ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
106# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
107#endif 159#endif
108 160
109/**/ 161/**/
110 162
111#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
119#endif 171#endif
120 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
121/**/ 177/**/
122 178
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
127 183
184#ifdef EV_H
185# include EV_H
186#else
128#include "ev.h" 187# include "ev.h"
188#endif
129 189
130#if __GNUC__ >= 3 190#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 192# define inline static inline
133#else 193#else
134# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
135# define inline static 195# define inline static
136#endif 196#endif
137 197
139#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
140 200
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
144typedef struct ev_watcher *W; 207typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 208typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 209typedef ev_watcher_time *WT;
147 210
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 212
213#ifdef _WIN32
214# include "ev_win32.c"
215#endif
216
150/*****************************************************************************/ 217/*****************************************************************************/
151 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
152typedef struct 267typedef struct
153{ 268{
154 struct ev_watcher_list *head; 269 WL head;
155 unsigned char events; 270 unsigned char events;
156 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
157} ANFD; 275} ANFD;
158 276
159typedef struct 277typedef struct
160{ 278{
161 W w; 279 W w;
162 int events; 280 int events;
163} ANPENDING; 281} ANPENDING;
164 282
165#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
166 284
167struct ev_loop 285 struct ev_loop
168{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
170# include "ev_vars.h" 290 #include "ev_vars.h"
171};
172# undef VAR 291 #undef VAR
292 };
173# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
174 297
175#else 298#else
176 299
300 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 302 #include "ev_vars.h"
179# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
180 306
181#endif 307#endif
182 308
183/*****************************************************************************/ 309/*****************************************************************************/
184 310
185inline ev_tstamp 311ev_tstamp
186ev_time (void) 312ev_time (void)
187{ 313{
188#if EV_USE_REALTIME 314#if EV_USE_REALTIME
189 struct timespec ts; 315 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 335#endif
210 336
211 return ev_time (); 337 return ev_time ();
212} 338}
213 339
340#if EV_MULTIPLICITY
214ev_tstamp 341ev_tstamp
215ev_now (EV_P) 342ev_now (EV_P)
216{ 343{
217 return rt_now; 344 return ev_rt_now;
218} 345}
346#endif
219 347
220#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
221 349
222#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
224 { \ 352 { \
225 int newcnt = cur; \ 353 int newcnt = cur; \
226 do \ 354 do \
227 { \ 355 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 357 } \
230 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
231 \ 359 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 362 cur = newcnt; \
363 }
364
365#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 371 }
236 372
237#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 375
240/*****************************************************************************/ 376/*****************************************************************************/
241 377
242static void 378static void
243anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
250 386
251 ++base; 387 ++base;
252 } 388 }
253} 389}
254 390
255static void 391void
256event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
257{ 393{
258 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
259 { 397 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 399 return;
262 } 400 }
263 401
264 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 406}
269 407
270static void 408static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 410{
273 int i; 411 int i;
274 412
275 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
277} 415}
278 416
279static void 417inline void
280fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
281{ 419{
282 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 421 ev_io *w;
284 422
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 424 {
287 int ev = w->events & events; 425 int ev = w->events & revents;
288 426
289 if (ev) 427 if (ev)
290 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
291 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
292} 436}
293 437
294/*****************************************************************************/ 438/*****************************************************************************/
295 439
296static void 440inline void
297fd_reify (EV_P) 441fd_reify (EV_P)
298{ 442{
299 int i; 443 int i;
300 444
301 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
302 { 446 {
303 int fd = fdchanges [i]; 447 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 448 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 449 ev_io *w;
306 450
307 int events = 0; 451 int events = 0;
308 452
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
310 events |= w->events; 454 events |= w->events;
311 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
312 anfd->reify = 0; 465 anfd->reify = 0;
313 466
314 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
315 anfd->events = events; 468 anfd->events = events;
316 } 469 }
317 470
318 fdchangecnt = 0; 471 fdchangecnt = 0;
319} 472}
320 473
321static void 474static void
322fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
323{ 476{
324 if (anfds [fd].reify || fdchangecnt < 0) 477 if (expect_false (anfds [fd].reify))
325 return; 478 return;
326 479
327 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
328 481
329 ++fdchangecnt; 482 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
332} 485}
333 486
334static void 487static void
335fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
336{ 489{
337 struct ev_io *w; 490 ev_io *w;
338 491
339 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (ev_io *)anfds [fd].head))
340 { 493 {
341 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 496 }
497}
498
499inline int
500fd_valid (int fd)
501{
502#ifdef _WIN32
503 return _get_osfhandle (fd) != -1;
504#else
505 return fcntl (fd, F_GETFD) != -1;
506#endif
344} 507}
345 508
346/* called on EBADF to verify fds */ 509/* called on EBADF to verify fds */
347static void 510static void
348fd_ebadf (EV_P) 511fd_ebadf (EV_P)
349{ 512{
350 int fd; 513 int fd;
351 514
352 for (fd = 0; fd < anfdmax; ++fd) 515 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 516 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 517 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 518 fd_kill (EV_A_ fd);
356} 519}
357 520
358/* called on ENOMEM in select/poll to kill some fds and retry */ 521/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 522static void
362 int fd; 525 int fd;
363 526
364 for (fd = anfdmax; fd--; ) 527 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 528 if (anfds [fd].events)
366 { 529 {
367 close (fd);
368 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
369 return; 531 return;
370 } 532 }
371} 533}
372 534
373/* susually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 536static void
375fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
376{ 538{
377 int fd; 539 int fd;
378 540
426 588
427 heap [k] = w; 589 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
429} 591}
430 592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
431/*****************************************************************************/ 600/*****************************************************************************/
432 601
433typedef struct 602typedef struct
434{ 603{
435 struct ev_watcher_list *head; 604 WL head;
436 sig_atomic_t volatile gotsig; 605 sig_atomic_t volatile gotsig;
437} ANSIG; 606} ANSIG;
438 607
439static ANSIG *signals; 608static ANSIG *signals;
440static int signalmax; 609static int signalmax;
441 610
442static int sigpipe [2]; 611static int sigpipe [2];
443static sig_atomic_t volatile gotsig; 612static sig_atomic_t volatile gotsig;
444static struct ev_io sigev; 613static ev_io sigev;
445 614
446static void 615static void
447signals_init (ANSIG *base, int count) 616signals_init (ANSIG *base, int count)
448{ 617{
449 while (count--) 618 while (count--)
456} 625}
457 626
458static void 627static void
459sighandler (int signum) 628sighandler (int signum)
460{ 629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
461 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
462 635
463 if (!gotsig) 636 if (!gotsig)
464 { 637 {
465 int old_errno = errno; 638 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 641 errno = old_errno;
469 } 642 }
470} 643}
471 644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
472static void 665static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ ev_io *iow, int revents)
474{ 667{
475 struct ev_watcher_list *w;
476 int signum; 668 int signum;
477 669
478 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 671 gotsig = 0;
480 672
481 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
483 { 675 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 676}
485 677
486 for (w = signals [signum].head; w; w = w->next) 678static void
487 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
488 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
489} 688}
490 689
491static void 690static void
492siginit (EV_P) 691siginit (EV_P)
493{ 692{
494#ifndef WIN32 693 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 695
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 699}
507 700
508/*****************************************************************************/ 701/*****************************************************************************/
509 702
703static ev_child *childs [PID_HASHSIZE];
704
510#ifndef WIN32 705#ifndef _WIN32
511 706
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 707static ev_signal childev;
514 708
515#ifndef WCONTINUED 709#ifndef WCONTINUED
516# define WCONTINUED 0 710# define WCONTINUED 0
517#endif 711#endif
518 712
519static void 713static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
521{ 715{
522 struct ev_child *w; 716 ev_child *w;
523 717
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
526 { 720 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 722 w->rpid = pid;
529 w->rstatus = status; 723 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 725 }
532} 726}
533 727
534static void 728static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ ev_signal *sw, int revents)
536{ 730{
537 int pid, status; 731 int pid, status;
538 732
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 734 {
541 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 738
544 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 } 741 }
547} 742}
548 743
549#endif 744#endif
550 745
551/*****************************************************************************/ 746/*****************************************************************************/
552 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
553#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 752# include "ev_kqueue.c"
555#endif 753#endif
556#if EV_USE_EPOLL 754#if EV_USE_EPOLL
557# include "ev_epoll.c" 755# include "ev_epoll.c"
577 775
578/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
579static int 777static int
580enable_secure (void) 778enable_secure (void)
581{ 779{
582#ifdef WIN32 780#ifdef _WIN32
583 return 0; 781 return 0;
584#else 782#else
585 return getuid () != geteuid () 783 return getuid () != geteuid ()
586 || getgid () != getegid (); 784 || getgid () != getegid ();
587#endif 785#endif
588} 786}
589 787
590int 788unsigned int
591ev_method (EV_P) 789ev_supported_backends (void)
592{ 790{
593 return method; 791 unsigned int flags = 0;
594}
595 792
596static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
598{ 804{
599 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_embeddable_backends (void)
822{
823 return EVBACKEND_EPOLL
824 | EVBACKEND_KQUEUE
825 | EVBACKEND_PORT;
826}
827
828unsigned int
829ev_backend (EV_P)
830{
831 return backend;
832}
833
834static void
835loop_init (EV_P_ unsigned int flags)
836{
837 if (!backend)
600 { 838 {
601#if EV_USE_MONOTONIC 839#if EV_USE_MONOTONIC
602 { 840 {
603 struct timespec ts; 841 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 842 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 843 have_monotonic = 1;
606 } 844 }
607#endif 845#endif
608 846
609 rt_now = ev_time (); 847 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 848 mn_now = get_clock ();
611 now_floor = mn_now; 849 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 850 rtmn_diff = ev_rt_now - mn_now;
613 851
614 if (methods == EVMETHOD_AUTO) 852 if (!(flags & EVFLAG_NOENV)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 853 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 855 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 856
620 method = 0; 857 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 858 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 859
860 backend = 0;
861#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 863#endif
624#if EV_USE_KQUEUE 864#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 866#endif
627#if EV_USE_EPOLL 867#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 869#endif
630#if EV_USE_POLL 870#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 872#endif
633#if EV_USE_SELECT 873#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 875#endif
636 }
637}
638 876
639void 877 ev_init (&sigev, sigcb);
878 ev_set_priority (&sigev, EV_MAXPRI);
879 }
880}
881
882static void
640loop_destroy (EV_P) 883loop_destroy (EV_P)
641{ 884{
642 int i; 885 int i;
643 886
644#if EV_USE_WIN32 887#if EV_USE_PORT
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
646#endif 889#endif
647#if EV_USE_KQUEUE 890#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
649#endif 892#endif
650#if EV_USE_EPOLL 893#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
652#endif 895#endif
653#if EV_USE_POLL 896#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
655#endif 898#endif
656#if EV_USE_SELECT 899#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
658#endif 901#endif
659 902
660 for (i = NUMPRI; i--; ) 903 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 904 array_free (pending, [i]);
662 905
906 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 907 array_free (fdchange, EMPTY0);
664 array_free (timer, ); 908 array_free (timer, EMPTY0);
909#if EV_PERIODICS
665 array_free (periodic, ); 910 array_free (periodic, EMPTY0);
911#endif
666 array_free (idle, ); 912 array_free (idle, EMPTY0);
667 array_free (prepare, ); 913 array_free (prepare, EMPTY0);
668 array_free (check, ); 914 array_free (check, EMPTY0);
669 915
670 method = 0; 916 backend = 0;
671 /*TODO*/
672} 917}
673 918
674void 919static void
675loop_fork (EV_P) 920loop_fork (EV_P)
676{ 921{
677 /*TODO*/ 922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
678#if EV_USE_EPOLL 928#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
680#endif 930#endif
681#if EV_USE_KQUEUE 931
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 932 if (ev_is_active (&sigev))
683#endif 933 {
934 /* default loop */
935
936 ev_ref (EV_A);
937 ev_io_stop (EV_A_ &sigev);
938 close (sigpipe [0]);
939 close (sigpipe [1]);
940
941 while (pipe (sigpipe))
942 syserr ("(libev) error creating pipe");
943
944 siginit (EV_A);
945 }
946
947 postfork = 0;
684} 948}
685 949
686#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
687struct ev_loop * 951struct ev_loop *
688ev_loop_new (int methods) 952ev_loop_new (unsigned int flags)
689{ 953{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
691 955
956 memset (loop, 0, sizeof (struct ev_loop));
957
692 loop_init (EV_A_ methods); 958 loop_init (EV_A_ flags);
693 959
694 if (ev_method (EV_A)) 960 if (ev_backend (EV_A))
695 return loop; 961 return loop;
696 962
697 return 0; 963 return 0;
698} 964}
699 965
700void 966void
701ev_loop_destroy (EV_P) 967ev_loop_destroy (EV_P)
702{ 968{
703 loop_destroy (EV_A); 969 loop_destroy (EV_A);
704 free (loop); 970 ev_free (loop);
705} 971}
706 972
707void 973void
708ev_loop_fork (EV_P) 974ev_loop_fork (EV_P)
709{ 975{
710 loop_fork (EV_A); 976 postfork = 1;
711} 977}
712 978
713#endif 979#endif
714 980
715#if EV_MULTIPLICITY 981#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
720#else 984#else
721static int default_loop;
722
723int 985int
986ev_default_loop (unsigned int flags)
724#endif 987#endif
725ev_default_loop (int methods)
726{ 988{
727 if (sigpipe [0] == sigpipe [1]) 989 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe)) 990 if (pipe (sigpipe))
729 return 0; 991 return 0;
730 992
731 if (!default_loop) 993 if (!ev_default_loop_ptr)
732 { 994 {
733#if EV_MULTIPLICITY 995#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct; 996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
735#else 997#else
736 default_loop = 1; 998 ev_default_loop_ptr = 1;
737#endif 999#endif
738 1000
739 loop_init (EV_A_ methods); 1001 loop_init (EV_A_ flags);
740 1002
741 if (ev_method (EV_A)) 1003 if (ev_backend (EV_A))
742 { 1004 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 1005 siginit (EV_A);
746 1006
747#ifndef WIN32 1007#ifndef _WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 1008 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 1009 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 1010 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 1012#endif
753 } 1013 }
754 else 1014 else
755 default_loop = 0; 1015 ev_default_loop_ptr = 0;
756 } 1016 }
757 1017
758 return default_loop; 1018 return ev_default_loop_ptr;
759} 1019}
760 1020
761void 1021void
762ev_default_destroy (void) 1022ev_default_destroy (void)
763{ 1023{
764#if EV_MULTIPLICITY 1024#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 1025 struct ev_loop *loop = ev_default_loop_ptr;
766#endif 1026#endif
767 1027
1028#ifndef _WIN32
768 ev_ref (EV_A); /* child watcher */ 1029 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 1030 ev_signal_stop (EV_A_ &childev);
1031#endif
770 1032
771 ev_ref (EV_A); /* signal watcher */ 1033 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 1034 ev_io_stop (EV_A_ &sigev);
773 1035
774 close (sigpipe [0]); sigpipe [0] = 0; 1036 close (sigpipe [0]); sigpipe [0] = 0;
779 1041
780void 1042void
781ev_default_fork (void) 1043ev_default_fork (void)
782{ 1044{
783#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 1046 struct ev_loop *loop = ev_default_loop_ptr;
785#endif 1047#endif
786 1048
787 loop_fork (EV_A); 1049 if (backend)
788 1050 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 1051}
797 1052
798/*****************************************************************************/ 1053/*****************************************************************************/
799 1054
800static void 1055static int
1056any_pending (EV_P)
1057{
1058 int pri;
1059
1060 for (pri = NUMPRI; pri--; )
1061 if (pendingcnt [pri])
1062 return 1;
1063
1064 return 0;
1065}
1066
1067inline void
801call_pending (EV_P) 1068call_pending (EV_P)
802{ 1069{
803 int pri; 1070 int pri;
804 1071
805 for (pri = NUMPRI; pri--; ) 1072 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 1073 while (pendingcnt [pri])
807 { 1074 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 1076
810 if (p->w) 1077 if (expect_true (p->w))
811 { 1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending));
1080
812 p->w->pending = 0; 1081 p->w->pending = 0;
813 1082 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 } 1083 }
816 } 1084 }
817} 1085}
818 1086
819static void 1087inline void
820timers_reify (EV_P) 1088timers_reify (EV_P)
821{ 1089{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 1090 while (timercnt && ((WT)timers [0])->at <= mn_now)
823 { 1091 {
824 struct ev_timer *w = timers [0]; 1092 ev_timer *w = timers [0];
825 1093
826 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
827 1095
828 /* first reschedule or stop timer */ 1096 /* first reschedule or stop timer */
829 if (w->repeat) 1097 if (w->repeat)
830 { 1098 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1099 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1100
832 ((WT)w)->at = mn_now + w->repeat; 1101 ((WT)w)->at += w->repeat;
1102 if (((WT)w)->at < mn_now)
1103 ((WT)w)->at = mn_now;
1104
833 downheap ((WT *)timers, timercnt, 0); 1105 downheap ((WT *)timers, timercnt, 0);
834 } 1106 }
835 else 1107 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1108 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 1109
838 event (EV_A_ (W)w, EV_TIMEOUT); 1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 1111 }
840} 1112}
841 1113
842static void 1114#if EV_PERIODICS
1115inline void
843periodics_reify (EV_P) 1116periodics_reify (EV_P)
844{ 1117{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
846 { 1119 {
847 struct ev_periodic *w = periodics [0]; 1120 ev_periodic *w = periodics [0];
848 1121
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1122 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850 1123
851 /* first reschedule or stop timer */ 1124 /* first reschedule or stop timer */
852 if (w->interval) 1125 if (w->reschedule_cb)
853 { 1126 {
1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1129 downheap ((WT *)periodics, periodiccnt, 0);
1130 }
1131 else if (w->interval)
1132 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1133 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1134 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0); 1135 downheap ((WT *)periodics, periodiccnt, 0);
857 } 1136 }
858 else 1137 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1138 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1139
861 event (EV_A_ (W)w, EV_PERIODIC); 1140 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1141 }
863} 1142}
864 1143
865static void 1144static void
866periodics_reschedule (EV_P) 1145periodics_reschedule (EV_P)
868 int i; 1147 int i;
869 1148
870 /* adjust periodics after time jump */ 1149 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1150 for (i = 0; i < periodiccnt; ++i)
872 { 1151 {
873 struct ev_periodic *w = periodics [i]; 1152 ev_periodic *w = periodics [i];
874 1153
1154 if (w->reschedule_cb)
1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1156 else if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
886 }
887 } 1158 }
1159
1160 /* now rebuild the heap */
1161 for (i = periodiccnt >> 1; i--; )
1162 downheap ((WT *)periodics, periodiccnt, i);
888} 1163}
1164#endif
889 1165
890inline int 1166inline int
891time_update_monotonic (EV_P) 1167time_update_monotonic (EV_P)
892{ 1168{
893 mn_now = get_clock (); 1169 mn_now = get_clock ();
894 1170
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1171 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 { 1172 {
897 rt_now = rtmn_diff + mn_now; 1173 ev_rt_now = rtmn_diff + mn_now;
898 return 0; 1174 return 0;
899 } 1175 }
900 else 1176 else
901 { 1177 {
902 now_floor = mn_now; 1178 now_floor = mn_now;
903 rt_now = ev_time (); 1179 ev_rt_now = ev_time ();
904 return 1; 1180 return 1;
905 } 1181 }
906} 1182}
907 1183
908static void 1184inline void
909time_update (EV_P) 1185time_update (EV_P)
910{ 1186{
911 int i; 1187 int i;
912 1188
913#if EV_USE_MONOTONIC 1189#if EV_USE_MONOTONIC
915 { 1191 {
916 if (time_update_monotonic (EV_A)) 1192 if (time_update_monotonic (EV_A))
917 { 1193 {
918 ev_tstamp odiff = rtmn_diff; 1194 ev_tstamp odiff = rtmn_diff;
919 1195
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
921 { 1205 {
922 rtmn_diff = rt_now - mn_now; 1206 rtmn_diff = ev_rt_now - mn_now;
923 1207
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */ 1209 return; /* all is well */
926 1210
927 rt_now = ev_time (); 1211 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 1212 mn_now = get_clock ();
929 now_floor = mn_now; 1213 now_floor = mn_now;
930 } 1214 }
931 1215
1216# if EV_PERIODICS
932 periodics_reschedule (EV_A); 1217 periodics_reschedule (EV_A);
1218# endif
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 1219 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1220 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 1221 }
936 } 1222 }
937 else 1223 else
938#endif 1224#endif
939 { 1225 {
940 rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
941 1227
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1228 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 { 1229 {
1230#if EV_PERIODICS
944 periodics_reschedule (EV_A); 1231 periodics_reschedule (EV_A);
1232#endif
945 1233
946 /* adjust timers. this is easy, as the offset is the same for all */ 1234 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i) 1235 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now; 1236 ((WT)timers [i])->at += ev_rt_now - mn_now;
949 } 1237 }
950 1238
951 mn_now = rt_now; 1239 mn_now = ev_rt_now;
952 } 1240 }
953} 1241}
954 1242
955void 1243void
956ev_ref (EV_P) 1244ev_ref (EV_P)
967static int loop_done; 1255static int loop_done;
968 1256
969void 1257void
970ev_loop (EV_P_ int flags) 1258ev_loop (EV_P_ int flags)
971{ 1259{
972 double block;
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1261 ? EVUNLOOP_ONE
1262 : EVUNLOOP_CANCEL;
974 1263
975 do 1264 while (activecnt)
976 { 1265 {
977 /* queue check watchers (and execute them) */ 1266 /* queue check watchers (and execute them) */
978 if (expect_false (preparecnt)) 1267 if (expect_false (preparecnt))
979 { 1268 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1270 call_pending (EV_A);
982 } 1271 }
983 1272
1273 /* we might have forked, so reify kernel state if necessary */
1274 if (expect_false (postfork))
1275 loop_fork (EV_A);
1276
984 /* update fd-related kernel structures */ 1277 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1278 fd_reify (EV_A);
986 1279
987 /* calculate blocking time */ 1280 /* calculate blocking time */
1281 {
1282 double block;
988 1283
989 /* we only need this for !monotonic clockor timers, but as we basically 1284 if (flags & EVLOOP_NONBLOCK || idlecnt)
990 always have timers, we just calculate it always */ 1285 block = 0.; /* do not block at all */
1286 else
1287 {
1288 /* update time to cancel out callback processing overhead */
991#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic)) 1290 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A); 1291 time_update_monotonic (EV_A);
994 else 1292 else
995#endif 1293#endif
996 { 1294 {
997 rt_now = ev_time (); 1295 ev_rt_now = ev_time ();
998 mn_now = rt_now; 1296 mn_now = ev_rt_now;
999 } 1297 }
1000 1298
1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.;
1003 else
1004 {
1005 block = MAX_BLOCKTIME; 1299 block = MAX_BLOCKTIME;
1006 1300
1007 if (timercnt) 1301 if (timercnt)
1008 { 1302 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1010 if (block > to) block = to; 1304 if (block > to) block = to;
1011 } 1305 }
1012 1306
1307#if EV_PERIODICS
1013 if (periodiccnt) 1308 if (periodiccnt)
1014 { 1309 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 1311 if (block > to) block = to;
1017 } 1312 }
1313#endif
1018 1314
1019 if (block < 0.) block = 0.; 1315 if (expect_false (block < 0.)) block = 0.;
1020 } 1316 }
1021 1317
1022 method_poll (EV_A_ block); 1318 backend_poll (EV_A_ block);
1319 }
1023 1320
1024 /* update rt_now, do magic */ 1321 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 1322 time_update (EV_A);
1026 1323
1027 /* queue pending timers and reschedule them */ 1324 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 1325 timers_reify (EV_A); /* relative timers called last */
1326#if EV_PERIODICS
1029 periodics_reify (EV_A); /* absolute timers called first */ 1327 periodics_reify (EV_A); /* absolute timers called first */
1328#endif
1030 1329
1031 /* queue idle watchers unless io or timers are pending */ 1330 /* queue idle watchers unless other events are pending */
1032 if (!pendingcnt) 1331 if (idlecnt && !any_pending (EV_A))
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 1333
1035 /* queue check watchers, to be executed first */ 1334 /* queue check watchers, to be executed first */
1036 if (checkcnt) 1335 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1038 1337
1039 call_pending (EV_A); 1338 call_pending (EV_A);
1040 }
1041 while (activecnt && !loop_done);
1042 1339
1043 if (loop_done != 2) 1340 if (expect_false (loop_done))
1044 loop_done = 0; 1341 break;
1342 }
1343
1344 if (loop_done == EVUNLOOP_ONE)
1345 loop_done = EVUNLOOP_CANCEL;
1045} 1346}
1046 1347
1047void 1348void
1048ev_unloop (EV_P_ int how) 1349ev_unloop (EV_P_ int how)
1049{ 1350{
1102} 1403}
1103 1404
1104/*****************************************************************************/ 1405/*****************************************************************************/
1105 1406
1106void 1407void
1107ev_io_start (EV_P_ struct ev_io *w) 1408ev_io_start (EV_P_ ev_io *w)
1108{ 1409{
1109 int fd = w->fd; 1410 int fd = w->fd;
1110 1411
1111 if (ev_is_active (w)) 1412 if (expect_false (ev_is_active (w)))
1112 return; 1413 return;
1113 1414
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 1415 assert (("ev_io_start called with negative fd", fd >= 0));
1115 1416
1116 ev_start (EV_A_ (W)w, 1); 1417 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1418 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1419 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 1420
1120 fd_change (EV_A_ fd); 1421 fd_change (EV_A_ fd);
1121} 1422}
1122 1423
1123void 1424void
1124ev_io_stop (EV_P_ struct ev_io *w) 1425ev_io_stop (EV_P_ ev_io *w)
1125{ 1426{
1126 ev_clear_pending (EV_A_ (W)w); 1427 ev_clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 1428 if (expect_false (!ev_is_active (w)))
1128 return; 1429 return;
1430
1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1129 1432
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 1434 ev_stop (EV_A_ (W)w);
1132 1435
1133 fd_change (EV_A_ w->fd); 1436 fd_change (EV_A_ w->fd);
1134} 1437}
1135 1438
1136void 1439void
1137ev_timer_start (EV_P_ struct ev_timer *w) 1440ev_timer_start (EV_P_ ev_timer *w)
1138{ 1441{
1139 if (ev_is_active (w)) 1442 if (expect_false (ev_is_active (w)))
1140 return; 1443 return;
1141 1444
1142 ((WT)w)->at += mn_now; 1445 ((WT)w)->at += mn_now;
1143 1446
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 1448
1146 ev_start (EV_A_ (W)w, ++timercnt); 1449 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, ); 1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1148 timers [timercnt - 1] = w; 1451 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1); 1452 upheap ((WT *)timers, timercnt - 1);
1150 1453
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152} 1455}
1153 1456
1154void 1457void
1155ev_timer_stop (EV_P_ struct ev_timer *w) 1458ev_timer_stop (EV_P_ ev_timer *w)
1156{ 1459{
1157 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1159 return; 1462 return;
1160 1463
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162 1465
1163 if (((W)w)->active < timercnt--) 1466 if (expect_true (((W)w)->active < timercnt--))
1164 { 1467 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 1468 timers [((W)w)->active - 1] = timers [timercnt];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1167 } 1470 }
1168 1471
1169 ((WT)w)->at = w->repeat; 1472 ((WT)w)->at -= mn_now;
1170 1473
1171 ev_stop (EV_A_ (W)w); 1474 ev_stop (EV_A_ (W)w);
1172} 1475}
1173 1476
1174void 1477void
1175ev_timer_again (EV_P_ struct ev_timer *w) 1478ev_timer_again (EV_P_ ev_timer *w)
1176{ 1479{
1177 if (ev_is_active (w)) 1480 if (ev_is_active (w))
1178 { 1481 {
1179 if (w->repeat) 1482 if (w->repeat)
1180 { 1483 {
1181 ((WT)w)->at = mn_now + w->repeat; 1484 ((WT)w)->at = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1485 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1486 }
1184 else 1487 else
1185 ev_timer_stop (EV_A_ w); 1488 ev_timer_stop (EV_A_ w);
1186 } 1489 }
1187 else if (w->repeat) 1490 else if (w->repeat)
1491 {
1492 w->at = w->repeat;
1188 ev_timer_start (EV_A_ w); 1493 ev_timer_start (EV_A_ w);
1494 }
1189} 1495}
1190 1496
1497#if EV_PERIODICS
1191void 1498void
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 1499ev_periodic_start (EV_P_ ev_periodic *w)
1193{ 1500{
1194 if (ev_is_active (w)) 1501 if (expect_false (ev_is_active (w)))
1195 return; 1502 return;
1196 1503
1504 if (w->reschedule_cb)
1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1506 else if (w->interval)
1507 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1508 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 1509 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1511 }
1202 1512
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 1513 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 1515 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 1516 upheap ((WT *)periodics, periodiccnt - 1);
1207 1517
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209} 1519}
1210 1520
1211void 1521void
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 1522ev_periodic_stop (EV_P_ ev_periodic *w)
1213{ 1523{
1214 ev_clear_pending (EV_A_ (W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 1525 if (expect_false (!ev_is_active (w)))
1216 return; 1526 return;
1217 1527
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219 1529
1220 if (((W)w)->active < periodiccnt--) 1530 if (expect_true (((W)w)->active < periodiccnt--))
1221 { 1531 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1532 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1224 } 1534 }
1225 1535
1226 ev_stop (EV_A_ (W)w); 1536 ev_stop (EV_A_ (W)w);
1227} 1537}
1228 1538
1229void 1539void
1540ev_periodic_again (EV_P_ ev_periodic *w)
1541{
1542 /* TODO: use adjustheap and recalculation */
1543 ev_periodic_stop (EV_A_ w);
1544 ev_periodic_start (EV_A_ w);
1545}
1546#endif
1547
1548void
1230ev_idle_start (EV_P_ struct ev_idle *w) 1549ev_idle_start (EV_P_ ev_idle *w)
1231{ 1550{
1232 if (ev_is_active (w)) 1551 if (expect_false (ev_is_active (w)))
1233 return; 1552 return;
1234 1553
1235 ev_start (EV_A_ (W)w, ++idlecnt); 1554 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, ); 1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1237 idles [idlecnt - 1] = w; 1556 idles [idlecnt - 1] = w;
1238} 1557}
1239 1558
1240void 1559void
1241ev_idle_stop (EV_P_ struct ev_idle *w) 1560ev_idle_stop (EV_P_ ev_idle *w)
1242{ 1561{
1243 ev_clear_pending (EV_A_ (W)w); 1562 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w)) 1563 if (expect_false (!ev_is_active (w)))
1245 return; 1564 return;
1246 1565
1566 {
1567 int active = ((W)w)->active;
1247 idles [((W)w)->active - 1] = idles [--idlecnt]; 1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571
1248 ev_stop (EV_A_ (W)w); 1572 ev_stop (EV_A_ (W)w);
1249} 1573}
1250 1574
1251void 1575void
1252ev_prepare_start (EV_P_ struct ev_prepare *w) 1576ev_prepare_start (EV_P_ ev_prepare *w)
1253{ 1577{
1254 if (ev_is_active (w)) 1578 if (expect_false (ev_is_active (w)))
1255 return; 1579 return;
1256 1580
1257 ev_start (EV_A_ (W)w, ++preparecnt); 1581 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, ); 1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1259 prepares [preparecnt - 1] = w; 1583 prepares [preparecnt - 1] = w;
1260} 1584}
1261 1585
1262void 1586void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w) 1587ev_prepare_stop (EV_P_ ev_prepare *w)
1264{ 1588{
1265 ev_clear_pending (EV_A_ (W)w); 1589 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w)) 1590 if (expect_false (!ev_is_active (w)))
1267 return; 1591 return;
1268 1592
1593 {
1594 int active = ((W)w)->active;
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1595 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active;
1597 }
1598
1270 ev_stop (EV_A_ (W)w); 1599 ev_stop (EV_A_ (W)w);
1271} 1600}
1272 1601
1273void 1602void
1274ev_check_start (EV_P_ struct ev_check *w) 1603ev_check_start (EV_P_ ev_check *w)
1275{ 1604{
1276 if (ev_is_active (w)) 1605 if (expect_false (ev_is_active (w)))
1277 return; 1606 return;
1278 1607
1279 ev_start (EV_A_ (W)w, ++checkcnt); 1608 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, ); 1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1281 checks [checkcnt - 1] = w; 1610 checks [checkcnt - 1] = w;
1282} 1611}
1283 1612
1284void 1613void
1285ev_check_stop (EV_P_ struct ev_check *w) 1614ev_check_stop (EV_P_ ev_check *w)
1286{ 1615{
1287 ev_clear_pending (EV_A_ (W)w); 1616 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1617 if (expect_false (!ev_is_active (w)))
1289 return; 1618 return;
1290 1619
1620 {
1621 int active = ((W)w)->active;
1291 checks [((W)w)->active - 1] = checks [--checkcnt]; 1622 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active;
1624 }
1625
1292 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1293} 1627}
1294 1628
1295#ifndef SA_RESTART 1629#ifndef SA_RESTART
1296# define SA_RESTART 0 1630# define SA_RESTART 0
1297#endif 1631#endif
1298 1632
1299void 1633void
1300ev_signal_start (EV_P_ struct ev_signal *w) 1634ev_signal_start (EV_P_ ev_signal *w)
1301{ 1635{
1302#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1638#endif
1305 if (ev_is_active (w)) 1639 if (expect_false (ev_is_active (w)))
1306 return; 1640 return;
1307 1641
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 1643
1310 ev_start (EV_A_ (W)w, 1); 1644 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 1645 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1646 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 1647
1314 if (!((WL)w)->next) 1648 if (!((WL)w)->next)
1315 { 1649 {
1650#if _WIN32
1651 signal (w->signum, sighandler);
1652#else
1316 struct sigaction sa; 1653 struct sigaction sa;
1317 sa.sa_handler = sighandler; 1654 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask); 1655 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1656 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 1657 sigaction (w->signum, &sa, 0);
1658#endif
1321 } 1659 }
1322} 1660}
1323 1661
1324void 1662void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 1663ev_signal_stop (EV_P_ ev_signal *w)
1326{ 1664{
1327 ev_clear_pending (EV_A_ (W)w); 1665 ev_clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 1666 if (expect_false (!ev_is_active (w)))
1329 return; 1667 return;
1330 1668
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1332 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1333 1671
1334 if (!signals [w->signum - 1].head) 1672 if (!signals [w->signum - 1].head)
1335 signal (w->signum, SIG_DFL); 1673 signal (w->signum, SIG_DFL);
1336} 1674}
1337 1675
1338void 1676void
1339ev_child_start (EV_P_ struct ev_child *w) 1677ev_child_start (EV_P_ ev_child *w)
1340{ 1678{
1341#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1343#endif 1681#endif
1344 if (ev_is_active (w)) 1682 if (expect_false (ev_is_active (w)))
1345 return; 1683 return;
1346 1684
1347 ev_start (EV_A_ (W)w, 1); 1685 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349} 1687}
1350 1688
1351void 1689void
1352ev_child_stop (EV_P_ struct ev_child *w) 1690ev_child_stop (EV_P_ ev_child *w)
1353{ 1691{
1354 ev_clear_pending (EV_A_ (W)w); 1692 ev_clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 1693 if (expect_false (!ev_is_active (w)))
1356 return; 1694 return;
1357 1695
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1359 ev_stop (EV_A_ (W)w); 1697 ev_stop (EV_A_ (W)w);
1360} 1698}
1361 1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w)
1703{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK);
1705}
1706
1707static void
1708embed_cb (EV_P_ ev_io *io, int revents)
1709{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711
1712 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else
1715 ev_embed_sweep (loop, w);
1716}
1717
1718void
1719ev_embed_start (EV_P_ ev_embed *w)
1720{
1721 if (expect_false (ev_is_active (w)))
1722 return;
1723
1724 {
1725 struct ev_loop *loop = w->loop;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1728 }
1729
1730 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io);
1732 ev_start (EV_A_ (W)w, 1);
1733}
1734
1735void
1736ev_embed_stop (EV_P_ ev_embed *w)
1737{
1738 ev_clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w)))
1740 return;
1741
1742 ev_io_stop (EV_A_ &w->io);
1743 ev_stop (EV_A_ (W)w);
1744}
1745#endif
1746
1362/*****************************************************************************/ 1747/*****************************************************************************/
1363 1748
1364struct ev_once 1749struct ev_once
1365{ 1750{
1366 struct ev_io io; 1751 ev_io io;
1367 struct ev_timer to; 1752 ev_timer to;
1368 void (*cb)(int revents, void *arg); 1753 void (*cb)(int revents, void *arg);
1369 void *arg; 1754 void *arg;
1370}; 1755};
1371 1756
1372static void 1757static void
1375 void (*cb)(int revents, void *arg) = once->cb; 1760 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 1761 void *arg = once->arg;
1377 1762
1378 ev_io_stop (EV_A_ &once->io); 1763 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 1764 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 1765 ev_free (once);
1381 1766
1382 cb (revents, arg); 1767 cb (revents, arg);
1383} 1768}
1384 1769
1385static void 1770static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents) 1771once_cb_io (EV_P_ ev_io *w, int revents)
1387{ 1772{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1389} 1774}
1390 1775
1391static void 1776static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents) 1777once_cb_to (EV_P_ ev_timer *w, int revents)
1393{ 1778{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1395} 1780}
1396 1781
1397void 1782void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 1784{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 1786
1402 if (!once) 1787 if (expect_false (!once))
1788 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 1790 return;
1405 { 1791 }
1792
1406 once->cb = cb; 1793 once->cb = cb;
1407 once->arg = arg; 1794 once->arg = arg;
1408 1795
1409 ev_watcher_init (&once->io, once_cb_io); 1796 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 1797 if (fd >= 0)
1411 { 1798 {
1412 ev_io_set (&once->io, fd, events); 1799 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 1800 ev_io_start (EV_A_ &once->io);
1414 } 1801 }
1415 1802
1416 ev_watcher_init (&once->to, once_cb_to); 1803 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 1804 if (timeout >= 0.)
1418 { 1805 {
1419 ev_timer_set (&once->to, timeout, 0.); 1806 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 1807 ev_timer_start (EV_A_ &once->to);
1421 }
1422 } 1808 }
1423} 1809}
1424 1810
1811#ifdef __cplusplus
1812}
1813#endif
1814

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines