecb_noinline ecb_cold
2111static void *
2112array_realloc (int elem, void *base, int *cur, int cnt)
2113{
2114 *cur = array_nextsize (elem, *cur, cnt);
2115 return ev_realloc (base, elem * *cur);
2116}
2117
2118#define array_needsize_noinit(base,offset,count)
2119
2120#define array_needsize_zerofill(base,offset,count) \
2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
349 2122
350#define array_needsize(type,base,cur,cnt,init) \ 2123#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 2124 if (ecb_expect_false ((cnt) > (cur))) \
352 { \ 2125 { \
353 int newcnt = cur; \ 2126 ecb_unused int ocur_ = (cur); \
354 do \ 2127 (base) = (type *)array_realloc \
355 { \ 2128 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 2129 init ((base), ocur_, ((cur) - ocur_)); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 2130 }
364 2131
2132#if 0
365#define array_slim(type,stem) \ 2133#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 2135 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 2136 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 2137 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 2139 }
2140#endif
372 2141
373#define array_free(stem, idx) \ 2142#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 2144
376/*****************************************************************************/ 2145/*****************************************************************************/
377 2146
2147/* dummy callback for pending events */
2148ecb_noinline
378static void 2149static void
379anfds_init (ANFD *base, int count) 2150pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 2151{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 2152}
390 2153
2154ecb_noinline
391void 2155void
392ev_feed_event (EV_P_ void *w, int revents) 2156ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
393{ 2157{
394 W w_ = (W)w; 2158 W w_ = (W)w;
2159 int pri = ABSPRI (w_);
395 2160
396 if (expect_false (w_->pending)) 2161 if (ecb_expect_false (w_->pending))
2162 pendings [pri][w_->pending - 1].events |= revents;
2163 else
397 { 2164 {
2165 w_->pending = ++pendingcnt [pri];
2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2167 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 2168 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 2169 }
401 2170
402 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2171 pendingpri = NUMPRI - 1;
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 2172}
407 2173
408static void 2174inline_speed void
2175feed_reverse (EV_P_ W w)
2176{
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179}
2180
2181inline_size void
2182feed_reverse_done (EV_P_ int revents)
2183{
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187}
2188
2189inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 2190queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 2191{
411 int i; 2192 int i;
412 2193
413 for (i = 0; i < eventcnt; ++i) 2194 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 2195 ev_feed_event (EV_A_ events [i], type);
415} 2196}
416 2197
2198/*****************************************************************************/
2199
417inline void 2200inline_speed void
418fd_event (EV_P_ int fd, int revents) 2201fd_event_nocheck (EV_P_ int fd, int revents)
419{ 2202{
420 ANFD *anfd = anfds + fd; 2203 ANFD *anfd = anfds + fd;
421 ev_io *w; 2204 ev_io *w;
422 2205
423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 if (ev) 2210 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 2211 ev_feed_event (EV_A_ (W)w, ev);
429 } 2212 }
430} 2213}
431 2214
432void 2215/* do not submit kernel events for fds that have reify set */
2216/* because that means they changed while we were polling for new events */
2217inline_speed void
433ev_feed_fd_event (EV_P_ int fd, int revents) 2218fd_event (EV_P_ int fd, int revents)
434{ 2219{
2220 ANFD *anfd = anfds + fd;
2221
2222 if (ecb_expect_true (!anfd->reify))
435 fd_event (EV_A_ fd, revents); 2223 fd_event_nocheck (EV_A_ fd, revents);
436} 2224}
437 2225
438/*****************************************************************************/ 2226void
2227ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2228{
2229 if (fd >= 0 && fd < anfdmax)
2230 fd_event_nocheck (EV_A_ fd, revents);
2231}
439 2232
2233/* make sure the external fd watch events are in-sync */
2234/* with the kernel/libev internal state */
440inline void 2235inline_size void
441fd_reify (EV_P) 2236fd_reify (EV_P)
442{ 2237{
443 int i; 2238 int i;
2239
2240#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263#endif
444 2264
445 for (i = 0; i < fdchangecnt; ++i) 2265 for (i = 0; i < fdchangecnt; ++i)
446 { 2266 {
447 int fd = fdchanges [i]; 2267 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 2268 ANFD *anfd = anfds + fd;
449 ev_io *w; 2269 ev_io *w;
450 2270
451 int events = 0; 2271 unsigned char o_events = anfd->events;
2272 unsigned char o_reify = anfd->reify;
452 2273
453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2274 anfd->reify = 0;
454 events |= w->events;
455 2275
456#if EV_SELECT_IS_WINSOCKET 2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
457 if (events)
458 { 2277 {
459 unsigned long argp; 2278 anfd->events = 0;
460 anfd->handle = _get_osfhandle (fd); 2279
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2281 anfd->events |= (unsigned char)w->events;
2282
2283 if (o_events != anfd->events)
2284 o_reify = EV__IOFDSET; /* actually |= */
462 } 2285 }
463#endif
464 2286
465 anfd->reify = 0; 2287 if (o_reify & EV__IOFDSET)
466
467 backend_modify (EV_A_ fd, anfd->events, events); 2288 backend_modify (EV_A_ fd, o_events, anfd->events);
468 anfd->events = events;
469 } 2289 }
470 2290
471 fdchangecnt = 0; 2291 fdchangecnt = 0;
472} 2292}
473 2293
474static void 2294/* something about the given fd changed */
2295inline_size
2296void
475fd_change (EV_P_ int fd) 2297fd_change (EV_P_ int fd, int flags)
476{ 2298{
477 if (expect_false (anfds [fd].reify)) 2299 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 2300 anfds [fd].reify |= flags;
481 2301
2302 if (ecb_expect_true (!reify))
2303 {
482 ++fdchangecnt; 2304 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
484 fdchanges [fdchangecnt - 1] = fd; 2306 fdchanges [fdchangecnt - 1] = fd;
2307 }
485} 2308}
486 2309
487static void 2310/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311inline_speed ecb_cold void
488fd_kill (EV_P_ int fd) 2312fd_kill (EV_P_ int fd)
489{ 2313{
490 ev_io *w; 2314 ev_io *w;
491 2315
492 while ((w = (ev_io *)anfds [fd].head)) 2316 while ((w = (ev_io *)anfds [fd].head))
494 ev_io_stop (EV_A_ w); 2318 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 2320 }
497} 2321}
498 2322
499inline int 2323/* check whether the given fd is actually valid, for error recovery */
2324inline_size ecb_cold int
500fd_valid (int fd) 2325fd_valid (int fd)
501{ 2326{
502#ifdef _WIN32 2327#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 2329#else
505 return fcntl (fd, F_GETFD) != -1; 2330 return fcntl (fd, F_GETFD) != -1;
506#endif 2331#endif
507} 2332}
508 2333
509/* called on EBADF to verify fds */ 2334/* called on EBADF to verify fds */
2335ecb_noinline ecb_cold
510static void 2336static void
511fd_ebadf (EV_P) 2337fd_ebadf (EV_P)
512{ 2338{
513 int fd; 2339 int fd;
514 2340
515 for (fd = 0; fd < anfdmax; ++fd) 2341 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 2342 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 2343 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 2344 fd_kill (EV_A_ fd);
519} 2345}
520 2346
521/* called on ENOMEM in select/poll to kill some fds and retry */ 2347/* called on ENOMEM in select/poll to kill some fds and retry */
2348ecb_noinline ecb_cold
522static void 2349static void
523fd_enomem (EV_P) 2350fd_enomem (EV_P)
524{ 2351{
525 int fd; 2352 int fd;
526 2353
527 for (fd = anfdmax; fd--; ) 2354 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 2355 if (anfds [fd].events)
529 { 2356 {
530 fd_kill (EV_A_ fd); 2357 fd_kill (EV_A_ fd);
531 return; 2358 break;
532 } 2359 }
533} 2360}
534 2361
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 2362/* usually called after fork if backend needs to re-arm all fds from scratch */
2363ecb_noinline
536static void 2364static void
537fd_rearm_all (EV_P) 2365fd_rearm_all (EV_P)
538{ 2366{
539 int fd; 2367 int fd;
540 2368
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 2369 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 2370 if (anfds [fd].events)
544 { 2371 {
545 anfds [fd].events = 0; 2372 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 2373 anfds [fd].emask = 0;
2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 2375 }
548} 2376}
549 2377
550/*****************************************************************************/ 2378/* used to prepare libev internal fd's */
551 2379/* this is not fork-safe */
552static void
553upheap (WT *heap, int k)
554{
555 WT w = heap [k];
556
557 while (k && heap [k >> 1]->at > w->at)
558 {
559 heap [k] = heap [k >> 1];
560 ((W)heap [k])->active = k + 1;
561 k >>= 1;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566
567}
568
569static void
570downheap (WT *heap, int N, int k)
571{
572 WT w = heap [k];
573
574 while (k < (N >> 1))
575 {
576 int j = k << 1;
577
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break;
583
584 heap [k] = heap [j];
585 ((W)heap [k])->active = k + 1;
586 k = j;
587 }
588
589 heap [k] = w;
590 ((W)heap [k])->active = k + 1;
591}
592
593inline void 2380inline_speed void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
600/*****************************************************************************/
601
602typedef struct
603{
604 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG;
607
608static ANSIG *signals;
609static int signalmax;
610
611static int sigpipe [2];
612static sig_atomic_t volatile gotsig;
613static ev_io sigev;
614
615static void
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 2381fd_intern (int fd)
680{ 2382{
681#ifdef _WIN32 2383#ifdef _WIN32
682 int arg = 1; 2384 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 2386#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 2388 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 2389#endif
688} 2390}
689 2391
2392/*****************************************************************************/
2393
2394/*
2395 * the heap functions want a real array index. array index 0 is guaranteed to not
2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2397 * the branching factor of the d-tree.
2398 */
2399
2400/*
2401 * at the moment we allow libev the luxury of two heaps,
2402 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2403 * which is more cache-efficient.
2404 * the difference is about 5% with 50000+ watchers.
2405 */
2406#if EV_USE_4HEAP
2407
2408#define DHEAP 4
2409#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2410#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2411#define UPHEAP_DONE(p,k) ((p) == (k))
2412
2413/* away from the root */
2414inline_speed void
2415downheap (ANHE *heap, int N, int k)
2416{
2417 ANHE he = heap [k];
2418 ANHE *E = heap + N + HEAP0;
2419
2420 for (;;)
2421 {
2422 ev_tstamp minat;
2423 ANHE *minpos;
2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2425
2426 /* find minimum child */
2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
2428 {
2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2433 }
2434 else if (pos < E)
2435 {
2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2440 }
2441 else
2442 break;
2443
2444 if (ANHE_at (he) <= minat)
2445 break;
2446
2447 heap [k] = *minpos;
2448 ev_active (ANHE_w (*minpos)) = k;
2449
2450 k = minpos - heap;
2451 }
2452
2453 heap [k] = he;
2454 ev_active (ANHE_w (he)) = k;
2455}
2456
2457#else /* not 4HEAP */
2458
2459#define HEAP0 1
2460#define HPARENT(k) ((k) >> 1)
2461#define UPHEAP_DONE(p,k) (!(p))
2462
2463/* away from the root */
2464inline_speed void
2465downheap (ANHE *heap, int N, int k)
2466{
2467 ANHE he = heap [k];
2468
2469 for (;;)
2470 {
2471 int c = k << 1;
2472
2473 if (c >= N + HEAP0)
2474 break;
2475
2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2477 ? 1 : 0;
2478
2479 if (ANHE_at (he) <= ANHE_at (heap [c]))
2480 break;
2481
2482 heap [k] = heap [c];
2483 ev_active (ANHE_w (heap [k])) = k;
2484
2485 k = c;
2486 }
2487
2488 heap [k] = he;
2489 ev_active (ANHE_w (he)) = k;
2490}
2491#endif
2492
2493/* towards the root */
2494inline_speed void
2495upheap (ANHE *heap, int k)
2496{
2497 ANHE he = heap [k];
2498
2499 for (;;)
2500 {
2501 int p = HPARENT (k);
2502
2503 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2504 break;
2505
2506 heap [k] = heap [p];
2507 ev_active (ANHE_w (heap [k])) = k;
2508 k = p;
2509 }
2510
2511 heap [k] = he;
2512 ev_active (ANHE_w (he)) = k;
2513}
2514
2515/* move an element suitably so it is in a correct place */
2516inline_size void
2517adjustheap (ANHE *heap, int N, int k)
2518{
2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2520 upheap (heap, k);
2521 else
2522 downheap (heap, N, k);
2523}
2524
2525/* rebuild the heap: this function is used only once and executed rarely */
2526inline_size void
2527reheap (ANHE *heap, int N)
2528{
2529 int i;
2530
2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2532 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2533 for (i = 0; i < N; ++i)
2534 upheap (heap, i + HEAP0);
2535}
2536
2537/*****************************************************************************/
2538
2539/* associate signal watchers to a signal signal */
2540typedef struct
2541{
2542 EV_ATOMIC_T pending;
2543#if EV_MULTIPLICITY
2544 EV_P;
2545#endif
2546 WL head;
2547} ANSIG;
2548
2549static ANSIG signals [EV_NSIG - 1];
2550
2551/*****************************************************************************/
2552
2553#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554
2555ecb_noinline ecb_cold
690static void 2556static void
691siginit (EV_P) 2557evpipe_init (EV_P)
692{ 2558{
693 fd_intern (sigpipe [0]); 2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563# if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570# endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
694 fd_intern (sigpipe [1]); 2593 fd_intern (evpipe [1]);
695 2594
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
697 ev_io_start (EV_A_ &sigev); 2596 ev_io_start (EV_A_ &pipe_w);
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2597 ev_unref (EV_A); /* watcher should not keep loop alive */
2598 }
2599}
2600
2601inline_speed void
2602evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603{
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
2625#if EV_USE_EVENTFD
2626 if (evpipe [0] < 0)
2627 {
2628 uint64_t counter = 1;
2629 write (evpipe [1], &counter, sizeof (uint64_t));
2630 }
2631 else
2632#endif
2633 {
2634#ifdef _WIN32
2635 WSABUF buf;
2636 DWORD sent;
2637 buf.buf = (char *)&buf;
2638 buf.len = 1;
2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640#else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642#endif
2643 }
2644
2645 errno = old_errno;
2646 }
2647}
2648
2649/* called whenever the libev signal pipe */
2650/* got some events (signal, async) */
2651static void
2652pipecb (EV_P_ ev_io *iow, int revents)
2653{
2654 int i;
2655
2656 if (revents & EV_READ)
2657 {
2658#if EV_USE_EVENTFD
2659 if (evpipe [0] < 0)
2660 {
2661 uint64_t counter;
2662 read (evpipe [1], &counter, sizeof (uint64_t));
2663 }
2664 else
2665#endif
2666 {
2667 char dummy[4];
2668#ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675#else
2676 read (evpipe [0], &dummy, sizeof (dummy));
2677#endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685#if EV_SIGNAL_ENABLE
2686 if (sig_pending)
2687 {
2688 sig_pending = 0;
2689
2690 ECB_MEMORY_FENCE;
2691
2692 for (i = EV_NSIG - 1; i--; )
2693 if (ecb_expect_false (signals [i].pending))
2694 ev_feed_signal_event (EV_A_ i + 1);
2695 }
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699 if (async_pending)
2700 {
2701 async_pending = 0;
2702
2703 ECB_MEMORY_FENCE;
2704
2705 for (i = asynccnt; i--; )
2706 if (asyncs [i]->sent)
2707 {
2708 asyncs [i]->sent = 0;
2709 ECB_MEMORY_FENCE_RELEASE;
2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2711 }
2712 }
2713#endif
699} 2714}
700 2715
701/*****************************************************************************/ 2716/*****************************************************************************/
702 2717
703static ev_child *childs [PID_HASHSIZE]; 2718void
2719ev_feed_signal (int signum) EV_NOEXCEPT
2720{
2721#if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
704 2725
2726 if (!EV_A)
2727 return;
2728#endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732}
2733
2734static void
2735ev_sighandler (int signum)
2736{
705#ifndef _WIN32 2737#ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739#endif
2740
2741 ev_feed_signal (signum);
2742}
2743
2744ecb_noinline
2745void
2746ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747{
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
2755#if EV_MULTIPLICITY
2756 /* it is permissible to try to feed a signal to the wrong loop */
2757 /* or, likely more useful, feeding a signal nobody is waiting for */
2758
2759 if (ecb_expect_false (signals [signum].loop != EV_A))
2760 return;
2761#endif
2762
2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
2765
2766 for (w = signals [signum].head; w; w = w->next)
2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2768}
2769
2770#if EV_USE_SIGNALFD
2771static void
2772sigfdcb (EV_P_ ev_io *iow, int revents)
2773{
2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775
2776 for (;;)
2777 {
2778 ssize_t res = read (sigfd, si, sizeof (si));
2779
2780 /* not ISO-C, as res might be -1, but works with SuS */
2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783
2784 if (res < (ssize_t)sizeof (si))
2785 break;
2786 }
2787}
2788#endif
2789
2790#endif
2791
2792/*****************************************************************************/
2793
2794#if EV_CHILD_ENABLE
2795static WL childs [EV_PID_HASHSIZE];
706 2796
707static ev_signal childev; 2797static ev_signal childev;
2798
2799#ifndef WIFCONTINUED
2800# define WIFCONTINUED(status) 0
2801#endif
2802
2803/* handle a single child status event */
2804inline_speed void
2805child_reap (EV_P_ int chain, int pid, int status)
2806{
2807 ev_child *w;
2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2809
2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2811 {
2812 if ((w->pid == pid || !w->pid)
2813 && (!traced || (w->flags & 1)))
2814 {
2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2816 w->rpid = pid;
2817 w->rstatus = status;
2818 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2819 }
2820 }
2821}
708 2822
709#ifndef WCONTINUED 2823#ifndef WCONTINUED
710# define WCONTINUED 0 2824# define WCONTINUED 0
711#endif 2825#endif
712 2826
713static void 2827/* called on sigchld etc., calls waitpid */
714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{
716 ev_child *w;
717
718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void 2828static void
729childcb (EV_P_ ev_signal *sw, int revents) 2829childcb (EV_P_ ev_signal *sw, int revents)
730{ 2830{
731 int pid, status; 2831 int pid, status;
732 2832
2833 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2834 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 2835 if (!WCONTINUED
2836 || errno != EINVAL
2837 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2838 return;
2839
735 /* make sure we are called again until all childs have been reaped */ 2840 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 2841 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 2843
739 child_reap (EV_A_ sw, pid, pid, status); 2844 child_reap (EV_A_ pid, pid, status);
2845 if ((EV_PID_HASHSIZE) > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 2847}
743 2848
744#endif 2849#endif
745 2850
746/*****************************************************************************/ 2851/*****************************************************************************/
747 2852
2853#if EV_USE_IOCP
2854# include "ev_iocp.c"
2855#endif
748#if EV_USE_PORT 2856#if EV_USE_PORT
749# include "ev_port.c" 2857# include "ev_port.c"
750#endif 2858#endif
751#if EV_USE_KQUEUE 2859#if EV_USE_KQUEUE
752# include "ev_kqueue.c" 2860# include "ev_kqueue.c"
753#endif 2861#endif
754#if EV_USE_EPOLL 2862#if EV_USE_EPOLL
755# include "ev_epoll.c" 2863# include "ev_epoll.c"
756#endif 2864#endif
2865#if EV_USE_LINUXAIO
2866# include "ev_linuxaio.c"
2867#endif
2868#if EV_USE_IOURING
2869# include "ev_iouring.c"
2870#endif
757#if EV_USE_POLL 2871#if EV_USE_POLL
758# include "ev_poll.c" 2872# include "ev_poll.c"
759#endif 2873#endif
760#if EV_USE_SELECT 2874#if EV_USE_SELECT
761# include "ev_select.c" 2875# include "ev_select.c"
762#endif 2876#endif
763 2877
764int 2878ecb_cold int
765ev_version_major (void) 2879ev_version_major (void) EV_NOEXCEPT
766{ 2880{
767 return EV_VERSION_MAJOR; 2881 return EV_VERSION_MAJOR;
768} 2882}
769 2883
770int 2884ecb_cold int
771ev_version_minor (void) 2885ev_version_minor (void) EV_NOEXCEPT
772{ 2886{
773 return EV_VERSION_MINOR; 2887 return EV_VERSION_MINOR;
774} 2888}
775 2889
776/* return true if we are running with elevated privileges and should ignore env variables */ 2890/* return true if we are running with elevated privileges and should ignore env variables */
777static int 2891inline_size ecb_cold int
778enable_secure (void) 2892enable_secure (void)
779{ 2893{
780#ifdef _WIN32 2894#ifdef _WIN32
781 return 0; 2895 return 0;
782#else 2896#else
783 return getuid () != geteuid () 2897 return getuid () != geteuid ()
784 || getgid () != getegid (); 2898 || getgid () != getegid ();
785#endif 2899#endif
786} 2900}
787 2901
2902ecb_cold
788unsigned int 2903unsigned int
789ev_supported_backends (void) 2904ev_supported_backends (void) EV_NOEXCEPT
790{ 2905{
791 unsigned int flags = 0; 2906 unsigned int flags = 0;
792 2907
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
798 2915
799 return flags; 2916 return flags;
800} 2917}
801 2918
2919ecb_cold
802unsigned int 2920unsigned int
803ev_recommended_backends (void) 2921ev_recommended_backends (void) EV_NOEXCEPT
804{ 2922{
805 unsigned int flags = ev_supported_backends (); 2923 unsigned int flags = ev_supported_backends ();
806 2924
807#ifndef __NetBSD__ 2925#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 2926 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 2927 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 2928 flags &= ~EVBACKEND_KQUEUE;
811#endif 2929#endif
812#ifdef __APPLE__ 2930#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934#endif
2935#ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937#endif
2938
2939 /* TODO: linuxaio is very experimental */
2940#if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942#endif
2943 /* TODO: linuxaio is super experimental */
2944#if !EV_RECOMMEND_IOURING
814 flags &= ~EVBACKEND_POLL; 2945 flags &= ~EVBACKEND_IOURING;
815#endif 2946#endif
816 2947
817 return flags; 2948 return flags;
818} 2949}
819 2950
2951ecb_cold
820unsigned int 2952unsigned int
821ev_embeddable_backends (void) 2953ev_embeddable_backends (void) EV_NOEXCEPT
822{ 2954{
823 return EVBACKEND_EPOLL 2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
824 | EVBACKEND_KQUEUE 2956
825 | EVBACKEND_PORT; 2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
2967
2968 return flags;
826} 2969}
827 2970
828unsigned int 2971unsigned int
829ev_backend (EV_P) 2972ev_backend (EV_P) EV_NOEXCEPT
830{ 2973{
831 return backend; 2974 return backend;
832} 2975}
833 2976
2977#if EV_FEATURE_API
2978unsigned int
2979ev_iteration (EV_P) EV_NOEXCEPT
2980{
2981 return loop_count;
2982}
2983
2984unsigned int
2985ev_depth (EV_P) EV_NOEXCEPT
2986{
2987 return loop_depth;
2988}
2989
2990void
2991ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2992{
2993 io_blocktime = interval;
2994}
2995
2996void
2997ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2998{
2999 timeout_blocktime = interval;
3000}
3001
3002void
3003ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004{
3005 userdata = data;
3006}
3007
3008void *
3009ev_userdata (EV_P) EV_NOEXCEPT
3010{
3011 return userdata;
3012}
3013
3014void
3015ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016{
3017 invoke_cb = invoke_pending_cb;
3018}
3019
3020void
3021ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022{
3023 release_cb = release;
3024 acquire_cb = acquire;
3025}
3026#endif
3027
3028/* initialise a loop structure, must be zero-initialised */
3029ecb_noinline ecb_cold
834static void 3030static void
835loop_init (EV_P_ unsigned int flags) 3031loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
836{ 3032{
837 if (!backend) 3033 if (!backend)
838 { 3034 {
3035 origflags = flags;
3036
3037#if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045#endif
3046
839#if EV_USE_MONOTONIC 3047#if EV_USE_MONOTONIC
3048 if (!have_monotonic)
840 { 3049 {
841 struct timespec ts; 3050 struct timespec ts;
3051
842 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
843 have_monotonic = 1; 3053 have_monotonic = 1;
844 } 3054 }
845#endif 3055#endif
846 3056
847 ev_rt_now = ev_time (); 3057 /* pid check not overridable via env */
848 mn_now = get_clock (); 3058#ifndef _WIN32
849 now_floor = mn_now; 3059 if (flags & EVFLAG_FORKCHECK)
850 rtmn_diff = ev_rt_now - mn_now; 3060 curpid = getpid ();
3061#endif
851 3062
852 if (!(flags & EVFLAG_NOENV) 3063 if (!(flags & EVFLAG_NOENV)
853 && !enable_secure () 3064 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS")) 3065 && getenv ("LIBEV_FLAGS"))
855 flags = atoi (getenv ("LIBEV_FLAGS")); 3066 flags = atoi (getenv ("LIBEV_FLAGS"));
856 3067
857 if (!(flags & 0x0000ffffUL)) 3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072#if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074#endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081#if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083#endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088#if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090#endif
3091#if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093#endif
3094
3095 if (!(flags & EVBACKEND_MASK))
858 flags |= ev_recommended_backends (); 3096 flags |= ev_recommended_backends ();
859 3097
860 backend = 0; 3098#if EV_USE_IOCP
3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100#endif
861#if EV_USE_PORT 3101#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif 3103#endif
864#if EV_USE_KQUEUE 3104#if EV_USE_KQUEUE
865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106#endif
3107#if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109#endif
3110#if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
866#endif 3112#endif
867#if EV_USE_EPOLL 3113#if EV_USE_EPOLL
868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
869#endif 3115#endif
870#if EV_USE_POLL 3116#if EV_USE_POLL
871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
872#endif 3118#endif
873#if EV_USE_SELECT 3119#if EV_USE_SELECT
874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
875#endif 3121#endif
876 3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
877 ev_init (&sigev, sigcb); 3126 ev_init (&pipe_w, pipecb);
878 ev_set_priority (&sigev, EV_MAXPRI); 3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128#endif
3129 }
3130}
3131
3132/* free up a loop structure */
3133ecb_cold
3134void
3135ev_loop_destroy (EV_P)
3136{
3137 int i;
3138
3139#if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143#endif
3144
3145#if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
879 } 3148 {
880} 3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152#endif
881 3153
3154#if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160#endif
3161
3162 if (ev_is_active (&pipe_w))
3163 {
3164 /*ev_ref (EV_A);*/
3165 /*ev_io_stop (EV_A_ &pipe_w);*/
3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
3171#if EV_USE_SIGNALFD
3172 if (ev_is_active (&sigfd_w))
3173 close (sigfd);
3174#endif
3175
3176#if EV_USE_INOTIFY
3177 if (fs_fd >= 0)
3178 close (fs_fd);
3179#endif
3180
3181 if (backend_fd >= 0)
3182 close (backend_fd);
3183
3184#if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186#endif
3187#if EV_USE_PORT
3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3189#endif
3190#if EV_USE_KQUEUE
3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192#endif
3193#if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195#endif
3196#if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3198#endif
3199#if EV_USE_EPOLL
3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3201#endif
3202#if EV_USE_POLL
3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3204#endif
3205#if EV_USE_SELECT
3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3207#endif
3208
3209 for (i = NUMPRI; i--; )
3210 {
3211 array_free (pending, [i]);
3212#if EV_IDLE_ENABLE
3213 array_free (idle, [i]);
3214#endif
3215 }
3216
3217 ev_free (anfds); anfds = 0; anfdmax = 0;
3218
3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
3221 array_free (fdchange, EMPTY);
3222 array_free (timer, EMPTY);
3223#if EV_PERIODIC_ENABLE
3224 array_free (periodic, EMPTY);
3225#endif
3226#if EV_FORK_ENABLE
3227 array_free (fork, EMPTY);
3228#endif
3229#if EV_CLEANUP_ENABLE
3230 array_free (cleanup, EMPTY);
3231#endif
3232 array_free (prepare, EMPTY);
3233 array_free (check, EMPTY);
3234#if EV_ASYNC_ENABLE
3235 array_free (async, EMPTY);
3236#endif
3237
3238 backend = 0;
3239
3240#if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242#endif
3243 ev_default_loop_ptr = 0;
3244#if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247#endif
3248}
3249
3250#if EV_USE_INOTIFY
3251inline_size void infy_fork (EV_P);
3252#endif
3253
3254inline_size void
3255loop_fork (EV_P)
3256{
3257#if EV_USE_PORT
3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3259#endif
3260#if EV_USE_KQUEUE
3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262#endif
3263#if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265#endif
3266#if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3268#endif
3269#if EV_USE_EPOLL
3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3271#endif
3272#if EV_USE_INOTIFY
3273 infy_fork (EV_A);
3274#endif
3275
3276#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
3278 {
3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3280
3281 ev_ref (EV_A);
3282 ev_io_stop (EV_A_ &pipe_w);
3283
3284 if (evpipe [0] >= 0)
3285 EV_WIN32_CLOSE_FD (evpipe [0]);
3286
3287 evpipe_init (EV_A);
3288 /* iterate over everything, in case we missed something before */
3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3290 }
3291#endif
3292
3293 postfork = 0;
3294}
3295
3296#if EV_MULTIPLICITY
3297
3298ecb_cold
3299struct ev_loop *
3300ev_loop_new (unsigned int flags) EV_NOEXCEPT
3301{
3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3303
3304 memset (EV_A, 0, sizeof (struct ev_loop));
3305 loop_init (EV_A_ flags);
3306
3307 if (ev_backend (EV_A))
3308 return EV_A;
3309
3310 ev_free (EV_A);
3311 return 0;
3312}
3313
3314#endif /* multiplicity */
3315
3316#if EV_VERIFY
3317ecb_noinline ecb_cold
882static void 3318static void
883loop_destroy (EV_P) 3319verify_watcher (EV_P_ W w)
3320{
3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3322
3323 if (w->pending)
3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3325}
3326
3327ecb_noinline ecb_cold
3328static void
3329verify_heap (EV_P_ ANHE *heap, int N)
884{ 3330{
885 int i; 3331 int i;
886 3332
887#if EV_USE_PORT 3333 for (i = HEAP0; i < N + HEAP0; ++i)
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3334 {
3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3338
3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3340 }
3341}
3342
3343ecb_noinline ecb_cold
3344static void
3345array_verify (EV_P_ W *ws, int cnt)
3346{
3347 while (cnt--)
3348 {
3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3350 verify_watcher (EV_A_ ws [cnt]);
3351 }
3352}
889#endif 3353#endif
890#if EV_USE_KQUEUE 3354
891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3355#if EV_FEATURE_API
892#endif 3356void ecb_cold
893#if EV_USE_EPOLL 3357ev_verify (EV_P) EV_NOEXCEPT
894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3358{
895#endif 3359#if EV_VERIFY
896#if EV_USE_POLL 3360 int i;
897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3361 WL w, w2;
898#endif 3362
899#if EV_USE_SELECT 3363 assert (activecnt >= -1);
900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3364
3365 assert (fdchangemax >= fdchangecnt);
3366 for (i = 0; i < fdchangecnt; ++i)
3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3368
3369 assert (anfdmax >= 0);
3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
3374 for (w = w2 = anfds [i].head; w; w = w->next)
3375 {
3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3386 }
3387 }
3388
3389 assert (timermax >= timercnt);
3390 verify_heap (EV_A_ timers, timercnt);
3391
3392#if EV_PERIODIC_ENABLE
3393 assert (periodicmax >= periodiccnt);
3394 verify_heap (EV_A_ periodics, periodiccnt);
901#endif 3395#endif
902 3396
903 for (i = NUMPRI; i--; ) 3397 for (i = NUMPRI; i--; )
904 array_free (pending, [i]); 3398 {
3399 assert (pendingmax [i] >= pendingcnt [i]);
3400#if EV_IDLE_ENABLE
3401 assert (idleall >= 0);
3402 assert (idlemax [i] >= idlecnt [i]);
3403 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3404#endif
3405 }
905 3406
906 /* have to use the microsoft-never-gets-it-right macro */ 3407#if EV_FORK_ENABLE
907 array_free (fdchange, EMPTY0); 3408 assert (forkmax >= forkcnt);
908 array_free (timer, EMPTY0); 3409 array_verify (EV_A_ (W *)forks, forkcnt);
909#if EV_PERIODICS 3410#endif
910 array_free (periodic, EMPTY0); 3411
3412#if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415#endif
3416
3417#if EV_ASYNC_ENABLE
3418 assert (asyncmax >= asynccnt);
3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
3420#endif
3421
3422#if EV_PREPARE_ENABLE
3423 assert (preparemax >= preparecnt);
3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425#endif
3426
3427#if EV_CHECK_ENABLE
3428 assert (checkmax >= checkcnt);
3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430#endif
3431
3432# if 0
3433#if EV_CHILD_ENABLE
3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436#endif
911#endif 3437# endif
912 array_free (idle, EMPTY0);
913 array_free (prepare, EMPTY0);
914 array_free (check, EMPTY0);
915
916 backend = 0;
917}
918
919static void
920loop_fork (EV_P)
921{
922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif 3438#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
928#if EV_USE_EPOLL
929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
930#endif
931
932 if (ev_is_active (&sigev))
933 {
934 /* default loop */
935
936 ev_ref (EV_A);
937 ev_io_stop (EV_A_ &sigev);
938 close (sigpipe [0]);
939 close (sigpipe [1]);
940
941 while (pipe (sigpipe))
942 syserr ("(libev) error creating pipe");
943
944 siginit (EV_A);
945 }
946
947 postfork = 0;
948} 3439}
3440#endif
949 3441
950#if EV_MULTIPLICITY 3442#if EV_MULTIPLICITY
3443ecb_cold
951struct ev_loop * 3444struct ev_loop *
952ev_loop_new (unsigned int flags)
953{
954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
955
956 memset (loop, 0, sizeof (struct ev_loop));
957
958 loop_init (EV_A_ flags);
959
960 if (ev_backend (EV_A))
961 return loop;
962
963 return 0;
964}
965
966void
967ev_loop_destroy (EV_P)
968{
969 loop_destroy (EV_A);
970 ev_free (loop);
971}
972
973void
974ev_loop_fork (EV_P)
975{
976 postfork = 1;
977}
978
979#endif
980
981#if EV_MULTIPLICITY
982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
984#else 3445#else
985int 3446int
3447#endif
986ev_default_loop (unsigned int flags) 3448ev_default_loop (unsigned int flags) EV_NOEXCEPT
987#endif
988{ 3449{
989 if (sigpipe [0] == sigpipe [1])
990 if (pipe (sigpipe))
991 return 0;
992
993 if (!ev_default_loop_ptr) 3450 if (!ev_default_loop_ptr)
994 { 3451 {
995#if EV_MULTIPLICITY 3452#if EV_MULTIPLICITY
996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
997#else 3454#else
998 ev_default_loop_ptr = 1; 3455 ev_default_loop_ptr = 1;
999#endif 3456#endif
1000 3457
1001 loop_init (EV_A_ flags); 3458 loop_init (EV_A_ flags);
1002 3459
1003 if (ev_backend (EV_A)) 3460 if (ev_backend (EV_A))
1004 { 3461 {
1005 siginit (EV_A); 3462#if EV_CHILD_ENABLE
1006
1007#ifndef _WIN32
1008 ev_signal_init (&childev, childcb, SIGCHLD); 3463 ev_signal_init (&childev, childcb, SIGCHLD);
1009 ev_set_priority (&childev, EV_MAXPRI); 3464 ev_set_priority (&childev, EV_MAXPRI);
1010 ev_signal_start (EV_A_ &childev); 3465 ev_signal_start (EV_A_ &childev);
1011 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
1012#endif 3467#endif
1017 3472
1018 return ev_default_loop_ptr; 3473 return ev_default_loop_ptr;
1019} 3474}
1020 3475
1021void 3476void
1022ev_default_destroy (void) 3477ev_loop_fork (EV_P) EV_NOEXCEPT
1023{ 3478{
1024#if EV_MULTIPLICITY 3479 postfork = 1;
1025 struct ev_loop *loop = ev_default_loop_ptr; 3480}
3481
3482/*****************************************************************************/
3483
3484void
3485ev_invoke (EV_P_ void *w, int revents)
3486{
3487 EV_CB_INVOKE ((W)w, revents);
3488}
3489
3490unsigned int
3491ev_pending_count (EV_P) EV_NOEXCEPT
3492{
3493 int pri;
3494 unsigned int count = 0;
3495
3496 for (pri = NUMPRI; pri--; )
3497 count += pendingcnt [pri];
3498
3499 return count;
3500}
3501
3502ecb_noinline
3503void
3504ev_invoke_pending (EV_P)
3505{
3506 pendingpri = NUMPRI;
3507
3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
3513 while (pendingcnt [pendingpri])
3514 {
3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3516
3517 p->w->pending = 0;
3518 EV_CB_INVOKE (p->w, p->events);
3519 EV_FREQUENT_CHECK;
3520 }
3521 }
3522 while (pendingpri);
3523}
3524
3525#if EV_IDLE_ENABLE
3526/* make idle watchers pending. this handles the "call-idle */
3527/* only when higher priorities are idle" logic */
3528inline_size void
3529idle_reify (EV_P)
3530{
3531 if (ecb_expect_false (idleall))
3532 {
3533 int pri;
3534
3535 for (pri = NUMPRI; pri--; )
3536 {
3537 if (pendingcnt [pri])
3538 break;
3539
3540 if (idlecnt [pri])
3541 {
3542 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3543 break;
3544 }
3545 }
3546 }
3547}
3548#endif
3549
3550/* make timers pending */
3551inline_size void
3552timers_reify (EV_P)
3553{
3554 EV_FREQUENT_CHECK;
3555
3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3557 {
3558 do
3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
3567 ev_at (w) += w->repeat;
3568 if (ev_at (w) < mn_now)
3569 ev_at (w) = mn_now;
3570
3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3572
3573 ANHE_at_cache (timers [HEAP0]);
3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
3581 }
3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3583
3584 feed_reverse_done (EV_A_ EV_TIMER);
3585 }
3586}
3587
3588#if EV_PERIODIC_ENABLE
3589
3590ecb_noinline
3591static void
3592periodic_recalc (EV_P_ ev_periodic *w)
3593{
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613}
3614
3615/* make periodics pending */
3616inline_size void
3617periodics_reify (EV_P)
3618{
3619 EV_FREQUENT_CHECK;
3620
3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3622 {
3623 do
3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626
3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628
3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3633
3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3635
3636 ANHE_at_cache (periodics [HEAP0]);
3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
3650 }
3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3652
3653 feed_reverse_done (EV_A_ EV_PERIODIC);
3654 }
3655}
3656
3657/* simply recalculate all periodics */
3658/* TODO: maybe ensure that at least one event happens when jumping forward? */
3659ecb_noinline ecb_cold
3660static void
3661periodics_reschedule (EV_P)
3662{
3663 int i;
3664
3665 /* adjust periodics after time jump */
3666 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3667 {
3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3669
3670 if (w->reschedule_cb)
3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3672 else if (w->interval)
3673 periodic_recalc (EV_A_ w);
3674
3675 ANHE_at_cache (periodics [i]);
3676 }
3677
3678 reheap (periodics, periodiccnt);
3679}
3680#endif
3681
3682/* adjust all timers by a given offset */
3683ecb_noinline ecb_cold
3684static void
3685timers_reschedule (EV_P_ ev_tstamp adjust)
3686{
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695}
3696
3697/* fetch new monotonic and realtime times from the kernel */
3698/* also detect if there was a timejump, and act accordingly */
3699inline_speed void
3700time_update (EV_P_ ev_tstamp max_block)
3701{
3702#if EV_USE_MONOTONIC
3703 if (ecb_expect_true (have_monotonic))
3704 {
3705 int i;
3706 ev_tstamp odiff = rtmn_diff;
3707
3708 mn_now = get_clock ();
3709
3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3711 /* interpolate in the meantime */
3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3713 {
3714 ev_rt_now = rtmn_diff + mn_now;
3715 return;
3716 }
3717
3718 now_floor = mn_now;
3719 ev_rt_now = ev_time ();
3720
3721 /* loop a few times, before making important decisions.
3722 * on the choice of "4": one iteration isn't enough,
3723 * in case we get preempted during the calls to
3724 * ev_time and get_clock. a second call is almost guaranteed
3725 * to succeed in that case, though. and looping a few more times
3726 * doesn't hurt either as we only do this on time-jumps or
3727 * in the unlikely event of having been preempted here.
3728 */
3729 for (i = 4; --i; )
3730 {
3731 ev_tstamp diff;
3732 rtmn_diff = ev_rt_now - mn_now;
3733
3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3737 return; /* all is well */
3738
3739 ev_rt_now = ev_time ();
3740 mn_now = get_clock ();
3741 now_floor = mn_now;
3742 }
3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3746# if EV_PERIODIC_ENABLE
3747 periodics_reschedule (EV_A);
3748# endif
3749 }
3750 else
3751#endif
3752 {
3753 ev_rt_now = ev_time ();
3754
3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3759#if EV_PERIODIC_ENABLE
3760 periodics_reschedule (EV_A);
3761#endif
3762 }
3763
3764 mn_now = ev_rt_now;
3765 }
3766}
3767
3768int
3769ev_run (EV_P_ int flags)
3770{
3771#if EV_FEATURE_API
3772 ++loop_depth;
3773#endif
3774
3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776
3777 loop_done = EVBREAK_CANCEL;
3778
3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3780
3781 do
3782 {
3783#if EV_VERIFY >= 2
3784 ev_verify (EV_A);
1026#endif 3785#endif
1027 3786
1028#ifndef _WIN32 3787#ifndef _WIN32
1029 ev_ref (EV_A); /* child watcher */ 3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1030 ev_signal_stop (EV_A_ &childev); 3789 if (ecb_expect_false (getpid () != curpid))
1031#endif 3790 {
1032 3791 curpid = getpid ();
1033 ev_ref (EV_A); /* signal watcher */
1034 ev_io_stop (EV_A_ &sigev);
1035
1036 close (sigpipe [0]); sigpipe [0] = 0;
1037 close (sigpipe [1]); sigpipe [1] = 0;
1038
1039 loop_destroy (EV_A);
1040}
1041
1042void
1043ev_default_fork (void)
1044{
1045#if EV_MULTIPLICITY
1046 struct ev_loop *loop = ev_default_loop_ptr;
1047#endif
1048
1049 if (backend)
1050 postfork = 1; 3792 postfork = 1;
3793 }
3794#endif
3795
3796#if EV_FORK_ENABLE
3797 /* we might have forked, so queue fork handlers */
3798 if (ecb_expect_false (postfork))
3799 if (forkcnt)
3800 {
3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3802 EV_INVOKE_PENDING;
3803 }
3804#endif
3805
3806#if EV_PREPARE_ENABLE
3807 /* queue prepare watchers (and execute them) */
3808 if (ecb_expect_false (preparecnt))
3809 {
3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3811 EV_INVOKE_PENDING;
3812 }
3813#endif
3814
3815 if (ecb_expect_false (loop_done))
3816 break;
3817
3818 /* we might have forked, so reify kernel state if necessary */
3819 if (ecb_expect_false (postfork))
3820 loop_fork (EV_A);
3821
3822 /* update fd-related kernel structures */
3823 fd_reify (EV_A);
3824
3825 /* calculate blocking time */
3826 {
3827 ev_tstamp waittime = 0.;
3828 ev_tstamp sleeptime = 0.;
3829
3830 /* remember old timestamp for io_blocktime calculation */
3831 ev_tstamp prev_mn_now = mn_now;
3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3842 {
3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3844
3845 if (timercnt)
3846 {
3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3848 if (waittime > to) waittime = to;
3849 }
3850
3851#if EV_PERIODIC_ENABLE
3852 if (periodiccnt)
3853 {
3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3855 if (waittime > to) waittime = to;
3856 }
3857#endif
3858
3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
3860 if (ecb_expect_false (waittime < timeout_blocktime))
3861 waittime = timeout_blocktime;
3862
3863 /* now there are two more special cases left, either we have
3864 * already-expired timers, so we should not sleep, or we have timers
3865 * that expire very soon, in which case we need to wait for a minimum
3866 * amount of time for some event loop backends.
3867 */
3868 if (ecb_expect_false (waittime < backend_mintime))
3869 waittime = waittime <= EV_TS_CONST (0.)
3870 ? EV_TS_CONST (0.)
3871 : backend_mintime;
3872
3873 /* extra check because io_blocktime is commonly 0 */
3874 if (ecb_expect_false (io_blocktime))
3875 {
3876 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3877
3878 if (sleeptime > waittime - backend_mintime)
3879 sleeptime = waittime - backend_mintime;
3880
3881 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3882 {
3883 ev_sleep (sleeptime);
3884 waittime -= sleeptime;
3885 }
3886 }
3887 }
3888
3889#if EV_FEATURE_API
3890 ++loop_count;
3891#endif
3892 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3893 backend_poll (EV_A_ waittime);
3894 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3895
3896 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3897
3898 ECB_MEMORY_FENCE_ACQUIRE;
3899 if (pipe_write_skipped)
3900 {
3901 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3902 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3903 }
3904
3905 /* update ev_rt_now, do magic */
3906 time_update (EV_A_ waittime + sleeptime);
3907 }
3908
3909 /* queue pending timers and reschedule them */
3910 timers_reify (EV_A); /* relative timers called last */
3911#if EV_PERIODIC_ENABLE
3912 periodics_reify (EV_A); /* absolute timers called first */
3913#endif
3914
3915#if EV_IDLE_ENABLE
3916 /* queue idle watchers unless other events are pending */
3917 idle_reify (EV_A);
3918#endif
3919
3920#if EV_CHECK_ENABLE
3921 /* queue check watchers, to be executed first */
3922 if (ecb_expect_false (checkcnt))
3923 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3924#endif
3925
3926 EV_INVOKE_PENDING;
3927 }
3928 while (ecb_expect_true (
3929 activecnt
3930 && !loop_done
3931 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3932 ));
3933
3934 if (loop_done == EVBREAK_ONE)
3935 loop_done = EVBREAK_CANCEL;
3936
3937#if EV_FEATURE_API
3938 --loop_depth;
3939#endif
3940
3941 return activecnt;
3942}
3943
3944void
3945ev_break (EV_P_ int how) EV_NOEXCEPT
3946{
3947 loop_done = how;
3948}
3949
3950void
3951ev_ref (EV_P) EV_NOEXCEPT
3952{
3953 ++activecnt;
3954}
3955
3956void
3957ev_unref (EV_P) EV_NOEXCEPT
3958{
3959 --activecnt;
3960}
3961
3962void
3963ev_now_update (EV_P) EV_NOEXCEPT
3964{
3965 time_update (EV_A_ EV_TSTAMP_HUGE);
3966}
3967
3968void
3969ev_suspend (EV_P) EV_NOEXCEPT
3970{
3971 ev_now_update (EV_A);
3972}
3973
3974void
3975ev_resume (EV_P) EV_NOEXCEPT
3976{
3977 ev_tstamp mn_prev = mn_now;
3978
3979 ev_now_update (EV_A);
3980 timers_reschedule (EV_A_ mn_now - mn_prev);
3981#if EV_PERIODIC_ENABLE
3982 /* TODO: really do this? */
3983 periodics_reschedule (EV_A);
3984#endif
1051} 3985}
1052 3986
1053/*****************************************************************************/ 3987/*****************************************************************************/
3988/* singly-linked list management, used when the expected list length is short */
1054 3989
1055static int 3990inline_size void
1056any_pending (EV_P) 3991wlist_add (WL *head, WL elem)
1057{ 3992{
1058 int pri; 3993 elem->next = *head;
3994 *head = elem;
3995}
1059 3996
1060 for (pri = NUMPRI; pri--; ) 3997inline_size void
1061 if (pendingcnt [pri]) 3998wlist_del (WL *head, WL elem)
1062 return 1; 3999{
4000 while (*head)
4001 {
4002 if (ecb_expect_true (*head == elem))
4003 {
4004 *head = elem->next;
4005 break;
4006 }
1063 4007
4008 head = &(*head)->next;
4009 }
4010}
4011
4012/* internal, faster, version of ev_clear_pending */
4013inline_speed void
4014clear_pending (EV_P_ W w)
4015{
4016 if (w->pending)
4017 {
4018 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4019 w->pending = 0;
4020 }
4021}
4022
4023int
4024ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4025{
4026 W w_ = (W)w;
4027 int pending = w_->pending;
4028
4029 if (ecb_expect_true (pending))
4030 {
4031 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4032 p->w = (W)&pending_w;
4033 w_->pending = 0;
4034 return p->events;
4035 }
4036 else
1064 return 0; 4037 return 0;
1065} 4038}
1066 4039
1067inline void 4040inline_size void
1068call_pending (EV_P) 4041pri_adjust (EV_P_ W w)
1069{ 4042{
1070 int pri; 4043 int pri = ev_priority (w);
4044 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4045 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4046 ev_set_priority (w, pri);
4047}
1071 4048
1072 for (pri = NUMPRI; pri--; ) 4049inline_speed void
1073 while (pendingcnt [pri]) 4050ev_start (EV_P_ W w, int active)
4051{
4052 pri_adjust (EV_A_ w);
4053 w->active = active;
4054 ev_ref (EV_A);
4055}
4056
4057inline_size void
4058ev_stop (EV_P_ W w)
4059{
4060 ev_unref (EV_A);
4061 w->active = 0;
4062}
4063
4064/*****************************************************************************/
4065
4066ecb_noinline
4067void
4068ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4069{
4070 int fd = w->fd;
4071
4072 if (ecb_expect_false (ev_is_active (w)))
4073 return;
4074
4075 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4076 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4077
4078#if EV_VERIFY >= 2
4079 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4080#endif
4081 EV_FREQUENT_CHECK;
4082
4083 ev_start (EV_A_ (W)w, 1);
4084 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4085 wlist_add (&anfds[fd].head, (WL)w);
4086
4087 /* common bug, apparently */
4088 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4089
4090 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4091 w->events &= ~EV__IOFDSET;
4092
4093 EV_FREQUENT_CHECK;
4094}
4095
4096ecb_noinline
4097void
4098ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4099{
4100 clear_pending (EV_A_ (W)w);
4101 if (ecb_expect_false (!ev_is_active (w)))
4102 return;
4103
4104 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4105
4106#if EV_VERIFY >= 2
4107 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4108#endif
4109 EV_FREQUENT_CHECK;
4110
4111 wlist_del (&anfds[w->fd].head, (WL)w);
4112 ev_stop (EV_A_ (W)w);
4113
4114 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4115
4116 EV_FREQUENT_CHECK;
4117}
4118
4119ecb_noinline
4120void
4121ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4122{
4123 if (ecb_expect_false (ev_is_active (w)))
4124 return;
4125
4126 ev_at (w) += mn_now;
4127
4128 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4129
4130 EV_FREQUENT_CHECK;
4131
4132 ++timercnt;
4133 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4134 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4135 ANHE_w (timers [ev_active (w)]) = (WT)w;
4136 ANHE_at_cache (timers [ev_active (w)]);
4137 upheap (timers, ev_active (w));
4138
4139 EV_FREQUENT_CHECK;
4140
4141 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4142}
4143
4144ecb_noinline
4145void
4146ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4147{
4148 clear_pending (EV_A_ (W)w);
4149 if (ecb_expect_false (!ev_is_active (w)))
4150 return;
4151
4152 EV_FREQUENT_CHECK;
4153
4154 {
4155 int active = ev_active (w);
4156
4157 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4158
4159 --timercnt;
4160
4161 if (ecb_expect_true (active < timercnt + HEAP0))
1074 { 4162 {
1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 4163 timers [active] = timers [timercnt + HEAP0];
1076 4164 adjustheap (timers, timercnt, active);
1077 if (expect_true (p->w))
1078 {
1079 p->w->pending = 0;
1080 EV_CB_INVOKE (p->w, p->events);
1081 }
1082 } 4165 }
1083} 4166 }
1084 4167
1085inline void 4168 ev_at (w) -= mn_now;
1086timers_reify (EV_P)
1087{
1088 while (timercnt && ((WT)timers [0])->at <= mn_now)
1089 {
1090 ev_timer *w = timers [0];
1091 4169
1092 assert (("inactive timer on timer heap detected", ev_is_active (w))); 4170 ev_stop (EV_A_ (W)w);
1093 4171
1094 /* first reschedule or stop timer */ 4172 EV_FREQUENT_CHECK;
4173}
4174
4175ecb_noinline
4176void
4177ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4178{
4179 EV_FREQUENT_CHECK;
4180
4181 clear_pending (EV_A_ (W)w);
4182
4183 if (ev_is_active (w))
4184 {
1095 if (w->repeat) 4185 if (w->repeat)
1096 { 4186 {
1097 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1098
1099 ((WT)w)->at += w->repeat;
1100 if (((WT)w)->at < mn_now)
1101 ((WT)w)->at = mn_now;
1102
1103 downheap ((WT *)timers, timercnt, 0);
1104 }
1105 else
1106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1107
1108 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1109 }
1110}
1111
1112#if EV_PERIODICS
1113inline void
1114periodics_reify (EV_P)
1115{
1116 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1117 {
1118 ev_periodic *w = periodics [0];
1119
1120 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1121
1122 /* first reschedule or stop timer */
1123 if (w->reschedule_cb)
1124 {
1125 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1126 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1127 downheap ((WT *)periodics, periodiccnt, 0);
1128 }
1129 else if (w->interval)
1130 {
1131 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1132 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1133 downheap ((WT *)periodics, periodiccnt, 0);
1134 }
1135 else
1136 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1137
1138 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1139 }
1140}
1141
1142static void
1143periodics_reschedule (EV_P)
1144{
1145 int i;
1146
1147 /* adjust periodics after time jump */
1148 for (i = 0; i < periodiccnt; ++i)
1149 {
1150 ev_periodic *w = periodics [i];
1151
1152 if (w->reschedule_cb)
1153 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1154 else if (w->interval)
1155 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1156 }
1157
1158 /* now rebuild the heap */
1159 for (i = periodiccnt >> 1; i--; )
1160 downheap ((WT *)periodics, periodiccnt, i);
1161}
1162#endif
1163
1164inline int
1165time_update_monotonic (EV_P)
1166{
1167 mn_now = get_clock ();
1168
1169 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1170 {
1171 ev_rt_now = rtmn_diff + mn_now;
1172 return 0;
1173 }
1174 else
1175 {
1176 now_floor = mn_now;
1177 ev_rt_now = ev_time ();
1178 return 1;
1179 }
1180}
1181
1182inline void
1183time_update (EV_P)
1184{
1185 int i;
1186
1187#if EV_USE_MONOTONIC
1188 if (expect_true (have_monotonic))
1189 {
1190 if (time_update_monotonic (EV_A))
1191 {
1192 ev_tstamp odiff = rtmn_diff;
1193
1194 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1195 {
1196 rtmn_diff = ev_rt_now - mn_now;
1197
1198 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1199 return; /* all is well */
1200
1201 ev_rt_now = ev_time ();
1202 mn_now = get_clock ();
1203 now_floor = mn_now;
1204 }
1205
1206# if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208# endif
1209 /* no timer adjustment, as the monotonic clock doesn't jump */
1210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1211 }
1212 }
1213 else
1214#endif
1215 {
1216 ev_rt_now = ev_time ();
1217
1218 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1219 {
1220#if EV_PERIODICS
1221 periodics_reschedule (EV_A);
1222#endif
1223
1224 /* adjust timers. this is easy, as the offset is the same for all */
1225 for (i = 0; i < timercnt; ++i)
1226 ((WT)timers [i])->at += ev_rt_now - mn_now;
1227 }
1228
1229 mn_now = ev_rt_now;
1230 }
1231}
1232
1233void
1234ev_ref (EV_P)
1235{
1236 ++activecnt;
1237}
1238
1239void
1240ev_unref (EV_P)
1241{
1242 --activecnt;
1243}
1244
1245static int loop_done;
1246
1247void
1248ev_loop (EV_P_ int flags)
1249{
1250 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1251 ? EVUNLOOP_ONE
1252 : EVUNLOOP_CANCEL;
1253
1254 while (activecnt)
1255 {
1256 /* queue check watchers (and execute them) */
1257 if (expect_false (preparecnt))
1258 {
1259 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1260 call_pending (EV_A);
1261 }
1262
1263 /* we might have forked, so reify kernel state if necessary */
1264 if (expect_false (postfork))
1265 loop_fork (EV_A);
1266
1267 /* update fd-related kernel structures */
1268 fd_reify (EV_A);
1269
1270 /* calculate blocking time */
1271 {
1272 double block;
1273
1274 if (flags & EVLOOP_NONBLOCK || idlecnt)
1275 block = 0.; /* do not block at all */
1276 else
1277 {
1278 /* update time to cancel out callback processing overhead */
1279#if EV_USE_MONOTONIC
1280 if (expect_true (have_monotonic))
1281 time_update_monotonic (EV_A);
1282 else
1283#endif
1284 {
1285 ev_rt_now = ev_time ();
1286 mn_now = ev_rt_now;
1287 }
1288
1289 block = MAX_BLOCKTIME;
1290
1291 if (timercnt)
1292 {
1293 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1294 if (block > to) block = to;
1295 }
1296
1297#if EV_PERIODICS
1298 if (periodiccnt)
1299 {
1300 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1301 if (block > to) block = to;
1302 }
1303#endif
1304
1305 if (expect_false (block < 0.)) block = 0.;
1306 }
1307
1308 backend_poll (EV_A_ block);
1309 }
1310
1311 /* update ev_rt_now, do magic */
1312 time_update (EV_A);
1313
1314 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS
1317 periodics_reify (EV_A); /* absolute timers called first */
1318#endif
1319
1320 /* queue idle watchers unless io or timers are pending */
1321 if (idlecnt && !any_pending (EV_A))
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1323
1324 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327
1328 call_pending (EV_A);
1329
1330 if (expect_false (loop_done))
1331 break;
1332 }
1333
1334 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = EVUNLOOP_CANCEL;
1336}
1337
1338void
1339ev_unloop (EV_P_ int how)
1340{
1341 loop_done = how;
1342}
1343
1344/*****************************************************************************/
1345
1346inline void
1347wlist_add (WL *head, WL elem)
1348{
1349 elem->next = *head;
1350 *head = elem;
1351}
1352
1353inline void
1354wlist_del (WL *head, WL elem)
1355{
1356 while (*head)
1357 {
1358 if (*head == elem)
1359 {
1360 *head = elem->next;
1361 return;
1362 }
1363
1364 head = &(*head)->next;
1365 }
1366}
1367
1368inline void
1369ev_clear_pending (EV_P_ W w)
1370{
1371 if (w->pending)
1372 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0;
1375 }
1376}
1377
1378inline void
1379ev_start (EV_P_ W w, int active)
1380{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active;
1385 ev_ref (EV_A);
1386}
1387
1388inline void
1389ev_stop (EV_P_ W w)
1390{
1391 ev_unref (EV_A);
1392 w->active = 0;
1393}
1394
1395/*****************************************************************************/
1396
1397void
1398ev_io_start (EV_P_ ev_io *w)
1399{
1400 int fd = w->fd;
1401
1402 if (expect_false (ev_is_active (w)))
1403 return;
1404
1405 assert (("ev_io_start called with negative fd", fd >= 0));
1406
1407 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1410
1411 fd_change (EV_A_ fd);
1412}
1413
1414void
1415ev_io_stop (EV_P_ ev_io *w)
1416{
1417 ev_clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w)))
1419 return;
1420
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w);
1425
1426 fd_change (EV_A_ w->fd);
1427}
1428
1429void
1430ev_timer_start (EV_P_ ev_timer *w)
1431{
1432 if (expect_false (ev_is_active (w)))
1433 return;
1434
1435 ((WT)w)->at += mn_now;
1436
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438
1439 ev_start (EV_A_ (W)w, ++timercnt);
1440 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1441 timers [timercnt - 1] = w;
1442 upheap ((WT *)timers, timercnt - 1);
1443
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1445}
1446
1447void
1448ev_timer_stop (EV_P_ ev_timer *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w)))
1452 return;
1453
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1455
1456 if (expect_true (((W)w)->active < timercnt--))
1457 {
1458 timers [((W)w)->active - 1] = timers [timercnt];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1460 }
1461
1462 ((WT)w)->at -= mn_now;
1463
1464 ev_stop (EV_A_ (W)w);
1465}
1466
1467void
1468ev_timer_again (EV_P_ ev_timer *w)
1469{
1470 if (ev_is_active (w))
1471 {
1472 if (w->repeat)
1473 {
1474 ((WT)w)->at = mn_now + w->repeat; 4187 ev_at (w) = mn_now + w->repeat;
4188 ANHE_at_cache (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 4189 adjustheap (timers, timercnt, ev_active (w));
1476 } 4190 }
1477 else 4191 else
1478 ev_timer_stop (EV_A_ w); 4192 ev_timer_stop (EV_A_ w);
1479 } 4193 }
1480 else if (w->repeat) 4194 else if (w->repeat)
1481 { 4195 {
1482 w->at = w->repeat; 4196 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 4197 ev_timer_start (EV_A_ w);
1484 } 4198 }
1485}
1486 4199
4200 EV_FREQUENT_CHECK;
4201}
4202
4203ev_tstamp
4204ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4205{
4206 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4207}
4208
1487#if EV_PERIODICS 4209#if EV_PERIODIC_ENABLE
4210ecb_noinline
1488void 4211void
1489ev_periodic_start (EV_P_ ev_periodic *w) 4212ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1490{ 4213{
1491 if (expect_false (ev_is_active (w))) 4214 if (ecb_expect_false (ev_is_active (w)))
1492 return; 4215 return;
1493 4216
1494 if (w->reschedule_cb) 4217 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4218 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 4219 else if (w->interval)
1497 { 4220 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4221 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 4222 periodic_recalc (EV_A_ w);
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1501 } 4223 }
4224 else
4225 ev_at (w) = w->offset;
1502 4226
4227 EV_FREQUENT_CHECK;
4228
4229 ++periodiccnt;
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 4230 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1504 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4231 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
1505 periodics [periodiccnt - 1] = w; 4232 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 4233 ANHE_at_cache (periodics [ev_active (w)]);
4234 upheap (periodics, ev_active (w));
1507 4235
4236 EV_FREQUENT_CHECK;
4237
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4238 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 4239}
1510 4240
4241ecb_noinline
1511void 4242void
1512ev_periodic_stop (EV_P_ ev_periodic *w) 4243ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1513{ 4244{
1514 ev_clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 4246 if (ecb_expect_false (!ev_is_active (w)))
1516 return; 4247 return;
1517 4248
4249 EV_FREQUENT_CHECK;
4250
4251 {
4252 int active = ev_active (w);
4253
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4254 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 4255
4256 --periodiccnt;
4257
1520 if (expect_true (((W)w)->active < periodiccnt--)) 4258 if (ecb_expect_true (active < periodiccnt + HEAP0))
1521 { 4259 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 4260 periodics [active] = periodics [periodiccnt + HEAP0];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 4261 adjustheap (periodics, periodiccnt, active);
1524 } 4262 }
4263 }
1525 4264
1526 ev_stop (EV_A_ (W)w); 4265 ev_stop (EV_A_ (W)w);
1527}
1528 4266
4267 EV_FREQUENT_CHECK;
4268}
4269
4270ecb_noinline
1529void 4271void
1530ev_periodic_again (EV_P_ ev_periodic *w) 4272ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1531{ 4273{
1532 /* TODO: use adjustheap and recalculation */ 4274 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 4275 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 4276 ev_periodic_start (EV_A_ w);
1535} 4277}
1536#endif 4278#endif
1537 4279
1538void
1539ev_idle_start (EV_P_ ev_idle *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART 4280#ifndef SA_RESTART
1605# define SA_RESTART 0 4281# define SA_RESTART 0
1606#endif 4282#endif
1607 4283
4284#if EV_SIGNAL_ENABLE
4285
4286ecb_noinline
1608void 4287void
1609ev_signal_start (EV_P_ ev_signal *w) 4288ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1610{ 4289{
4290 if (ecb_expect_false (ev_is_active (w)))
4291 return;
4292
4293 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4294
1611#if EV_MULTIPLICITY 4295#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4296 assert (("libev: a signal must not be attached to two different loops",
4297 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4298
4299 signals [w->signum - 1].loop = EV_A;
4300 ECB_MEMORY_FENCE_RELEASE;
4301#endif
4302
4303 EV_FREQUENT_CHECK;
4304
4305#if EV_USE_SIGNALFD
4306 if (sigfd == -2)
4307 {
4308 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4309 if (sigfd < 0 && errno == EINVAL)
4310 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4311
4312 if (sigfd >= 0)
4313 {
4314 fd_intern (sigfd); /* doing it twice will not hurt */
4315
4316 sigemptyset (&sigfd_set);
4317
4318 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4319 ev_set_priority (&sigfd_w, EV_MAXPRI);
4320 ev_io_start (EV_A_ &sigfd_w);
4321 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4322 }
4323 }
4324
4325 if (sigfd >= 0)
4326 {
4327 /* TODO: check .head */
4328 sigaddset (&sigfd_set, w->signum);
4329 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4330
4331 signalfd (sigfd, &sigfd_set, 0);
4332 }
4333#endif
4334
4335 ev_start (EV_A_ (W)w, 1);
4336 wlist_add (&signals [w->signum - 1].head, (WL)w);
4337
4338 if (!((WL)w)->next)
4339# if EV_USE_SIGNALFD
4340 if (sigfd < 0) /*TODO*/
1613#endif 4341# endif
4342 {
4343# ifdef _WIN32
4344 evpipe_init (EV_A);
4345
4346 signal (w->signum, ev_sighandler);
4347# else
4348 struct sigaction sa;
4349
4350 evpipe_init (EV_A);
4351
4352 sa.sa_handler = ev_sighandler;
4353 sigfillset (&sa.sa_mask);
4354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4355 sigaction (w->signum, &sa, 0);
4356
4357 if (origflags & EVFLAG_NOSIGMASK)
4358 {
4359 sigemptyset (&sa.sa_mask);
4360 sigaddset (&sa.sa_mask, w->signum);
4361 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4362 }
4363#endif
4364 }
4365
4366 EV_FREQUENT_CHECK;
4367}
4368
4369ecb_noinline
4370void
4371ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4372{
4373 clear_pending (EV_A_ (W)w);
1614 if (expect_false (ev_is_active (w))) 4374 if (ecb_expect_false (!ev_is_active (w)))
1615 return; 4375 return;
1616 4376
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4377 EV_FREQUENT_CHECK;
4378
4379 wlist_del (&signals [w->signum - 1].head, (WL)w);
4380 ev_stop (EV_A_ (W)w);
4381
4382 if (!signals [w->signum - 1].head)
4383 {
4384#if EV_MULTIPLICITY
4385 signals [w->signum - 1].loop = 0; /* unattach from signal */
4386#endif
4387#if EV_USE_SIGNALFD
4388 if (sigfd >= 0)
4389 {
4390 sigset_t ss;
4391
4392 sigemptyset (&ss);
4393 sigaddset (&ss, w->signum);
4394 sigdelset (&sigfd_set, w->signum);
4395
4396 signalfd (sigfd, &sigfd_set, 0);
4397 sigprocmask (SIG_UNBLOCK, &ss, 0);
4398 }
4399 else
4400#endif
4401 signal (w->signum, SIG_DFL);
4402 }
4403
4404 EV_FREQUENT_CHECK;
4405}
4406
4407#endif
4408
4409#if EV_CHILD_ENABLE
4410
4411void
4412ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4413{
4414#if EV_MULTIPLICITY
4415 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4416#endif
4417 if (ecb_expect_false (ev_is_active (w)))
4418 return;
4419
4420 EV_FREQUENT_CHECK;
1618 4421
1619 ev_start (EV_A_ (W)w, 1); 4422 ev_start (EV_A_ (W)w, 1);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 4423 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1622 4424
1623 if (!((WL)w)->next) 4425 EV_FREQUENT_CHECK;
4426}
4427
4428void
4429ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4430{
4431 clear_pending (EV_A_ (W)w);
4432 if (ecb_expect_false (!ev_is_active (w)))
4433 return;
4434
4435 EV_FREQUENT_CHECK;
4436
4437 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4438 ev_stop (EV_A_ (W)w);
4439
4440 EV_FREQUENT_CHECK;
4441}
4442
4443#endif
4444
4445#if EV_STAT_ENABLE
4446
4447# ifdef _WIN32
4448# undef lstat
4449# define lstat(a,b) _stati64 (a,b)
4450# endif
4451
4452#define DEF_STAT_INTERVAL 5.0074891
4453#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4454#define MIN_STAT_INTERVAL 0.1074891
4455
4456ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4457
4458#if EV_USE_INOTIFY
4459
4460/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4461# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4462
4463ecb_noinline
4464static void
4465infy_add (EV_P_ ev_stat *w)
4466{
4467 w->wd = inotify_add_watch (fs_fd, w->path,
4468 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4469 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4470 | IN_DONT_FOLLOW | IN_MASK_ADD);
4471
4472 if (w->wd >= 0)
4473 {
4474 struct statfs sfs;
4475
4476 /* now local changes will be tracked by inotify, but remote changes won't */
4477 /* unless the filesystem is known to be local, we therefore still poll */
4478 /* also do poll on <2.6.25, but with normal frequency */
4479
4480 if (!fs_2625)
4481 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4482 else if (!statfs (w->path, &sfs)
4483 && (sfs.f_type == 0x1373 /* devfs */
4484 || sfs.f_type == 0x4006 /* fat */
4485 || sfs.f_type == 0x4d44 /* msdos */
4486 || sfs.f_type == 0xEF53 /* ext2/3 */
4487 || sfs.f_type == 0x72b6 /* jffs2 */
4488 || sfs.f_type == 0x858458f6 /* ramfs */
4489 || sfs.f_type == 0x5346544e /* ntfs */
4490 || sfs.f_type == 0x3153464a /* jfs */
4491 || sfs.f_type == 0x9123683e /* btrfs */
4492 || sfs.f_type == 0x52654973 /* reiser3 */
4493 || sfs.f_type == 0x01021994 /* tmpfs */
4494 || sfs.f_type == 0x58465342 /* xfs */))
4495 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4496 else
4497 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1624 { 4498 }
4499 else
4500 {
4501 /* can't use inotify, continue to stat */
4502 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4503
4504 /* if path is not there, monitor some parent directory for speedup hints */
4505 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4506 /* but an efficiency issue only */
4507 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4508 {
4509 char path [4096];
4510 strcpy (path, w->path);
4511
4512 do
4513 {
4514 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4515 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4516
4517 char *pend = strrchr (path, '/');
4518
4519 if (!pend || pend == path)
4520 break;
4521
4522 *pend = 0;
4523 w->wd = inotify_add_watch (fs_fd, path, mask);
4524 }
4525 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4526 }
4527 }
4528
4529 if (w->wd >= 0)
4530 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4531
4532 /* now re-arm timer, if required */
4533 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4534 ev_timer_again (EV_A_ &w->timer);
4535 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4536}
4537
4538ecb_noinline
4539static void
4540infy_del (EV_P_ ev_stat *w)
4541{
4542 int slot;
4543 int wd = w->wd;
4544
4545 if (wd < 0)
4546 return;
4547
4548 w->wd = -2;
4549 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4550 wlist_del (&fs_hash [slot].head, (WL)w);
4551
4552 /* remove this watcher, if others are watching it, they will rearm */
4553 inotify_rm_watch (fs_fd, wd);
4554}
4555
4556ecb_noinline
4557static void
4558infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4559{
4560 if (slot < 0)
4561 /* overflow, need to check for all hash slots */
4562 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4563 infy_wd (EV_A_ slot, wd, ev);
4564 else
4565 {
4566 WL w_;
4567
4568 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4569 {
4570 ev_stat *w = (ev_stat *)w_;
4571 w_ = w_->next; /* lets us remove this watcher and all before it */
4572
4573 if (w->wd == wd || wd == -1)
4574 {
4575 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4576 {
4577 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4578 w->wd = -1;
4579 infy_add (EV_A_ w); /* re-add, no matter what */
4580 }
4581
4582 stat_timer_cb (EV_A_ &w->timer, 0);
4583 }
4584 }
4585 }
4586}
4587
4588static void
4589infy_cb (EV_P_ ev_io *w, int revents)
4590{
4591 char buf [EV_INOTIFY_BUFSIZE];
4592 int ofs;
4593 int len = read (fs_fd, buf, sizeof (buf));
4594
4595 for (ofs = 0; ofs < len; )
4596 {
4597 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4598 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4599 ofs += sizeof (struct inotify_event) + ev->len;
4600 }
4601}
4602
4603inline_size ecb_cold
4604void
4605ev_check_2625 (EV_P)
4606{
4607 /* kernels < 2.6.25 are borked
4608 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4609 */
4610 if (ev_linux_version () < 0x020619)
4611 return;
4612
4613 fs_2625 = 1;
4614}
4615
4616inline_size int
4617infy_newfd (void)
4618{
4619#if defined IN_CLOEXEC && defined IN_NONBLOCK
4620 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4621 if (fd >= 0)
4622 return fd;
4623#endif
4624 return inotify_init ();
4625}
4626
4627inline_size void
4628infy_init (EV_P)
4629{
4630 if (fs_fd != -2)
4631 return;
4632
4633 fs_fd = -1;
4634
4635 ev_check_2625 (EV_A);
4636
4637 fs_fd = infy_newfd ();
4638
4639 if (fs_fd >= 0)
4640 {
4641 fd_intern (fs_fd);
4642 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4643 ev_set_priority (&fs_w, EV_MAXPRI);
4644 ev_io_start (EV_A_ &fs_w);
4645 ev_unref (EV_A);
4646 }
4647}
4648
4649inline_size void
4650infy_fork (EV_P)
4651{
4652 int slot;
4653
4654 if (fs_fd < 0)
4655 return;
4656
4657 ev_ref (EV_A);
4658 ev_io_stop (EV_A_ &fs_w);
4659 close (fs_fd);
4660 fs_fd = infy_newfd ();
4661
4662 if (fs_fd >= 0)
4663 {
4664 fd_intern (fs_fd);
4665 ev_io_set (&fs_w, fs_fd, EV_READ);
4666 ev_io_start (EV_A_ &fs_w);
4667 ev_unref (EV_A);
4668 }
4669
4670 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4671 {
4672 WL w_ = fs_hash [slot].head;
4673 fs_hash [slot].head = 0;
4674
4675 while (w_)
4676 {
4677 ev_stat *w = (ev_stat *)w_;
4678 w_ = w_->next; /* lets us add this watcher */
4679
4680 w->wd = -1;
4681
4682 if (fs_fd >= 0)
4683 infy_add (EV_A_ w); /* re-add, no matter what */
4684 else
4685 {
4686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4687 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4688 ev_timer_again (EV_A_ &w->timer);
4689 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4690 }
4691 }
4692 }
4693}
4694
4695#endif
4696
1625#if _WIN32 4697#ifdef _WIN32
1626 signal (w->signum, sighandler); 4698# define EV_LSTAT(p,b) _stati64 (p, b)
1627#else 4699#else
1628 struct sigaction sa; 4700# define EV_LSTAT(p,b) lstat (p, b)
1629 sa.sa_handler = sighandler;
1630 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0);
1633#endif 4701#endif
1634 }
1635}
1636 4702
1637void 4703void
1638ev_signal_stop (EV_P_ ev_signal *w) 4704ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1639{ 4705{
1640 ev_clear_pending (EV_A_ (W)w); 4706 if (lstat (w->path, &w->attr) < 0)
4707 w->attr.st_nlink = 0;
4708 else if (!w->attr.st_nlink)
4709 w->attr.st_nlink = 1;
4710}
4711
4712ecb_noinline
4713static void
4714stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4715{
4716 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4717
4718 ev_statdata prev = w->attr;
4719 ev_stat_stat (EV_A_ w);
4720
4721 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4722 if (
4723 prev.st_dev != w->attr.st_dev
4724 || prev.st_ino != w->attr.st_ino
4725 || prev.st_mode != w->attr.st_mode
4726 || prev.st_nlink != w->attr.st_nlink
4727 || prev.st_uid != w->attr.st_uid
4728 || prev.st_gid != w->attr.st_gid
4729 || prev.st_rdev != w->attr.st_rdev
4730 || prev.st_size != w->attr.st_size
4731 || prev.st_atime != w->attr.st_atime
4732 || prev.st_mtime != w->attr.st_mtime
4733 || prev.st_ctime != w->attr.st_ctime
4734 ) {
4735 /* we only update w->prev on actual differences */
4736 /* in case we test more often than invoke the callback, */
4737 /* to ensure that prev is always different to attr */
4738 w->prev = prev;
4739
4740 #if EV_USE_INOTIFY
4741 if (fs_fd >= 0)
4742 {
4743 infy_del (EV_A_ w);
4744 infy_add (EV_A_ w);
4745 ev_stat_stat (EV_A_ w); /* avoid race... */
4746 }
4747 #endif
4748
4749 ev_feed_event (EV_A_ w, EV_STAT);
4750 }
4751}
4752
4753void
4754ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4755{
1641 if (expect_false (!ev_is_active (w))) 4756 if (ecb_expect_false (ev_is_active (w)))
1642 return; 4757 return;
1643 4758
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4759 ev_stat_stat (EV_A_ w);
4760
4761 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4762 w->interval = MIN_STAT_INTERVAL;
4763
4764 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4765 ev_set_priority (&w->timer, ev_priority (w));
4766
4767#if EV_USE_INOTIFY
4768 infy_init (EV_A);
4769
4770 if (fs_fd >= 0)
4771 infy_add (EV_A_ w);
4772 else
4773#endif
4774 {
4775 ev_timer_again (EV_A_ &w->timer);
4776 ev_unref (EV_A);
4777 }
4778
4779 ev_start (EV_A_ (W)w, 1);
4780
4781 EV_FREQUENT_CHECK;
4782}
4783
4784void
4785ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4786{
4787 clear_pending (EV_A_ (W)w);
4788 if (ecb_expect_false (!ev_is_active (w)))
4789 return;
4790
4791 EV_FREQUENT_CHECK;
4792
4793#if EV_USE_INOTIFY
4794 infy_del (EV_A_ w);
4795#endif
4796
4797 if (ev_is_active (&w->timer))
4798 {
4799 ev_ref (EV_A);
4800 ev_timer_stop (EV_A_ &w->timer);
4801 }
4802
1645 ev_stop (EV_A_ (W)w); 4803 ev_stop (EV_A_ (W)w);
1646 4804
1647 if (!signals [w->signum - 1].head) 4805 EV_FREQUENT_CHECK;
1648 signal (w->signum, SIG_DFL);
1649} 4806}
1650
1651void
1652ev_child_start (EV_P_ ev_child *w)
1653{
1654#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 4807#endif
4808
4809#if EV_IDLE_ENABLE
4810void
4811ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4812{
1657 if (expect_false (ev_is_active (w))) 4813 if (ecb_expect_false (ev_is_active (w)))
1658 return; 4814 return;
1659 4815
4816 pri_adjust (EV_A_ (W)w);
4817
4818 EV_FREQUENT_CHECK;
4819
4820 {
4821 int active = ++idlecnt [ABSPRI (w)];
4822
4823 ++idleall;
1660 ev_start (EV_A_ (W)w, 1); 4824 ev_start (EV_A_ (W)w, active);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1662}
1663 4825
4826 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4827 idles [ABSPRI (w)][active - 1] = w;
4828 }
4829
4830 EV_FREQUENT_CHECK;
4831}
4832
1664void 4833void
1665ev_child_stop (EV_P_ ev_child *w) 4834ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
1666{ 4835{
1667 ev_clear_pending (EV_A_ (W)w); 4836 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 4837 if (ecb_expect_false (!ev_is_active (w)))
1669 return; 4838 return;
1670 4839
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4840 EV_FREQUENT_CHECK;
4841
4842 {
4843 int active = ev_active (w);
4844
4845 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4846 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4847
4848 ev_stop (EV_A_ (W)w);
4849 --idleall;
4850 }
4851
4852 EV_FREQUENT_CHECK;
4853}
4854#endif
4855
4856#if EV_PREPARE_ENABLE
4857void
4858ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4859{
4860 if (ecb_expect_false (ev_is_active (w)))
4861 return;
4862
4863 EV_FREQUENT_CHECK;
4864
4865 ev_start (EV_A_ (W)w, ++preparecnt);
4866 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4867 prepares [preparecnt - 1] = w;
4868
4869 EV_FREQUENT_CHECK;
4870}
4871
4872void
4873ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4874{
4875 clear_pending (EV_A_ (W)w);
4876 if (ecb_expect_false (!ev_is_active (w)))
4877 return;
4878
4879 EV_FREQUENT_CHECK;
4880
4881 {
4882 int active = ev_active (w);
4883
4884 prepares [active - 1] = prepares [--preparecnt];
4885 ev_active (prepares [active - 1]) = active;
4886 }
4887
1672 ev_stop (EV_A_ (W)w); 4888 ev_stop (EV_A_ (W)w);
1673}
1674 4889
1675#if EV_MULTIPLICITY 4890 EV_FREQUENT_CHECK;
4891}
4892#endif
4893
4894#if EV_CHECK_ENABLE
1676void 4895void
4896ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4897{
4898 if (ecb_expect_false (ev_is_active (w)))
4899 return;
4900
4901 EV_FREQUENT_CHECK;
4902
4903 ev_start (EV_A_ (W)w, ++checkcnt);
4904 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4905 checks [checkcnt - 1] = w;
4906
4907 EV_FREQUENT_CHECK;
4908}
4909
4910void
4911ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4912{
4913 clear_pending (EV_A_ (W)w);
4914 if (ecb_expect_false (!ev_is_active (w)))
4915 return;
4916
4917 EV_FREQUENT_CHECK;
4918
4919 {
4920 int active = ev_active (w);
4921
4922 checks [active - 1] = checks [--checkcnt];
4923 ev_active (checks [active - 1]) = active;
4924 }
4925
4926 ev_stop (EV_A_ (W)w);
4927
4928 EV_FREQUENT_CHECK;
4929}
4930#endif
4931
4932#if EV_EMBED_ENABLE
4933ecb_noinline
4934void
1677ev_embed_loop (EV_P_ ev_embed *w) 4935ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
1678{ 4936{
1679 ev_loop (w->loop, EVLOOP_NONBLOCK); 4937 ev_run (w->other, EVRUN_NOWAIT);
1680} 4938}
1681 4939
1682static void 4940static void
1683embed_cb (EV_P_ ev_io *io, int revents) 4941embed_io_cb (EV_P_ ev_io *io, int revents)
1684{ 4942{
1685 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4943 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1686 4944
1687 if (ev_cb (w)) 4945 if (ev_cb (w))
1688 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4946 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1689 else 4947 else
1690 ev_embed_loop (loop, w); 4948 ev_run (w->other, EVRUN_NOWAIT);
1691} 4949}
1692 4950
4951static void
4952embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4953{
4954 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4955
4956 {
4957 EV_P = w->other;
4958
4959 while (fdchangecnt)
4960 {
4961 fd_reify (EV_A);
4962 ev_run (EV_A_ EVRUN_NOWAIT);
4963 }
4964 }
4965}
4966
4967static void
4968embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4969{
4970 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4971
4972 ev_embed_stop (EV_A_ w);
4973
4974 {
4975 EV_P = w->other;
4976
4977 ev_loop_fork (EV_A);
4978 ev_run (EV_A_ EVRUN_NOWAIT);
4979 }
4980
4981 ev_embed_start (EV_A_ w);
4982}
4983
4984#if 0
4985static void
4986embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4987{
4988 ev_idle_stop (EV_A_ idle);
4989}
4990#endif
4991
1693void 4992void
1694ev_embed_start (EV_P_ ev_embed *w) 4993ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
1695{ 4994{
1696 if (expect_false (ev_is_active (w))) 4995 if (ecb_expect_false (ev_is_active (w)))
1697 return; 4996 return;
1698 4997
1699 { 4998 {
1700 struct ev_loop *loop = w->loop; 4999 EV_P = w->other;
1701 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5000 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1702 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 5001 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1703 } 5002 }
5003
5004 EV_FREQUENT_CHECK;
1704 5005
1705 ev_set_priority (&w->io, ev_priority (w)); 5006 ev_set_priority (&w->io, ev_priority (w));
1706 ev_io_start (EV_A_ &w->io); 5007 ev_io_start (EV_A_ &w->io);
5008
5009 ev_prepare_init (&w->prepare, embed_prepare_cb);
5010 ev_set_priority (&w->prepare, EV_MINPRI);
5011 ev_prepare_start (EV_A_ &w->prepare);
5012
5013 ev_fork_init (&w->fork, embed_fork_cb);
5014 ev_fork_start (EV_A_ &w->fork);
5015
5016 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5017
1707 ev_start (EV_A_ (W)w, 1); 5018 ev_start (EV_A_ (W)w, 1);
1708}
1709 5019
5020 EV_FREQUENT_CHECK;
5021}
5022
1710void 5023void
1711ev_embed_stop (EV_P_ ev_embed *w) 5024ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
1712{ 5025{
1713 ev_clear_pending (EV_A_ (W)w); 5026 clear_pending (EV_A_ (W)w);
1714 if (expect_false (!ev_is_active (w))) 5027 if (ecb_expect_false (!ev_is_active (w)))
1715 return; 5028 return;
1716 5029
5030 EV_FREQUENT_CHECK;
5031
1717 ev_io_stop (EV_A_ &w->io); 5032 ev_io_stop (EV_A_ &w->io);
5033 ev_prepare_stop (EV_A_ &w->prepare);
5034 ev_fork_stop (EV_A_ &w->fork);
5035
1718 ev_stop (EV_A_ (W)w); 5036 ev_stop (EV_A_ (W)w);
5037
5038 EV_FREQUENT_CHECK;
5039}
5040#endif
5041
5042#if EV_FORK_ENABLE
5043void
5044ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5045{
5046 if (ecb_expect_false (ev_is_active (w)))
5047 return;
5048
5049 EV_FREQUENT_CHECK;
5050
5051 ev_start (EV_A_ (W)w, ++forkcnt);
5052 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5053 forks [forkcnt - 1] = w;
5054
5055 EV_FREQUENT_CHECK;
5056}
5057
5058void
5059ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5060{
5061 clear_pending (EV_A_ (W)w);
5062 if (ecb_expect_false (!ev_is_active (w)))
5063 return;
5064
5065 EV_FREQUENT_CHECK;
5066
5067 {
5068 int active = ev_active (w);
5069
5070 forks [active - 1] = forks [--forkcnt];
5071 ev_active (forks [active - 1]) = active;
5072 }
5073
5074 ev_stop (EV_A_ (W)w);
5075
5076 EV_FREQUENT_CHECK;
5077}
5078#endif
5079
5080#if EV_CLEANUP_ENABLE
5081void
5082ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5083{
5084 if (ecb_expect_false (ev_is_active (w)))
5085 return;
5086
5087 EV_FREQUENT_CHECK;
5088
5089 ev_start (EV_A_ (W)w, ++cleanupcnt);
5090 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5091 cleanups [cleanupcnt - 1] = w;
5092
5093 /* cleanup watchers should never keep a refcount on the loop */
5094 ev_unref (EV_A);
5095 EV_FREQUENT_CHECK;
5096}
5097
5098void
5099ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5100{
5101 clear_pending (EV_A_ (W)w);
5102 if (ecb_expect_false (!ev_is_active (w)))
5103 return;
5104
5105 EV_FREQUENT_CHECK;
5106 ev_ref (EV_A);
5107
5108 {
5109 int active = ev_active (w);
5110
5111 cleanups [active - 1] = cleanups [--cleanupcnt];
5112 ev_active (cleanups [active - 1]) = active;
5113 }
5114
5115 ev_stop (EV_A_ (W)w);
5116
5117 EV_FREQUENT_CHECK;
5118}
5119#endif
5120
5121#if EV_ASYNC_ENABLE
5122void
5123ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5124{
5125 if (ecb_expect_false (ev_is_active (w)))
5126 return;
5127
5128 w->sent = 0;
5129
5130 evpipe_init (EV_A);
5131
5132 EV_FREQUENT_CHECK;
5133
5134 ev_start (EV_A_ (W)w, ++asynccnt);
5135 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5136 asyncs [asynccnt - 1] = w;
5137
5138 EV_FREQUENT_CHECK;
5139}
5140
5141void
5142ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5143{
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 {
5151 int active = ev_active (w);
5152
5153 asyncs [active - 1] = asyncs [--asynccnt];
5154 ev_active (asyncs [active - 1]) = active;
5155 }
5156
5157 ev_stop (EV_A_ (W)w);
5158
5159 EV_FREQUENT_CHECK;
5160}
5161
5162void
5163ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5164{
5165 w->sent = 1;
5166 evpipe_write (EV_A_ &async_pending);
1719} 5167}
1720#endif 5168#endif
1721 5169
1722/*****************************************************************************/ 5170/*****************************************************************************/
1723 5171
1733once_cb (EV_P_ struct ev_once *once, int revents) 5181once_cb (EV_P_ struct ev_once *once, int revents)
1734{ 5182{
1735 void (*cb)(int revents, void *arg) = once->cb; 5183 void (*cb)(int revents, void *arg) = once->cb;
1736 void *arg = once->arg; 5184 void *arg = once->arg;
1737 5185
1738 ev_io_stop (EV_A_ &once->io); 5186 ev_io_stop (EV_A_ &once->io);
1739 ev_timer_stop (EV_A_ &once->to); 5187 ev_timer_stop (EV_A_ &once->to);
1740 ev_free (once); 5188 ev_free (once);
1741 5189
1742 cb (revents, arg); 5190 cb (revents, arg);
1743} 5191}
1744 5192
1745static void 5193static void
1746once_cb_io (EV_P_ ev_io *w, int revents) 5194once_cb_io (EV_P_ ev_io *w, int revents)
1747{ 5195{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5196 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5197
5198 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1749} 5199}
1750 5200
1751static void 5201static void
1752once_cb_to (EV_P_ ev_timer *w, int revents) 5202once_cb_to (EV_P_ ev_timer *w, int revents)
1753{ 5203{
1754 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5204 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1755}
1756 5205
5206 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5207}
5208
1757void 5209void
1758ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5210ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1759{ 5211{
1760 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5212 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1761
1762 if (expect_false (!once))
1763 {
1764 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1765 return;
1766 }
1767 5213
1768 once->cb = cb; 5214 once->cb = cb;
1769 once->arg = arg; 5215 once->arg = arg;
1770 5216
1771 ev_init (&once->io, once_cb_io); 5217 ev_init (&once->io, once_cb_io);
1781 ev_timer_set (&once->to, timeout, 0.); 5227 ev_timer_set (&once->to, timeout, 0.);
1782 ev_timer_start (EV_A_ &once->to); 5228 ev_timer_start (EV_A_ &once->to);
1783 } 5229 }
1784} 5230}
1785 5231
1786#ifdef __cplusplus 5232/*****************************************************************************/
1787} 5233
5234#if EV_WALK_ENABLE
5235ecb_cold
5236void
5237ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5238{
5239 int i, j;
5240 ev_watcher_list *wl, *wn;
5241
5242 if (types & (EV_IO | EV_EMBED))
5243 for (i = 0; i < anfdmax; ++i)
5244 for (wl = anfds [i].head; wl; )
5245 {
5246 wn = wl->next;
5247
5248#if EV_EMBED_ENABLE
5249 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5250 {
5251 if (types & EV_EMBED)
5252 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5253 }
5254 else
5255#endif
5256#if EV_USE_INOTIFY
5257 if (ev_cb ((ev_io *)wl) == infy_cb)
5258 ;
5259 else
5260#endif
5261 if ((ev_io *)wl != &pipe_w)
5262 if (types & EV_IO)
5263 cb (EV_A_ EV_IO, wl);
5264
5265 wl = wn;
5266 }
5267
5268 if (types & (EV_TIMER | EV_STAT))
5269 for (i = timercnt + HEAP0; i-- > HEAP0; )
5270#if EV_STAT_ENABLE
5271 /*TODO: timer is not always active*/
5272 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5273 {
5274 if (types & EV_STAT)
5275 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5276 }
5277 else
5278#endif
5279 if (types & EV_TIMER)
5280 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5281
5282#if EV_PERIODIC_ENABLE
5283 if (types & EV_PERIODIC)
5284 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5285 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5286#endif
5287
5288#if EV_IDLE_ENABLE
5289 if (types & EV_IDLE)
5290 for (j = NUMPRI; j--; )
5291 for (i = idlecnt [j]; i--; )
5292 cb (EV_A_ EV_IDLE, idles [j][i]);
5293#endif
5294
5295#if EV_FORK_ENABLE
5296 if (types & EV_FORK)
5297 for (i = forkcnt; i--; )
5298 if (ev_cb (forks [i]) != embed_fork_cb)
5299 cb (EV_A_ EV_FORK, forks [i]);
5300#endif
5301
5302#if EV_ASYNC_ENABLE
5303 if (types & EV_ASYNC)
5304 for (i = asynccnt; i--; )
5305 cb (EV_A_ EV_ASYNC, asyncs [i]);
5306#endif
5307
5308#if EV_PREPARE_ENABLE
5309 if (types & EV_PREPARE)
5310 for (i = preparecnt; i--; )
5311# if EV_EMBED_ENABLE
5312 if (ev_cb (prepares [i]) != embed_prepare_cb)
1788#endif 5313# endif
5314 cb (EV_A_ EV_PREPARE, prepares [i]);
5315#endif
1789 5316
5317#if EV_CHECK_ENABLE
5318 if (types & EV_CHECK)
5319 for (i = checkcnt; i--; )
5320 cb (EV_A_ EV_CHECK, checks [i]);
5321#endif
5322
5323#if EV_SIGNAL_ENABLE
5324 if (types & EV_SIGNAL)
5325 for (i = 0; i < EV_NSIG - 1; ++i)
5326 for (wl = signals [i].head; wl; )
5327 {
5328 wn = wl->next;
5329 cb (EV_A_ EV_SIGNAL, wl);
5330 wl = wn;
5331 }
5332#endif
5333
5334#if EV_CHILD_ENABLE
5335 if (types & EV_CHILD)
5336 for (i = (EV_PID_HASHSIZE); i--; )
5337 for (wl = childs [i]; wl; )
5338 {
5339 wn = wl->next;
5340 cb (EV_A_ EV_CHILD, wl);
5341 wl = wn;
5342 }
5343#endif
5344/* EV_STAT 0x00001000 /* stat data changed */
5345/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5346}
5347#endif
5348
5349#if EV_MULTIPLICITY
5350 #include "ev_wrap.h"
5351#endif
5352

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines