ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 249
163#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
166#endif 253#endif
168#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
171#endif 258#endif
172 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
173#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 276# include <winsock.h>
175#endif 277#endif
176 278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
177/**/ 291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 313
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 317
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 318#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 320# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 321#else
201# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
205#endif 327#endif
206 328
207#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
209 338
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 341
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 342#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 343#define EMPTY2(a,b) /* used to suppress some warnings */
215 344
216typedef ev_watcher *W; 345typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
219 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
221 357
222#ifdef _WIN32 358#ifdef _WIN32
223# include "ev_win32.c" 359# include "ev_win32.c"
224#endif 360#endif
225 361
226/*****************************************************************************/ 362/*****************************************************************************/
227 363
228static void (*syserr_cb)(const char *msg); 364static void (*syserr_cb)(const char *msg);
229 365
366void
230void ev_set_syserr_cb (void (*cb)(const char *msg)) 367ev_set_syserr_cb (void (*cb)(const char *msg))
231{ 368{
232 syserr_cb = cb; 369 syserr_cb = cb;
233} 370}
234 371
235static void 372static void noinline
236syserr (const char *msg) 373syserr (const char *msg)
237{ 374{
238 if (!msg) 375 if (!msg)
239 msg = "(libev) system error"; 376 msg = "(libev) system error";
240 377
245 perror (msg); 382 perror (msg);
246 abort (); 383 abort ();
247 } 384 }
248} 385}
249 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
250static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
251 403
404void
252void ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
253{ 406{
254 alloc = cb; 407 alloc = cb;
255} 408}
256 409
257static void * 410inline_speed void *
258ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
259{ 412{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
261 414
262 if (!ptr && size) 415 if (!ptr && size)
263 { 416 {
264 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
265 abort (); 418 abort ();
286typedef struct 439typedef struct
287{ 440{
288 W w; 441 W w;
289 int events; 442 int events;
290} ANPENDING; 443} ANPENDING;
444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
291 470
292#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
293 472
294 struct ev_loop 473 struct ev_loop
295 { 474 {
315 494
316#endif 495#endif
317 496
318/*****************************************************************************/ 497/*****************************************************************************/
319 498
320ev_tstamp noinline 499ev_tstamp
321ev_time (void) 500ev_time (void)
322{ 501{
323#if EV_USE_REALTIME 502#if EV_USE_REALTIME
324 struct timespec ts; 503 struct timespec ts;
325 clock_gettime (CLOCK_REALTIME, &ts); 504 clock_gettime (CLOCK_REALTIME, &ts);
352{ 531{
353 return ev_rt_now; 532 return ev_rt_now;
354} 533}
355#endif 534#endif
356 535
357#define array_roundsize(type,n) (((n) | 4) & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
358 592
359#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
360 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
361 { \ 595 { \
362 int newcnt = cur; \ 596 int ocur_ = (cur); \
363 do \ 597 (base) = (type *)array_realloc \
364 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
365 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
366 } \
367 while ((cnt) > newcnt); \
368 \
369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
370 init (base + cur, newcnt - cur); \
371 cur = newcnt; \
372 } 600 }
373 601
602#if 0
374#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \ 605 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 } 609 }
610#endif
381 611
382#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
614
615/*****************************************************************************/
616
617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
384 642
385/*****************************************************************************/ 643/*****************************************************************************/
386 644
387void inline_size 645void inline_size
388anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
395 653
396 ++base; 654 ++base;
397 } 655 }
398} 656}
399 657
400void noinline
401ev_feed_event (EV_P_ void *w, int revents)
402{
403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
406 {
407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
408 return;
409 }
410
411 w_->pending = ++pendingcnt [ABSPRI (w_)];
412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415}
416
417static void
418queue_events (EV_P_ W *events, int eventcnt, int type)
419{
420 int i;
421
422 for (i = 0; i < eventcnt; ++i)
423 ev_feed_event (EV_A_ events [i], type);
424}
425
426void inline_speed 658void inline_speed
427fd_event (EV_P_ int fd, int revents) 659fd_event (EV_P_ int fd, int revents)
428{ 660{
429 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
430 ev_io *w; 662 ev_io *w;
439} 671}
440 672
441void 673void
442ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
443{ 675{
676 if (fd >= 0 && fd < anfdmax)
444 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
445} 678}
446
447/*****************************************************************************/
448 679
449void inline_size 680void inline_size
450fd_reify (EV_P) 681fd_reify (EV_P)
451{ 682{
452 int i; 683 int i;
455 { 686 {
456 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
457 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
458 ev_io *w; 689 ev_io *w;
459 690
460 int events = 0; 691 unsigned char events = 0;
461 692
462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
463 events |= w->events; 694 events |= (unsigned char)w->events;
464 695
465#if EV_SELECT_IS_WINSOCKET 696#if EV_SELECT_IS_WINSOCKET
466 if (events) 697 if (events)
467 { 698 {
468 unsigned long argp; 699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
469 anfd->handle = _get_osfhandle (fd); 703 anfd->handle = _get_osfhandle (fd);
704 #endif
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
471 } 706 }
472#endif 707#endif
473 708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
474 anfd->reify = 0; 713 anfd->reify = 0;
475
476 backend_modify (EV_A_ fd, anfd->events, events);
477 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
478 } 719 }
479 720
480 fdchangecnt = 0; 721 fdchangecnt = 0;
481} 722}
482 723
483void inline_size 724void inline_size
484fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
485{ 726{
486 if (expect_false (anfds [fd].reify)) 727 unsigned char reify = anfds [fd].reify;
487 return;
488
489 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
490 729
730 if (expect_true (!reify))
731 {
491 ++fdchangecnt; 732 ++fdchangecnt;
492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
493 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
494} 736}
495 737
496void inline_speed 738void inline_speed
497fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
498{ 740{
545static void noinline 787static void noinline
546fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
547{ 789{
548 int fd; 790 int fd;
549 791
550 /* this should be highly optimised to not do anything but set a flag */
551 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
552 if (anfds [fd].events) 793 if (anfds [fd].events)
553 { 794 {
554 anfds [fd].events = 0; 795 anfds [fd].events = 0;
555 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
556 } 797 }
557} 798}
558 799
559/*****************************************************************************/ 800/*****************************************************************************/
560 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
561void inline_speed 822void inline_speed
562upheap (WT *heap, int k) 823downheap (ANHE *heap, int N, int k)
563{ 824{
564 WT w = heap [k]; 825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
565 827
566 while (k && heap [k >> 1]->at > w->at) 828 for (;;)
567 {
568 heap [k] = heap [k >> 1];
569 ((W)heap [k])->active = k + 1;
570 k >>= 1;
571 } 829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
572 833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
573 heap [k] = w; 861 heap [k] = he;
574 ((W)heap [k])->active = k + 1; 862 ev_active (ANHE_w (he)) = k;
575
576} 863}
577 864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
578void inline_speed 872void inline_speed
579downheap (WT *heap, int N, int k) 873downheap (ANHE *heap, int N, int k)
580{ 874{
581 WT w = heap [k]; 875 ANHE he = heap [k];
582 876
583 while (k < (N >> 1)) 877 for (;;)
584 { 878 {
585 int j = k << 1; 879 int c = k << 1;
586 880
587 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 881 if (c > N + HEAP0 - 1)
588 ++j;
589
590 if (w->at <= heap [j]->at)
591 break; 882 break;
592 883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
593 heap [k] = heap [j]; 890 heap [k] = heap [c];
594 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
892
595 k = j; 893 k = c;
596 } 894 }
597 895
598 heap [k] = w; 896 heap [k] = he;
599 ((W)heap [k])->active = k + 1; 897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
600} 921}
601 922
602void inline_size 923void inline_size
603adjustheap (WT *heap, int N, int k) 924adjustheap (ANHE *heap, int N, int k)
604{ 925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
605 upheap (heap, k); 927 upheap (heap, k);
928 else
606 downheap (heap, N, k); 929 downheap (heap, N, k);
607} 930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
944static void
945checkheap (ANHE *heap, int N)
946{
947 int i;
948
949 for (i = HEAP0; i < N + HEAP0; ++i)
950 {
951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
954 }
955}
956#endif
608 957
609/*****************************************************************************/ 958/*****************************************************************************/
610 959
611typedef struct 960typedef struct
612{ 961{
613 WL head; 962 WL head;
614 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
615} ANSIG; 964} ANSIG;
616 965
617static ANSIG *signals; 966static ANSIG *signals;
618static int signalmax; 967static int signalmax;
619 968
620static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
621static sig_atomic_t volatile gotsig;
622static ev_io sigev;
623 970
624void inline_size 971void inline_size
625signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
626{ 973{
627 while (count--) 974 while (count--)
631 978
632 ++base; 979 ++base;
633 } 980 }
634} 981}
635 982
636static void 983/*****************************************************************************/
637sighandler (int signum)
638{
639#if _WIN32
640 signal (signum, sighandler);
641#endif
642 984
643 signals [signum - 1].gotsig = 1;
644
645 if (!gotsig)
646 {
647 int old_errno = errno;
648 gotsig = 1;
649 write (sigpipe [1], &signum, 1);
650 errno = old_errno;
651 }
652}
653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
674static void
675sigcb (EV_P_ ev_io *iow, int revents)
676{
677 int signum;
678
679 read (sigpipe [0], &revents, 1);
680 gotsig = 0;
681
682 for (signum = signalmax; signum--; )
683 if (signals [signum].gotsig)
684 ev_feed_signal_event (EV_A_ signum + 1);
685}
686
687void inline_size 985void inline_speed
688fd_intern (int fd) 986fd_intern (int fd)
689{ 987{
690#ifdef _WIN32 988#ifdef _WIN32
691 int arg = 1; 989 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif 994#endif
697} 995}
698 996
699static void noinline 997static void noinline
700siginit (EV_P) 998evpipe_init (EV_P)
701{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
702 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
703 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
704 1019
705 ev_io_set (&sigev, sigpipe [0], EV_READ);
706 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
707 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
708} 1088}
709 1089
710/*****************************************************************************/ 1090/*****************************************************************************/
711 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
712static ev_child *childs [PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
713 1130
714#ifndef _WIN32 1131#ifndef _WIN32
715 1132
716static ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
717 1157
718#ifndef WCONTINUED 1158#ifndef WCONTINUED
719# define WCONTINUED 0 1159# define WCONTINUED 0
720#endif 1160#endif
721 1161
722void inline_speed
723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
724{
725 ev_child *w;
726
727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
728 if (w->pid == pid || !w->pid)
729 {
730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
731 w->rpid = pid;
732 w->rstatus = status;
733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
734 }
735}
736
737static void 1162static void
738childcb (EV_P_ ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
739{ 1164{
740 int pid, status; 1165 int pid, status;
741 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
743 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
744 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
747 1177
748 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
750 }
751} 1181}
752 1182
753#endif 1183#endif
754 1184
755/*****************************************************************************/ 1185/*****************************************************************************/
827} 1257}
828 1258
829unsigned int 1259unsigned int
830ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
831{ 1261{
832 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
833 | EVBACKEND_KQUEUE 1263
834 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
835} 1269}
836 1270
837unsigned int 1271unsigned int
838ev_backend (EV_P) 1272ev_backend (EV_P)
839{ 1273{
840 return backend; 1274 return backend;
841} 1275}
842 1276
843static void 1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
844loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
845{ 1297{
846 if (!backend) 1298 if (!backend)
847 { 1299 {
848#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
851 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
852 have_monotonic = 1; 1304 have_monotonic = 1;
853 } 1305 }
854#endif 1306#endif
855 1307
856 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
857 mn_now = get_clock (); 1309 mn_now = get_clock ();
858 now_floor = mn_now; 1310 now_floor = mn_now;
859 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
860 1327
861 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
862 && !enable_secure () 1329 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
864 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
865 1332
866 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
867 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
868 1335
869 backend = 0;
870#if EV_USE_PORT 1336#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif 1338#endif
873#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
881#endif 1347#endif
882#if EV_USE_SELECT 1348#if EV_USE_SELECT
883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
884#endif 1350#endif
885 1351
886 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
887 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
888 } 1354 }
889} 1355}
890 1356
891static void 1357static void noinline
892loop_destroy (EV_P) 1358loop_destroy (EV_P)
893{ 1359{
894 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
1379#if EV_USE_INOTIFY
1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
895 1386
896#if EV_USE_PORT 1387#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif 1389#endif
899#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
908#if EV_USE_SELECT 1399#if EV_USE_SELECT
909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
910#endif 1401#endif
911 1402
912 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
913 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
914 1412
915 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
916 array_free (fdchange, EMPTY0); 1414 array_free (fdchange, EMPTY);
917 array_free (timer, EMPTY0); 1415 array_free (timer, EMPTY);
918#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0); 1417 array_free (periodic, EMPTY);
920#endif 1418#endif
1419#if EV_FORK_ENABLE
921 array_free (idle, EMPTY0); 1420 array_free (fork, EMPTY);
1421#endif
922 array_free (prepare, EMPTY0); 1422 array_free (prepare, EMPTY);
923 array_free (check, EMPTY0); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
924 1427
925 backend = 0; 1428 backend = 0;
926} 1429}
927 1430
928static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
929loop_fork (EV_P) 1436loop_fork (EV_P)
930{ 1437{
931#if EV_USE_PORT 1438#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif 1440#endif
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif 1443#endif
937#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
939#endif 1446#endif
1447#if EV_USE_INOTIFY
1448 infy_fork (EV_A);
1449#endif
940 1450
941 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
942 { 1452 {
943 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
944 1459
945 ev_ref (EV_A); 1460 ev_ref (EV_A);
946 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
947 close (sigpipe [0]); 1470 close (evpipe [0]);
948 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
949 1473
950 while (pipe (sigpipe))
951 syserr ("(libev) error creating pipe");
952
953 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
954 } 1477 }
955 1478
956 postfork = 0; 1479 postfork = 0;
957} 1480}
958 1481
980} 1503}
981 1504
982void 1505void
983ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
984{ 1507{
985 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
986} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
987 1543
988#endif 1544#endif
989 1545
990#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
991struct ev_loop * 1547struct ev_loop *
993#else 1549#else
994int 1550int
995ev_default_loop (unsigned int flags) 1551ev_default_loop (unsigned int flags)
996#endif 1552#endif
997{ 1553{
998 if (sigpipe [0] == sigpipe [1])
999 if (pipe (sigpipe))
1000 return 0;
1001
1002 if (!ev_default_loop_ptr) 1554 if (!ev_default_loop_ptr)
1003 { 1555 {
1004#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1006#else 1558#else
1009 1561
1010 loop_init (EV_A_ flags); 1562 loop_init (EV_A_ flags);
1011 1563
1012 if (ev_backend (EV_A)) 1564 if (ev_backend (EV_A))
1013 { 1565 {
1014 siginit (EV_A);
1015
1016#ifndef _WIN32 1566#ifndef _WIN32
1017 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
1018 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
1019 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
1020 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
1037#ifndef _WIN32 1587#ifndef _WIN32
1038 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
1039 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
1040#endif 1590#endif
1041 1591
1042 ev_ref (EV_A); /* signal watcher */
1043 ev_io_stop (EV_A_ &sigev);
1044
1045 close (sigpipe [0]); sigpipe [0] = 0;
1046 close (sigpipe [1]); sigpipe [1] = 0;
1047
1048 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
1049} 1593}
1050 1594
1051void 1595void
1052ev_default_fork (void) 1596ev_default_fork (void)
1054#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
1055 struct ev_loop *loop = ev_default_loop_ptr; 1599 struct ev_loop *loop = ev_default_loop_ptr;
1056#endif 1600#endif
1057 1601
1058 if (backend) 1602 if (backend)
1059 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
1060} 1604}
1061 1605
1062/*****************************************************************************/ 1606/*****************************************************************************/
1063 1607
1064int inline_size 1608void
1065any_pending (EV_P) 1609ev_invoke (EV_P_ void *w, int revents)
1066{ 1610{
1067 int pri; 1611 EV_CB_INVOKE ((W)w, revents);
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074} 1612}
1075 1613
1076void inline_speed 1614void inline_speed
1077call_pending (EV_P) 1615call_pending (EV_P)
1078{ 1616{
1079 int pri; 1617 int pri;
1618
1619 EV_FREQUENT_CHECK;
1080 1620
1081 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
1082 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
1083 { 1623 {
1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1085 1625
1086 if (expect_true (p->w)) 1626 if (expect_true (p->w))
1087 { 1627 {
1088 assert (("non-pending watcher on pending list", p->w->pending)); 1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1089 1629
1090 p->w->pending = 0; 1630 p->w->pending = 0;
1091 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
1092 } 1632 }
1093 } 1633 }
1634
1635 EV_FREQUENT_CHECK;
1094} 1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1095 1660
1096void inline_size 1661void inline_size
1097timers_reify (EV_P) 1662timers_reify (EV_P)
1098{ 1663{
1664 EV_FREQUENT_CHECK;
1665
1099 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1100 { 1667 {
1101 ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1102 1669
1103 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1104 1671
1105 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
1106 if (w->repeat) 1673 if (w->repeat)
1107 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109 1680
1110 ((WT)w)->at += w->repeat; 1681 ANHE_at_cache (timers [HEAP0]);
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
1114 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
1115 } 1683 }
1116 else 1684 else
1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1118 1686
1687 EV_FREQUENT_CHECK;
1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1120 } 1689 }
1121} 1690}
1122 1691
1123#if EV_PERIODIC_ENABLE 1692#if EV_PERIODIC_ENABLE
1124void inline_size 1693void inline_size
1125periodics_reify (EV_P) 1694periodics_reify (EV_P)
1126{ 1695{
1696 EV_FREQUENT_CHECK;
1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1128 { 1698 {
1129 ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1130 1700
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1132 1702
1133 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
1134 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
1135 { 1705 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
1138 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
1139 } 1713 }
1140 else if (w->interval) 1714 else if (w->interval)
1141 { 1715 {
1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1145 } 1732 }
1146 else 1733 else
1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1148 1735
1736 EV_FREQUENT_CHECK;
1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1150 } 1738 }
1151} 1739}
1152 1740
1153static void noinline 1741static void noinline
1154periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1155{ 1743{
1156 int i; 1744 int i;
1157 1745
1158 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1159 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1160 { 1748 {
1161 ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1162 1750
1163 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1165 else if (w->interval) 1753 else if (w->interval)
1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1755
1756 ANHE_at_cache (periodics [i]);
1757 }
1758
1759 reheap (periodics, periodiccnt);
1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1765{
1766 int i;
1767
1768#if EV_USE_MONOTONIC
1769 if (expect_true (have_monotonic))
1167 } 1770 {
1771 ev_tstamp odiff = rtmn_diff;
1168 1772
1169 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i);
1172}
1173#endif
1174
1175int inline_size
1176time_update_monotonic (EV_P)
1177{
1178 mn_now = get_clock (); 1773 mn_now = get_clock ();
1179 1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1181 { 1778 {
1182 ev_rt_now = rtmn_diff + mn_now; 1779 ev_rt_now = rtmn_diff + mn_now;
1183 return 0; 1780 return;
1184 } 1781 }
1185 else 1782
1186 {
1187 now_floor = mn_now; 1783 now_floor = mn_now;
1188 ev_rt_now = ev_time (); 1784 ev_rt_now = ev_time ();
1189 return 1;
1190 }
1191}
1192 1785
1193void inline_size 1786 /* loop a few times, before making important decisions.
1194time_update (EV_P) 1787 * on the choice of "4": one iteration isn't enough,
1195{ 1788 * in case we get preempted during the calls to
1196 int i; 1789 * ev_time and get_clock. a second call is almost guaranteed
1197 1790 * to succeed in that case, though. and looping a few more times
1198#if EV_USE_MONOTONIC 1791 * doesn't hurt either as we only do this on time-jumps or
1199 if (expect_true (have_monotonic)) 1792 * in the unlikely event of having been preempted here.
1200 { 1793 */
1201 if (time_update_monotonic (EV_A)) 1794 for (i = 4; --i; )
1202 { 1795 {
1203 ev_tstamp odiff = rtmn_diff;
1204
1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1214 {
1215 rtmn_diff = ev_rt_now - mn_now; 1796 rtmn_diff = ev_rt_now - mn_now;
1216 1797
1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1218 return; /* all is well */ 1799 return; /* all is well */
1219 1800
1220 ev_rt_now = ev_time (); 1801 ev_rt_now = ev_time ();
1221 mn_now = get_clock (); 1802 mn_now = get_clock ();
1222 now_floor = mn_now; 1803 now_floor = mn_now;
1223 } 1804 }
1224 1805
1225# if EV_PERIODIC_ENABLE 1806# if EV_PERIODIC_ENABLE
1226 periodics_reschedule (EV_A); 1807 periodics_reschedule (EV_A);
1227# endif 1808# endif
1228 /* no timer adjustment, as the monotonic clock doesn't jump */ 1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1230 }
1231 } 1811 }
1232 else 1812 else
1233#endif 1813#endif
1234 { 1814 {
1235 ev_rt_now = ev_time (); 1815 ev_rt_now = ev_time ();
1236 1816
1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1238 { 1818 {
1239#if EV_PERIODIC_ENABLE 1819#if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1820 periodics_reschedule (EV_A);
1241#endif 1821#endif
1242
1243 /* adjust timers. this is easy, as the offset is the same for all */ 1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1244 for (i = 0; i < timercnt; ++i) 1823 for (i = 0; i < timercnt; ++i)
1824 {
1825 ANHE *he = timers + i + HEAP0;
1245 ((WT)timers [i])->at += ev_rt_now - mn_now; 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1827 ANHE_at_cache (*he);
1828 }
1246 } 1829 }
1247 1830
1248 mn_now = ev_rt_now; 1831 mn_now = ev_rt_now;
1249 } 1832 }
1250} 1833}
1264static int loop_done; 1847static int loop_done;
1265 1848
1266void 1849void
1267ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1268{ 1851{
1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1852 loop_done = EVUNLOOP_CANCEL;
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1272 1853
1273 while (activecnt) 1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1855
1856 do
1274 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1275 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1276 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1277 { 1879 {
1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1279 call_pending (EV_A); 1881 call_pending (EV_A);
1280 } 1882 }
1281 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1282 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1283 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1284 loop_fork (EV_A); 1889 loop_fork (EV_A);
1285 1890
1286 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1287 fd_reify (EV_A); 1892 fd_reify (EV_A);
1288 1893
1289 /* calculate blocking time */ 1894 /* calculate blocking time */
1290 { 1895 {
1291 double block; 1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1292 1898
1293 if (flags & EVLOOP_NONBLOCK || idlecnt) 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1294 block = 0.; /* do not block at all */
1295 else
1296 { 1900 {
1297 /* update time to cancel out callback processing overhead */ 1901 /* update time to cancel out callback processing overhead */
1298#if EV_USE_MONOTONIC
1299 if (expect_true (have_monotonic))
1300 time_update_monotonic (EV_A); 1902 time_update (EV_A_ 1e100);
1301 else
1302#endif
1303 {
1304 ev_rt_now = ev_time ();
1305 mn_now = ev_rt_now;
1306 }
1307 1903
1308 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1309 1905
1310 if (timercnt) 1906 if (timercnt)
1311 { 1907 {
1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1313 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1314 } 1910 }
1315 1911
1316#if EV_PERIODIC_ENABLE 1912#if EV_PERIODIC_ENABLE
1317 if (periodiccnt) 1913 if (periodiccnt)
1318 { 1914 {
1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1320 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1321 } 1917 }
1322#endif 1918#endif
1323 1919
1324 if (expect_false (block < 0.)) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1325 } 1933 }
1326 1934
1935 ++loop_count;
1327 backend_poll (EV_A_ block); 1936 backend_poll (EV_A_ waittime);
1937
1938 /* update ev_rt_now, do magic */
1939 time_update (EV_A_ waittime + sleeptime);
1328 } 1940 }
1329
1330 /* update ev_rt_now, do magic */
1331 time_update (EV_A);
1332 1941
1333 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1334 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE 1944#if EV_PERIODIC_ENABLE
1336 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1337#endif 1946#endif
1338 1947
1948#if EV_IDLE_ENABLE
1339 /* queue idle watchers unless other events are pending */ 1949 /* queue idle watchers unless other events are pending */
1340 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1342 1952
1343 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1344 if (expect_false (checkcnt)) 1954 if (expect_false (checkcnt))
1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1346 1956
1347 call_pending (EV_A); 1957 call_pending (EV_A);
1348
1349 if (expect_false (loop_done))
1350 break;
1351 } 1958 }
1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1352 1964
1353 if (loop_done == EVUNLOOP_ONE) 1965 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL; 1966 loop_done = EVUNLOOP_CANCEL;
1355} 1967}
1356 1968
1383 head = &(*head)->next; 1995 head = &(*head)->next;
1384 } 1996 }
1385} 1997}
1386 1998
1387void inline_speed 1999void inline_speed
1388ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1389{ 2001{
1390 if (w->pending) 2002 if (w->pending)
1391 { 2003 {
1392 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1393 w->pending = 0; 2005 w->pending = 0;
1394 } 2006 }
1395} 2007}
1396 2008
2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
1397void inline_speed 2035void inline_speed
1398ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1399{ 2037{
1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1402
1403 w->active = active; 2039 w->active = active;
1404 ev_ref (EV_A); 2040 ev_ref (EV_A);
1405} 2041}
1406 2042
1407void inline_size 2043void inline_size
1411 w->active = 0; 2047 w->active = 0;
1412} 2048}
1413 2049
1414/*****************************************************************************/ 2050/*****************************************************************************/
1415 2051
1416void 2052void noinline
1417ev_io_start (EV_P_ ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1418{ 2054{
1419 int fd = w->fd; 2055 int fd = w->fd;
1420 2056
1421 if (expect_false (ev_is_active (w))) 2057 if (expect_false (ev_is_active (w)))
1422 return; 2058 return;
1423 2059
1424 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
1425 2061
2062 EV_FREQUENT_CHECK;
2063
1426 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1428 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1429 2067
1430 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1431} 2069 w->events &= ~EV_IOFDSET;
1432 2070
1433void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1434ev_io_stop (EV_P_ ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1435{ 2076{
1436 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1437 if (expect_false (!ev_is_active (w))) 2078 if (expect_false (!ev_is_active (w)))
1438 return; 2079 return;
1439 2080
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1441 2082
2083 EV_FREQUENT_CHECK;
2084
1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1443 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1444 2087
1445 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1446}
1447 2089
1448void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1449ev_timer_start (EV_P_ ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1450{ 2095{
1451 if (expect_false (ev_is_active (w))) 2096 if (expect_false (ev_is_active (w)))
1452 return; 2097 return;
1453 2098
1454 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1455 2100
1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1457 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1458 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1460 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1461 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1462 2111
2112 EV_FREQUENT_CHECK;
2113
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1464} 2115}
1465 2116
1466void 2117void noinline
1467ev_timer_stop (EV_P_ ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1468{ 2119{
1469 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1470 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1471 return; 2122 return;
1472 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1474 2130
2131 --timercnt;
2132
1475 if (expect_true (((W)w)->active < timercnt--)) 2133 if (expect_true (active < timercnt + HEAP0))
1476 { 2134 {
1477 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1479 } 2137 }
2138 }
1480 2139
1481 ((WT)w)->at -= mn_now; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1482 2143
1483 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1484} 2145}
1485 2146
1486void 2147void noinline
1487ev_timer_again (EV_P_ ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1488{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1489 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1490 { 2153 {
1491 if (w->repeat) 2154 if (w->repeat)
1492 { 2155 {
1493 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
2157 ANHE_at_cache (timers [ev_active (w)]);
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2158 adjustheap (timers, timercnt, ev_active (w));
1495 } 2159 }
1496 else 2160 else
1497 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1498 } 2162 }
1499 else if (w->repeat) 2163 else if (w->repeat)
1500 { 2164 {
1501 w->at = w->repeat; 2165 ev_at (w) = w->repeat;
1502 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1503 } 2167 }
2168
2169 EV_FREQUENT_CHECK;
1504} 2170}
1505 2171
1506#if EV_PERIODIC_ENABLE 2172#if EV_PERIODIC_ENABLE
1507void 2173void noinline
1508ev_periodic_start (EV_P_ ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1509{ 2175{
1510 if (expect_false (ev_is_active (w))) 2176 if (expect_false (ev_is_active (w)))
1511 return; 2177 return;
1512 2178
1513 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval) 2181 else if (w->interval)
1516 { 2182 {
1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1518 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1520 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1521 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1522 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1524 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1525 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1526 2198
2199 EV_FREQUENT_CHECK;
2200
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1528} 2202}
1529 2203
1530void 2204void noinline
1531ev_periodic_stop (EV_P_ ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1532{ 2206{
1533 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1534 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1535 return; 2209 return;
1536 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1538 2217
2218 --periodiccnt;
2219
1539 if (expect_true (((W)w)->active < periodiccnt--)) 2220 if (expect_true (active < periodiccnt + HEAP0))
1540 { 2221 {
1541 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1543 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1544 2228
1545 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1546} 2230}
1547 2231
1548void 2232void noinline
1549ev_periodic_again (EV_P_ ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1550{ 2234{
1551 /* TODO: use adjustheap and recalculation */ 2235 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1554} 2238}
1555#endif 2239#endif
1556 2240
1557void 2241#ifndef SA_RESTART
2242# define SA_RESTART 0
2243#endif
2244
2245void noinline
1558ev_idle_start (EV_P_ ev_idle *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1559{ 2247{
2248#if EV_MULTIPLICITY
2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2250#endif
1560 if (expect_false (ev_is_active (w))) 2251 if (expect_false (ev_is_active (w)))
1561 return; 2252 return;
1562 2253
1563 ev_start (EV_A_ (W)w, ++idlecnt); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1565 idles [idlecnt - 1] = w;
1566}
1567 2255
1568void 2256 evpipe_init (EV_A);
1569ev_idle_stop (EV_P_ ev_idle *w) 2257
1570{ 2258 EV_FREQUENT_CHECK;
1571 ev_clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w)))
1573 return;
1574 2259
1575 { 2260 {
1576 int active = ((W)w)->active; 2261#ifndef _WIN32
1577 idles [active - 1] = idles [--idlecnt]; 2262 sigset_t full, prev;
1578 ((W)idles [active - 1])->active = active; 2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
1579 } 2272 }
1580 2273
1581 ev_stop (EV_A_ (W)w);
1582}
1583
1584void
1585ev_prepare_start (EV_P_ ev_prepare *w)
1586{
1587 if (expect_false (ev_is_active (w)))
1588 return;
1589
1590 ev_start (EV_A_ (W)w, ++preparecnt);
1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1592 prepares [preparecnt - 1] = w;
1593}
1594
1595void
1596ev_prepare_stop (EV_P_ ev_prepare *w)
1597{
1598 ev_clear_pending (EV_A_ (W)w);
1599 if (expect_false (!ev_is_active (w)))
1600 return;
1601
1602 {
1603 int active = ((W)w)->active;
1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1608 ev_stop (EV_A_ (W)w);
1609}
1610
1611void
1612ev_check_start (EV_P_ ev_check *w)
1613{
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 ev_start (EV_A_ (W)w, ++checkcnt);
1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1619 checks [checkcnt - 1] = w;
1620}
1621
1622void
1623ev_check_stop (EV_P_ ev_check *w)
1624{
1625 ev_clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w)))
1627 return;
1628
1629 {
1630 int active = ((W)w)->active;
1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1635 ev_stop (EV_A_ (W)w);
1636}
1637
1638#ifndef SA_RESTART
1639# define SA_RESTART 0
1640#endif
1641
1642void
1643ev_signal_start (EV_P_ ev_signal *w)
1644{
1645#if EV_MULTIPLICITY
1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1647#endif
1648 if (expect_false (ev_is_active (w)))
1649 return;
1650
1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1652
1653 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1656 2276
1657 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1658 { 2278 {
1659#if _WIN32 2279#if _WIN32
1660 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1661#else 2281#else
1662 struct sigaction sa; 2282 struct sigaction sa;
1663 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1664 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1665 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1666 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1667#endif 2287#endif
1668 } 2288 }
1669}
1670 2289
1671void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1672ev_signal_stop (EV_P_ ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1673{ 2295{
1674 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1675 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1676 return; 2298 return;
1677 2299
2300 EV_FREQUENT_CHECK;
2301
1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1679 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1680 2304
1681 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1682 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
2307
2308 EV_FREQUENT_CHECK;
1683} 2309}
1684 2310
1685void 2311void
1686ev_child_start (EV_P_ ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1687{ 2313{
1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1690#endif 2316#endif
1691 if (expect_false (ev_is_active (w))) 2317 if (expect_false (ev_is_active (w)))
1692 return; 2318 return;
1693 2319
2320 EV_FREQUENT_CHECK;
2321
1694 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2324
2325 EV_FREQUENT_CHECK;
1696} 2326}
1697 2327
1698void 2328void
1699ev_child_stop (EV_P_ ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1700{ 2330{
1701 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1703 return; 2333 return;
1704 2334
2335 EV_FREQUENT_CHECK;
2336
1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1706 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
1707}
1708 2339
2340 EV_FREQUENT_CHECK;
2341}
2342
1709#if EV_EMBED_ENABLE 2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
1710void noinline 2358static void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w) 2359infy_add (EV_P_ ev_stat *w)
1712{ 2360{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK); 2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
1714} 2443}
1715 2444
1716static void 2445static void
1717embed_cb (EV_P_ ev_io *io, int revents) 2446infy_cb (EV_P_ ev_io *w, int revents)
1718{ 2447{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
1720 2452
1721 if (ev_cb (w)) 2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1723 else
1724 ev_embed_sweep (loop, w);
1725} 2455}
1726 2456
1727void 2457void inline_size
1728ev_embed_start (EV_P_ ev_embed *w) 2458infy_init (EV_P)
1729{ 2459{
1730 if (expect_false (ev_is_active (w))) 2460 if (fs_fd != -2)
1731 return; 2461 return;
1732 2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
1733 { 2466 {
1734 struct ev_loop *loop = w->loop; 2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2468 ev_set_priority (&fs_w, EV_MAXPRI);
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io); 2469 ev_io_start (EV_A_ &fs_w);
1741 2470 }
1742 ev_start (EV_A_ (W)w, 1);
1743} 2471}
1744 2472
1745void 2473void inline_size
1746ev_embed_stop (EV_P_ ev_embed *w) 2474infy_fork (EV_P)
1747{ 2475{
1748 ev_clear_pending (EV_A_ (W)w); 2476 int slot;
1749 if (expect_false (!ev_is_active (w))) 2477
2478 if (fs_fd < 0)
1750 return; 2479 return;
1751 2480
1752 ev_io_stop (EV_A_ &w->io); 2481 close (fs_fd);
2482 fs_fd = inotify_init ();
1753 2483
1754 ev_stop (EV_A_ (W)w); 2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1755} 2485 {
1756#endif 2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
1757 2488
1758#if EV_STAT_ENABLE 2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
1759 2493
1760# ifdef _WIN32 2494 w->wd = -1;
1761# define lstat(a,b) stat(a,b) 2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
1762# endif 2505#endif
1763 2506
1764void 2507void
1765ev_stat_stat (EV_P_ ev_stat *w) 2508ev_stat_stat (EV_P_ ev_stat *w)
1766{ 2509{
1767 if (lstat (w->path, &w->attr) < 0) 2510 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0; 2511 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink) 2512 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1; 2513 w->attr.st_nlink = 1;
1771} 2514}
1772 2515
1773static void 2516static void noinline
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{ 2518{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777 2520
1778 /* we copy this here each the time so that */ 2521 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */ 2522 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr; 2523 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w); 2524 ev_stat_stat (EV_A_ w);
1782 2525
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
1784 ev_feed_event (EV_A_ w, EV_STAT); 2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
1785} 2548}
1786 2549
1787void 2550void
1788ev_stat_start (EV_P_ ev_stat *w) 2551ev_stat_start (EV_P_ ev_stat *w)
1789{ 2552{
1794 memset (&w->prev, 0, sizeof (ev_statdata)); 2557 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata)); 2558 memset (&w->attr, 0, sizeof (ev_statdata));
1796 2559
1797 ev_stat_stat (EV_A_ w); 2560 ev_stat_stat (EV_A_ w);
1798 2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w)); 2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
1801 ev_timer_start (EV_A_ &w->timer); 2575 ev_timer_start (EV_A_ &w->timer);
1802 2576
1803 ev_start (EV_A_ (W)w, 1); 2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
1804} 2580}
1805 2581
1806void 2582void
1807ev_stat_stop (EV_P_ ev_stat *w) 2583ev_stat_stop (EV_P_ ev_stat *w)
1808{ 2584{
1809 ev_clear_pending (EV_A_ (W)w); 2585 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2586 if (expect_false (!ev_is_active (w)))
1811 return; 2587 return;
1812 2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
1813 ev_timer_stop (EV_A_ &w->timer); 2594 ev_timer_stop (EV_A_ &w->timer);
1814 2595
1815 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
2657 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2662}
2663
2664void
2665ev_prepare_stop (EV_P_ ev_prepare *w)
2666{
2667 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w)))
2669 return;
2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_check_start (EV_P_ ev_check *w)
2687{
2688 if (expect_false (ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_check_stop (EV_P_ ev_check *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2789}
2790
2791void
2792ev_embed_stop (EV_P_ ev_embed *w)
2793{
2794 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w)))
2796 return;
2797
2798 EV_FREQUENT_CHECK;
2799
2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
1816} 2891}
1817#endif 2892#endif
1818 2893
1819/*****************************************************************************/ 2894/*****************************************************************************/
1820 2895
1878 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1879 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1880 } 2955 }
1881} 2956}
1882 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
1883#ifdef __cplusplus 2962#ifdef __cplusplus
1884} 2963}
1885#endif 2964#endif
1886 2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines