ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.103 by root, Mon Nov 12 00:31:08 2007 UTC vs.
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
62# endif 97# endif
63 98
64#endif 99#endif
65 100
66#include <math.h> 101#include <math.h>
90#endif 125#endif
91 126
92/**/ 127/**/
93 128
94#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
96#endif 135#endif
97 136
98#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
100#endif 139#endif
101 140
102#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
103# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
104#endif 147#endif
105 148
106#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
108#endif 151#endif
109 152
110#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
111# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
112#endif 155#endif
113 156
114#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
115# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
116#endif 159#endif
117 160
118/**/ 161/**/
119 162
120#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
132#endif 175#endif
133 176
134/**/ 177/**/
135 178
136#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
137#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
138#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
139/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
140 183
141#ifdef EV_H 184#ifdef EV_H
142# include EV_H 185# include EV_H
143#else 186#else
144# include "ev.h" 187# include "ev.h"
145#endif 188#endif
146 189
147#if __GNUC__ >= 3 190#if __GNUC__ >= 3
148# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
149# define inline inline 192# define inline static inline
150#else 193#else
151# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
152# define inline static 195# define inline static
153#endif 196#endif
154 197
156#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
157 200
158#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
159#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
160 203
161#define EMPTY /* required for microsofts broken pseudo-c compiler */ 204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
162 206
163typedef struct ev_watcher *W; 207typedef ev_watcher *W;
164typedef struct ev_watcher_list *WL; 208typedef ev_watcher_list *WL;
165typedef struct ev_watcher_time *WT; 209typedef ev_watcher_time *WT;
166 210
167static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
168 212
169#ifdef _WIN32 213#ifdef _WIN32
170# include "ev_win32.c" 214# include "ev_win32.c"
246 #include "ev_vars.h" 290 #include "ev_vars.h"
247 #undef VAR 291 #undef VAR
248 }; 292 };
249 #include "ev_wrap.h" 293 #include "ev_wrap.h"
250 294
251 struct ev_loop default_loop_struct; 295 static struct ev_loop default_loop_struct;
252 static struct ev_loop *default_loop; 296 struct ev_loop *ev_default_loop_ptr;
253 297
254#else 298#else
255 299
256 ev_tstamp ev_rt_now; 300 ev_tstamp ev_rt_now;
257 #define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
258 #include "ev_vars.h" 302 #include "ev_vars.h"
259 #undef VAR 303 #undef VAR
260 304
261 static int default_loop; 305 static int ev_default_loop_ptr;
262 306
263#endif 307#endif
264 308
265/*****************************************************************************/ 309/*****************************************************************************/
266 310
299{ 343{
300 return ev_rt_now; 344 return ev_rt_now;
301} 345}
302#endif 346#endif
303 347
304#define array_roundsize(type,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
305 349
306#define array_needsize(type,base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
307 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
308 { \ 352 { \
309 int newcnt = cur; \ 353 int newcnt = cur; \
347void 391void
348ev_feed_event (EV_P_ void *w, int revents) 392ev_feed_event (EV_P_ void *w, int revents)
349{ 393{
350 W w_ = (W)w; 394 W w_ = (W)w;
351 395
352 if (w_->pending) 396 if (expect_false (w_->pending))
353 { 397 {
354 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
355 return; 399 return;
356 } 400 }
357 401
358 w_->pending = ++pendingcnt [ABSPRI (w_)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
359 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void)); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
360 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
361 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
362} 406}
363 407
364static void 408static void
372 416
373inline void 417inline void
374fd_event (EV_P_ int fd, int revents) 418fd_event (EV_P_ int fd, int revents)
375{ 419{
376 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 421 ev_io *w;
378 422
379 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
380 { 424 {
381 int ev = w->events & revents; 425 int ev = w->events & revents;
382 426
383 if (ev) 427 if (ev)
384 ev_feed_event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
391 fd_event (EV_A_ fd, revents); 435 fd_event (EV_A_ fd, revents);
392} 436}
393 437
394/*****************************************************************************/ 438/*****************************************************************************/
395 439
396static void 440inline void
397fd_reify (EV_P) 441fd_reify (EV_P)
398{ 442{
399 int i; 443 int i;
400 444
401 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
402 { 446 {
403 int fd = fdchanges [i]; 447 int fd = fdchanges [i];
404 ANFD *anfd = anfds + fd; 448 ANFD *anfd = anfds + fd;
405 struct ev_io *w; 449 ev_io *w;
406 450
407 int events = 0; 451 int events = 0;
408 452
409 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
410 events |= w->events; 454 events |= w->events;
411 455
412#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
413 if (events) 457 if (events)
414 { 458 {
418 } 462 }
419#endif 463#endif
420 464
421 anfd->reify = 0; 465 anfd->reify = 0;
422 466
423 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
424 anfd->events = events; 468 anfd->events = events;
425 } 469 }
426 470
427 fdchangecnt = 0; 471 fdchangecnt = 0;
428} 472}
429 473
430static void 474static void
431fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
432{ 476{
433 if (anfds [fd].reify) 477 if (expect_false (anfds [fd].reify))
434 return; 478 return;
435 479
436 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
437 481
438 ++fdchangecnt; 482 ++fdchangecnt;
439 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
440 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
441} 485}
442 486
443static void 487static void
444fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
445{ 489{
446 struct ev_io *w; 490 ev_io *w;
447 491
448 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (ev_io *)anfds [fd].head))
449 { 493 {
450 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
451 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
452 } 496 }
453} 497}
454 498
455static int 499inline int
456fd_valid (int fd) 500fd_valid (int fd)
457{ 501{
458#ifdef _WIN32 502#ifdef _WIN32
459 return _get_osfhandle (fd) != -1; 503 return _get_osfhandle (fd) != -1;
460#else 504#else
486 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
487 return; 531 return;
488 } 532 }
489} 533}
490 534
491/* usually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
492static void 536static void
493fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
494{ 538{
495 int fd; 539 int fd;
496 540
564static ANSIG *signals; 608static ANSIG *signals;
565static int signalmax; 609static int signalmax;
566 610
567static int sigpipe [2]; 611static int sigpipe [2];
568static sig_atomic_t volatile gotsig; 612static sig_atomic_t volatile gotsig;
569static struct ev_io sigev; 613static ev_io sigev;
570 614
571static void 615static void
572signals_init (ANSIG *base, int count) 616signals_init (ANSIG *base, int count)
573{ 617{
574 while (count--) 618 while (count--)
602ev_feed_signal_event (EV_P_ int signum) 646ev_feed_signal_event (EV_P_ int signum)
603{ 647{
604 WL w; 648 WL w;
605 649
606#if EV_MULTIPLICITY 650#if EV_MULTIPLICITY
607 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
608#endif 652#endif
609 653
610 --signum; 654 --signum;
611 655
612 if (signum < 0 || signum >= signalmax) 656 if (signum < 0 || signum >= signalmax)
617 for (w = signals [signum].head; w; w = w->next) 661 for (w = signals [signum].head; w; w = w->next)
618 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
619} 663}
620 664
621static void 665static void
622sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ ev_io *iow, int revents)
623{ 667{
624 int signum; 668 int signum;
625 669
626 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
627 gotsig = 0; 671 gotsig = 0;
629 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
630 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
631 ev_feed_signal_event (EV_A_ signum + 1); 675 ev_feed_signal_event (EV_A_ signum + 1);
632} 676}
633 677
634inline void 678static void
635fd_intern (int fd) 679fd_intern (int fd)
636{ 680{
637#ifdef _WIN32 681#ifdef _WIN32
638 int arg = 1; 682 int arg = 1;
639 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
654 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
655} 699}
656 700
657/*****************************************************************************/ 701/*****************************************************************************/
658 702
659static struct ev_child *childs [PID_HASHSIZE]; 703static ev_child *childs [PID_HASHSIZE];
660 704
661#ifndef _WIN32 705#ifndef _WIN32
662 706
663static struct ev_signal childev; 707static ev_signal childev;
664 708
665#ifndef WCONTINUED 709#ifndef WCONTINUED
666# define WCONTINUED 0 710# define WCONTINUED 0
667#endif 711#endif
668 712
669static void 713static void
670child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
671{ 715{
672 struct ev_child *w; 716 ev_child *w;
673 717
674 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
675 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
676 { 720 {
677 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
678 w->rpid = pid; 722 w->rpid = pid;
679 w->rstatus = status; 723 w->rstatus = status;
680 ev_feed_event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
681 } 725 }
682} 726}
683 727
684static void 728static void
685childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ ev_signal *sw, int revents)
686{ 730{
687 int pid, status; 731 int pid, status;
688 732
689 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
690 { 734 {
691 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
692 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
693 738
694 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
695 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
696 } 741 }
697} 742}
698 743
699#endif 744#endif
700 745
701/*****************************************************************************/ 746/*****************************************************************************/
702 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
703#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
704# include "ev_kqueue.c" 752# include "ev_kqueue.c"
705#endif 753#endif
706#if EV_USE_EPOLL 754#if EV_USE_EPOLL
707# include "ev_epoll.c" 755# include "ev_epoll.c"
735 return getuid () != geteuid () 783 return getuid () != geteuid ()
736 || getgid () != getegid (); 784 || getgid () != getegid ();
737#endif 785#endif
738} 786}
739 787
740int 788unsigned int
741ev_method (EV_P) 789ev_supported_backends (void)
742{ 790{
743 return method; 791 unsigned int flags = 0;
744}
745 792
746static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
747loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
748{ 804{
749 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_embeddable_backends (void)
822{
823 return EVBACKEND_EPOLL
824 | EVBACKEND_KQUEUE
825 | EVBACKEND_PORT;
826}
827
828unsigned int
829ev_backend (EV_P)
830{
831 return backend;
832}
833
834static void
835loop_init (EV_P_ unsigned int flags)
836{
837 if (!backend)
750 { 838 {
751#if EV_USE_MONOTONIC 839#if EV_USE_MONOTONIC
752 { 840 {
753 struct timespec ts; 841 struct timespec ts;
754 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 842 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
759 ev_rt_now = ev_time (); 847 ev_rt_now = ev_time ();
760 mn_now = get_clock (); 848 mn_now = get_clock ();
761 now_floor = mn_now; 849 now_floor = mn_now;
762 rtmn_diff = ev_rt_now - mn_now; 850 rtmn_diff = ev_rt_now - mn_now;
763 851
764 if (methods == EVMETHOD_AUTO) 852 if (!(flags & EVFLAG_NOENV)
765 if (!enable_secure () && getenv ("LIBEV_METHODS")) 853 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS"))
766 methods = atoi (getenv ("LIBEV_METHODS")); 855 flags = atoi (getenv ("LIBEV_FLAGS"));
767 else
768 methods = EVMETHOD_ANY;
769 856
770 method = 0; 857 if (!(flags & 0x0000ffffUL))
858 flags |= ev_recommended_backends ();
859
860 backend = 0;
861#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif
771#if EV_USE_KQUEUE 864#if EV_USE_KQUEUE
772 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
773#endif 866#endif
774#if EV_USE_EPOLL 867#if EV_USE_EPOLL
775 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
776#endif 869#endif
777#if EV_USE_POLL 870#if EV_USE_POLL
778 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
779#endif 872#endif
780#if EV_USE_SELECT 873#if EV_USE_SELECT
781 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
782#endif 875#endif
783 876
784 ev_init (&sigev, sigcb); 877 ev_init (&sigev, sigcb);
785 ev_set_priority (&sigev, EV_MAXPRI); 878 ev_set_priority (&sigev, EV_MAXPRI);
786 } 879 }
787} 880}
788 881
789void 882static void
790loop_destroy (EV_P) 883loop_destroy (EV_P)
791{ 884{
792 int i; 885 int i;
793 886
887#if EV_USE_PORT
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
889#endif
794#if EV_USE_KQUEUE 890#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
796#endif 892#endif
797#if EV_USE_EPOLL 893#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
799#endif 895#endif
800#if EV_USE_POLL 896#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
802#endif 898#endif
803#if EV_USE_SELECT 899#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
805#endif 901#endif
806 902
807 for (i = NUMPRI; i--; ) 903 for (i = NUMPRI; i--; )
808 array_free (pending, [i]); 904 array_free (pending, [i]);
809 905
810 /* have to use the microsoft-never-gets-it-right macro */ 906 /* have to use the microsoft-never-gets-it-right macro */
811 array_free (fdchange, EMPTY); 907 array_free (fdchange, EMPTY0);
812 array_free (timer, EMPTY); 908 array_free (timer, EMPTY0);
813#if EV_PERIODICS 909#if EV_PERIODICS
814 array_free (periodic, EMPTY); 910 array_free (periodic, EMPTY0);
815#endif 911#endif
816 array_free (idle, EMPTY); 912 array_free (idle, EMPTY0);
817 array_free (prepare, EMPTY); 913 array_free (prepare, EMPTY0);
818 array_free (check, EMPTY); 914 array_free (check, EMPTY0);
819 915
820 method = 0; 916 backend = 0;
821} 917}
822 918
823static void 919static void
824loop_fork (EV_P) 920loop_fork (EV_P)
825{ 921{
922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
826#if EV_USE_EPOLL 928#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
828#endif
829#if EV_USE_KQUEUE
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
831#endif 930#endif
832 931
833 if (ev_is_active (&sigev)) 932 if (ev_is_active (&sigev))
834 { 933 {
835 /* default loop */ 934 /* default loop */
848 postfork = 0; 947 postfork = 0;
849} 948}
850 949
851#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
852struct ev_loop * 951struct ev_loop *
853ev_loop_new (int methods) 952ev_loop_new (unsigned int flags)
854{ 953{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856 955
857 memset (loop, 0, sizeof (struct ev_loop)); 956 memset (loop, 0, sizeof (struct ev_loop));
858 957
859 loop_init (EV_A_ methods); 958 loop_init (EV_A_ flags);
860 959
861 if (ev_method (EV_A)) 960 if (ev_backend (EV_A))
862 return loop; 961 return loop;
863 962
864 return 0; 963 return 0;
865} 964}
866 965
879 978
880#endif 979#endif
881 980
882#if EV_MULTIPLICITY 981#if EV_MULTIPLICITY
883struct ev_loop * 982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
884#else 984#else
885int 985int
986ev_default_loop (unsigned int flags)
886#endif 987#endif
887ev_default_loop (int methods)
888{ 988{
889 if (sigpipe [0] == sigpipe [1]) 989 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe)) 990 if (pipe (sigpipe))
891 return 0; 991 return 0;
892 992
893 if (!default_loop) 993 if (!ev_default_loop_ptr)
894 { 994 {
895#if EV_MULTIPLICITY 995#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
897#else 997#else
898 default_loop = 1; 998 ev_default_loop_ptr = 1;
899#endif 999#endif
900 1000
901 loop_init (EV_A_ methods); 1001 loop_init (EV_A_ flags);
902 1002
903 if (ev_method (EV_A)) 1003 if (ev_backend (EV_A))
904 { 1004 {
905 siginit (EV_A); 1005 siginit (EV_A);
906 1006
907#ifndef _WIN32 1007#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1008 ev_signal_init (&childev, childcb, SIGCHLD);
910 ev_signal_start (EV_A_ &childev); 1010 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1012#endif
913 } 1013 }
914 else 1014 else
915 default_loop = 0; 1015 ev_default_loop_ptr = 0;
916 } 1016 }
917 1017
918 return default_loop; 1018 return ev_default_loop_ptr;
919} 1019}
920 1020
921void 1021void
922ev_default_destroy (void) 1022ev_default_destroy (void)
923{ 1023{
924#if EV_MULTIPLICITY 1024#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1025 struct ev_loop *loop = ev_default_loop_ptr;
926#endif 1026#endif
927 1027
928#ifndef _WIN32 1028#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1029 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1030 ev_signal_stop (EV_A_ &childev);
941 1041
942void 1042void
943ev_default_fork (void) 1043ev_default_fork (void)
944{ 1044{
945#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1046 struct ev_loop *loop = ev_default_loop_ptr;
947#endif 1047#endif
948 1048
949 if (method) 1049 if (backend)
950 postfork = 1; 1050 postfork = 1;
951} 1051}
952 1052
953/*****************************************************************************/ 1053/*****************************************************************************/
954 1054
962 return 1; 1062 return 1;
963 1063
964 return 0; 1064 return 0;
965} 1065}
966 1066
967static void 1067inline void
968call_pending (EV_P) 1068call_pending (EV_P)
969{ 1069{
970 int pri; 1070 int pri;
971 1071
972 for (pri = NUMPRI; pri--; ) 1072 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1073 while (pendingcnt [pri])
974 { 1074 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1076
977 if (p->w) 1077 if (expect_true (p->w))
978 { 1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending));
1080
979 p->w->pending = 0; 1081 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1082 EV_CB_INVOKE (p->w, p->events);
981 } 1083 }
982 } 1084 }
983} 1085}
984 1086
985static void 1087inline void
986timers_reify (EV_P) 1088timers_reify (EV_P)
987{ 1089{
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 1090 while (timercnt && ((WT)timers [0])->at <= mn_now)
989 { 1091 {
990 struct ev_timer *w = timers [0]; 1092 ev_timer *w = timers [0];
991 1093
992 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
993 1095
994 /* first reschedule or stop timer */ 1096 /* first reschedule or stop timer */
995 if (w->repeat) 1097 if (w->repeat)
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1009 } 1111 }
1010} 1112}
1011 1113
1012#if EV_PERIODICS 1114#if EV_PERIODICS
1013static void 1115inline void
1014periodics_reify (EV_P) 1116periodics_reify (EV_P)
1015{ 1117{
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1017 { 1119 {
1018 struct ev_periodic *w = periodics [0]; 1120 ev_periodic *w = periodics [0];
1019 1121
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1122 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1021 1123
1022 /* first reschedule or stop timer */ 1124 /* first reschedule or stop timer */
1023 if (w->reschedule_cb) 1125 if (w->reschedule_cb)
1024 { 1126 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0); 1129 downheap ((WT *)periodics, periodiccnt, 0);
1029 } 1130 }
1030 else if (w->interval) 1131 else if (w->interval)
1031 { 1132 {
1046 int i; 1147 int i;
1047 1148
1048 /* adjust periodics after time jump */ 1149 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i) 1150 for (i = 0; i < periodiccnt; ++i)
1050 { 1151 {
1051 struct ev_periodic *w = periodics [i]; 1152 ev_periodic *w = periodics [i];
1052 1153
1053 if (w->reschedule_cb) 1154 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval) 1156 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1078 ev_rt_now = ev_time (); 1179 ev_rt_now = ev_time ();
1079 return 1; 1180 return 1;
1080 } 1181 }
1081} 1182}
1082 1183
1083static void 1184inline void
1084time_update (EV_P) 1185time_update (EV_P)
1085{ 1186{
1086 int i; 1187 int i;
1087 1188
1088#if EV_USE_MONOTONIC 1189#if EV_USE_MONOTONIC
1090 { 1191 {
1091 if (time_update_monotonic (EV_A)) 1192 if (time_update_monotonic (EV_A))
1092 { 1193 {
1093 ev_tstamp odiff = rtmn_diff; 1194 ev_tstamp odiff = rtmn_diff;
1094 1195
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
1096 { 1205 {
1097 rtmn_diff = ev_rt_now - mn_now; 1206 rtmn_diff = ev_rt_now - mn_now;
1098 1207
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1100 return; /* all is well */ 1209 return; /* all is well */
1146static int loop_done; 1255static int loop_done;
1147 1256
1148void 1257void
1149ev_loop (EV_P_ int flags) 1258ev_loop (EV_P_ int flags)
1150{ 1259{
1151 double block;
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1261 ? EVUNLOOP_ONE
1262 : EVUNLOOP_CANCEL;
1153 1263
1154 do 1264 while (activecnt)
1155 { 1265 {
1156 /* queue check watchers (and execute them) */ 1266 /* queue check watchers (and execute them) */
1157 if (expect_false (preparecnt)) 1267 if (expect_false (preparecnt))
1158 { 1268 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1166 1276
1167 /* update fd-related kernel structures */ 1277 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 1278 fd_reify (EV_A);
1169 1279
1170 /* calculate blocking time */ 1280 /* calculate blocking time */
1281 {
1282 double block;
1171 1283
1172 /* we only need this for !monotonic clock or timers, but as we basically 1284 if (flags & EVLOOP_NONBLOCK || idlecnt)
1173 always have timers, we just calculate it always */ 1285 block = 0.; /* do not block at all */
1286 else
1287 {
1288 /* update time to cancel out callback processing overhead */
1174#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic)) 1290 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A); 1291 time_update_monotonic (EV_A);
1177 else 1292 else
1178#endif 1293#endif
1179 { 1294 {
1180 ev_rt_now = ev_time (); 1295 ev_rt_now = ev_time ();
1181 mn_now = ev_rt_now; 1296 mn_now = ev_rt_now;
1182 } 1297 }
1183 1298
1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
1185 block = 0.;
1186 else
1187 {
1188 block = MAX_BLOCKTIME; 1299 block = MAX_BLOCKTIME;
1189 1300
1190 if (timercnt) 1301 if (timercnt)
1191 { 1302 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1193 if (block > to) block = to; 1304 if (block > to) block = to;
1194 } 1305 }
1195 1306
1196#if EV_PERIODICS 1307#if EV_PERIODICS
1197 if (periodiccnt) 1308 if (periodiccnt)
1198 { 1309 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 1311 if (block > to) block = to;
1201 } 1312 }
1202#endif 1313#endif
1203 1314
1204 if (block < 0.) block = 0.; 1315 if (expect_false (block < 0.)) block = 0.;
1205 } 1316 }
1206 1317
1207 method_poll (EV_A_ block); 1318 backend_poll (EV_A_ block);
1319 }
1208 1320
1209 /* update ev_rt_now, do magic */ 1321 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 1322 time_update (EV_A);
1211 1323
1212 /* queue pending timers and reschedule them */ 1324 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 1325 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 1326#if EV_PERIODICS
1215 periodics_reify (EV_A); /* absolute timers called first */ 1327 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 1328#endif
1217 1329
1218 /* queue idle watchers unless io or timers are pending */ 1330 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 1331 if (idlecnt && !any_pending (EV_A))
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1221 1333
1222 /* queue check watchers, to be executed first */ 1334 /* queue check watchers, to be executed first */
1223 if (checkcnt) 1335 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 1337
1226 call_pending (EV_A); 1338 call_pending (EV_A);
1227 }
1228 while (activecnt && !loop_done);
1229 1339
1230 if (loop_done != 2) 1340 if (expect_false (loop_done))
1231 loop_done = 0; 1341 break;
1342 }
1343
1344 if (loop_done == EVUNLOOP_ONE)
1345 loop_done = EVUNLOOP_CANCEL;
1232} 1346}
1233 1347
1234void 1348void
1235ev_unloop (EV_P_ int how) 1349ev_unloop (EV_P_ int how)
1236{ 1350{
1289} 1403}
1290 1404
1291/*****************************************************************************/ 1405/*****************************************************************************/
1292 1406
1293void 1407void
1294ev_io_start (EV_P_ struct ev_io *w) 1408ev_io_start (EV_P_ ev_io *w)
1295{ 1409{
1296 int fd = w->fd; 1410 int fd = w->fd;
1297 1411
1298 if (ev_is_active (w)) 1412 if (expect_false (ev_is_active (w)))
1299 return; 1413 return;
1300 1414
1301 assert (("ev_io_start called with negative fd", fd >= 0)); 1415 assert (("ev_io_start called with negative fd", fd >= 0));
1302 1416
1303 ev_start (EV_A_ (W)w, 1); 1417 ev_start (EV_A_ (W)w, 1);
1306 1420
1307 fd_change (EV_A_ fd); 1421 fd_change (EV_A_ fd);
1308} 1422}
1309 1423
1310void 1424void
1311ev_io_stop (EV_P_ struct ev_io *w) 1425ev_io_stop (EV_P_ ev_io *w)
1312{ 1426{
1313 ev_clear_pending (EV_A_ (W)w); 1427 ev_clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w)) 1428 if (expect_false (!ev_is_active (w)))
1315 return; 1429 return;
1316 1430
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318 1432
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1321 1435
1322 fd_change (EV_A_ w->fd); 1436 fd_change (EV_A_ w->fd);
1323} 1437}
1324 1438
1325void 1439void
1326ev_timer_start (EV_P_ struct ev_timer *w) 1440ev_timer_start (EV_P_ ev_timer *w)
1327{ 1441{
1328 if (ev_is_active (w)) 1442 if (expect_false (ev_is_active (w)))
1329 return; 1443 return;
1330 1444
1331 ((WT)w)->at += mn_now; 1445 ((WT)w)->at += mn_now;
1332 1446
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334 1448
1335 ev_start (EV_A_ (W)w, ++timercnt); 1449 ev_start (EV_A_ (W)w, ++timercnt);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1337 timers [timercnt - 1] = w; 1451 timers [timercnt - 1] = w;
1338 upheap ((WT *)timers, timercnt - 1); 1452 upheap ((WT *)timers, timercnt - 1);
1339 1453
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1341} 1455}
1342 1456
1343void 1457void
1344ev_timer_stop (EV_P_ struct ev_timer *w) 1458ev_timer_stop (EV_P_ ev_timer *w)
1345{ 1459{
1346 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1348 return; 1462 return;
1349 1463
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351 1465
1352 if (((W)w)->active < timercnt--) 1466 if (expect_true (((W)w)->active < timercnt--))
1353 { 1467 {
1354 timers [((W)w)->active - 1] = timers [timercnt]; 1468 timers [((W)w)->active - 1] = timers [timercnt];
1355 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1356 } 1470 }
1357 1471
1359 1473
1360 ev_stop (EV_A_ (W)w); 1474 ev_stop (EV_A_ (W)w);
1361} 1475}
1362 1476
1363void 1477void
1364ev_timer_again (EV_P_ struct ev_timer *w) 1478ev_timer_again (EV_P_ ev_timer *w)
1365{ 1479{
1366 if (ev_is_active (w)) 1480 if (ev_is_active (w))
1367 { 1481 {
1368 if (w->repeat) 1482 if (w->repeat)
1369 { 1483 {
1372 } 1486 }
1373 else 1487 else
1374 ev_timer_stop (EV_A_ w); 1488 ev_timer_stop (EV_A_ w);
1375 } 1489 }
1376 else if (w->repeat) 1490 else if (w->repeat)
1491 {
1492 w->at = w->repeat;
1377 ev_timer_start (EV_A_ w); 1493 ev_timer_start (EV_A_ w);
1494 }
1378} 1495}
1379 1496
1380#if EV_PERIODICS 1497#if EV_PERIODICS
1381void 1498void
1382ev_periodic_start (EV_P_ struct ev_periodic *w) 1499ev_periodic_start (EV_P_ ev_periodic *w)
1383{ 1500{
1384 if (ev_is_active (w)) 1501 if (expect_false (ev_is_active (w)))
1385 return; 1502 return;
1386 1503
1387 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1388 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1389 else if (w->interval) 1506 else if (w->interval)
1392 /* this formula differs from the one in periodic_reify because we do not always round up */ 1509 /* this formula differs from the one in periodic_reify because we do not always round up */
1393 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1394 } 1511 }
1395 1512
1396 ev_start (EV_A_ (W)w, ++periodiccnt); 1513 ev_start (EV_A_ (W)w, ++periodiccnt);
1397 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1398 periodics [periodiccnt - 1] = w; 1515 periodics [periodiccnt - 1] = w;
1399 upheap ((WT *)periodics, periodiccnt - 1); 1516 upheap ((WT *)periodics, periodiccnt - 1);
1400 1517
1401 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1402} 1519}
1403 1520
1404void 1521void
1405ev_periodic_stop (EV_P_ struct ev_periodic *w) 1522ev_periodic_stop (EV_P_ ev_periodic *w)
1406{ 1523{
1407 ev_clear_pending (EV_A_ (W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1408 if (!ev_is_active (w)) 1525 if (expect_false (!ev_is_active (w)))
1409 return; 1526 return;
1410 1527
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1412 1529
1413 if (((W)w)->active < periodiccnt--) 1530 if (expect_true (((W)w)->active < periodiccnt--))
1414 { 1531 {
1415 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1532 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1416 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1417 } 1534 }
1418 1535
1419 ev_stop (EV_A_ (W)w); 1536 ev_stop (EV_A_ (W)w);
1420} 1537}
1421 1538
1422void 1539void
1423ev_periodic_again (EV_P_ struct ev_periodic *w) 1540ev_periodic_again (EV_P_ ev_periodic *w)
1424{ 1541{
1425 /* TODO: use adjustheap and recalculation */ 1542 /* TODO: use adjustheap and recalculation */
1426 ev_periodic_stop (EV_A_ w); 1543 ev_periodic_stop (EV_A_ w);
1427 ev_periodic_start (EV_A_ w); 1544 ev_periodic_start (EV_A_ w);
1428} 1545}
1429#endif 1546#endif
1430 1547
1431void 1548void
1432ev_idle_start (EV_P_ struct ev_idle *w) 1549ev_idle_start (EV_P_ ev_idle *w)
1433{ 1550{
1434 if (ev_is_active (w)) 1551 if (expect_false (ev_is_active (w)))
1435 return; 1552 return;
1436 1553
1437 ev_start (EV_A_ (W)w, ++idlecnt); 1554 ev_start (EV_A_ (W)w, ++idlecnt);
1438 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1439 idles [idlecnt - 1] = w; 1556 idles [idlecnt - 1] = w;
1440} 1557}
1441 1558
1442void 1559void
1443ev_idle_stop (EV_P_ struct ev_idle *w) 1560ev_idle_stop (EV_P_ ev_idle *w)
1444{ 1561{
1445 ev_clear_pending (EV_A_ (W)w); 1562 ev_clear_pending (EV_A_ (W)w);
1446 if (!ev_is_active (w)) 1563 if (expect_false (!ev_is_active (w)))
1447 return; 1564 return;
1448 1565
1566 {
1567 int active = ((W)w)->active;
1449 idles [((W)w)->active - 1] = idles [--idlecnt]; 1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571
1450 ev_stop (EV_A_ (W)w); 1572 ev_stop (EV_A_ (W)w);
1451} 1573}
1452 1574
1453void 1575void
1454ev_prepare_start (EV_P_ struct ev_prepare *w) 1576ev_prepare_start (EV_P_ ev_prepare *w)
1455{ 1577{
1456 if (ev_is_active (w)) 1578 if (expect_false (ev_is_active (w)))
1457 return; 1579 return;
1458 1580
1459 ev_start (EV_A_ (W)w, ++preparecnt); 1581 ev_start (EV_A_ (W)w, ++preparecnt);
1460 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1461 prepares [preparecnt - 1] = w; 1583 prepares [preparecnt - 1] = w;
1462} 1584}
1463 1585
1464void 1586void
1465ev_prepare_stop (EV_P_ struct ev_prepare *w) 1587ev_prepare_stop (EV_P_ ev_prepare *w)
1466{ 1588{
1467 ev_clear_pending (EV_A_ (W)w); 1589 ev_clear_pending (EV_A_ (W)w);
1468 if (!ev_is_active (w)) 1590 if (expect_false (!ev_is_active (w)))
1469 return; 1591 return;
1470 1592
1593 {
1594 int active = ((W)w)->active;
1471 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1595 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active;
1597 }
1598
1472 ev_stop (EV_A_ (W)w); 1599 ev_stop (EV_A_ (W)w);
1473} 1600}
1474 1601
1475void 1602void
1476ev_check_start (EV_P_ struct ev_check *w) 1603ev_check_start (EV_P_ ev_check *w)
1477{ 1604{
1478 if (ev_is_active (w)) 1605 if (expect_false (ev_is_active (w)))
1479 return; 1606 return;
1480 1607
1481 ev_start (EV_A_ (W)w, ++checkcnt); 1608 ev_start (EV_A_ (W)w, ++checkcnt);
1482 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1483 checks [checkcnt - 1] = w; 1610 checks [checkcnt - 1] = w;
1484} 1611}
1485 1612
1486void 1613void
1487ev_check_stop (EV_P_ struct ev_check *w) 1614ev_check_stop (EV_P_ ev_check *w)
1488{ 1615{
1489 ev_clear_pending (EV_A_ (W)w); 1616 ev_clear_pending (EV_A_ (W)w);
1490 if (!ev_is_active (w)) 1617 if (expect_false (!ev_is_active (w)))
1491 return; 1618 return;
1492 1619
1620 {
1621 int active = ((W)w)->active;
1493 checks [((W)w)->active - 1] = checks [--checkcnt]; 1622 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active;
1624 }
1625
1494 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1495} 1627}
1496 1628
1497#ifndef SA_RESTART 1629#ifndef SA_RESTART
1498# define SA_RESTART 0 1630# define SA_RESTART 0
1499#endif 1631#endif
1500 1632
1501void 1633void
1502ev_signal_start (EV_P_ struct ev_signal *w) 1634ev_signal_start (EV_P_ ev_signal *w)
1503{ 1635{
1504#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1505 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1506#endif 1638#endif
1507 if (ev_is_active (w)) 1639 if (expect_false (ev_is_active (w)))
1508 return; 1640 return;
1509 1641
1510 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1511 1643
1512 ev_start (EV_A_ (W)w, 1); 1644 ev_start (EV_A_ (W)w, 1);
1526#endif 1658#endif
1527 } 1659 }
1528} 1660}
1529 1661
1530void 1662void
1531ev_signal_stop (EV_P_ struct ev_signal *w) 1663ev_signal_stop (EV_P_ ev_signal *w)
1532{ 1664{
1533 ev_clear_pending (EV_A_ (W)w); 1665 ev_clear_pending (EV_A_ (W)w);
1534 if (!ev_is_active (w)) 1666 if (expect_false (!ev_is_active (w)))
1535 return; 1667 return;
1536 1668
1537 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1539 1671
1540 if (!signals [w->signum - 1].head) 1672 if (!signals [w->signum - 1].head)
1541 signal (w->signum, SIG_DFL); 1673 signal (w->signum, SIG_DFL);
1542} 1674}
1543 1675
1544void 1676void
1545ev_child_start (EV_P_ struct ev_child *w) 1677ev_child_start (EV_P_ ev_child *w)
1546{ 1678{
1547#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
1548 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1549#endif 1681#endif
1550 if (ev_is_active (w)) 1682 if (expect_false (ev_is_active (w)))
1551 return; 1683 return;
1552 1684
1553 ev_start (EV_A_ (W)w, 1); 1685 ev_start (EV_A_ (W)w, 1);
1554 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1555} 1687}
1556 1688
1557void 1689void
1558ev_child_stop (EV_P_ struct ev_child *w) 1690ev_child_stop (EV_P_ ev_child *w)
1559{ 1691{
1560 ev_clear_pending (EV_A_ (W)w); 1692 ev_clear_pending (EV_A_ (W)w);
1561 if (!ev_is_active (w)) 1693 if (expect_false (!ev_is_active (w)))
1562 return; 1694 return;
1563 1695
1564 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1565 ev_stop (EV_A_ (W)w); 1697 ev_stop (EV_A_ (W)w);
1566} 1698}
1567 1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w)
1703{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK);
1705}
1706
1707static void
1708embed_cb (EV_P_ ev_io *io, int revents)
1709{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711
1712 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else
1715 ev_embed_sweep (loop, w);
1716}
1717
1718void
1719ev_embed_start (EV_P_ ev_embed *w)
1720{
1721 if (expect_false (ev_is_active (w)))
1722 return;
1723
1724 {
1725 struct ev_loop *loop = w->loop;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1728 }
1729
1730 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io);
1732 ev_start (EV_A_ (W)w, 1);
1733}
1734
1735void
1736ev_embed_stop (EV_P_ ev_embed *w)
1737{
1738 ev_clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w)))
1740 return;
1741
1742 ev_io_stop (EV_A_ &w->io);
1743 ev_stop (EV_A_ (W)w);
1744}
1745#endif
1746
1568/*****************************************************************************/ 1747/*****************************************************************************/
1569 1748
1570struct ev_once 1749struct ev_once
1571{ 1750{
1572 struct ev_io io; 1751 ev_io io;
1573 struct ev_timer to; 1752 ev_timer to;
1574 void (*cb)(int revents, void *arg); 1753 void (*cb)(int revents, void *arg);
1575 void *arg; 1754 void *arg;
1576}; 1755};
1577 1756
1578static void 1757static void
1587 1766
1588 cb (revents, arg); 1767 cb (revents, arg);
1589} 1768}
1590 1769
1591static void 1770static void
1592once_cb_io (EV_P_ struct ev_io *w, int revents) 1771once_cb_io (EV_P_ ev_io *w, int revents)
1593{ 1772{
1594 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1595} 1774}
1596 1775
1597static void 1776static void
1598once_cb_to (EV_P_ struct ev_timer *w, int revents) 1777once_cb_to (EV_P_ ev_timer *w, int revents)
1599{ 1778{
1600 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1601} 1780}
1602 1781
1603void 1782void
1604ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1605{ 1784{
1606 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1607 1786
1608 if (!once) 1787 if (expect_false (!once))
1788 {
1609 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1610 else 1790 return;
1611 { 1791 }
1792
1612 once->cb = cb; 1793 once->cb = cb;
1613 once->arg = arg; 1794 once->arg = arg;
1614 1795
1615 ev_init (&once->io, once_cb_io); 1796 ev_init (&once->io, once_cb_io);
1616 if (fd >= 0) 1797 if (fd >= 0)
1617 { 1798 {
1618 ev_io_set (&once->io, fd, events); 1799 ev_io_set (&once->io, fd, events);
1619 ev_io_start (EV_A_ &once->io); 1800 ev_io_start (EV_A_ &once->io);
1620 } 1801 }
1621 1802
1622 ev_init (&once->to, once_cb_to); 1803 ev_init (&once->to, once_cb_to);
1623 if (timeout >= 0.) 1804 if (timeout >= 0.)
1624 { 1805 {
1625 ev_timer_set (&once->to, timeout, 0.); 1806 ev_timer_set (&once->to, timeout, 0.);
1626 ev_timer_start (EV_A_ &once->to); 1807 ev_timer_start (EV_A_ &once->to);
1627 }
1628 } 1808 }
1629} 1809}
1630 1810
1631#ifdef __cplusplus 1811#ifdef __cplusplus
1632} 1812}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines