ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 249
163#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
166#endif 253#endif
168#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
171#endif 258#endif
172 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
173#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 276# include <winsock.h>
175#endif 277#endif
176 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
177/**/ 291/**/
292
293/*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 302
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 306
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 307#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 310#else
201# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 312# define noinline
313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314# define inline
315# endif
205#endif 316#endif
206 317
207#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 319#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline
321
322#if EV_MINIMAL
323# define inline_speed static noinline
324#else
325# define inline_speed static inline
326#endif
209 327
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 330
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 331#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 332#define EMPTY2(a,b) /* used to suppress some warnings */
215 333
216typedef ev_watcher *W; 334typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
219 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
221 346
222#ifdef _WIN32 347#ifdef _WIN32
223# include "ev_win32.c" 348# include "ev_win32.c"
224#endif 349#endif
225 350
226/*****************************************************************************/ 351/*****************************************************************************/
227 352
228static void (*syserr_cb)(const char *msg); 353static void (*syserr_cb)(const char *msg);
229 354
355void
230void ev_set_syserr_cb (void (*cb)(const char *msg)) 356ev_set_syserr_cb (void (*cb)(const char *msg))
231{ 357{
232 syserr_cb = cb; 358 syserr_cb = cb;
233} 359}
234 360
235static void 361static void noinline
236syserr (const char *msg) 362syserr (const char *msg)
237{ 363{
238 if (!msg) 364 if (!msg)
239 msg = "(libev) system error"; 365 msg = "(libev) system error";
240 366
245 perror (msg); 371 perror (msg);
246 abort (); 372 abort ();
247 } 373 }
248} 374}
249 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
250static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
251 392
393void
252void ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
253{ 395{
254 alloc = cb; 396 alloc = cb;
255} 397}
256 398
257static void * 399inline_speed void *
258ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
259{ 401{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
261 403
262 if (!ptr && size) 404 if (!ptr && size)
263 { 405 {
264 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
265 abort (); 407 abort ();
286typedef struct 428typedef struct
287{ 429{
288 W w; 430 W w;
289 int events; 431 int events;
290} ANPENDING; 432} ANPENDING;
433
434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
436typedef struct
437{
438 WL head;
439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458#endif
291 459
292#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
293 461
294 struct ev_loop 462 struct ev_loop
295 { 463 {
315 483
316#endif 484#endif
317 485
318/*****************************************************************************/ 486/*****************************************************************************/
319 487
320ev_tstamp noinline 488ev_tstamp
321ev_time (void) 489ev_time (void)
322{ 490{
323#if EV_USE_REALTIME 491#if EV_USE_REALTIME
324 struct timespec ts; 492 struct timespec ts;
325 clock_gettime (CLOCK_REALTIME, &ts); 493 clock_gettime (CLOCK_REALTIME, &ts);
352{ 520{
353 return ev_rt_now; 521 return ev_rt_now;
354} 522}
355#endif 523#endif
356 524
357#define array_roundsize(type,n) (((n) | 4) & ~3) 525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554int inline_size
555array_nextsize (int elem, int cur, int cnt)
556{
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573}
574
575static noinline void *
576array_realloc (int elem, void *base, int *cur, int cnt)
577{
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580}
358 581
359#define array_needsize(type,base,cur,cnt,init) \ 582#define array_needsize(type,base,cur,cnt,init) \
360 if (expect_false ((cnt) > cur)) \ 583 if (expect_false ((cnt) > (cur))) \
361 { \ 584 { \
362 int newcnt = cur; \ 585 int ocur_ = (cur); \
363 do \ 586 (base) = (type *)array_realloc \
364 { \ 587 (sizeof (type), (base), &(cur), (cnt)); \
365 newcnt = array_roundsize (type, newcnt << 1); \ 588 init ((base) + (ocur_), (cur) - ocur_); \
366 } \
367 while ((cnt) > newcnt); \
368 \
369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
370 init (base + cur, newcnt - cur); \
371 cur = newcnt; \
372 } 589 }
373 590
591#if 0
374#define array_slim(type,stem) \ 592#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \ 594 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \ 595 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 } 598 }
599#endif
381 600
382#define array_free(stem, idx) \ 601#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
603
604/*****************************************************************************/
605
606void noinline
607ev_feed_event (EV_P_ void *w, int revents)
608{
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621}
622
623void inline_speed
624queue_events (EV_P_ W *events, int eventcnt, int type)
625{
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630}
384 631
385/*****************************************************************************/ 632/*****************************************************************************/
386 633
387void inline_size 634void inline_size
388anfds_init (ANFD *base, int count) 635anfds_init (ANFD *base, int count)
395 642
396 ++base; 643 ++base;
397 } 644 }
398} 645}
399 646
400void noinline
401ev_feed_event (EV_P_ void *w, int revents)
402{
403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
406 {
407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
408 return;
409 }
410
411 w_->pending = ++pendingcnt [ABSPRI (w_)];
412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415}
416
417static void
418queue_events (EV_P_ W *events, int eventcnt, int type)
419{
420 int i;
421
422 for (i = 0; i < eventcnt; ++i)
423 ev_feed_event (EV_A_ events [i], type);
424}
425
426void inline_speed 647void inline_speed
427fd_event (EV_P_ int fd, int revents) 648fd_event (EV_P_ int fd, int revents)
428{ 649{
429 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
430 ev_io *w; 651 ev_io *w;
439} 660}
440 661
441void 662void
442ev_feed_fd_event (EV_P_ int fd, int revents) 663ev_feed_fd_event (EV_P_ int fd, int revents)
443{ 664{
665 if (fd >= 0 && fd < anfdmax)
444 fd_event (EV_A_ fd, revents); 666 fd_event (EV_A_ fd, revents);
445} 667}
446
447/*****************************************************************************/
448 668
449void inline_size 669void inline_size
450fd_reify (EV_P) 670fd_reify (EV_P)
451{ 671{
452 int i; 672 int i;
455 { 675 {
456 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
457 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
458 ev_io *w; 678 ev_io *w;
459 679
460 int events = 0; 680 unsigned char events = 0;
461 681
462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
463 events |= w->events; 683 events |= (unsigned char)w->events;
464 684
465#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
466 if (events) 686 if (events)
467 { 687 {
468 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
469 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
471 } 695 }
472#endif 696#endif
473 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
474 anfd->reify = 0; 702 anfd->reify = 0;
475
476 backend_modify (EV_A_ fd, anfd->events, events);
477 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
478 } 708 }
479 709
480 fdchangecnt = 0; 710 fdchangecnt = 0;
481} 711}
482 712
483void inline_size 713void inline_size
484fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
485{ 715{
486 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
487 return;
488
489 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
490 718
719 if (expect_true (!reify))
720 {
491 ++fdchangecnt; 721 ++fdchangecnt;
492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
493 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
494} 725}
495 726
496void inline_speed 727void inline_speed
497fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
498{ 729{
545static void noinline 776static void noinline
546fd_rearm_all (EV_P) 777fd_rearm_all (EV_P)
547{ 778{
548 int fd; 779 int fd;
549 780
550 /* this should be highly optimised to not do anything but set a flag */
551 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
552 if (anfds [fd].events) 782 if (anfds [fd].events)
553 { 783 {
554 anfds [fd].events = 0; 784 anfds [fd].events = 0;
555 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
556 } 786 }
557} 787}
558 788
559/*****************************************************************************/ 789/*****************************************************************************/
560 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
561void inline_speed 810void inline_speed
562upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
563{ 812{
564 WT w = heap [k]; 813 ANHE he = heap [k];
565 814
566 while (k && heap [k >> 1]->at > w->at) 815 for (;;)
567 { 816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
568 heap [k] = heap [k >> 1]; 822 heap [k] = heap [p];
569 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
570 k >>= 1; 824 k = p;
571 } 825 }
572 826
573 heap [k] = w; 827 heap [k] = he;
574 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
575
576} 829}
577 830
831/* away from the root */
578void inline_speed 832void inline_speed
579downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
580{ 834{
581 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
582 837
583 while (k < (N >> 1)) 838 for (;;)
584 { 839 {
585 int j = k << 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
586 843
587 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
588 ++j; 846 {
589 847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
590 if (w->at <= heap [j]->at) 848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
591 break; 860 break;
592 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
593 heap [k] = heap [j]; 894 heap [k] = heap [p];
594 ((W)heap [k])->active = k + 1; 895 ev_active (ANHE_w (heap [k])) = k;
595 k = j; 896 k = p;
596 } 897 }
597 898
598 heap [k] = w; 899 heap [k] = he;
599 ((W)heap [k])->active = k + 1; 900 ev_active (ANHE_w (heap [k])) = k;
600} 901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0;
918
919 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break;
921
922 heap [k] = heap [c];
923 ev_active (ANHE_w (heap [k])) = k;
924
925 k = c;
926 }
927
928 heap [k] = he;
929 ev_active (ANHE_w (he)) = k;
930}
931#endif
601 932
602void inline_size 933void inline_size
603adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
604{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
605 upheap (heap, k); 937 upheap (heap, k);
938 else
606 downheap (heap, N, k); 939 downheap (heap, N, k);
607} 940}
608 941
609/*****************************************************************************/ 942/*****************************************************************************/
610 943
611typedef struct 944typedef struct
612{ 945{
613 WL head; 946 WL head;
614 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
615} ANSIG; 948} ANSIG;
616 949
617static ANSIG *signals; 950static ANSIG *signals;
618static int signalmax; 951static int signalmax;
619 952
620static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
621static sig_atomic_t volatile gotsig;
622static ev_io sigev;
623 954
624void inline_size 955void inline_size
625signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
626{ 957{
627 while (count--) 958 while (count--)
631 962
632 ++base; 963 ++base;
633 } 964 }
634} 965}
635 966
636static void 967/*****************************************************************************/
637sighandler (int signum)
638{
639#if _WIN32
640 signal (signum, sighandler);
641#endif
642 968
643 signals [signum - 1].gotsig = 1;
644
645 if (!gotsig)
646 {
647 int old_errno = errno;
648 gotsig = 1;
649 write (sigpipe [1], &signum, 1);
650 errno = old_errno;
651 }
652}
653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
674static void
675sigcb (EV_P_ ev_io *iow, int revents)
676{
677 int signum;
678
679 read (sigpipe [0], &revents, 1);
680 gotsig = 0;
681
682 for (signum = signalmax; signum--; )
683 if (signals [signum].gotsig)
684 ev_feed_signal_event (EV_A_ signum + 1);
685}
686
687void inline_size 969void inline_speed
688fd_intern (int fd) 970fd_intern (int fd)
689{ 971{
690#ifdef _WIN32 972#ifdef _WIN32
691 int arg = 1; 973 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif 978#endif
697} 979}
698 980
699static void noinline 981static void noinline
700siginit (EV_P) 982evpipe_init (EV_P)
701{ 983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
702 fd_intern (sigpipe [0]); 999 fd_intern (evpipe [0]);
703 fd_intern (sigpipe [1]); 1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
704 1003
705 ev_io_set (&sigev, sigpipe [0], EV_READ);
706 ev_io_start (EV_A_ &sigev); 1004 ev_io_start (EV_A_ &pipeev);
707 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
708} 1072}
709 1073
710/*****************************************************************************/ 1074/*****************************************************************************/
711 1075
1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
712static ev_child *childs [PID_HASHSIZE]; 1113static WL childs [EV_PID_HASHSIZE];
713 1114
714#ifndef _WIN32 1115#ifndef _WIN32
715 1116
716static ev_signal childev; 1117static ev_signal childev;
1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
1123void inline_speed
1124child_reap (EV_P_ int chain, int pid, int status)
1125{
1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
1133 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1135 w->rpid = pid;
1136 w->rstatus = status;
1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1138 }
1139 }
1140}
717 1141
718#ifndef WCONTINUED 1142#ifndef WCONTINUED
719# define WCONTINUED 0 1143# define WCONTINUED 0
720#endif 1144#endif
721 1145
722void inline_speed
723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
724{
725 ev_child *w;
726
727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
728 if (w->pid == pid || !w->pid)
729 {
730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
731 w->rpid = pid;
732 w->rstatus = status;
733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
734 }
735}
736
737static void 1146static void
738childcb (EV_P_ ev_signal *sw, int revents) 1147childcb (EV_P_ ev_signal *sw, int revents)
739{ 1148{
740 int pid, status; 1149 int pid, status;
741 1150
1151 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1152 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
743 { 1153 if (!WCONTINUED
1154 || errno != EINVAL
1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1156 return;
1157
744 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
747 1161
748 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1)
749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
750 }
751} 1165}
752 1166
753#endif 1167#endif
754 1168
755/*****************************************************************************/ 1169/*****************************************************************************/
827} 1241}
828 1242
829unsigned int 1243unsigned int
830ev_embeddable_backends (void) 1244ev_embeddable_backends (void)
831{ 1245{
832 return EVBACKEND_EPOLL 1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
833 | EVBACKEND_KQUEUE 1247
834 | EVBACKEND_PORT; 1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
835} 1253}
836 1254
837unsigned int 1255unsigned int
838ev_backend (EV_P) 1256ev_backend (EV_P)
839{ 1257{
840 return backend; 1258 return backend;
841} 1259}
842 1260
843static void 1261unsigned int
1262ev_loop_count (EV_P)
1263{
1264 return loop_count;
1265}
1266
1267void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{
1270 io_blocktime = interval;
1271}
1272
1273void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 timeout_blocktime = interval;
1277}
1278
1279static void noinline
844loop_init (EV_P_ unsigned int flags) 1280loop_init (EV_P_ unsigned int flags)
845{ 1281{
846 if (!backend) 1282 if (!backend)
847 { 1283 {
848#if EV_USE_MONOTONIC 1284#if EV_USE_MONOTONIC
851 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
852 have_monotonic = 1; 1288 have_monotonic = 1;
853 } 1289 }
854#endif 1290#endif
855 1291
856 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
857 mn_now = get_clock (); 1293 mn_now = get_clock ();
858 now_floor = mn_now; 1294 now_floor = mn_now;
859 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
1305
1306 /* pid check not overridable via env */
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif
860 1311
861 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
862 && !enable_secure () 1313 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
864 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
865 1316
866 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
867 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
868 1319
869 backend = 0;
870#if EV_USE_PORT 1320#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif 1322#endif
873#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
881#endif 1331#endif
882#if EV_USE_SELECT 1332#if EV_USE_SELECT
883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
884#endif 1334#endif
885 1335
886 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
887 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
888 } 1338 }
889} 1339}
890 1340
891static void 1341static void noinline
892loop_destroy (EV_P) 1342loop_destroy (EV_P)
893{ 1343{
894 int i; 1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362
1363#if EV_USE_INOTIFY
1364 if (fs_fd >= 0)
1365 close (fs_fd);
1366#endif
1367
1368 if (backend_fd >= 0)
1369 close (backend_fd);
895 1370
896#if EV_USE_PORT 1371#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif 1373#endif
899#if EV_USE_KQUEUE 1374#if EV_USE_KQUEUE
908#if EV_USE_SELECT 1383#if EV_USE_SELECT
909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
910#endif 1385#endif
911 1386
912 for (i = NUMPRI; i--; ) 1387 for (i = NUMPRI; i--; )
1388 {
913 array_free (pending, [i]); 1389 array_free (pending, [i]);
1390#if EV_IDLE_ENABLE
1391 array_free (idle, [i]);
1392#endif
1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
914 1396
915 /* have to use the microsoft-never-gets-it-right macro */ 1397 /* have to use the microsoft-never-gets-it-right macro */
916 array_free (fdchange, EMPTY0); 1398 array_free (fdchange, EMPTY);
917 array_free (timer, EMPTY0); 1399 array_free (timer, EMPTY);
918#if EV_PERIODIC_ENABLE 1400#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0); 1401 array_free (periodic, EMPTY);
920#endif 1402#endif
1403#if EV_FORK_ENABLE
921 array_free (idle, EMPTY0); 1404 array_free (fork, EMPTY);
1405#endif
922 array_free (prepare, EMPTY0); 1406 array_free (prepare, EMPTY);
923 array_free (check, EMPTY0); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
924 1411
925 backend = 0; 1412 backend = 0;
926} 1413}
927 1414
928static void 1415#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P);
1417#endif
1418
1419void inline_size
929loop_fork (EV_P) 1420loop_fork (EV_P)
930{ 1421{
931#if EV_USE_PORT 1422#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif 1424#endif
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1426 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif 1427#endif
937#if EV_USE_EPOLL 1428#if EV_USE_EPOLL
938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1429 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
939#endif 1430#endif
1431#if EV_USE_INOTIFY
1432 infy_fork (EV_A);
1433#endif
940 1434
941 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
942 { 1436 {
943 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
944 1443
945 ev_ref (EV_A); 1444 ev_ref (EV_A);
946 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
947 close (sigpipe [0]); 1454 close (evpipe [0]);
948 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
949 1457
950 while (pipe (sigpipe))
951 syserr ("(libev) error creating pipe");
952
953 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
954 } 1461 }
955 1462
956 postfork = 0; 1463 postfork = 0;
957} 1464}
958 1465
980} 1487}
981 1488
982void 1489void
983ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
984{ 1491{
985 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
986} 1493}
987
988#endif 1494#endif
989 1495
990#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
991struct ev_loop * 1497struct ev_loop *
992ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
993#else 1499#else
994int 1500int
995ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
996#endif 1502#endif
997{ 1503{
998 if (sigpipe [0] == sigpipe [1])
999 if (pipe (sigpipe))
1000 return 0;
1001
1002 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
1003 { 1505 {
1004#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1006#else 1508#else
1009 1511
1010 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
1011 1513
1012 if (ev_backend (EV_A)) 1514 if (ev_backend (EV_A))
1013 { 1515 {
1014 siginit (EV_A);
1015
1016#ifndef _WIN32 1516#ifndef _WIN32
1017 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
1018 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
1019 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
1020 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1037#ifndef _WIN32 1537#ifndef _WIN32
1038 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
1039 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
1040#endif 1540#endif
1041 1541
1042 ev_ref (EV_A); /* signal watcher */
1043 ev_io_stop (EV_A_ &sigev);
1044
1045 close (sigpipe [0]); sigpipe [0] = 0;
1046 close (sigpipe [1]); sigpipe [1] = 0;
1047
1048 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
1049} 1543}
1050 1544
1051void 1545void
1052ev_default_fork (void) 1546ev_default_fork (void)
1054#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
1055 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
1056#endif 1550#endif
1057 1551
1058 if (backend) 1552 if (backend)
1059 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
1060} 1554}
1061 1555
1062/*****************************************************************************/ 1556/*****************************************************************************/
1063 1557
1064int inline_size 1558void
1065any_pending (EV_P) 1559ev_invoke (EV_P_ void *w, int revents)
1066{ 1560{
1067 int pri; 1561 EV_CB_INVOKE ((W)w, revents);
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074} 1562}
1075 1563
1076void inline_speed 1564void inline_speed
1077call_pending (EV_P) 1565call_pending (EV_P)
1078{ 1566{
1083 { 1571 {
1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1085 1573
1086 if (expect_true (p->w)) 1574 if (expect_true (p->w))
1087 { 1575 {
1088 assert (("non-pending watcher on pending list", p->w->pending)); 1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1089 1577
1090 p->w->pending = 0; 1578 p->w->pending = 0;
1091 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1092 } 1580 }
1093 } 1581 }
1094} 1582}
1095 1583
1584#if EV_IDLE_ENABLE
1585void inline_size
1586idle_reify (EV_P)
1587{
1588 if (expect_false (idleall))
1589 {
1590 int pri;
1591
1592 for (pri = NUMPRI; pri--; )
1593 {
1594 if (pendingcnt [pri])
1595 break;
1596
1597 if (idlecnt [pri])
1598 {
1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1600 break;
1601 }
1602 }
1603 }
1604}
1605#endif
1606
1096void inline_size 1607void inline_size
1097timers_reify (EV_P) 1608timers_reify (EV_P)
1098{ 1609{
1099 while (timercnt && ((WT)timers [0])->at <= mn_now) 1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1100 { 1611 {
1101 ev_timer *w = timers [0]; 1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1102 1613
1103 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1104 1615
1105 /* first reschedule or stop timer */ 1616 /* first reschedule or stop timer */
1106 if (w->repeat) 1617 if (w->repeat)
1107 { 1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109 1624
1110 ((WT)w)->at += w->repeat; 1625 ANHE_at_set (timers [HEAP0]);
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
1114 downheap ((WT *)timers, timercnt, 0); 1626 downheap (timers, timercnt, HEAP0);
1115 } 1627 }
1116 else 1628 else
1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1118 1630
1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1122 1634
1123#if EV_PERIODIC_ENABLE 1635#if EV_PERIODIC_ENABLE
1124void inline_size 1636void inline_size
1125periodics_reify (EV_P) 1637periodics_reify (EV_P)
1126{ 1638{
1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1128 { 1640 {
1129 ev_periodic *w = periodics [0]; 1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1130 1642
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1132 1644
1133 /* first reschedule or stop timer */ 1645 /* first reschedule or stop timer */
1134 if (w->reschedule_cb) 1646 if (w->reschedule_cb)
1135 { 1647 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1138 downheap ((WT *)periodics, periodiccnt, 0); 1653 downheap (periodics, periodiccnt, HEAP0);
1139 } 1654 }
1140 else if (w->interval) 1655 else if (w->interval)
1141 { 1656 {
1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1672 downheap (periodics, periodiccnt, HEAP0);
1145 } 1673 }
1146 else 1674 else
1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1148 1676
1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1154periodics_reschedule (EV_P) 1682periodics_reschedule (EV_P)
1155{ 1683{
1156 int i; 1684 int i;
1157 1685
1158 /* adjust periodics after time jump */ 1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1159 for (i = 0; i < periodiccnt; ++i) 1701 for (i = 0; i < periodiccnt; ++i)
1160 { 1702 upheap (periodics, i + HEAP0);
1161 ev_periodic *w = periodics [i]; 1703}
1704#endif
1162 1705
1163 if (w->reschedule_cb) 1706void inline_speed
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1707time_update (EV_P_ ev_tstamp max_block)
1165 else if (w->interval) 1708{
1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1709 int i;
1710
1711#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic))
1167 } 1713 {
1714 ev_tstamp odiff = rtmn_diff;
1168 1715
1169 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i);
1172}
1173#endif
1174
1175int inline_size
1176time_update_monotonic (EV_P)
1177{
1178 mn_now = get_clock (); 1716 mn_now = get_clock ();
1179 1717
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1719 /* interpolate in the meantime */
1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1720 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1181 { 1721 {
1182 ev_rt_now = rtmn_diff + mn_now; 1722 ev_rt_now = rtmn_diff + mn_now;
1183 return 0; 1723 return;
1184 } 1724 }
1185 else 1725
1186 {
1187 now_floor = mn_now; 1726 now_floor = mn_now;
1188 ev_rt_now = ev_time (); 1727 ev_rt_now = ev_time ();
1189 return 1;
1190 }
1191}
1192 1728
1193void inline_size 1729 /* loop a few times, before making important decisions.
1194time_update (EV_P) 1730 * on the choice of "4": one iteration isn't enough,
1195{ 1731 * in case we get preempted during the calls to
1196 int i; 1732 * ev_time and get_clock. a second call is almost guaranteed
1197 1733 * to succeed in that case, though. and looping a few more times
1198#if EV_USE_MONOTONIC 1734 * doesn't hurt either as we only do this on time-jumps or
1199 if (expect_true (have_monotonic)) 1735 * in the unlikely event of having been preempted here.
1200 { 1736 */
1201 if (time_update_monotonic (EV_A)) 1737 for (i = 4; --i; )
1202 { 1738 {
1203 ev_tstamp odiff = rtmn_diff;
1204
1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1214 {
1215 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1216 1740
1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1218 return; /* all is well */ 1742 return; /* all is well */
1219 1743
1220 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1221 mn_now = get_clock (); 1745 mn_now = get_clock ();
1222 now_floor = mn_now; 1746 now_floor = mn_now;
1223 } 1747 }
1224 1748
1225# if EV_PERIODIC_ENABLE 1749# if EV_PERIODIC_ENABLE
1226 periodics_reschedule (EV_A); 1750 periodics_reschedule (EV_A);
1227# endif 1751# endif
1228 /* no timer adjustment, as the monotonic clock doesn't jump */ 1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1230 }
1231 } 1754 }
1232 else 1755 else
1233#endif 1756#endif
1234 { 1757 {
1235 ev_rt_now = ev_time (); 1758 ev_rt_now = ev_time ();
1236 1759
1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1238 { 1761 {
1239#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1241#endif 1764#endif
1242
1243 /* adjust timers. this is easy, as the offset is the same for all */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1244 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1245 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1246 } 1772 }
1247 1773
1248 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1249 } 1775 }
1250} 1776}
1264static int loop_done; 1790static int loop_done;
1265 1791
1266void 1792void
1267ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1268{ 1794{
1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1272 1796
1273 while (activecnt) 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1798
1799 do
1274 { 1800 {
1801#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid))
1804 {
1805 curpid = getpid ();
1806 postfork = 1;
1807 }
1808#endif
1809
1810#if EV_FORK_ENABLE
1811 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork))
1813 if (forkcnt)
1814 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A);
1817 }
1818#endif
1819
1275 /* queue check watchers (and execute them) */ 1820 /* queue prepare watchers (and execute them) */
1276 if (expect_false (preparecnt)) 1821 if (expect_false (preparecnt))
1277 { 1822 {
1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1279 call_pending (EV_A); 1824 call_pending (EV_A);
1280 } 1825 }
1281 1826
1827 if (expect_false (!activecnt))
1828 break;
1829
1282 /* we might have forked, so reify kernel state if necessary */ 1830 /* we might have forked, so reify kernel state if necessary */
1283 if (expect_false (postfork)) 1831 if (expect_false (postfork))
1284 loop_fork (EV_A); 1832 loop_fork (EV_A);
1285 1833
1286 /* update fd-related kernel structures */ 1834 /* update fd-related kernel structures */
1287 fd_reify (EV_A); 1835 fd_reify (EV_A);
1288 1836
1289 /* calculate blocking time */ 1837 /* calculate blocking time */
1290 { 1838 {
1291 double block; 1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1292 1841
1293 if (flags & EVLOOP_NONBLOCK || idlecnt) 1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1294 block = 0.; /* do not block at all */
1295 else
1296 { 1843 {
1297 /* update time to cancel out callback processing overhead */ 1844 /* update time to cancel out callback processing overhead */
1298#if EV_USE_MONOTONIC
1299 if (expect_true (have_monotonic))
1300 time_update_monotonic (EV_A); 1845 time_update (EV_A_ 1e100);
1301 else
1302#endif
1303 {
1304 ev_rt_now = ev_time ();
1305 mn_now = ev_rt_now;
1306 }
1307 1846
1308 block = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1309 1848
1310 if (timercnt) 1849 if (timercnt)
1311 { 1850 {
1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1313 if (block > to) block = to; 1852 if (waittime > to) waittime = to;
1314 } 1853 }
1315 1854
1316#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1317 if (periodiccnt) 1856 if (periodiccnt)
1318 { 1857 {
1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1320 if (block > to) block = to; 1859 if (waittime > to) waittime = to;
1321 } 1860 }
1322#endif 1861#endif
1323 1862
1324 if (expect_false (block < 0.)) block = 0.; 1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1325 } 1876 }
1326 1877
1878 ++loop_count;
1327 backend_poll (EV_A_ block); 1879 backend_poll (EV_A_ waittime);
1880
1881 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime);
1328 } 1883 }
1329
1330 /* update ev_rt_now, do magic */
1331 time_update (EV_A);
1332 1884
1333 /* queue pending timers and reschedule them */ 1885 /* queue pending timers and reschedule them */
1334 timers_reify (EV_A); /* relative timers called last */ 1886 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE 1887#if EV_PERIODIC_ENABLE
1336 periodics_reify (EV_A); /* absolute timers called first */ 1888 periodics_reify (EV_A); /* absolute timers called first */
1337#endif 1889#endif
1338 1890
1891#if EV_IDLE_ENABLE
1339 /* queue idle watchers unless other events are pending */ 1892 /* queue idle watchers unless other events are pending */
1340 if (idlecnt && !any_pending (EV_A)) 1893 idle_reify (EV_A);
1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1894#endif
1342 1895
1343 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1344 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1346 1899
1347 call_pending (EV_A); 1900 call_pending (EV_A);
1348
1349 if (expect_false (loop_done))
1350 break;
1351 } 1901 }
1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1352 1907
1353 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1355} 1910}
1356 1911
1383 head = &(*head)->next; 1938 head = &(*head)->next;
1384 } 1939 }
1385} 1940}
1386 1941
1387void inline_speed 1942void inline_speed
1388ev_clear_pending (EV_P_ W w) 1943clear_pending (EV_P_ W w)
1389{ 1944{
1390 if (w->pending) 1945 if (w->pending)
1391 { 1946 {
1392 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1947 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1393 w->pending = 0; 1948 w->pending = 0;
1394 } 1949 }
1395} 1950}
1396 1951
1952int
1953ev_clear_pending (EV_P_ void *w)
1954{
1955 W w_ = (W)w;
1956 int pending = w_->pending;
1957
1958 if (expect_true (pending))
1959 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1961 w_->pending = 0;
1962 p->w = 0;
1963 return p->events;
1964 }
1965 else
1966 return 0;
1967}
1968
1969void inline_size
1970pri_adjust (EV_P_ W w)
1971{
1972 int pri = w->priority;
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri;
1976}
1977
1397void inline_speed 1978void inline_speed
1398ev_start (EV_P_ W w, int active) 1979ev_start (EV_P_ W w, int active)
1399{ 1980{
1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1981 pri_adjust (EV_A_ w);
1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1402
1403 w->active = active; 1982 w->active = active;
1404 ev_ref (EV_A); 1983 ev_ref (EV_A);
1405} 1984}
1406 1985
1407void inline_size 1986void inline_size
1411 w->active = 0; 1990 w->active = 0;
1412} 1991}
1413 1992
1414/*****************************************************************************/ 1993/*****************************************************************************/
1415 1994
1416void 1995void noinline
1417ev_io_start (EV_P_ ev_io *w) 1996ev_io_start (EV_P_ ev_io *w)
1418{ 1997{
1419 int fd = w->fd; 1998 int fd = w->fd;
1420 1999
1421 if (expect_false (ev_is_active (w))) 2000 if (expect_false (ev_is_active (w)))
1423 2002
1424 assert (("ev_io_start called with negative fd", fd >= 0)); 2003 assert (("ev_io_start called with negative fd", fd >= 0));
1425 2004
1426 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1428 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2007 wlist_add (&anfds[fd].head, (WL)w);
1429 2008
1430 fd_change (EV_A_ fd); 2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
1431} 2011}
1432 2012
1433void 2013void noinline
1434ev_io_stop (EV_P_ ev_io *w) 2014ev_io_stop (EV_P_ ev_io *w)
1435{ 2015{
1436 ev_clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1437 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1438 return; 2018 return;
1439 2019
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1441 2021
1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1443 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1444 2024
1445 fd_change (EV_A_ w->fd); 2025 fd_change (EV_A_ w->fd, 1);
1446} 2026}
1447 2027
1448void 2028void noinline
1449ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1450{ 2030{
1451 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1452 return; 2032 return;
1453 2033
1454 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1455 2035
1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1457 2037
1458 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1460 timers [timercnt - 1] = w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1461 upheap ((WT *)timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1462 2043
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1464} 2045}
1465 2046
1466void 2047void noinline
1467ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1468{ 2049{
1469 ev_clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1470 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1471 return; 2052 return;
1472 2053
2054 {
2055 int active = ev_active (w);
2056
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1474 2058
1475 if (expect_true (((W)w)->active < timercnt--)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1476 { 2060 {
1477 timers [((W)w)->active - 1] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2062 adjustheap (timers, timercnt, active);
1479 } 2063 }
1480 2064
1481 ((WT)w)->at -= mn_now; 2065 --timercnt;
2066 }
2067
2068 ev_at (w) -= mn_now;
1482 2069
1483 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1484} 2071}
1485 2072
1486void 2073void noinline
1487ev_timer_again (EV_P_ ev_timer *w) 2074ev_timer_again (EV_P_ ev_timer *w)
1488{ 2075{
1489 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1490 { 2077 {
1491 if (w->repeat) 2078 if (w->repeat)
1492 { 2079 {
1493 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1495 } 2083 }
1496 else 2084 else
1497 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1498 } 2086 }
1499 else if (w->repeat) 2087 else if (w->repeat)
1500 { 2088 {
1501 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1502 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1503 } 2091 }
1504} 2092}
1505 2093
1506#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1507void 2095void noinline
1508ev_periodic_start (EV_P_ ev_periodic *w) 2096ev_periodic_start (EV_P_ ev_periodic *w)
1509{ 2097{
1510 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1511 return; 2099 return;
1512 2100
1513 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval) 2103 else if (w->interval)
1516 { 2104 {
1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1518 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1520 } 2108 }
2109 else
2110 ev_at (w) = w->offset;
1521 2111
1522 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1524 periodics [periodiccnt - 1] = w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1525 upheap ((WT *)periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1526 2117
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1528} 2119}
1529 2120
1530void 2121void noinline
1531ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1532{ 2123{
1533 ev_clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1534 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1535 return; 2126 return;
1536 2127
2128 {
2129 int active = ev_active (w);
2130
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1538 2132
1539 if (expect_true (((W)w)->active < periodiccnt--)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1540 { 2134 {
1541 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2136 adjustheap (periodics, periodiccnt, active);
1543 } 2137 }
2138
2139 --periodiccnt;
2140 }
1544 2141
1545 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1546} 2143}
1547 2144
1548void 2145void noinline
1549ev_periodic_again (EV_P_ ev_periodic *w) 2146ev_periodic_again (EV_P_ ev_periodic *w)
1550{ 2147{
1551 /* TODO: use adjustheap and recalculation */ 2148 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w); 2149 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w); 2150 ev_periodic_start (EV_A_ w);
1554} 2151}
1555#endif 2152#endif
1556 2153
1557void 2154#ifndef SA_RESTART
2155# define SA_RESTART 0
2156#endif
2157
2158void noinline
1558ev_idle_start (EV_P_ ev_idle *w) 2159ev_signal_start (EV_P_ ev_signal *w)
1559{ 2160{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
1560 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1561 return; 2165 return;
1562 2166
1563 ev_start (EV_A_ (W)w, ++idlecnt); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1565 idles [idlecnt - 1] = w;
1566}
1567 2168
1568void 2169 evpipe_init (EV_A);
1569ev_idle_stop (EV_P_ ev_idle *w)
1570{
1571 ev_clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w)))
1573 return;
1574 2170
1575 { 2171 {
1576 int active = ((W)w)->active; 2172#ifndef _WIN32
1577 idles [active - 1] = idles [--idlecnt]; 2173 sigset_t full, prev;
1578 ((W)idles [active - 1])->active = active; 2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif
1579 } 2183 }
1580 2184
1581 ev_stop (EV_A_ (W)w);
1582}
1583
1584void
1585ev_prepare_start (EV_P_ ev_prepare *w)
1586{
1587 if (expect_false (ev_is_active (w)))
1588 return;
1589
1590 ev_start (EV_A_ (W)w, ++preparecnt);
1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1592 prepares [preparecnt - 1] = w;
1593}
1594
1595void
1596ev_prepare_stop (EV_P_ ev_prepare *w)
1597{
1598 ev_clear_pending (EV_A_ (W)w);
1599 if (expect_false (!ev_is_active (w)))
1600 return;
1601
1602 {
1603 int active = ((W)w)->active;
1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1608 ev_stop (EV_A_ (W)w);
1609}
1610
1611void
1612ev_check_start (EV_P_ ev_check *w)
1613{
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 ev_start (EV_A_ (W)w, ++checkcnt);
1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1619 checks [checkcnt - 1] = w;
1620}
1621
1622void
1623ev_check_stop (EV_P_ ev_check *w)
1624{
1625 ev_clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w)))
1627 return;
1628
1629 {
1630 int active = ((W)w)->active;
1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1635 ev_stop (EV_A_ (W)w);
1636}
1637
1638#ifndef SA_RESTART
1639# define SA_RESTART 0
1640#endif
1641
1642void
1643ev_signal_start (EV_P_ ev_signal *w)
1644{
1645#if EV_MULTIPLICITY
1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1647#endif
1648 if (expect_false (ev_is_active (w)))
1649 return;
1650
1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1652
1653 ev_start (EV_A_ (W)w, 1); 2185 ev_start (EV_A_ (W)w, 1);
1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1656 2187
1657 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1658 { 2189 {
1659#if _WIN32 2190#if _WIN32
1660 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1661#else 2192#else
1662 struct sigaction sa; 2193 struct sigaction sa;
1663 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1664 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1665 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1666 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1667#endif 2198#endif
1668 } 2199 }
1669} 2200}
1670 2201
1671void 2202void noinline
1672ev_signal_stop (EV_P_ ev_signal *w) 2203ev_signal_stop (EV_P_ ev_signal *w)
1673{ 2204{
1674 ev_clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
1675 if (expect_false (!ev_is_active (w))) 2206 if (expect_false (!ev_is_active (w)))
1676 return; 2207 return;
1677 2208
1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
1679 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1680 2211
1681 if (!signals [w->signum - 1].head) 2212 if (!signals [w->signum - 1].head)
1682 signal (w->signum, SIG_DFL); 2213 signal (w->signum, SIG_DFL);
1683} 2214}
1690#endif 2221#endif
1691 if (expect_false (ev_is_active (w))) 2222 if (expect_false (ev_is_active (w)))
1692 return; 2223 return;
1693 2224
1694 ev_start (EV_A_ (W)w, 1); 2225 ev_start (EV_A_ (W)w, 1);
1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1696} 2227}
1697 2228
1698void 2229void
1699ev_child_stop (EV_P_ ev_child *w) 2230ev_child_stop (EV_P_ ev_child *w)
1700{ 2231{
1701 ev_clear_pending (EV_A_ (W)w); 2232 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2233 if (expect_false (!ev_is_active (w)))
1703 return; 2234 return;
1704 2235
1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1706 ev_stop (EV_A_ (W)w); 2237 ev_stop (EV_A_ (W)w);
1707} 2238}
1708 2239
1709#if EV_EMBED_ENABLE 2240#if EV_STAT_ENABLE
2241
2242# ifdef _WIN32
2243# undef lstat
2244# define lstat(a,b) _stati64 (a,b)
2245# endif
2246
2247#define DEF_STAT_INTERVAL 5.0074891
2248#define MIN_STAT_INTERVAL 0.1074891
2249
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251
2252#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192
2254
1710void noinline 2255static void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w) 2256infy_add (EV_P_ ev_stat *w)
1712{ 2257{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK); 2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259
2260 if (w->wd < 0)
2261 {
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263
2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 {
2269 char path [4096];
2270 strcpy (path, w->path);
2271
2272 do
2273 {
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276
2277 char *pend = strrchr (path, '/');
2278
2279 if (!pend)
2280 break; /* whoops, no '/', complain to your admin */
2281
2282 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 }
2287 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290
2291 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2293}
2294
2295static void noinline
2296infy_del (EV_P_ ev_stat *w)
2297{
2298 int slot;
2299 int wd = w->wd;
2300
2301 if (wd < 0)
2302 return;
2303
2304 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w);
2307
2308 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd);
2310}
2311
2312static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{
2315 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev);
2319 else
2320 {
2321 WL w_;
2322
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2324 {
2325 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */
2327
2328 if (w->wd == wd || wd == -1)
2329 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 {
2332 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 }
2335
2336 stat_timer_cb (EV_A_ &w->timer, 0);
2337 }
2338 }
2339 }
1714} 2340}
1715 2341
1716static void 2342static void
1717embed_cb (EV_P_ ev_io *io, int revents) 2343infy_cb (EV_P_ ev_io *w, int revents)
1718{ 2344{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2345 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf));
1720 2349
1721 if (ev_cb (w)) 2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2351 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1723 else
1724 ev_embed_sweep (loop, w);
1725} 2352}
1726 2353
1727void 2354void inline_size
1728ev_embed_start (EV_P_ ev_embed *w) 2355infy_init (EV_P)
1729{ 2356{
1730 if (expect_false (ev_is_active (w))) 2357 if (fs_fd != -2)
1731 return; 2358 return;
1732 2359
2360 fs_fd = inotify_init ();
2361
2362 if (fs_fd >= 0)
1733 { 2363 {
1734 struct ev_loop *loop = w->loop; 2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2365 ev_set_priority (&fs_w, EV_MAXPRI);
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io); 2366 ev_io_start (EV_A_ &fs_w);
1741 2367 }
1742 ev_start (EV_A_ (W)w, 1);
1743} 2368}
1744 2369
1745void 2370void inline_size
1746ev_embed_stop (EV_P_ ev_embed *w) 2371infy_fork (EV_P)
1747{ 2372{
1748 ev_clear_pending (EV_A_ (W)w); 2373 int slot;
1749 if (expect_false (!ev_is_active (w))) 2374
2375 if (fs_fd < 0)
1750 return; 2376 return;
1751 2377
1752 ev_io_stop (EV_A_ &w->io); 2378 close (fs_fd);
2379 fs_fd = inotify_init ();
1753 2380
1754 ev_stop (EV_A_ (W)w); 2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1755} 2382 {
1756#endif 2383 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0;
1757 2385
1758#if EV_STAT_ENABLE 2386 while (w_)
2387 {
2388 ev_stat *w = (ev_stat *)w_;
2389 w_ = w_->next; /* lets us add this watcher */
1759 2390
1760# ifdef _WIN32 2391 w->wd = -1;
1761# define lstat(a,b) stat(a,b) 2392
2393 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else
2396 ev_timer_start (EV_A_ &w->timer);
2397 }
2398
2399 }
2400}
2401
1762# endif 2402#endif
1763 2403
1764void 2404void
1765ev_stat_stat (EV_P_ ev_stat *w) 2405ev_stat_stat (EV_P_ ev_stat *w)
1766{ 2406{
1767 if (lstat (w->path, &w->attr) < 0) 2407 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0; 2408 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink) 2409 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1; 2410 w->attr.st_nlink = 1;
1771} 2411}
1772 2412
1773static void 2413static void noinline
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2414stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{ 2415{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777 2417
1778 /* we copy this here each the time so that */ 2418 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */ 2419 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr; 2420 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w); 2421 ev_stat_stat (EV_A_ w);
1782 2422
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if (
2425 w->prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime
2436 ) {
2437 #if EV_USE_INOTIFY
2438 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */
2441 #endif
2442
1784 ev_feed_event (EV_A_ w, EV_STAT); 2443 ev_feed_event (EV_A_ w, EV_STAT);
2444 }
1785} 2445}
1786 2446
1787void 2447void
1788ev_stat_start (EV_P_ ev_stat *w) 2448ev_stat_start (EV_P_ ev_stat *w)
1789{ 2449{
1794 memset (&w->prev, 0, sizeof (ev_statdata)); 2454 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata)); 2455 memset (&w->attr, 0, sizeof (ev_statdata));
1796 2456
1797 ev_stat_stat (EV_A_ w); 2457 ev_stat_stat (EV_A_ w);
1798 2458
2459 if (w->interval < MIN_STAT_INTERVAL)
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w)); 2463 ev_set_priority (&w->timer, ev_priority (w));
2464
2465#if EV_USE_INOTIFY
2466 infy_init (EV_A);
2467
2468 if (fs_fd >= 0)
2469 infy_add (EV_A_ w);
2470 else
2471#endif
1801 ev_timer_start (EV_A_ &w->timer); 2472 ev_timer_start (EV_A_ &w->timer);
1802 2473
1803 ev_start (EV_A_ (W)w, 1); 2474 ev_start (EV_A_ (W)w, 1);
1804} 2475}
1805 2476
1806void 2477void
1807ev_stat_stop (EV_P_ ev_stat *w) 2478ev_stat_stop (EV_P_ ev_stat *w)
1808{ 2479{
1809 ev_clear_pending (EV_A_ (W)w); 2480 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2481 if (expect_false (!ev_is_active (w)))
1811 return; 2482 return;
1812 2483
2484#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w);
2486#endif
1813 ev_timer_stop (EV_A_ &w->timer); 2487 ev_timer_stop (EV_A_ &w->timer);
1814 2488
1815 ev_stop (EV_A_ (W)w); 2489 ev_stop (EV_A_ (W)w);
2490}
2491#endif
2492
2493#if EV_IDLE_ENABLE
2494void
2495ev_idle_start (EV_P_ ev_idle *w)
2496{
2497 if (expect_false (ev_is_active (w)))
2498 return;
2499
2500 pri_adjust (EV_A_ (W)w);
2501
2502 {
2503 int active = ++idlecnt [ABSPRI (w)];
2504
2505 ++idleall;
2506 ev_start (EV_A_ (W)w, active);
2507
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w;
2510 }
2511}
2512
2513void
2514ev_idle_stop (EV_P_ ev_idle *w)
2515{
2516 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w)))
2518 return;
2519
2520 {
2521 int active = ev_active (w);
2522
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525
2526 ev_stop (EV_A_ (W)w);
2527 --idleall;
2528 }
2529}
2530#endif
2531
2532void
2533ev_prepare_start (EV_P_ ev_prepare *w)
2534{
2535 if (expect_false (ev_is_active (w)))
2536 return;
2537
2538 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w;
2541}
2542
2543void
2544ev_prepare_stop (EV_P_ ev_prepare *w)
2545{
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 {
2551 int active = ev_active (w);
2552
2553 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active;
2555 }
2556
2557 ev_stop (EV_A_ (W)w);
2558}
2559
2560void
2561ev_check_start (EV_P_ ev_check *w)
2562{
2563 if (expect_false (ev_is_active (w)))
2564 return;
2565
2566 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w;
2569}
2570
2571void
2572ev_check_stop (EV_P_ ev_check *w)
2573{
2574 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w)))
2576 return;
2577
2578 {
2579 int active = ev_active (w);
2580
2581 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active;
2583 }
2584
2585 ev_stop (EV_A_ (W)w);
2586}
2587
2588#if EV_EMBED_ENABLE
2589void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w)
2591{
2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2593}
2594
2595static void
2596embed_io_cb (EV_P_ ev_io *io, int revents)
2597{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599
2600 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2604}
2605
2606static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620}
2621
2622#if 0
2623static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{
2626 ev_idle_stop (EV_A_ idle);
2627}
2628#endif
2629
2630void
2631ev_embed_start (EV_P_ ev_embed *w)
2632{
2633 if (expect_false (ev_is_active (w)))
2634 return;
2635
2636 {
2637 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 }
2641
2642 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io);
2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650
2651 ev_start (EV_A_ (W)w, 1);
2652}
2653
2654void
2655ev_embed_stop (EV_P_ ev_embed *w)
2656{
2657 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w)))
2659 return;
2660
2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2663
2664 ev_stop (EV_A_ (W)w);
2665}
2666#endif
2667
2668#if EV_FORK_ENABLE
2669void
2670ev_fork_start (EV_P_ ev_fork *w)
2671{
2672 if (expect_false (ev_is_active (w)))
2673 return;
2674
2675 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w;
2678}
2679
2680void
2681ev_fork_stop (EV_P_ ev_fork *w)
2682{
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 {
2688 int active = ev_active (w);
2689
2690 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active;
2692 }
2693
2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
1816} 2734}
1817#endif 2735#endif
1818 2736
1819/*****************************************************************************/ 2737/*****************************************************************************/
1820 2738
1878 ev_timer_set (&once->to, timeout, 0.); 2796 ev_timer_set (&once->to, timeout, 0.);
1879 ev_timer_start (EV_A_ &once->to); 2797 ev_timer_start (EV_A_ &once->to);
1880 } 2798 }
1881} 2799}
1882 2800
2801#if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803#endif
2804
1883#ifdef __cplusplus 2805#ifdef __cplusplus
1884} 2806}
1885#endif 2807#endif
1886 2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines