ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.14 by root, Wed Oct 31 11:52:12 2007 UTC vs.
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
17# ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
18# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
19# endif 106#endif
20#endif
21 107
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 108#ifndef CLOCK_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
32#endif 111#endif
112
113/**/
33 114
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 119
37#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
38 135
39typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
40typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
41typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
42 139
43static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
44ev_tstamp ev_now;
45int ev_method;
46
47static int have_monotonic; /* runtime */
48
49static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
50static void (*method_modify)(int fd, int oev, int nev);
51static void (*method_poll)(ev_tstamp timeout);
52 141
53/*****************************************************************************/ 142/*****************************************************************************/
54 143
55ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
56ev_time (void) 178ev_time (void)
57{ 179{
58#if HAVE_REALTIME 180#if EV_USE_REALTIME
59 struct timespec ts; 181 struct timespec ts;
60 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
61 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
62#else 184#else
63 struct timeval tv; 185 struct timeval tv;
64 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
65 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
66#endif 188#endif
67} 189}
68 190
69static ev_tstamp 191inline ev_tstamp
70get_clock (void) 192get_clock (void)
71{ 193{
72#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
73 if (have_monotonic) 195 if (expect_true (have_monotonic))
74 { 196 {
75 struct timespec ts; 197 struct timespec ts;
76 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
77 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
78 } 200 }
79#endif 201#endif
80 202
81 return ev_time (); 203 return ev_time ();
82} 204}
83 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
84#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
85 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
86 { \ 216 { \
87 int newcnt = cur ? cur << 1 : 16; \ 217 int newcnt = cur; \
88 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
89 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
90 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
91 cur = newcnt; \ 226 cur = newcnt; \
92 } 227 }
93 228
94/*****************************************************************************/ 229/*****************************************************************************/
95 230
96typedef struct
97{
98 struct ev_io *head;
99 unsigned char wev, rev; /* want, received event set */
100} ANFD;
101
102static ANFD *anfds;
103static int anfdmax;
104
105static int *fdchanges;
106static int fdchangemax, fdchangecnt;
107
108static void 231static void
109anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
110{ 233{
111 while (count--) 234 while (count--)
112 { 235 {
113 base->head = 0; 236 base->head = 0;
114 base->wev = base->rev = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
115 ++base; 240 ++base;
116 } 241 }
117} 242}
118 243
119typedef struct
120{
121 W w;
122 int events;
123} ANPENDING;
124
125static ANPENDING *pendings;
126static int pendingmax, pendingcnt;
127
128static void 244static void
129event (W w, int events) 245event (EV_P_ W w, int events)
130{ 246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
131 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
132 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
133 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
134 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
135} 257}
136 258
137static void 259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
138fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
139{ 270{
140 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
141 struct ev_io *w; 272 struct ev_io *w;
142 273
143 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
144 { 275 {
145 int ev = w->events & events; 276 int ev = w->events & events;
146 277
147 if (ev) 278 if (ev)
148 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
149 } 280 }
150} 281}
151 282
283/*****************************************************************************/
284
152static void 285static void
153queue_events (W *events, int eventcnt, int type) 286fd_reify (EV_P)
154{ 287{
155 int i; 288 int i;
156 289
157 for (i = 0; i < eventcnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
158 event (events [i], type); 291 {
292 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295
296 int events = 0;
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events;
307 }
308 }
309
310 fdchangecnt = 0;
311}
312
313static void
314fd_change (EV_P_ int fd)
315{
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324}
325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
338/* called on EBADF to verify fds */
339static void
340fd_ebadf (EV_P)
341{
342 int fd;
343
344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
358 {
359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
159} 378}
160 379
161/*****************************************************************************/ 380/*****************************************************************************/
162 381
163static struct ev_timer **timers;
164static int timermax, timercnt;
165
166static struct ev_periodic **periodics;
167static int periodicmax, periodiccnt;
168
169static void 382static void
170upheap (WT *timers, int k) 383upheap (WT *heap, int k)
171{ 384{
172 WT w = timers [k]; 385 WT w = heap [k];
173 386
174 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
175 { 388 {
176 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
177 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
178 k >>= 1; 391 k >>= 1;
179 } 392 }
180 393
181 timers [k] = w; 394 heap [k] = w;
182 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
183 396
184} 397}
185 398
186static void 399static void
187downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
188{ 401{
189 WT w = timers [k]; 402 WT w = heap [k];
190 403
191 while (k < (N >> 1)) 404 while (k < (N >> 1))
192 { 405 {
193 int j = k << 1; 406 int j = k << 1;
194 407
195 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
196 ++j; 409 ++j;
197 410
198 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
199 break; 412 break;
200 413
201 timers [k] = timers [j]; 414 heap [k] = heap [j];
202 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
203 k = j; 416 k = j;
204 } 417 }
205 418
206 timers [k] = w; 419 heap [k] = w;
207 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
208} 421}
209 422
210/*****************************************************************************/ 423/*****************************************************************************/
211 424
212typedef struct 425typedef struct
213{ 426{
214 struct ev_signal *head; 427 struct ev_watcher_list *head;
215 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
216} ANSIG; 429} ANSIG;
217 430
218static ANSIG *signals; 431static ANSIG *signals;
219static int signalmax; 432static int signalmax;
220 433
221static int sigpipe [2]; 434static int sigpipe [2];
222static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
223static struct ev_io sigev; 436static struct ev_io sigev;
224 437
225static void 438static void
226signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
227{ 440{
228 while (count--) 441 while (count--)
229 { 442 {
230 base->head = 0; 443 base->head = 0;
231 base->gotsig = 0; 444 base->gotsig = 0;
445
232 ++base; 446 ++base;
233 } 447 }
234} 448}
235 449
236static void 450static void
238{ 452{
239 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
240 454
241 if (!gotsig) 455 if (!gotsig)
242 { 456 {
457 int old_errno = errno;
243 gotsig = 1; 458 gotsig = 1;
244 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
245 } 461 }
246} 462}
247 463
248static void 464static void
249sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
250{ 466{
251 struct ev_signal *w; 467 struct ev_watcher_list *w;
252 int sig; 468 int signum;
253 469
470 read (sigpipe [0], &revents, 1);
254 gotsig = 0; 471 gotsig = 0;
255 read (sigpipe [0], &revents, 1);
256 472
257 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
258 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
259 { 475 {
260 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
261 477
262 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
263 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
264 } 480 }
265} 481}
266 482
267static void 483static void
268siginit (void) 484siginit (EV_P)
269{ 485{
486#ifndef WIN32
270 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
271 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
272 489
273 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
274 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
275 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
276 494
277 evio_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
278 evio_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
279} 498}
280 499
281/*****************************************************************************/ 500/*****************************************************************************/
282 501
283static struct ev_idle **idles; 502#ifndef WIN32
284static int idlemax, idlecnt;
285 503
286static struct ev_check **checks; 504static struct ev_child *childs [PID_HASHSIZE];
287static int checkmax, checkcnt; 505static struct ev_signal childev;
506
507#ifndef WCONTINUED
508# define WCONTINUED 0
509#endif
510
511static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539}
540
541#endif
288 542
289/*****************************************************************************/ 543/*****************************************************************************/
290 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
291#if HAVE_EPOLL 548#if EV_USE_EPOLL
292# include "ev_epoll.c" 549# include "ev_epoll.c"
293#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
294#if HAVE_SELECT 554#if EV_USE_SELECT
295# include "ev_select.c" 555# include "ev_select.c"
296#endif 556#endif
297 557
298int ev_init (int flags) 558int
559ev_version_major (void)
299{ 560{
561 return EV_VERSION_MAJOR;
562}
563
564int
565ev_version_minor (void)
566{
567 return EV_VERSION_MINOR;
568}
569
570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
300#if HAVE_MONOTONIC 593#if EV_USE_MONOTONIC
301 { 594 {
302 struct timespec ts; 595 struct timespec ts;
303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
304 have_monotonic = 1; 597 have_monotonic = 1;
305 } 598 }
306#endif 599#endif
307 600
308 ev_now = ev_time (); 601 rt_now = ev_time ();
309 now = get_clock (); 602 mn_now = get_clock ();
310 diff = ev_now - now; 603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
311 605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
312 if (pipe (sigpipe)) 702 if (pipe (sigpipe))
313 return 0; 703 return 0;
314 704
315 ev_method = EVMETHOD_NONE; 705 if (!default_loop)
316#if HAVE_EPOLL
317 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
318#endif
319#if HAVE_SELECT
320 if (ev_method == EVMETHOD_NONE) select_init (flags);
321#endif
322
323 if (ev_method)
324 { 706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
716 {
325 evw_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
326 siginit (); 719 siginit (EV_A);
327 }
328 720
329 return ev_method; 721#ifndef WIN32
330} 722 ev_signal_init (&childev, childcb, SIGCHLD);
331 723 ev_set_priority (&childev, EV_MAXPRI);
332/*****************************************************************************/ 724 ev_signal_start (EV_A_ &childev);
333 725 ev_unref (EV_A); /* child watcher should not keep loop alive */
334void ev_prefork (void)
335{
336 /* nop */
337}
338
339void ev_postfork_parent (void)
340{
341 /* nop */
342}
343
344void ev_postfork_child (void)
345{
346#if HAVE_EPOLL
347 if (ev_method == EVMETHOD_EPOLL)
348 epoll_postfork_child ();
349#endif 726#endif
727 }
728 else
729 default_loop = 0;
730 }
350 731
732 return default_loop;
733}
734
735void
736ev_default_destroy (void)
737{
738#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
351 evio_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
352 close (sigpipe [0]); 764 close (sigpipe [0]);
353 close (sigpipe [1]); 765 close (sigpipe [1]);
354 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
355 siginit (); 769 siginit (EV_A);
356} 770}
357 771
358/*****************************************************************************/ 772/*****************************************************************************/
359 773
360static void 774static void
361fd_reify (void) 775call_pending (EV_P)
362{ 776{
363 int i; 777 int pri;
364 778
365 for (i = 0; i < fdchangecnt; ++i) 779 for (pri = NUMPRI; pri--; )
366 { 780 while (pendingcnt [pri])
367 int fd = fdchanges [i];
368 ANFD *anfd = anfds + fd;
369 struct ev_io *w;
370
371 int wev = 0;
372
373 for (w = anfd->head; w; w = w->next)
374 wev |= w->events;
375
376 if (anfd->wev != wev)
377 { 781 {
378 method_modify (fd, anfd->wev, wev); 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
379 anfd->wev = wev;
380 }
381 }
382 783
383 fdchangecnt = 0;
384}
385
386static void
387call_pending ()
388{
389 int i;
390
391 for (i = 0; i < pendingcnt; ++i)
392 {
393 ANPENDING *p = pendings + i;
394
395 if (p->w) 784 if (p->w)
396 { 785 {
397 p->w->pending = 0; 786 p->w->pending = 0;
398 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
399 } 788 }
400 } 789 }
401
402 pendingcnt = 0;
403} 790}
404 791
405static void 792static void
406timers_reify () 793timers_reify (EV_P)
407{ 794{
408 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
409 { 796 {
410 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
411 798
412 /* first reschedule or stop timer */ 799 /* first reschedule or stop timer */
413 if (w->repeat) 800 if (w->repeat)
414 { 801 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
415 w->at = now + w->repeat; 803 w->at = mn_now + w->repeat;
416 assert (("timer timeout in the past, negative repeat?", w->at > now));
417 downheap ((WT *)timers, timercnt, 0); 804 downheap ((WT *)timers, timercnt, 0);
418 } 805 }
419 else 806 else
420 evtimer_stop (w); /* nonrepeating: stop timer */ 807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
421 808
422 event ((W)w, EV_TIMEOUT); 809 event (EV_A_ (W)w, EV_TIMEOUT);
423 } 810 }
424} 811}
425 812
426static void 813static void
427periodics_reify () 814periodics_reify (EV_P)
428{ 815{
429 while (periodiccnt && periodics [0]->at <= ev_now) 816 while (periodiccnt && periodics [0]->at <= rt_now)
430 { 817 {
431 struct ev_periodic *w = periodics [0]; 818 struct ev_periodic *w = periodics [0];
432 819
433 /* first reschedule or stop timer */ 820 /* first reschedule or stop timer */
434 if (w->interval) 821 if (w->interval)
435 { 822 {
436 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
437 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
438 downheap ((WT *)periodics, periodiccnt, 0); 825 downheap ((WT *)periodics, periodiccnt, 0);
439 } 826 }
440 else 827 else
441 evperiodic_stop (w); /* nonrepeating: stop timer */ 828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
442 829
443 event ((W)w, EV_TIMEOUT); 830 event (EV_A_ (W)w, EV_PERIODIC);
444 } 831 }
445} 832}
446 833
447static void 834static void
448periodics_reschedule (ev_tstamp diff) 835periodics_reschedule (EV_P)
449{ 836{
450 int i; 837 int i;
451 838
452 /* adjust periodics after time jump */ 839 /* adjust periodics after time jump */
453 for (i = 0; i < periodiccnt; ++i) 840 for (i = 0; i < periodiccnt; ++i)
454 { 841 {
455 struct ev_periodic *w = periodics [i]; 842 struct ev_periodic *w = periodics [i];
456 843
457 if (w->interval) 844 if (w->interval)
458 { 845 {
459 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
460 847
461 if (fabs (diff) >= 1e-4) 848 if (fabs (diff) >= 1e-4)
462 { 849 {
463 evperiodic_stop (w); 850 ev_periodic_stop (EV_A_ w);
464 evperiodic_start (w); 851 ev_periodic_start (EV_A_ w);
465 852
466 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
467 } 854 }
468 } 855 }
469 } 856 }
470} 857}
471 858
859inline int
860time_update_monotonic (EV_P)
861{
862 mn_now = get_clock ();
863
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 {
866 rt_now = rtmn_diff + mn_now;
867 return 0;
868 }
869 else
870 {
871 now_floor = mn_now;
872 rt_now = ev_time ();
873 return 1;
874 }
875}
876
472static void 877static void
473time_update () 878time_update (EV_P)
474{ 879{
475 int i; 880 int i;
476 881
477 ev_now = ev_time (); 882#if EV_USE_MONOTONIC
478
479 if (have_monotonic) 883 if (expect_true (have_monotonic))
480 { 884 {
481 ev_tstamp odiff = diff; 885 if (time_update_monotonic (EV_A))
482
483 for (i = 4; --i; ) /* loop a few times, before making important decisions */
484 { 886 {
485 now = get_clock (); 887 ev_tstamp odiff = rtmn_diff;
888
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 {
486 diff = ev_now - now; 891 rtmn_diff = rt_now - mn_now;
487 892
488 if (fabs (odiff - diff) < MIN_TIMEJUMP) 893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
489 return; /* all is well */ 894 return; /* all is well */
490 895
491 ev_now = ev_time (); 896 rt_now = ev_time ();
897 mn_now = get_clock ();
898 now_floor = mn_now;
899 }
900
901 periodics_reschedule (EV_A);
902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
492 } 904 }
493
494 periodics_reschedule (diff - odiff);
495 /* no timer adjustment, as the monotonic clock doesn't jump */
496 } 905 }
497 else 906 else
907#endif
498 { 908 {
499 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 909 rt_now = ev_time ();
910
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
500 { 912 {
501 periodics_reschedule (ev_now - now); 913 periodics_reschedule (EV_A);
502 914
503 /* adjust timers. this is easy, as the offset is the same for all */ 915 /* adjust timers. this is easy, as the offset is the same for all */
504 for (i = 0; i < timercnt; ++i) 916 for (i = 0; i < timercnt; ++i)
505 timers [i]->at += diff; 917 timers [i]->at += rt_now - mn_now;
506 } 918 }
507 919
508 now = ev_now; 920 mn_now = rt_now;
509 } 921 }
510} 922}
511 923
512int ev_loop_done; 924void
925ev_ref (EV_P)
926{
927 ++activecnt;
928}
513 929
930void
931ev_unref (EV_P)
932{
933 --activecnt;
934}
935
936static int loop_done;
937
938void
514void ev_loop (int flags) 939ev_loop (EV_P_ int flags)
515{ 940{
516 double block; 941 double block;
517 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
518
519 if (checkcnt)
520 {
521 queue_events ((W *)checks, checkcnt, EV_CHECK);
522 call_pending ();
523 }
524 943
525 do 944 do
526 { 945 {
946 /* queue check watchers (and execute them) */
947 if (expect_false (preparecnt))
948 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A);
951 }
952
527 /* update fd-related kernel structures */ 953 /* update fd-related kernel structures */
528 fd_reify (); 954 fd_reify (EV_A);
529 955
530 /* calculate blocking time */ 956 /* calculate blocking time */
531 957
532 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 958 /* we only need this for !monotonic clockor timers, but as we basically
959 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A);
963 else
964#endif
965 {
533 ev_now = ev_time (); 966 rt_now = ev_time ();
967 mn_now = rt_now;
968 }
534 969
535 if (flags & EVLOOP_NONBLOCK || idlecnt) 970 if (flags & EVLOOP_NONBLOCK || idlecnt)
536 block = 0.; 971 block = 0.;
537 else 972 else
538 { 973 {
539 block = MAX_BLOCKTIME; 974 block = MAX_BLOCKTIME;
540 975
541 if (timercnt) 976 if (timercnt)
542 { 977 {
543 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 978 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
544 if (block > to) block = to; 979 if (block > to) block = to;
545 } 980 }
546 981
547 if (periodiccnt) 982 if (periodiccnt)
548 { 983 {
549 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
550 if (block > to) block = to; 985 if (block > to) block = to;
551 } 986 }
552 987
553 if (block < 0.) block = 0.; 988 if (block < 0.) block = 0.;
554 } 989 }
555 990
556 method_poll (block); 991 method_poll (EV_A_ block);
557 992
558 /* update ev_now, do magic */ 993 /* update rt_now, do magic */
559 time_update (); 994 time_update (EV_A);
560 995
561 /* queue pending timers and reschedule them */ 996 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */
562 periodics_reify (); /* absolute timers first */ 998 periodics_reify (EV_A); /* absolute timers called first */
563 timers_reify (); /* relative timers second */
564 999
565 /* queue idle watchers unless io or timers are pending */ 1000 /* queue idle watchers unless io or timers are pending */
566 if (!pendingcnt) 1001 if (!pendingcnt)
567 queue_events ((W *)idles, idlecnt, EV_IDLE); 1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
568 1003
569 /* queue check and possibly idle watchers */ 1004 /* queue check watchers, to be executed first */
1005 if (checkcnt)
570 queue_events ((W *)checks, checkcnt, EV_CHECK); 1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
571 1007
572 call_pending (); 1008 call_pending (EV_A);
573 } 1009 }
574 while (!ev_loop_done); 1010 while (activecnt && !loop_done);
575 1011
576 if (ev_loop_done != 2) 1012 if (loop_done != 2)
577 ev_loop_done = 0; 1013 loop_done = 0;
1014}
1015
1016void
1017ev_unloop (EV_P_ int how)
1018{
1019 loop_done = how;
578} 1020}
579 1021
580/*****************************************************************************/ 1022/*****************************************************************************/
581 1023
582static void 1024inline void
583wlist_add (WL *head, WL elem) 1025wlist_add (WL *head, WL elem)
584{ 1026{
585 elem->next = *head; 1027 elem->next = *head;
586 *head = elem; 1028 *head = elem;
587} 1029}
588 1030
589static void 1031inline void
590wlist_del (WL *head, WL elem) 1032wlist_del (WL *head, WL elem)
591{ 1033{
592 while (*head) 1034 while (*head)
593 { 1035 {
594 if (*head == elem) 1036 if (*head == elem)
599 1041
600 head = &(*head)->next; 1042 head = &(*head)->next;
601 } 1043 }
602} 1044}
603 1045
604static void 1046inline void
1047ev_clear_pending (EV_P_ W w)
1048{
1049 if (w->pending)
1050 {
1051 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1052 w->pending = 0;
1053 }
1054}
1055
1056inline void
605ev_start (W w, int active) 1057ev_start (EV_P_ W w, int active)
606{ 1058{
607 w->pending = 0; 1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1061
608 w->active = active; 1062 w->active = active;
1063 ev_ref (EV_A);
609} 1064}
610 1065
611static void 1066inline void
612ev_stop (W w) 1067ev_stop (EV_P_ W w)
613{ 1068{
614 if (w->pending) 1069 ev_unref (EV_A);
615 pendings [w->pending - 1].w = 0;
616
617 w->active = 0; 1070 w->active = 0;
618} 1071}
619 1072
620/*****************************************************************************/ 1073/*****************************************************************************/
621 1074
622void 1075void
623evio_start (struct ev_io *w) 1076ev_io_start (EV_P_ struct ev_io *w)
624{ 1077{
1078 int fd = w->fd;
1079
625 if (ev_is_active (w)) 1080 if (ev_is_active (w))
626 return; 1081 return;
627 1082
628 int fd = w->fd; 1083 assert (("ev_io_start called with negative fd", fd >= 0));
629 1084
630 ev_start ((W)w, 1); 1085 ev_start (EV_A_ (W)w, 1);
631 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
632 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1087 wlist_add ((WL *)&anfds[fd].head, (WL)w);
633 1088
634 ++fdchangecnt; 1089 fd_change (EV_A_ fd);
635 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
636 fdchanges [fdchangecnt - 1] = fd;
637} 1090}
638 1091
639void 1092void
640evio_stop (struct ev_io *w) 1093ev_io_stop (EV_P_ struct ev_io *w)
641{ 1094{
1095 ev_clear_pending (EV_A_ (W)w);
642 if (!ev_is_active (w)) 1096 if (!ev_is_active (w))
643 return; 1097 return;
644 1098
645 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
646 ev_stop ((W)w); 1100 ev_stop (EV_A_ (W)w);
647 1101
648 ++fdchangecnt; 1102 fd_change (EV_A_ w->fd);
649 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
650 fdchanges [fdchangecnt - 1] = w->fd;
651} 1103}
652 1104
653
654void 1105void
655evtimer_start (struct ev_timer *w) 1106ev_timer_start (EV_P_ struct ev_timer *w)
656{ 1107{
657 if (ev_is_active (w)) 1108 if (ev_is_active (w))
658 return; 1109 return;
659 1110
660 w->at += now; 1111 w->at += mn_now;
661 1112
662 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
663 1114
664 ev_start ((W)w, ++timercnt); 1115 ev_start (EV_A_ (W)w, ++timercnt);
665 array_needsize (timers, timermax, timercnt, ); 1116 array_needsize (timers, timermax, timercnt, );
666 timers [timercnt - 1] = w; 1117 timers [timercnt - 1] = w;
667 upheap ((WT *)timers, timercnt - 1); 1118 upheap ((WT *)timers, timercnt - 1);
668} 1119}
669 1120
670void 1121void
671evtimer_stop (struct ev_timer *w) 1122ev_timer_stop (EV_P_ struct ev_timer *w)
672{ 1123{
1124 ev_clear_pending (EV_A_ (W)w);
673 if (!ev_is_active (w)) 1125 if (!ev_is_active (w))
674 return; 1126 return;
675 1127
676 if (w->active < timercnt--) 1128 if (w->active < timercnt--)
677 { 1129 {
679 downheap ((WT *)timers, timercnt, w->active - 1); 1131 downheap ((WT *)timers, timercnt, w->active - 1);
680 } 1132 }
681 1133
682 w->at = w->repeat; 1134 w->at = w->repeat;
683 1135
684 ev_stop ((W)w); 1136 ev_stop (EV_A_ (W)w);
685} 1137}
686 1138
687void 1139void
688evtimer_again (struct ev_timer *w) 1140ev_timer_again (EV_P_ struct ev_timer *w)
689{ 1141{
690 if (ev_is_active (w)) 1142 if (ev_is_active (w))
691 { 1143 {
692 if (w->repeat) 1144 if (w->repeat)
693 { 1145 {
694 w->at = now + w->repeat; 1146 w->at = mn_now + w->repeat;
695 downheap ((WT *)timers, timercnt, w->active - 1); 1147 downheap ((WT *)timers, timercnt, w->active - 1);
696 } 1148 }
697 else 1149 else
698 evtimer_stop (w); 1150 ev_timer_stop (EV_A_ w);
699 } 1151 }
700 else if (w->repeat) 1152 else if (w->repeat)
701 evtimer_start (w); 1153 ev_timer_start (EV_A_ w);
702} 1154}
703 1155
704void 1156void
705evperiodic_start (struct ev_periodic *w) 1157ev_periodic_start (EV_P_ struct ev_periodic *w)
706{ 1158{
707 if (ev_is_active (w)) 1159 if (ev_is_active (w))
708 return; 1160 return;
709 1161
710 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
711 1163
712 /* this formula differs from the one in periodic_reify because we do not always round up */ 1164 /* this formula differs from the one in periodic_reify because we do not always round up */
713 if (w->interval) 1165 if (w->interval)
714 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
715 1167
716 ev_start ((W)w, ++periodiccnt); 1168 ev_start (EV_A_ (W)w, ++periodiccnt);
717 array_needsize (periodics, periodicmax, periodiccnt, ); 1169 array_needsize (periodics, periodicmax, periodiccnt, );
718 periodics [periodiccnt - 1] = w; 1170 periodics [periodiccnt - 1] = w;
719 upheap ((WT *)periodics, periodiccnt - 1); 1171 upheap ((WT *)periodics, periodiccnt - 1);
720} 1172}
721 1173
722void 1174void
723evperiodic_stop (struct ev_periodic *w) 1175ev_periodic_stop (EV_P_ struct ev_periodic *w)
724{ 1176{
1177 ev_clear_pending (EV_A_ (W)w);
725 if (!ev_is_active (w)) 1178 if (!ev_is_active (w))
726 return; 1179 return;
727 1180
728 if (w->active < periodiccnt--) 1181 if (w->active < periodiccnt--)
729 { 1182 {
730 periodics [w->active - 1] = periodics [periodiccnt]; 1183 periodics [w->active - 1] = periodics [periodiccnt];
731 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1184 downheap ((WT *)periodics, periodiccnt, w->active - 1);
732 } 1185 }
733 1186
734 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
735} 1188}
736 1189
737void 1190void
738evsignal_start (struct ev_signal *w) 1191ev_idle_start (EV_P_ struct ev_idle *w)
739{ 1192{
740 if (ev_is_active (w)) 1193 if (ev_is_active (w))
741 return; 1194 return;
742 1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w);
1210}
1211
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255
1256#ifndef SA_RESTART
1257# define SA_RESTART 0
1258#endif
1259
1260void
1261ev_signal_start (EV_P_ struct ev_signal *w)
1262{
1263#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1265#endif
1266 if (ev_is_active (w))
1267 return;
1268
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270
743 ev_start ((W)w, 1); 1271 ev_start (EV_A_ (W)w, 1);
744 array_needsize (signals, signalmax, w->signum, signals_init); 1272 array_needsize (signals, signalmax, w->signum, signals_init);
745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
746 1274
747 if (!w->next) 1275 if (!w->next)
748 { 1276 {
749 struct sigaction sa; 1277 struct sigaction sa;
750 sa.sa_handler = sighandler; 1278 sa.sa_handler = sighandler;
751 sigfillset (&sa.sa_mask); 1279 sigfillset (&sa.sa_mask);
752 sa.sa_flags = 0; 1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
753 sigaction (w->signum, &sa, 0); 1281 sigaction (w->signum, &sa, 0);
754 } 1282 }
755} 1283}
756 1284
757void 1285void
758evsignal_stop (struct ev_signal *w) 1286ev_signal_stop (EV_P_ struct ev_signal *w)
759{ 1287{
1288 ev_clear_pending (EV_A_ (W)w);
760 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
761 return; 1290 return;
762 1291
763 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
764 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
765 1294
766 if (!signals [w->signum - 1].head) 1295 if (!signals [w->signum - 1].head)
767 signal (w->signum, SIG_DFL); 1296 signal (w->signum, SIG_DFL);
768} 1297}
769 1298
770void evidle_start (struct ev_idle *w) 1299void
1300ev_child_start (EV_P_ struct ev_child *w)
771{ 1301{
1302#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop));
1304#endif
772 if (ev_is_active (w)) 1305 if (ev_is_active (w))
773 return; 1306 return;
774 1307
775 ev_start ((W)w, ++idlecnt); 1308 ev_start (EV_A_ (W)w, 1);
776 array_needsize (idles, idlemax, idlecnt, ); 1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
777 idles [idlecnt - 1] = w;
778} 1310}
779 1311
780void evidle_stop (struct ev_idle *w) 1312void
1313ev_child_stop (EV_P_ struct ev_child *w)
781{ 1314{
782 idles [w->active - 1] = idles [--idlecnt]; 1315 ev_clear_pending (EV_A_ (W)w);
783 ev_stop ((W)w);
784}
785
786void evcheck_start (struct ev_check *w)
787{
788 if (ev_is_active (w)) 1316 if (ev_is_active (w))
789 return; 1317 return;
790 1318
791 ev_start ((W)w, ++checkcnt); 1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
792 array_needsize (checks, checkmax, checkcnt, );
793 checks [checkcnt - 1] = w;
794}
795
796void evcheck_stop (struct ev_check *w)
797{
798 checks [w->active - 1] = checks [--checkcnt];
799 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
800} 1321}
801 1322
802/*****************************************************************************/ 1323/*****************************************************************************/
803 1324
804#if 0 1325struct ev_once
805 1326{
806struct ev_io wio; 1327 struct ev_io io;
807
808static void
809sin_cb (struct ev_io *w, int revents)
810{
811 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
812}
813
814static void
815ocb (struct ev_timer *w, int revents)
816{
817 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
818 evtimer_stop (w);
819 evtimer_start (w);
820}
821
822static void
823scb (struct ev_signal *w, int revents)
824{
825 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
826 evio_stop (&wio);
827 evio_start (&wio);
828}
829
830static void
831gcb (struct ev_signal *w, int revents)
832{
833 fprintf (stderr, "generic %x\n", revents);
834
835}
836
837int main (void)
838{
839 ev_init (0);
840
841 evio_init (&wio, sin_cb, 0, EV_READ);
842 evio_start (&wio);
843
844 struct ev_timer t[10000];
845
846#if 0
847 int i;
848 for (i = 0; i < 10000; ++i)
849 {
850 struct ev_timer *w = t + i;
851 evw_init (w, ocb, i);
852 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
853 evtimer_start (w);
854 if (drand48 () < 0.5)
855 evtimer_stop (w);
856 }
857#endif
858
859 struct ev_timer t1; 1328 struct ev_timer to;
860 evtimer_init (&t1, ocb, 5, 10); 1329 void (*cb)(int revents, void *arg);
861 evtimer_start (&t1); 1330 void *arg;
1331};
862 1332
863 struct ev_signal sig; 1333static void
864 evsignal_init (&sig, scb, SIGQUIT); 1334once_cb (EV_P_ struct ev_once *once, int revents)
865 evsignal_start (&sig); 1335{
1336 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg;
866 1338
867 struct ev_check cw; 1339 ev_io_stop (EV_A_ &once->io);
868 evcheck_init (&cw, gcb); 1340 ev_timer_stop (EV_A_ &once->to);
869 evcheck_start (&cw); 1341 free (once);
870 1342
871 struct ev_idle iw; 1343 cb (revents, arg);
872 evidle_init (&iw, gcb);
873 evidle_start (&iw);
874
875 ev_loop (0);
876
877 return 0;
878} 1344}
879 1345
880#endif 1346static void
1347once_cb_io (EV_P_ struct ev_io *w, int revents)
1348{
1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1350}
881 1351
1352static void
1353once_cb_to (EV_P_ struct ev_timer *w, int revents)
1354{
1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1356}
882 1357
1358void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{
1361 struct ev_once *once = malloc (sizeof (struct ev_once));
883 1362
1363 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else
1366 {
1367 once->cb = cb;
1368 once->arg = arg;
884 1369
1370 ev_watcher_init (&once->io, once_cb_io);
1371 if (fd >= 0)
1372 {
1373 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io);
1375 }
1376
1377 ev_watcher_init (&once->to, once_cb_to);
1378 if (timeout >= 0.)
1379 {
1380 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to);
1382 }
1383 }
1384}
1385

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines