ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
62# endif 97# endif
63 98
64#endif 99#endif
65 100
66#include <math.h> 101#include <math.h>
76#include <time.h> 111#include <time.h>
77 112
78#include <signal.h> 113#include <signal.h>
79 114
80#ifndef _WIN32 115#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 116# include <sys/time.h>
83# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
84#else 119#else
85# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 121# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
90#endif 125#endif
91 126
92/**/ 127/**/
93 128
94#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
96#endif 135#endif
97 136
98#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 139#endif
102 140
103#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
104# ifdef _WIN32 142# ifdef _WIN32
105# define EV_USE_POLL 0 143# define EV_USE_POLL 0
114 152
115#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
117#endif 155#endif
118 156
119#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
121#endif 159#endif
122 160
123/**/ 161/**/
124 162
125#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
137#endif 175#endif
138 176
139/**/ 177/**/
140 178
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
145 183
146#ifdef EV_H 184#ifdef EV_H
147# include EV_H 185# include EV_H
148#else 186#else
149# include "ev.h" 187# include "ev.h"
150#endif 188#endif
151 189
152#if __GNUC__ >= 3 190#if __GNUC__ >= 3
153# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
154# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
155#else 200#else
156# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
157# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
158#endif 205#endif
159 206
160#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
162 209
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
165 212
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
167 215
168typedef struct ev_watcher *W; 216typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
171 219
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
173 221
174#ifdef _WIN32 222#ifdef _WIN32
175# include "ev_win32.c" 223# include "ev_win32.c"
251 #include "ev_vars.h" 299 #include "ev_vars.h"
252 #undef VAR 300 #undef VAR
253 }; 301 };
254 #include "ev_wrap.h" 302 #include "ev_wrap.h"
255 303
256 struct ev_loop default_loop_struct; 304 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 305 struct ev_loop *ev_default_loop_ptr;
258 306
259#else 307#else
260 308
261 ev_tstamp ev_rt_now; 309 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 310 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 311 #include "ev_vars.h"
264 #undef VAR 312 #undef VAR
265 313
266 static int default_loop; 314 static int ev_default_loop_ptr;
267 315
268#endif 316#endif
269 317
270/*****************************************************************************/ 318/*****************************************************************************/
271 319
272ev_tstamp 320ev_tstamp noinline
273ev_time (void) 321ev_time (void)
274{ 322{
275#if EV_USE_REALTIME 323#if EV_USE_REALTIME
276 struct timespec ts; 324 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
281 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 331#endif
284} 332}
285 333
286inline ev_tstamp 334ev_tstamp inline_size
287get_clock (void) 335get_clock (void)
288{ 336{
289#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
291 { 339 {
304{ 352{
305 return ev_rt_now; 353 return ev_rt_now;
306} 354}
307#endif 355#endif
308 356
309#define array_roundsize(type,n) ((n) | 4 & ~3) 357#define array_roundsize(type,n) (((n) | 4) & ~3)
310 358
311#define array_needsize(type,base,cur,cnt,init) \ 359#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 360 if (expect_false ((cnt) > cur)) \
313 { \ 361 { \
314 int newcnt = cur; \ 362 int newcnt = cur; \
334#define array_free(stem, idx) \ 382#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 384
337/*****************************************************************************/ 385/*****************************************************************************/
338 386
339static void 387void inline_size
340anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
341{ 389{
342 while (count--) 390 while (count--)
343 { 391 {
344 base->head = 0; 392 base->head = 0;
347 395
348 ++base; 396 ++base;
349 } 397 }
350} 398}
351 399
352void 400void noinline
353ev_feed_event (EV_P_ void *w, int revents) 401ev_feed_event (EV_P_ void *w, int revents)
354{ 402{
355 W w_ = (W)w; 403 W w_ = (W)w;
356 404
357 if (w_->pending) 405 if (expect_false (w_->pending))
358 { 406 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return; 408 return;
361 } 409 }
362 410
363 w_->pending = ++pendingcnt [ABSPRI (w_)]; 411 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void)); 412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 415}
368 416
369static void 417static void
373 421
374 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
376} 424}
377 425
378inline void 426void inline_speed
379fd_event (EV_P_ int fd, int revents) 427fd_event (EV_P_ int fd, int revents)
380{ 428{
381 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 430 ev_io *w;
383 431
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 433 {
386 int ev = w->events & revents; 434 int ev = w->events & revents;
387 435
388 if (ev) 436 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
396 fd_event (EV_A_ fd, revents); 444 fd_event (EV_A_ fd, revents);
397} 445}
398 446
399/*****************************************************************************/ 447/*****************************************************************************/
400 448
401static void 449void inline_size
402fd_reify (EV_P) 450fd_reify (EV_P)
403{ 451{
404 int i; 452 int i;
405 453
406 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
407 { 455 {
408 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 458 ev_io *w;
411 459
412 int events = 0; 460 int events = 0;
413 461
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 463 events |= w->events;
416 464
417#if EV_SELECT_IS_WINSOCKET 465#if EV_SELECT_IS_WINSOCKET
418 if (events) 466 if (events)
419 { 467 {
423 } 471 }
424#endif 472#endif
425 473
426 anfd->reify = 0; 474 anfd->reify = 0;
427 475
428 method_modify (EV_A_ fd, anfd->events, events); 476 backend_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 477 anfd->events = events;
430 } 478 }
431 479
432 fdchangecnt = 0; 480 fdchangecnt = 0;
433} 481}
434 482
435static void 483void inline_size
436fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
437{ 485{
438 if (anfds [fd].reify) 486 if (expect_false (anfds [fd].reify))
439 return; 487 return;
440 488
441 anfds [fd].reify = 1; 489 anfds [fd].reify = 1;
442 490
443 ++fdchangecnt; 491 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
446} 494}
447 495
448static void 496void inline_speed
449fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
450{ 498{
451 struct ev_io *w; 499 ev_io *w;
452 500
453 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
454 { 502 {
455 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 505 }
458} 506}
459 507
460static int 508int inline_size
461fd_valid (int fd) 509fd_valid (int fd)
462{ 510{
463#ifdef _WIN32 511#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 512 return _get_osfhandle (fd) != -1;
465#else 513#else
466 return fcntl (fd, F_GETFD) != -1; 514 return fcntl (fd, F_GETFD) != -1;
467#endif 515#endif
468} 516}
469 517
470/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
471static void 519static void noinline
472fd_ebadf (EV_P) 520fd_ebadf (EV_P)
473{ 521{
474 int fd; 522 int fd;
475 523
476 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
480} 528}
481 529
482/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 531static void noinline
484fd_enomem (EV_P) 532fd_enomem (EV_P)
485{ 533{
486 int fd; 534 int fd;
487 535
488 for (fd = anfdmax; fd--; ) 536 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 539 fd_kill (EV_A_ fd);
492 return; 540 return;
493 } 541 }
494} 542}
495 543
496/* usually called after fork if method needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 545static void noinline
498fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
499{ 547{
500 int fd; 548 int fd;
501 549
502 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
508 } 556 }
509} 557}
510 558
511/*****************************************************************************/ 559/*****************************************************************************/
512 560
513static void 561void inline_speed
514upheap (WT *heap, int k) 562upheap (WT *heap, int k)
515{ 563{
516 WT w = heap [k]; 564 WT w = heap [k];
517 565
518 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
525 heap [k] = w; 573 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 574 ((W)heap [k])->active = k + 1;
527 575
528} 576}
529 577
530static void 578void inline_speed
531downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
532{ 580{
533 WT w = heap [k]; 581 WT w = heap [k];
534 582
535 while (k < (N >> 1)) 583 while (k < (N >> 1))
549 597
550 heap [k] = w; 598 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 599 ((W)heap [k])->active = k + 1;
552} 600}
553 601
554inline void 602void inline_size
555adjustheap (WT *heap, int N, int k) 603adjustheap (WT *heap, int N, int k)
556{ 604{
557 upheap (heap, k); 605 upheap (heap, k);
558 downheap (heap, N, k); 606 downheap (heap, N, k);
559} 607}
569static ANSIG *signals; 617static ANSIG *signals;
570static int signalmax; 618static int signalmax;
571 619
572static int sigpipe [2]; 620static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 622static ev_io sigev;
575 623
576static void 624void inline_size
577signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
578{ 626{
579 while (count--) 627 while (count--)
580 { 628 {
581 base->head = 0; 629 base->head = 0;
601 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 650 errno = old_errno;
603 } 651 }
604} 652}
605 653
606void 654void noinline
607ev_feed_signal_event (EV_P_ int signum) 655ev_feed_signal_event (EV_P_ int signum)
608{ 656{
609 WL w; 657 WL w;
610 658
611#if EV_MULTIPLICITY 659#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 661#endif
614 662
615 --signum; 663 --signum;
616 664
617 if (signum < 0 || signum >= signalmax) 665 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 670 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 672}
625 673
626static void 674static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
628{ 676{
629 int signum; 677 int signum;
630 678
631 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 680 gotsig = 0;
634 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 684 ev_feed_signal_event (EV_A_ signum + 1);
637} 685}
638 686
639inline void 687void inline_size
640fd_intern (int fd) 688fd_intern (int fd)
641{ 689{
642#ifdef _WIN32 690#ifdef _WIN32
643 int arg = 1; 691 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 694 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 695 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 696#endif
649} 697}
650 698
651static void 699static void noinline
652siginit (EV_P) 700siginit (EV_P)
653{ 701{
654 fd_intern (sigpipe [0]); 702 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 703 fd_intern (sigpipe [1]);
656 704
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 708}
661 709
662/*****************************************************************************/ 710/*****************************************************************************/
663 711
664static struct ev_child *childs [PID_HASHSIZE]; 712static ev_child *childs [PID_HASHSIZE];
665 713
666#ifndef _WIN32 714#ifndef _WIN32
667 715
668static struct ev_signal childev; 716static ev_signal childev;
669 717
670#ifndef WCONTINUED 718#ifndef WCONTINUED
671# define WCONTINUED 0 719# define WCONTINUED 0
672#endif 720#endif
673 721
674static void 722void inline_speed
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
676{ 724{
677 struct ev_child *w; 725 ev_child *w;
678 726
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
681 { 729 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid; 731 w->rpid = pid;
684 w->rstatus = status; 732 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 } 734 }
687} 735}
688 736
689static void 737static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
691{ 739{
692 int pid, status; 740 int pid, status;
693 741
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 743 {
696 /* make sure we are called again until all childs have been reaped */ 744 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 747
699 child_reap (EV_A_ sw, pid, pid, status); 748 child_reap (EV_A_ sw, pid, pid, status);
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 } 750 }
702} 751}
703 752
704#endif 753#endif
705 754
706/*****************************************************************************/ 755/*****************************************************************************/
707 756
757#if EV_USE_PORT
758# include "ev_port.c"
759#endif
708#if EV_USE_KQUEUE 760#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 761# include "ev_kqueue.c"
710#endif 762#endif
711#if EV_USE_EPOLL 763#if EV_USE_EPOLL
712# include "ev_epoll.c" 764# include "ev_epoll.c"
729{ 781{
730 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
731} 783}
732 784
733/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
734static int 786int inline_size
735enable_secure (void) 787enable_secure (void)
736{ 788{
737#ifdef _WIN32 789#ifdef _WIN32
738 return 0; 790 return 0;
739#else 791#else
740 return getuid () != geteuid () 792 return getuid () != geteuid ()
741 || getgid () != getegid (); 793 || getgid () != getegid ();
742#endif 794#endif
743} 795}
744 796
745int 797unsigned int
746ev_method (EV_P) 798ev_supported_backends (void)
747{ 799{
748 return method; 800 unsigned int flags = 0;
801
802 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
803 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
804 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
805 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
806 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
807
808 return flags;
809}
810
811unsigned int
812ev_recommended_backends (void)
813{
814 unsigned int flags = ev_supported_backends ();
815
816#ifndef __NetBSD__
817 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE;
820#endif
821#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation
823 flags &= ~EVBACKEND_POLL;
824#endif
825
826 return flags;
827}
828
829unsigned int
830ev_embeddable_backends (void)
831{
832 return EVBACKEND_EPOLL
833 | EVBACKEND_KQUEUE
834 | EVBACKEND_PORT;
835}
836
837unsigned int
838ev_backend (EV_P)
839{
840 return backend;
749} 841}
750 842
751static void 843static void
752loop_init (EV_P_ int methods) 844loop_init (EV_P_ unsigned int flags)
753{ 845{
754 if (!method) 846 if (!backend)
755 { 847 {
756#if EV_USE_MONOTONIC 848#if EV_USE_MONOTONIC
757 { 849 {
758 struct timespec ts; 850 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 851 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 856 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 857 mn_now = get_clock ();
766 now_floor = mn_now; 858 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 859 rtmn_diff = ev_rt_now - mn_now;
768 860
769 if (methods == EVMETHOD_AUTO) 861 if (!(flags & EVFLAG_NOENV)
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 862 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 864 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 865
775 method = 0; 866 if (!(flags & 0x0000ffffUL))
867 flags |= ev_recommended_backends ();
868
869 backend = 0;
870#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif
776#if EV_USE_KQUEUE 873#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 875#endif
779#if EV_USE_EPOLL 876#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 878#endif
782#if EV_USE_POLL 879#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 881#endif
785#if EV_USE_SELECT 882#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 884#endif
788 885
789 ev_init (&sigev, sigcb); 886 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 887 ev_set_priority (&sigev, EV_MAXPRI);
791 } 888 }
792} 889}
793 890
794void 891static void
795loop_destroy (EV_P) 892loop_destroy (EV_P)
796{ 893{
797 int i; 894 int i;
798 895
896#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif
799#if EV_USE_KQUEUE 899#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 901#endif
802#if EV_USE_EPOLL 902#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 903 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 904#endif
805#if EV_USE_POLL 905#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 906 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 907#endif
808#if EV_USE_SELECT 908#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 910#endif
811 911
812 for (i = NUMPRI; i--; ) 912 for (i = NUMPRI; i--; )
813 array_free (pending, [i]); 913 array_free (pending, [i]);
814 914
815 /* have to use the microsoft-never-gets-it-right macro */ 915 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 916 array_free (fdchange, EMPTY0);
817 array_free (timer, EMPTY); 917 array_free (timer, EMPTY0);
818#if EV_PERIODICS 918#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 919 array_free (periodic, EMPTY0);
820#endif 920#endif
821 array_free (idle, EMPTY); 921 array_free (idle, EMPTY0);
822 array_free (prepare, EMPTY); 922 array_free (prepare, EMPTY0);
823 array_free (check, EMPTY); 923 array_free (check, EMPTY0);
824 924
825 method = 0; 925 backend = 0;
826} 926}
827 927
828static void 928static void
829loop_fork (EV_P) 929loop_fork (EV_P)
830{ 930{
931#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif
934#if EV_USE_KQUEUE
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif
831#if EV_USE_EPOLL 937#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif
834#if EV_USE_KQUEUE
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
836#endif 939#endif
837 940
838 if (ev_is_active (&sigev)) 941 if (ev_is_active (&sigev))
839 { 942 {
840 /* default loop */ 943 /* default loop */
853 postfork = 0; 956 postfork = 0;
854} 957}
855 958
856#if EV_MULTIPLICITY 959#if EV_MULTIPLICITY
857struct ev_loop * 960struct ev_loop *
858ev_loop_new (int methods) 961ev_loop_new (unsigned int flags)
859{ 962{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 964
862 memset (loop, 0, sizeof (struct ev_loop)); 965 memset (loop, 0, sizeof (struct ev_loop));
863 966
864 loop_init (EV_A_ methods); 967 loop_init (EV_A_ flags);
865 968
866 if (ev_method (EV_A)) 969 if (ev_backend (EV_A))
867 return loop; 970 return loop;
868 971
869 return 0; 972 return 0;
870} 973}
871 974
884 987
885#endif 988#endif
886 989
887#if EV_MULTIPLICITY 990#if EV_MULTIPLICITY
888struct ev_loop * 991struct ev_loop *
992ev_default_loop_init (unsigned int flags)
889#else 993#else
890int 994int
995ev_default_loop (unsigned int flags)
891#endif 996#endif
892ev_default_loop (int methods)
893{ 997{
894 if (sigpipe [0] == sigpipe [1]) 998 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 999 if (pipe (sigpipe))
896 return 0; 1000 return 0;
897 1001
898 if (!default_loop) 1002 if (!ev_default_loop_ptr)
899 { 1003 {
900#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1006#else
903 default_loop = 1; 1007 ev_default_loop_ptr = 1;
904#endif 1008#endif
905 1009
906 loop_init (EV_A_ methods); 1010 loop_init (EV_A_ flags);
907 1011
908 if (ev_method (EV_A)) 1012 if (ev_backend (EV_A))
909 { 1013 {
910 siginit (EV_A); 1014 siginit (EV_A);
911 1015
912#ifndef _WIN32 1016#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1017 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1019 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1021#endif
918 } 1022 }
919 else 1023 else
920 default_loop = 0; 1024 ev_default_loop_ptr = 0;
921 } 1025 }
922 1026
923 return default_loop; 1027 return ev_default_loop_ptr;
924} 1028}
925 1029
926void 1030void
927ev_default_destroy (void) 1031ev_default_destroy (void)
928{ 1032{
929#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1035#endif
932 1036
933#ifndef _WIN32 1037#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1038 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1039 ev_signal_stop (EV_A_ &childev);
946 1050
947void 1051void
948ev_default_fork (void) 1052ev_default_fork (void)
949{ 1053{
950#if EV_MULTIPLICITY 1054#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1055 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1056#endif
953 1057
954 if (method) 1058 if (backend)
955 postfork = 1; 1059 postfork = 1;
956} 1060}
957 1061
958/*****************************************************************************/ 1062/*****************************************************************************/
959 1063
960static int 1064int inline_size
961any_pending (EV_P) 1065any_pending (EV_P)
962{ 1066{
963 int pri; 1067 int pri;
964 1068
965 for (pri = NUMPRI; pri--; ) 1069 for (pri = NUMPRI; pri--; )
967 return 1; 1071 return 1;
968 1072
969 return 0; 1073 return 0;
970} 1074}
971 1075
972static void 1076void inline_speed
973call_pending (EV_P) 1077call_pending (EV_P)
974{ 1078{
975 int pri; 1079 int pri;
976 1080
977 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1082 while (pendingcnt [pri])
979 { 1083 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1085
982 if (p->w) 1086 if (expect_true (p->w))
983 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
984 p->w->pending = 0; 1090 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
986 } 1092 }
987 } 1093 }
988} 1094}
989 1095
990static void 1096void inline_size
991timers_reify (EV_P) 1097timers_reify (EV_P)
992{ 1098{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1100 {
995 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
996 1102
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998 1104
999 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
1000 if (w->repeat) 1106 if (w->repeat)
1012 1118
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1120 }
1015} 1121}
1016 1122
1017#if EV_PERIODICS 1123#if EV_PERIODIC_ENABLE
1018static void 1124void inline_size
1019periodics_reify (EV_P) 1125periodics_reify (EV_P)
1020{ 1126{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1128 {
1023 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
1024 1130
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1026 1132
1027 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1134 if (w->reschedule_cb)
1029 { 1135 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1138 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 1139 }
1035 else if (w->interval) 1140 else if (w->interval)
1036 { 1141 {
1043 1148
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1150 }
1046} 1151}
1047 1152
1048static void 1153static void noinline
1049periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
1050{ 1155{
1051 int i; 1156 int i;
1052 1157
1053 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
1055 { 1160 {
1056 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
1057 1162
1058 if (w->reschedule_cb) 1163 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1165 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1065 for (i = periodiccnt >> 1; i--; ) 1170 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1171 downheap ((WT *)periodics, periodiccnt, i);
1067} 1172}
1068#endif 1173#endif
1069 1174
1070inline int 1175int inline_size
1071time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
1072{ 1177{
1073 mn_now = get_clock (); 1178 mn_now = get_clock ();
1074 1179
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 ev_rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
1084 return 1; 1189 return 1;
1085 } 1190 }
1086} 1191}
1087 1192
1088static void 1193void inline_size
1089time_update (EV_P) 1194time_update (EV_P)
1090{ 1195{
1091 int i; 1196 int i;
1092 1197
1093#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
1095 { 1200 {
1096 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
1097 { 1202 {
1098 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
1099 1204
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1101 { 1214 {
1102 rtmn_diff = ev_rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
1103 1216
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1218 return; /* all is well */
1107 ev_rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1221 mn_now = get_clock ();
1109 now_floor = mn_now; 1222 now_floor = mn_now;
1110 } 1223 }
1111 1224
1112# if EV_PERIODICS 1225# if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1114# endif 1227# endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 1230 }
1121 { 1234 {
1122 ev_rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
1123 1236
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 { 1238 {
1126#if EV_PERIODICS 1239#if EV_PERIODIC_ENABLE
1127 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1128#endif 1241#endif
1129 1242
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
1151static int loop_done; 1264static int loop_done;
1152 1265
1153void 1266void
1154ev_loop (EV_P_ int flags) 1267ev_loop (EV_P_ int flags)
1155{ 1268{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1158 1272
1159 do 1273 while (activecnt)
1160 { 1274 {
1161 /* queue check watchers (and execute them) */ 1275 /* queue check watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1276 if (expect_false (preparecnt))
1163 { 1277 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 1285
1172 /* update fd-related kernel structures */ 1286 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1287 fd_reify (EV_A);
1174 1288
1175 /* calculate blocking time */ 1289 /* calculate blocking time */
1290 {
1291 double block;
1176 1292
1177 /* we only need this for !monotonic clock or timers, but as we basically 1293 if (flags & EVLOOP_NONBLOCK || idlecnt)
1178 always have timers, we just calculate it always */ 1294 block = 0.; /* do not block at all */
1295 else
1296 {
1297 /* update time to cancel out callback processing overhead */
1179#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic)) 1299 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A); 1300 time_update_monotonic (EV_A);
1182 else 1301 else
1183#endif 1302#endif
1184 { 1303 {
1185 ev_rt_now = ev_time (); 1304 ev_rt_now = ev_time ();
1186 mn_now = ev_rt_now; 1305 mn_now = ev_rt_now;
1187 } 1306 }
1188 1307
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1308 block = MAX_BLOCKTIME;
1194 1309
1195 if (timercnt) 1310 if (timercnt)
1196 { 1311 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1313 if (block > to) block = to;
1199 } 1314 }
1200 1315
1201#if EV_PERIODICS 1316#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1317 if (periodiccnt)
1203 { 1318 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1320 if (block > to) block = to;
1206 } 1321 }
1207#endif 1322#endif
1208 1323
1209 if (block < 0.) block = 0.; 1324 if (expect_false (block < 0.)) block = 0.;
1210 } 1325 }
1211 1326
1212 method_poll (EV_A_ block); 1327 backend_poll (EV_A_ block);
1328 }
1213 1329
1214 /* update ev_rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1331 time_update (EV_A);
1216 1332
1217 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1337#endif
1222 1338
1223 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1340 if (idlecnt && !any_pending (EV_A))
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1226 1342
1227 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1344 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1346
1231 call_pending (EV_A); 1347 call_pending (EV_A);
1232 }
1233 while (activecnt && !loop_done);
1234 1348
1235 if (loop_done != 2) 1349 if (expect_false (loop_done))
1236 loop_done = 0; 1350 break;
1351 }
1352
1353 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL;
1237} 1355}
1238 1356
1239void 1357void
1240ev_unloop (EV_P_ int how) 1358ev_unloop (EV_P_ int how)
1241{ 1359{
1242 loop_done = how; 1360 loop_done = how;
1243} 1361}
1244 1362
1245/*****************************************************************************/ 1363/*****************************************************************************/
1246 1364
1247inline void 1365void inline_size
1248wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
1249{ 1367{
1250 elem->next = *head; 1368 elem->next = *head;
1251 *head = elem; 1369 *head = elem;
1252} 1370}
1253 1371
1254inline void 1372void inline_size
1255wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1256{ 1374{
1257 while (*head) 1375 while (*head)
1258 { 1376 {
1259 if (*head == elem) 1377 if (*head == elem)
1264 1382
1265 head = &(*head)->next; 1383 head = &(*head)->next;
1266 } 1384 }
1267} 1385}
1268 1386
1269inline void 1387void inline_speed
1270ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1271{ 1389{
1272 if (w->pending) 1390 if (w->pending)
1273 { 1391 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1393 w->pending = 0;
1276 } 1394 }
1277} 1395}
1278 1396
1279inline void 1397void inline_speed
1280ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1281{ 1399{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284 1402
1285 w->active = active; 1403 w->active = active;
1286 ev_ref (EV_A); 1404 ev_ref (EV_A);
1287} 1405}
1288 1406
1289inline void 1407void inline_size
1290ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1291{ 1409{
1292 ev_unref (EV_A); 1410 ev_unref (EV_A);
1293 w->active = 0; 1411 w->active = 0;
1294} 1412}
1295 1413
1296/*****************************************************************************/ 1414/*****************************************************************************/
1297 1415
1298void 1416void
1299ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1300{ 1418{
1301 int fd = w->fd; 1419 int fd = w->fd;
1302 1420
1303 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1304 return; 1422 return;
1305 1423
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1424 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1425
1308 ev_start (EV_A_ (W)w, 1); 1426 ev_start (EV_A_ (W)w, 1);
1311 1429
1312 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1313} 1431}
1314 1432
1315void 1433void
1316ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1317{ 1435{
1318 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1437 if (expect_false (!ev_is_active (w)))
1320 return; 1438 return;
1321 1439
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1441
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1326 1444
1327 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1328} 1446}
1329 1447
1330void 1448void
1331ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1332{ 1450{
1333 if (ev_is_active (w)) 1451 if (expect_false (ev_is_active (w)))
1334 return; 1452 return;
1335 1453
1336 ((WT)w)->at += mn_now; 1454 ((WT)w)->at += mn_now;
1337 1455
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1457
1340 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1343 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1344 1462
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1346} 1464}
1347 1465
1348void 1466void
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1468{
1351 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1470 if (expect_false (!ev_is_active (w)))
1353 return; 1471 return;
1354 1472
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1356 1474
1357 if (((W)w)->active < timercnt--) 1475 if (expect_true (((W)w)->active < timercnt--))
1358 { 1476 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1477 timers [((W)w)->active - 1] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1361 } 1479 }
1362 1480
1364 1482
1365 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1366} 1484}
1367 1485
1368void 1486void
1369ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1370{ 1488{
1371 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1372 { 1490 {
1373 if (w->repeat) 1491 if (w->repeat)
1374 { 1492 {
1377 } 1495 }
1378 else 1496 else
1379 ev_timer_stop (EV_A_ w); 1497 ev_timer_stop (EV_A_ w);
1380 } 1498 }
1381 else if (w->repeat) 1499 else if (w->repeat)
1500 {
1501 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1503 }
1383} 1504}
1384 1505
1385#if EV_PERIODICS 1506#if EV_PERIODIC_ENABLE
1386void 1507void
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1509{
1389 if (ev_is_active (w)) 1510 if (expect_false (ev_is_active (w)))
1390 return; 1511 return;
1391 1512
1392 if (w->reschedule_cb) 1513 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1515 else if (w->interval)
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 } 1520 }
1400 1521
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1405 1526
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1407} 1528}
1408 1529
1409void 1530void
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1532{
1412 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1534 if (expect_false (!ev_is_active (w)))
1414 return; 1535 return;
1415 1536
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1417 1538
1418 if (((W)w)->active < periodiccnt--) 1539 if (expect_true (((W)w)->active < periodiccnt--))
1419 { 1540 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1541 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1422 } 1543 }
1423 1544
1424 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1425} 1546}
1426 1547
1427void 1548void
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1549ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1550{
1430 /* TODO: use adjustheap and recalculation */ 1551 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1552 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1553 ev_periodic_start (EV_A_ w);
1433} 1554}
1434#endif 1555#endif
1435 1556
1436void 1557void
1437ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1438{ 1559{
1439 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1440 return; 1561 return;
1441 1562
1442 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1444 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1445} 1566}
1446 1567
1447void 1568void
1448ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1449{ 1570{
1450 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w)) 1572 if (expect_false (!ev_is_active (w)))
1452 return; 1573 return;
1453 1574
1575 {
1576 int active = ((W)w)->active;
1454 idles [((W)w)->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1455 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1456} 1582}
1457 1583
1458void 1584void
1459ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1460{ 1586{
1461 if (ev_is_active (w)) 1587 if (expect_false (ev_is_active (w)))
1462 return; 1588 return;
1463 1589
1464 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1466 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1467} 1593}
1468 1594
1469void 1595void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1471{ 1597{
1472 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w)) 1599 if (expect_false (!ev_is_active (w)))
1474 return; 1600 return;
1475 1601
1602 {
1603 int active = ((W)w)->active;
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1477 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1478} 1609}
1479 1610
1480void 1611void
1481ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1482{ 1613{
1483 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1484 return; 1615 return;
1485 1616
1486 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1488 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1489} 1620}
1490 1621
1491void 1622void
1492ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1493{ 1624{
1494 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1496 return; 1627 return;
1497 1628
1629 {
1630 int active = ((W)w)->active;
1498 checks [((W)w)->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1499 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1500} 1636}
1501 1637
1502#ifndef SA_RESTART 1638#ifndef SA_RESTART
1503# define SA_RESTART 0 1639# define SA_RESTART 0
1504#endif 1640#endif
1505 1641
1506void 1642void
1507ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1508{ 1644{
1509#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1647#endif
1512 if (ev_is_active (w)) 1648 if (expect_false (ev_is_active (w)))
1513 return; 1649 return;
1514 1650
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1652
1517 ev_start (EV_A_ (W)w, 1); 1653 ev_start (EV_A_ (W)w, 1);
1531#endif 1667#endif
1532 } 1668 }
1533} 1669}
1534 1670
1535void 1671void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1673{
1538 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1675 if (expect_false (!ev_is_active (w)))
1540 return; 1676 return;
1541 1677
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1679 ev_stop (EV_A_ (W)w);
1544 1680
1545 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1547} 1683}
1548 1684
1549void 1685void
1550ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1551{ 1687{
1552#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1690#endif
1555 if (ev_is_active (w)) 1691 if (expect_false (ev_is_active (w)))
1556 return; 1692 return;
1557 1693
1558 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560} 1696}
1561 1697
1562void 1698void
1563ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1564{ 1700{
1565 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1702 if (expect_false (!ev_is_active (w)))
1567 return; 1703 return;
1568 1704
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1571} 1707}
1572 1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1573/*****************************************************************************/ 1819/*****************************************************************************/
1574 1820
1575struct ev_once 1821struct ev_once
1576{ 1822{
1577 struct ev_io io; 1823 ev_io io;
1578 struct ev_timer to; 1824 ev_timer to;
1579 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1580 void *arg; 1826 void *arg;
1581}; 1827};
1582 1828
1583static void 1829static void
1592 1838
1593 cb (revents, arg); 1839 cb (revents, arg);
1594} 1840}
1595 1841
1596static void 1842static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 1844{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 1846}
1601 1847
1602static void 1848static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 1850{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 1852}
1607 1853
1608void 1854void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 1856{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1857 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 1858
1613 if (!once) 1859 if (expect_false (!once))
1860 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1861 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 1862 return;
1616 { 1863 }
1864
1617 once->cb = cb; 1865 once->cb = cb;
1618 once->arg = arg; 1866 once->arg = arg;
1619 1867
1620 ev_init (&once->io, once_cb_io); 1868 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 1869 if (fd >= 0)
1622 { 1870 {
1623 ev_io_set (&once->io, fd, events); 1871 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 1872 ev_io_start (EV_A_ &once->io);
1625 } 1873 }
1626 1874
1627 ev_init (&once->to, once_cb_to); 1875 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 1876 if (timeout >= 0.)
1629 { 1877 {
1630 ev_timer_set (&once->to, timeout, 0.); 1878 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 1879 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 1880 }
1634} 1881}
1635 1882
1636#ifdef __cplusplus 1883#ifdef __cplusplus
1637} 1884}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines