ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC vs.
Revision 1.285 by root, Wed Apr 15 19:35:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 123# else
95# define EV_USE_PORT 0 124# define EV_USE_PORT 0
96# endif 125# endif
97# endif 126# endif
98 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
99#endif 144#endif
100 145
101#include <math.h> 146#include <math.h>
102#include <stdlib.h> 147#include <stdlib.h>
103#include <fcntl.h> 148#include <fcntl.h>
109#include <errno.h> 154#include <errno.h>
110#include <sys/types.h> 155#include <sys/types.h>
111#include <time.h> 156#include <time.h>
112 157
113#include <signal.h> 158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
114 165
115#ifndef _WIN32 166#ifndef _WIN32
116# include <sys/time.h> 167# include <sys/time.h>
117# include <sys/wait.h> 168# include <sys/wait.h>
118# include <unistd.h> 169# include <unistd.h>
119#else 170#else
171# include <io.h>
120# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 173# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
124# endif 176# endif
125#endif 177#endif
126 178
127/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
128 188
129#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
130# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
131#endif 195#endif
132 196
133#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
135#endif 207#endif
136 208
137#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
139#endif 211#endif
145# define EV_USE_POLL 1 217# define EV_USE_POLL 1
146# endif 218# endif
147#endif 219#endif
148 220
149#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
150# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
151#endif 227#endif
152 228
153#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
155#endif 231#endif
156 232
157#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 234# define EV_USE_PORT 0
159#endif 235#endif
160 236
161/**/ 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 288
163#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
166#endif 292#endif
168#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
171#endif 297#endif
172 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
173#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 322# include <winsock.h>
175#endif 323#endif
176 324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
177/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 363
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 367
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 368#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 371#else
201# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
205#endif 377#endif
206 378
207#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
209 388
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 391
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 392#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 393#define EMPTY2(a,b) /* used to suppress some warnings */
215 394
216typedef ev_watcher *W; 395typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
219 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
221 411
222#ifdef _WIN32 412#ifdef _WIN32
223# include "ev_win32.c" 413# include "ev_win32.c"
224#endif 414#endif
225 415
226/*****************************************************************************/ 416/*****************************************************************************/
227 417
228static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
229 419
420void
230void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
231{ 422{
232 syserr_cb = cb; 423 syserr_cb = cb;
233} 424}
234 425
235static void 426static void noinline
236syserr (const char *msg) 427ev_syserr (const char *msg)
237{ 428{
238 if (!msg) 429 if (!msg)
239 msg = "(libev) system error"; 430 msg = "(libev) system error";
240 431
241 if (syserr_cb) 432 if (syserr_cb)
245 perror (msg); 436 perror (msg);
246 abort (); 437 abort ();
247 } 438 }
248} 439}
249 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
250static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
251 457
458void
252void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
253{ 460{
254 alloc = cb; 461 alloc = cb;
255} 462}
256 463
257static void * 464inline_speed void *
258ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
259{ 466{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
261 468
262 if (!ptr && size) 469 if (!ptr && size)
263 { 470 {
264 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
265 abort (); 472 abort ();
276typedef struct 483typedef struct
277{ 484{
278 WL head; 485 WL head;
279 unsigned char events; 486 unsigned char events;
280 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
281#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
282 SOCKET handle; 494 SOCKET handle;
283#endif 495#endif
284} ANFD; 496} ANFD;
285 497
286typedef struct 498typedef struct
287{ 499{
288 W w; 500 W w;
289 int events; 501 int events;
290} ANPENDING; 502} ANPENDING;
503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
291 529
292#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
293 531
294 struct ev_loop 532 struct ev_loop
295 { 533 {
315 553
316#endif 554#endif
317 555
318/*****************************************************************************/ 556/*****************************************************************************/
319 557
320ev_tstamp noinline 558ev_tstamp
321ev_time (void) 559ev_time (void)
322{ 560{
323#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
324 struct timespec ts; 564 struct timespec ts;
325 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
326 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
327#else 567 }
568#endif
569
328 struct timeval tv; 570 struct timeval tv;
329 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
330 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
331#endif
332} 573}
333 574
334ev_tstamp inline_size 575inline_size ev_tstamp
335get_clock (void) 576get_clock (void)
336{ 577{
337#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
338 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
339 { 580 {
352{ 593{
353 return ev_rt_now; 594 return ev_rt_now;
354} 595}
355#endif 596#endif
356 597
357#define array_roundsize(type,n) (((n) | 4) & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
358 660
359#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
360 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
361 { \ 663 { \
362 int newcnt = cur; \ 664 int ocur_ = (cur); \
363 do \ 665 (base) = (type *)array_realloc \
364 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
365 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
366 } \
367 while ((cnt) > newcnt); \
368 \
369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
370 init (base + cur, newcnt - cur); \
371 cur = newcnt; \
372 } 668 }
373 669
670#if 0
374#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \ 673 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 } 677 }
678#endif
381 679
382#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
384 682
385/*****************************************************************************/ 683/*****************************************************************************/
386
387void inline_size
388anfds_init (ANFD *base, int count)
389{
390 while (count--)
391 {
392 base->head = 0;
393 base->events = EV_NONE;
394 base->reify = 0;
395
396 ++base;
397 }
398}
399 684
400void noinline 685void noinline
401ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
402{ 687{
403 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
404 690
405 if (expect_false (w_->pending)) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
406 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
408 return;
409 } 699 }
410
411 w_->pending = ++pendingcnt [ABSPRI (w_)];
412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415} 700}
416 701
417static void 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
418queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
419{ 719{
420 int i; 720 int i;
421 721
422 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
423 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
424} 724}
425 725
426void inline_speed 726/*****************************************************************************/
727
728inline_speed void
427fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
428{ 730{
429 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
430 ev_io *w; 732 ev_io *w;
431 733
439} 741}
440 742
441void 743void
442ev_feed_fd_event (EV_P_ int fd, int revents) 744ev_feed_fd_event (EV_P_ int fd, int revents)
443{ 745{
746 if (fd >= 0 && fd < anfdmax)
444 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
445} 748}
446 749
447/*****************************************************************************/ 750inline_size void
448
449void inline_size
450fd_reify (EV_P) 751fd_reify (EV_P)
451{ 752{
452 int i; 753 int i;
453 754
454 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
455 { 756 {
456 int fd = fdchanges [i]; 757 int fd = fdchanges [i];
457 ANFD *anfd = anfds + fd; 758 ANFD *anfd = anfds + fd;
458 ev_io *w; 759 ev_io *w;
459 760
460 int events = 0; 761 unsigned char events = 0;
461 762
462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
463 events |= w->events; 764 events |= (unsigned char)w->events;
464 765
465#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
466 if (events) 767 if (events)
467 { 768 {
468 unsigned long argp; 769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
469 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
774 #endif
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
471 } 776 }
472#endif 777#endif
473 778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
474 anfd->reify = 0; 783 anfd->reify = 0;
475
476 backend_modify (EV_A_ fd, anfd->events, events);
477 anfd->events = events; 784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
478 } 789 }
479 790
480 fdchangecnt = 0; 791 fdchangecnt = 0;
481} 792}
482 793
483void inline_size 794inline_size void
484fd_change (EV_P_ int fd) 795fd_change (EV_P_ int fd, int flags)
485{ 796{
486 if (expect_false (anfds [fd].reify)) 797 unsigned char reify = anfds [fd].reify;
487 return;
488
489 anfds [fd].reify = 1; 798 anfds [fd].reify |= flags;
490 799
800 if (expect_true (!reify))
801 {
491 ++fdchangecnt; 802 ++fdchangecnt;
492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
493 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
805 }
494} 806}
495 807
496void inline_speed 808inline_speed void
497fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
498{ 810{
499 ev_io *w; 811 ev_io *w;
500 812
501 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
503 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
505 } 817 }
506} 818}
507 819
508int inline_size 820inline_size int
509fd_valid (int fd) 821fd_valid (int fd)
510{ 822{
511#ifdef _WIN32 823#ifdef _WIN32
512 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
513#else 825#else
521{ 833{
522 int fd; 834 int fd;
523 835
524 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
525 if (anfds [fd].events) 837 if (anfds [fd].events)
526 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
527 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
528} 840}
529 841
530/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
531static void noinline 843static void noinline
545static void noinline 857static void noinline
546fd_rearm_all (EV_P) 858fd_rearm_all (EV_P)
547{ 859{
548 int fd; 860 int fd;
549 861
550 /* this should be highly optimised to not do anything but set a flag */
551 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
552 if (anfds [fd].events) 863 if (anfds [fd].events)
553 { 864 {
554 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
555 fd_change (EV_A_ fd); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
556 } 868 }
557} 869}
558 870
559/*****************************************************************************/ 871/*****************************************************************************/
560 872
561void inline_speed 873/*
562upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
563{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
564 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
565 878
566 while (k && heap [k >> 1]->at > w->at) 879/*
567 { 880 * at the moment we allow libev the luxury of two heaps,
568 heap [k] = heap [k >> 1]; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
569 ((W)heap [k])->active = k + 1; 882 * which is more cache-efficient.
570 k >>= 1; 883 * the difference is about 5% with 50000+ watchers.
571 } 884 */
885#if EV_USE_4HEAP
572 886
573 heap [k] = w; 887#define DHEAP 4
574 ((W)heap [k])->active = k + 1; 888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
575 891
576} 892/* away from the root */
577 893inline_speed void
578void inline_speed
579downheap (WT *heap, int N, int k) 894downheap (ANHE *heap, int N, int k)
580{ 895{
581 WT w = heap [k]; 896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
582 898
583 while (k < (N >> 1)) 899 for (;;)
584 { 900 {
585 int j = k << 1; 901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
586 904
587 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
588 ++j; 907 {
589 908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
590 if (w->at <= heap [j]->at) 909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
591 break; 921 break;
592 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
593 heap [k] = heap [j]; 961 heap [k] = heap [c];
594 ((W)heap [k])->active = k + 1; 962 ev_active (ANHE_w (heap [k])) = k;
963
595 k = j; 964 k = c;
596 } 965 }
597 966
598 heap [k] = w; 967 heap [k] = he;
599 ((W)heap [k])->active = k + 1; 968 ev_active (ANHE_w (he)) = k;
600} 969}
970#endif
601 971
602void inline_size 972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992}
993
994inline_size void
603adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
604{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
605 upheap (heap, k); 998 upheap (heap, k);
999 else
606 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
607} 1013}
608 1014
609/*****************************************************************************/ 1015/*****************************************************************************/
610 1016
611typedef struct 1017typedef struct
612{ 1018{
613 WL head; 1019 WL head;
614 sig_atomic_t volatile gotsig; 1020 EV_ATOMIC_T gotsig;
615} ANSIG; 1021} ANSIG;
616 1022
617static ANSIG *signals; 1023static ANSIG *signals;
618static int signalmax; 1024static int signalmax;
619 1025
620static int sigpipe [2]; 1026static EV_ATOMIC_T gotsig;
621static sig_atomic_t volatile gotsig;
622static ev_io sigev;
623 1027
624void inline_size 1028/*****************************************************************************/
625signals_init (ANSIG *base, int count)
626{
627 while (count--)
628 {
629 base->head = 0;
630 base->gotsig = 0;
631 1029
632 ++base; 1030inline_speed void
633 }
634}
635
636static void
637sighandler (int signum)
638{
639#if _WIN32
640 signal (signum, sighandler);
641#endif
642
643 signals [signum - 1].gotsig = 1;
644
645 if (!gotsig)
646 {
647 int old_errno = errno;
648 gotsig = 1;
649 write (sigpipe [1], &signum, 1);
650 errno = old_errno;
651 }
652}
653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
674static void
675sigcb (EV_P_ ev_io *iow, int revents)
676{
677 int signum;
678
679 read (sigpipe [0], &revents, 1);
680 gotsig = 0;
681
682 for (signum = signalmax; signum--; )
683 if (signals [signum].gotsig)
684 ev_feed_signal_event (EV_A_ signum + 1);
685}
686
687void inline_size
688fd_intern (int fd) 1031fd_intern (int fd)
689{ 1032{
690#ifdef _WIN32 1033#ifdef _WIN32
691 int arg = 1; 1034 unsigned long arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
693#else 1036#else
694 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
695 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif 1039#endif
697} 1040}
698 1041
699static void noinline 1042static void noinline
700siginit (EV_P) 1043evpipe_init (EV_P)
701{ 1044{
1045 if (!ev_is_active (&pipeev))
1046 {
1047#if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055#endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
702 fd_intern (sigpipe [0]); 1060 fd_intern (evpipe [0]);
703 fd_intern (sigpipe [1]); 1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
704 1064
705 ev_io_set (&sigev, sigpipe [0], EV_READ);
706 ev_io_start (EV_A_ &sigev); 1065 ev_io_start (EV_A_ &pipeev);
707 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068}
1069
1070inline_size void
1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072{
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079#if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086#endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091}
1092
1093static void
1094pipecb (EV_P_ ev_io *iow, int revents)
1095{
1096#if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103#endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119#if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132#endif
708} 1133}
709 1134
710/*****************************************************************************/ 1135/*****************************************************************************/
711 1136
1137static void
1138ev_sighandler (int signum)
1139{
1140#if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142#endif
1143
1144#if _WIN32
1145 signal (signum, ev_sighandler);
1146#endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150}
1151
1152void noinline
1153ev_feed_signal_event (EV_P_ int signum)
1154{
1155 WL w;
1156
1157#if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159#endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170}
1171
1172/*****************************************************************************/
1173
712static ev_child *childs [PID_HASHSIZE]; 1174static WL childs [EV_PID_HASHSIZE];
713 1175
714#ifndef _WIN32 1176#ifndef _WIN32
715 1177
716static ev_signal childev; 1178static ev_signal childev;
1179
1180#ifndef WIFCONTINUED
1181# define WIFCONTINUED(status) 0
1182#endif
1183
1184inline_speed void
1185child_reap (EV_P_ int chain, int pid, int status)
1186{
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201}
717 1202
718#ifndef WCONTINUED 1203#ifndef WCONTINUED
719# define WCONTINUED 0 1204# define WCONTINUED 0
720#endif 1205#endif
721 1206
722void inline_speed
723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
724{
725 ev_child *w;
726
727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
728 if (w->pid == pid || !w->pid)
729 {
730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
731 w->rpid = pid;
732 w->rstatus = status;
733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
734 }
735}
736
737static void 1207static void
738childcb (EV_P_ ev_signal *sw, int revents) 1208childcb (EV_P_ ev_signal *sw, int revents)
739{ 1209{
740 int pid, status; 1210 int pid, status;
741 1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
743 { 1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
744 /* make sure we are called again until all childs have been reaped */ 1219 /* make sure we are called again until all children have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */ 1220 /* we need to do it this way so that the callback gets called before we continue */
746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
747 1222
748 child_reap (EV_A_ sw, pid, pid, status); 1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
750 }
751} 1226}
752 1227
753#endif 1228#endif
754 1229
755/*****************************************************************************/ 1230/*****************************************************************************/
817 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
820#endif 1295#endif
821#ifdef __APPLE__ 1296#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
823 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
824#endif 1300#endif
825 1301
826 return flags; 1302 return flags;
827} 1303}
828 1304
829unsigned int 1305unsigned int
830ev_embeddable_backends (void) 1306ev_embeddable_backends (void)
831{ 1307{
832 return EVBACKEND_EPOLL 1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
833 | EVBACKEND_KQUEUE 1309
834 | EVBACKEND_PORT; 1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
835} 1315}
836 1316
837unsigned int 1317unsigned int
838ev_backend (EV_P) 1318ev_backend (EV_P)
839{ 1319{
840 return backend; 1320 return backend;
841} 1321}
842 1322
843static void 1323unsigned int
1324ev_loop_count (EV_P)
1325{
1326 return loop_count;
1327}
1328
1329void
1330ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331{
1332 io_blocktime = interval;
1333}
1334
1335void
1336ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337{
1338 timeout_blocktime = interval;
1339}
1340
1341static void noinline
844loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
845{ 1343{
846 if (!backend) 1344 if (!backend)
847 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
848#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
849 { 1358 {
850 struct timespec ts; 1359 struct timespec ts;
1360
851 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
852 have_monotonic = 1; 1362 have_monotonic = 1;
853 } 1363 }
854#endif 1364#endif
855 1365
856 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
857 mn_now = get_clock (); 1367 mn_now = get_clock ();
858 now_floor = mn_now; 1368 now_floor = mn_now;
859 rtmn_diff = ev_rt_now - mn_now; 1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376#if EV_USE_INOTIFY
1377 fs_fd = -2;
1378#endif
1379
1380 /* pid check not overridable via env */
1381#ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384#endif
860 1385
861 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
862 && !enable_secure () 1387 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
864 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
865 1390
866 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
867 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
868 1393
869 backend = 0;
870#if EV_USE_PORT 1394#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif 1396#endif
873#if EV_USE_KQUEUE 1397#if EV_USE_KQUEUE
874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
881#endif 1405#endif
882#if EV_USE_SELECT 1406#if EV_USE_SELECT
883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
884#endif 1408#endif
885 1409
886 ev_init (&sigev, sigcb); 1410 ev_init (&pipeev, pipecb);
887 ev_set_priority (&sigev, EV_MAXPRI); 1411 ev_set_priority (&pipeev, EV_MAXPRI);
888 } 1412 }
889} 1413}
890 1414
891static void 1415static void noinline
892loop_destroy (EV_P) 1416loop_destroy (EV_P)
893{ 1417{
894 int i; 1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425#if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428#endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437#if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440#endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
895 1444
896#if EV_USE_PORT 1445#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif 1447#endif
899#if EV_USE_KQUEUE 1448#if EV_USE_KQUEUE
908#if EV_USE_SELECT 1457#if EV_USE_SELECT
909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
910#endif 1459#endif
911 1460
912 for (i = NUMPRI; i--; ) 1461 for (i = NUMPRI; i--; )
1462 {
913 array_free (pending, [i]); 1463 array_free (pending, [i]);
1464#if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466#endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
914 1470
915 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
916 array_free (fdchange, EMPTY0); 1473 array_free (fdchange, EMPTY);
917 array_free (timer, EMPTY0); 1474 array_free (timer, EMPTY);
918#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0); 1476 array_free (periodic, EMPTY);
920#endif 1477#endif
1478#if EV_FORK_ENABLE
921 array_free (idle, EMPTY0); 1479 array_free (fork, EMPTY);
1480#endif
922 array_free (prepare, EMPTY0); 1481 array_free (prepare, EMPTY);
923 array_free (check, EMPTY0); 1482 array_free (check, EMPTY);
1483#if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485#endif
924 1486
925 backend = 0; 1487 backend = 0;
926} 1488}
927 1489
928static void 1490#if EV_USE_INOTIFY
1491inline_size void infy_fork (EV_P);
1492#endif
1493
1494inline_size void
929loop_fork (EV_P) 1495loop_fork (EV_P)
930{ 1496{
931#if EV_USE_PORT 1497#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif 1499#endif
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif 1502#endif
937#if EV_USE_EPOLL 1503#if EV_USE_EPOLL
938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
939#endif 1505#endif
1506#if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508#endif
940 1509
941 if (ev_is_active (&sigev)) 1510 if (ev_is_active (&pipeev))
942 { 1511 {
943 /* default loop */ 1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515#if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517#endif
944 1518
945 ev_ref (EV_A); 1519 ev_ref (EV_A);
946 ev_io_stop (EV_A_ &sigev); 1520 ev_io_stop (EV_A_ &pipeev);
1521
1522#if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525#endif
1526
1527 if (evpipe [0] >= 0)
1528 {
947 close (sigpipe [0]); 1529 close (evpipe [0]);
948 close (sigpipe [1]); 1530 close (evpipe [1]);
1531 }
949 1532
950 while (pipe (sigpipe))
951 syserr ("(libev) error creating pipe");
952
953 siginit (EV_A); 1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
954 } 1536 }
955 1537
956 postfork = 0; 1538 postfork = 0;
957} 1539}
958 1540
959#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
960struct ev_loop * 1543struct ev_loop *
961ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
962{ 1545{
963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
964 1547
980} 1563}
981 1564
982void 1565void
983ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
984{ 1567{
985 postfork = 1; 1568 postfork = 1; /* must be in line with ev_default_fork */
986} 1569}
987 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
988#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
989 1671
990#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
991struct ev_loop * 1673struct ev_loop *
992ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
993#else 1675#else
994int 1676int
995ev_default_loop (unsigned int flags) 1677ev_default_loop (unsigned int flags)
996#endif 1678#endif
997{ 1679{
998 if (sigpipe [0] == sigpipe [1])
999 if (pipe (sigpipe))
1000 return 0;
1001
1002 if (!ev_default_loop_ptr) 1680 if (!ev_default_loop_ptr)
1003 { 1681 {
1004#if EV_MULTIPLICITY 1682#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1006#else 1684#else
1009 1687
1010 loop_init (EV_A_ flags); 1688 loop_init (EV_A_ flags);
1011 1689
1012 if (ev_backend (EV_A)) 1690 if (ev_backend (EV_A))
1013 { 1691 {
1014 siginit (EV_A);
1015
1016#ifndef _WIN32 1692#ifndef _WIN32
1017 ev_signal_init (&childev, childcb, SIGCHLD); 1693 ev_signal_init (&childev, childcb, SIGCHLD);
1018 ev_set_priority (&childev, EV_MAXPRI); 1694 ev_set_priority (&childev, EV_MAXPRI);
1019 ev_signal_start (EV_A_ &childev); 1695 ev_signal_start (EV_A_ &childev);
1020 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1032{ 1708{
1033#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1035#endif 1711#endif
1036 1712
1713 ev_default_loop_ptr = 0;
1714
1037#ifndef _WIN32 1715#ifndef _WIN32
1038 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1039 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1040#endif 1718#endif
1041 1719
1042 ev_ref (EV_A); /* signal watcher */
1043 ev_io_stop (EV_A_ &sigev);
1044
1045 close (sigpipe [0]); sigpipe [0] = 0;
1046 close (sigpipe [1]); sigpipe [1] = 0;
1047
1048 loop_destroy (EV_A); 1720 loop_destroy (EV_A);
1049} 1721}
1050 1722
1051void 1723void
1052ev_default_fork (void) 1724ev_default_fork (void)
1053{ 1725{
1054#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1055 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1056#endif 1728#endif
1057 1729
1058 if (backend) 1730 postfork = 1; /* must be in line with ev_loop_fork */
1059 postfork = 1;
1060} 1731}
1061 1732
1062/*****************************************************************************/ 1733/*****************************************************************************/
1063 1734
1064int inline_size 1735void
1065any_pending (EV_P) 1736ev_invoke (EV_P_ void *w, int revents)
1066{ 1737{
1067 int pri; 1738 EV_CB_INVOKE ((W)w, revents);
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074} 1739}
1075 1740
1076void inline_speed 1741inline_speed void
1077call_pending (EV_P) 1742call_pending (EV_P)
1078{ 1743{
1079 int pri; 1744 int pri;
1080 1745
1081 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1083 { 1748 {
1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1085 1750
1086 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1087 { 1752 {
1088 assert (("non-pending watcher on pending list", p->w->pending)); 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1089 1754
1090 p->w->pending = 0; 1755 p->w->pending = 0;
1091 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1092 } 1758 }
1093 } 1759 }
1094} 1760}
1095 1761
1096void inline_size 1762#if EV_IDLE_ENABLE
1763inline_size void
1764idle_reify (EV_P)
1765{
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782}
1783#endif
1784
1785inline_size void
1097timers_reify (EV_P) 1786timers_reify (EV_P)
1098{ 1787{
1788 EV_FREQUENT_CHECK;
1789
1099 while (timercnt && ((WT)timers [0])->at <= mn_now) 1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1100 { 1791 {
1101 ev_timer *w = timers [0]; 1792 do
1102
1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1104
1105 /* first reschedule or stop timer */
1106 if (w->repeat)
1107 { 1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109 1806
1110 ((WT)w)->at += w->repeat; 1807 ANHE_at_cache (timers [HEAP0]);
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
1114 downheap ((WT *)timers, timercnt, 0); 1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1115 } 1815 }
1116 else 1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1118 1817
1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1120 } 1819 }
1121} 1820}
1122 1821
1123#if EV_PERIODIC_ENABLE 1822#if EV_PERIODIC_ENABLE
1124void inline_size 1823inline_size void
1125periodics_reify (EV_P) 1824periodics_reify (EV_P)
1126{ 1825{
1826 EV_FREQUENT_CHECK;
1827
1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1128 { 1829 {
1129 ev_periodic *w = periodics [0]; 1830 int feed_count = 0;
1130 1831
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1832 do
1132
1133 /* first reschedule or stop timer */
1134 if (w->reschedule_cb)
1135 { 1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1138 downheap ((WT *)periodics, periodiccnt, 0); 1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1139 } 1872 }
1140 else if (w->interval) 1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1141 {
1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 }
1146 else
1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1148 1874
1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1150 } 1876 }
1151} 1877}
1152 1878
1153static void noinline 1879static void noinline
1154periodics_reschedule (EV_P) 1880periodics_reschedule (EV_P)
1155{ 1881{
1156 int i; 1882 int i;
1157 1883
1158 /* adjust periodics after time jump */ 1884 /* adjust periodics after time jump */
1159 for (i = 0; i < periodiccnt; ++i) 1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1160 { 1886 {
1161 ev_periodic *w = periodics [i]; 1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1162 1888
1163 if (w->reschedule_cb) 1889 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1165 else if (w->interval) 1891 else if (w->interval)
1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1167 } 1907 {
1168 1908 ANHE *he = timers + i + HEAP0;
1169 /* now rebuild the heap */ 1909 ANHE_w (*he)->at += adjust;
1170 for (i = periodiccnt >> 1; i--; ) 1910 ANHE_at_cache (*he);
1171 downheap ((WT *)periodics, periodiccnt, i); 1911 }
1172} 1912}
1173#endif
1174 1913
1175int inline_size 1914inline_speed void
1176time_update_monotonic (EV_P) 1915time_update (EV_P_ ev_tstamp max_block)
1177{ 1916{
1917 int i;
1918
1919#if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1178 mn_now = get_clock (); 1924 mn_now = get_clock ();
1179 1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1181 { 1929 {
1182 ev_rt_now = rtmn_diff + mn_now; 1930 ev_rt_now = rtmn_diff + mn_now;
1183 return 0; 1931 return;
1184 } 1932 }
1185 else 1933
1186 {
1187 now_floor = mn_now; 1934 now_floor = mn_now;
1188 ev_rt_now = ev_time (); 1935 ev_rt_now = ev_time ();
1189 return 1;
1190 }
1191}
1192 1936
1193void inline_size 1937 /* loop a few times, before making important decisions.
1194time_update (EV_P) 1938 * on the choice of "4": one iteration isn't enough,
1195{ 1939 * in case we get preempted during the calls to
1196 int i; 1940 * ev_time and get_clock. a second call is almost guaranteed
1197 1941 * to succeed in that case, though. and looping a few more times
1198#if EV_USE_MONOTONIC 1942 * doesn't hurt either as we only do this on time-jumps or
1199 if (expect_true (have_monotonic)) 1943 * in the unlikely event of having been preempted here.
1200 { 1944 */
1201 if (time_update_monotonic (EV_A)) 1945 for (i = 4; --i; )
1202 { 1946 {
1203 ev_tstamp odiff = rtmn_diff;
1204
1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1214 {
1215 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1216 1948
1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1218 return; /* all is well */ 1950 return; /* all is well */
1219 1951
1220 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1221 mn_now = get_clock (); 1953 mn_now = get_clock ();
1222 now_floor = mn_now; 1954 now_floor = mn_now;
1223 } 1955 }
1224 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1225# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1226 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1227# endif 1961# endif
1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1230 }
1231 } 1962 }
1232 else 1963 else
1233#endif 1964#endif
1234 { 1965 {
1235 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1236 1967
1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1238 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1239#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1241#endif 1974#endif
1242
1243 /* adjust timers. this is easy, as the offset is the same for all */
1244 for (i = 0; i < timercnt; ++i)
1245 ((WT)timers [i])->at += ev_rt_now - mn_now;
1246 } 1975 }
1247 1976
1248 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1249 } 1978 }
1250} 1979}
1251 1980
1252void
1253ev_ref (EV_P)
1254{
1255 ++activecnt;
1256}
1257
1258void
1259ev_unref (EV_P)
1260{
1261 --activecnt;
1262}
1263
1264static int loop_done; 1981static int loop_done;
1265 1982
1266void 1983void
1267ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1268{ 1985{
1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1986 loop_done = EVUNLOOP_CANCEL;
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1272 1987
1273 while (activecnt) 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1989
1990 do
1274 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1996#ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid))
1999 {
2000 curpid = getpid ();
2001 postfork = 1;
2002 }
2003#endif
2004
2005#if EV_FORK_ENABLE
2006 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork))
2008 if (forkcnt)
2009 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A);
2012 }
2013#endif
2014
1275 /* queue check watchers (and execute them) */ 2015 /* queue prepare watchers (and execute them) */
1276 if (expect_false (preparecnt)) 2016 if (expect_false (preparecnt))
1277 { 2017 {
1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1279 call_pending (EV_A); 2019 call_pending (EV_A);
1280 } 2020 }
1286 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1287 fd_reify (EV_A); 2027 fd_reify (EV_A);
1288 2028
1289 /* calculate blocking time */ 2029 /* calculate blocking time */
1290 { 2030 {
1291 double block; 2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
1292 2033
1293 if (flags & EVLOOP_NONBLOCK || idlecnt) 2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1294 block = 0.; /* do not block at all */
1295 else
1296 { 2035 {
1297 /* update time to cancel out callback processing overhead */ 2036 /* update time to cancel out callback processing overhead */
1298#if EV_USE_MONOTONIC
1299 if (expect_true (have_monotonic))
1300 time_update_monotonic (EV_A); 2037 time_update (EV_A_ 1e100);
1301 else
1302#endif
1303 {
1304 ev_rt_now = ev_time ();
1305 mn_now = ev_rt_now;
1306 }
1307
1308 block = MAX_BLOCKTIME;
1309 2038
1310 if (timercnt) 2039 if (timercnt)
1311 { 2040 {
1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1313 if (block > to) block = to; 2042 if (waittime > to) waittime = to;
1314 } 2043 }
1315 2044
1316#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1317 if (periodiccnt) 2046 if (periodiccnt)
1318 { 2047 {
1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1320 if (block > to) block = to; 2049 if (waittime > to) waittime = to;
1321 } 2050 }
1322#endif 2051#endif
1323 2052
1324 if (expect_false (block < 0.)) block = 0.; 2053 if (expect_false (waittime < timeout_blocktime))
2054 waittime = timeout_blocktime;
2055
2056 sleeptime = waittime - backend_fudge;
2057
2058 if (expect_true (sleeptime > io_blocktime))
2059 sleeptime = io_blocktime;
2060
2061 if (sleeptime)
2062 {
2063 ev_sleep (sleeptime);
2064 waittime -= sleeptime;
2065 }
1325 } 2066 }
1326 2067
2068 ++loop_count;
1327 backend_poll (EV_A_ block); 2069 backend_poll (EV_A_ waittime);
2070
2071 /* update ev_rt_now, do magic */
2072 time_update (EV_A_ waittime + sleeptime);
1328 } 2073 }
1329
1330 /* update ev_rt_now, do magic */
1331 time_update (EV_A);
1332 2074
1333 /* queue pending timers and reschedule them */ 2075 /* queue pending timers and reschedule them */
1334 timers_reify (EV_A); /* relative timers called last */ 2076 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE 2077#if EV_PERIODIC_ENABLE
1336 periodics_reify (EV_A); /* absolute timers called first */ 2078 periodics_reify (EV_A); /* absolute timers called first */
1337#endif 2079#endif
1338 2080
2081#if EV_IDLE_ENABLE
1339 /* queue idle watchers unless other events are pending */ 2082 /* queue idle watchers unless other events are pending */
1340 if (idlecnt && !any_pending (EV_A)) 2083 idle_reify (EV_A);
1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2084#endif
1342 2085
1343 /* queue check watchers, to be executed first */ 2086 /* queue check watchers, to be executed first */
1344 if (expect_false (checkcnt)) 2087 if (expect_false (checkcnt))
1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2088 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1346 2089
1347 call_pending (EV_A); 2090 call_pending (EV_A);
1348
1349 if (expect_false (loop_done))
1350 break;
1351 } 2091 }
2092 while (expect_true (
2093 activecnt
2094 && !loop_done
2095 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2096 ));
1352 2097
1353 if (loop_done == EVUNLOOP_ONE) 2098 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL; 2099 loop_done = EVUNLOOP_CANCEL;
1355} 2100}
1356 2101
1358ev_unloop (EV_P_ int how) 2103ev_unloop (EV_P_ int how)
1359{ 2104{
1360 loop_done = how; 2105 loop_done = how;
1361} 2106}
1362 2107
2108void
2109ev_ref (EV_P)
2110{
2111 ++activecnt;
2112}
2113
2114void
2115ev_unref (EV_P)
2116{
2117 --activecnt;
2118}
2119
2120void
2121ev_now_update (EV_P)
2122{
2123 time_update (EV_A_ 1e100);
2124}
2125
2126void
2127ev_suspend (EV_P)
2128{
2129 ev_now_update (EV_A);
2130}
2131
2132void
2133ev_resume (EV_P)
2134{
2135 ev_tstamp mn_prev = mn_now;
2136
2137 ev_now_update (EV_A);
2138 printf ("update %f\n", mn_now - mn_prev);//D
2139 timers_reschedule (EV_A_ mn_now - mn_prev);
2140 periodics_reschedule (EV_A);
2141}
2142
1363/*****************************************************************************/ 2143/*****************************************************************************/
1364 2144
1365void inline_size 2145inline_size void
1366wlist_add (WL *head, WL elem) 2146wlist_add (WL *head, WL elem)
1367{ 2147{
1368 elem->next = *head; 2148 elem->next = *head;
1369 *head = elem; 2149 *head = elem;
1370} 2150}
1371 2151
1372void inline_size 2152inline_size void
1373wlist_del (WL *head, WL elem) 2153wlist_del (WL *head, WL elem)
1374{ 2154{
1375 while (*head) 2155 while (*head)
1376 { 2156 {
1377 if (*head == elem) 2157 if (*head == elem)
1382 2162
1383 head = &(*head)->next; 2163 head = &(*head)->next;
1384 } 2164 }
1385} 2165}
1386 2166
1387void inline_speed 2167inline_speed void
1388ev_clear_pending (EV_P_ W w) 2168clear_pending (EV_P_ W w)
1389{ 2169{
1390 if (w->pending) 2170 if (w->pending)
1391 { 2171 {
1392 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2172 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1393 w->pending = 0; 2173 w->pending = 0;
1394 } 2174 }
1395} 2175}
1396 2176
1397void inline_speed 2177int
2178ev_clear_pending (EV_P_ void *w)
2179{
2180 W w_ = (W)w;
2181 int pending = w_->pending;
2182
2183 if (expect_true (pending))
2184 {
2185 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2186 w_->pending = 0;
2187 p->w = 0;
2188 return p->events;
2189 }
2190 else
2191 return 0;
2192}
2193
2194inline_size void
2195pri_adjust (EV_P_ W w)
2196{
2197 int pri = w->priority;
2198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2200 w->priority = pri;
2201}
2202
2203inline_speed void
1398ev_start (EV_P_ W w, int active) 2204ev_start (EV_P_ W w, int active)
1399{ 2205{
1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2206 pri_adjust (EV_A_ w);
1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1402
1403 w->active = active; 2207 w->active = active;
1404 ev_ref (EV_A); 2208 ev_ref (EV_A);
1405} 2209}
1406 2210
1407void inline_size 2211inline_size void
1408ev_stop (EV_P_ W w) 2212ev_stop (EV_P_ W w)
1409{ 2213{
1410 ev_unref (EV_A); 2214 ev_unref (EV_A);
1411 w->active = 0; 2215 w->active = 0;
1412} 2216}
1413 2217
1414/*****************************************************************************/ 2218/*****************************************************************************/
1415 2219
1416void 2220void noinline
1417ev_io_start (EV_P_ ev_io *w) 2221ev_io_start (EV_P_ ev_io *w)
1418{ 2222{
1419 int fd = w->fd; 2223 int fd = w->fd;
1420 2224
1421 if (expect_false (ev_is_active (w))) 2225 if (expect_false (ev_is_active (w)))
1422 return; 2226 return;
1423 2227
1424 assert (("ev_io_start called with negative fd", fd >= 0)); 2228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2229 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2230
2231 EV_FREQUENT_CHECK;
1425 2232
1426 ev_start (EV_A_ (W)w, 1); 2233 ev_start (EV_A_ (W)w, 1);
1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1428 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2235 wlist_add (&anfds[fd].head, (WL)w);
1429 2236
1430 fd_change (EV_A_ fd); 2237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1431} 2238 w->events &= ~EV__IOFDSET;
1432 2239
1433void 2240 EV_FREQUENT_CHECK;
2241}
2242
2243void noinline
1434ev_io_stop (EV_P_ ev_io *w) 2244ev_io_stop (EV_P_ ev_io *w)
1435{ 2245{
1436 ev_clear_pending (EV_A_ (W)w); 2246 clear_pending (EV_A_ (W)w);
1437 if (expect_false (!ev_is_active (w))) 2247 if (expect_false (!ev_is_active (w)))
1438 return; 2248 return;
1439 2249
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1441 2251
2252 EV_FREQUENT_CHECK;
2253
1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2254 wlist_del (&anfds[w->fd].head, (WL)w);
1443 ev_stop (EV_A_ (W)w); 2255 ev_stop (EV_A_ (W)w);
1444 2256
1445 fd_change (EV_A_ w->fd); 2257 fd_change (EV_A_ w->fd, 1);
1446}
1447 2258
1448void 2259 EV_FREQUENT_CHECK;
2260}
2261
2262void noinline
1449ev_timer_start (EV_P_ ev_timer *w) 2263ev_timer_start (EV_P_ ev_timer *w)
1450{ 2264{
1451 if (expect_false (ev_is_active (w))) 2265 if (expect_false (ev_is_active (w)))
1452 return; 2266 return;
1453 2267
1454 ((WT)w)->at += mn_now; 2268 ev_at (w) += mn_now;
1455 2269
1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1457 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++timercnt;
1458 ev_start (EV_A_ (W)w, ++timercnt); 2275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1460 timers [timercnt - 1] = w; 2277 ANHE_w (timers [ev_active (w)]) = (WT)w;
1461 upheap ((WT *)timers, timercnt - 1); 2278 ANHE_at_cache (timers [ev_active (w)]);
2279 upheap (timers, ev_active (w));
1462 2280
2281 EV_FREQUENT_CHECK;
2282
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1464} 2284}
1465 2285
1466void 2286void noinline
1467ev_timer_stop (EV_P_ ev_timer *w) 2287ev_timer_stop (EV_P_ ev_timer *w)
1468{ 2288{
1469 ev_clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1470 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1471 return; 2291 return;
1472 2292
2293 EV_FREQUENT_CHECK;
2294
2295 {
2296 int active = ev_active (w);
2297
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1474 2299
2300 --timercnt;
2301
1475 if (expect_true (((W)w)->active < timercnt--)) 2302 if (expect_true (active < timercnt + HEAP0))
1476 { 2303 {
1477 timers [((W)w)->active - 1] = timers [timercnt]; 2304 timers [active] = timers [timercnt + HEAP0];
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2305 adjustheap (timers, timercnt, active);
1479 } 2306 }
2307 }
1480 2308
1481 ((WT)w)->at -= mn_now; 2309 EV_FREQUENT_CHECK;
2310
2311 ev_at (w) -= mn_now;
1482 2312
1483 ev_stop (EV_A_ (W)w); 2313 ev_stop (EV_A_ (W)w);
1484} 2314}
1485 2315
1486void 2316void noinline
1487ev_timer_again (EV_P_ ev_timer *w) 2317ev_timer_again (EV_P_ ev_timer *w)
1488{ 2318{
2319 EV_FREQUENT_CHECK;
2320
1489 if (ev_is_active (w)) 2321 if (ev_is_active (w))
1490 { 2322 {
1491 if (w->repeat) 2323 if (w->repeat)
1492 { 2324 {
1493 ((WT)w)->at = mn_now + w->repeat; 2325 ev_at (w) = mn_now + w->repeat;
2326 ANHE_at_cache (timers [ev_active (w)]);
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2327 adjustheap (timers, timercnt, ev_active (w));
1495 } 2328 }
1496 else 2329 else
1497 ev_timer_stop (EV_A_ w); 2330 ev_timer_stop (EV_A_ w);
1498 } 2331 }
1499 else if (w->repeat) 2332 else if (w->repeat)
1500 { 2333 {
1501 w->at = w->repeat; 2334 ev_at (w) = w->repeat;
1502 ev_timer_start (EV_A_ w); 2335 ev_timer_start (EV_A_ w);
1503 } 2336 }
2337
2338 EV_FREQUENT_CHECK;
1504} 2339}
1505 2340
1506#if EV_PERIODIC_ENABLE 2341#if EV_PERIODIC_ENABLE
1507void 2342void noinline
1508ev_periodic_start (EV_P_ ev_periodic *w) 2343ev_periodic_start (EV_P_ ev_periodic *w)
1509{ 2344{
1510 if (expect_false (ev_is_active (w))) 2345 if (expect_false (ev_is_active (w)))
1511 return; 2346 return;
1512 2347
1513 if (w->reschedule_cb) 2348 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2349 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval) 2350 else if (w->interval)
1516 { 2351 {
1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2352 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1518 /* this formula differs from the one in periodic_reify because we do not always round up */ 2353 /* this formula differs from the one in periodic_reify because we do not always round up */
1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2354 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1520 } 2355 }
2356 else
2357 ev_at (w) = w->offset;
1521 2358
2359 EV_FREQUENT_CHECK;
2360
2361 ++periodiccnt;
1522 ev_start (EV_A_ (W)w, ++periodiccnt); 2362 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2363 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1524 periodics [periodiccnt - 1] = w; 2364 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1525 upheap ((WT *)periodics, periodiccnt - 1); 2365 ANHE_at_cache (periodics [ev_active (w)]);
2366 upheap (periodics, ev_active (w));
1526 2367
2368 EV_FREQUENT_CHECK;
2369
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2370 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1528} 2371}
1529 2372
1530void 2373void noinline
1531ev_periodic_stop (EV_P_ ev_periodic *w) 2374ev_periodic_stop (EV_P_ ev_periodic *w)
1532{ 2375{
1533 ev_clear_pending (EV_A_ (W)w); 2376 clear_pending (EV_A_ (W)w);
1534 if (expect_false (!ev_is_active (w))) 2377 if (expect_false (!ev_is_active (w)))
1535 return; 2378 return;
1536 2379
2380 EV_FREQUENT_CHECK;
2381
2382 {
2383 int active = ev_active (w);
2384
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2385 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1538 2386
2387 --periodiccnt;
2388
1539 if (expect_true (((W)w)->active < periodiccnt--)) 2389 if (expect_true (active < periodiccnt + HEAP0))
1540 { 2390 {
1541 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2391 periodics [active] = periodics [periodiccnt + HEAP0];
1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2392 adjustheap (periodics, periodiccnt, active);
1543 } 2393 }
2394 }
2395
2396 EV_FREQUENT_CHECK;
1544 2397
1545 ev_stop (EV_A_ (W)w); 2398 ev_stop (EV_A_ (W)w);
1546} 2399}
1547 2400
1548void 2401void noinline
1549ev_periodic_again (EV_P_ ev_periodic *w) 2402ev_periodic_again (EV_P_ ev_periodic *w)
1550{ 2403{
1551 /* TODO: use adjustheap and recalculation */ 2404 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w); 2405 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w); 2406 ev_periodic_start (EV_A_ w);
1554} 2407}
1555#endif 2408#endif
1556 2409
1557void 2410#ifndef SA_RESTART
2411# define SA_RESTART 0
2412#endif
2413
2414void noinline
1558ev_idle_start (EV_P_ ev_idle *w) 2415ev_signal_start (EV_P_ ev_signal *w)
1559{ 2416{
2417#if EV_MULTIPLICITY
2418 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2419#endif
1560 if (expect_false (ev_is_active (w))) 2420 if (expect_false (ev_is_active (w)))
1561 return; 2421 return;
1562 2422
1563 ev_start (EV_A_ (W)w, ++idlecnt); 2423 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1565 idles [idlecnt - 1] = w;
1566}
1567 2424
1568void 2425 evpipe_init (EV_A);
1569ev_idle_stop (EV_P_ ev_idle *w) 2426
1570{ 2427 EV_FREQUENT_CHECK;
1571 ev_clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w)))
1573 return;
1574 2428
1575 { 2429 {
1576 int active = ((W)w)->active; 2430#ifndef _WIN32
1577 idles [active - 1] = idles [--idlecnt]; 2431 sigset_t full, prev;
1578 ((W)idles [active - 1])->active = active; 2432 sigfillset (&full);
2433 sigprocmask (SIG_SETMASK, &full, &prev);
2434#endif
2435
2436 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2437
2438#ifndef _WIN32
2439 sigprocmask (SIG_SETMASK, &prev, 0);
2440#endif
1579 } 2441 }
1580 2442
1581 ev_stop (EV_A_ (W)w);
1582}
1583
1584void
1585ev_prepare_start (EV_P_ ev_prepare *w)
1586{
1587 if (expect_false (ev_is_active (w)))
1588 return;
1589
1590 ev_start (EV_A_ (W)w, ++preparecnt);
1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1592 prepares [preparecnt - 1] = w;
1593}
1594
1595void
1596ev_prepare_stop (EV_P_ ev_prepare *w)
1597{
1598 ev_clear_pending (EV_A_ (W)w);
1599 if (expect_false (!ev_is_active (w)))
1600 return;
1601
1602 {
1603 int active = ((W)w)->active;
1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1608 ev_stop (EV_A_ (W)w);
1609}
1610
1611void
1612ev_check_start (EV_P_ ev_check *w)
1613{
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 ev_start (EV_A_ (W)w, ++checkcnt);
1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1619 checks [checkcnt - 1] = w;
1620}
1621
1622void
1623ev_check_stop (EV_P_ ev_check *w)
1624{
1625 ev_clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w)))
1627 return;
1628
1629 {
1630 int active = ((W)w)->active;
1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1635 ev_stop (EV_A_ (W)w);
1636}
1637
1638#ifndef SA_RESTART
1639# define SA_RESTART 0
1640#endif
1641
1642void
1643ev_signal_start (EV_P_ ev_signal *w)
1644{
1645#if EV_MULTIPLICITY
1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1647#endif
1648 if (expect_false (ev_is_active (w)))
1649 return;
1650
1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1652
1653 ev_start (EV_A_ (W)w, 1); 2443 ev_start (EV_A_ (W)w, 1);
1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2444 wlist_add (&signals [w->signum - 1].head, (WL)w);
1656 2445
1657 if (!((WL)w)->next) 2446 if (!((WL)w)->next)
1658 { 2447 {
1659#if _WIN32 2448#if _WIN32
1660 signal (w->signum, sighandler); 2449 signal (w->signum, ev_sighandler);
1661#else 2450#else
1662 struct sigaction sa; 2451 struct sigaction sa;
1663 sa.sa_handler = sighandler; 2452 sa.sa_handler = ev_sighandler;
1664 sigfillset (&sa.sa_mask); 2453 sigfillset (&sa.sa_mask);
1665 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1666 sigaction (w->signum, &sa, 0); 2455 sigaction (w->signum, &sa, 0);
1667#endif 2456#endif
1668 } 2457 }
1669}
1670 2458
1671void 2459 EV_FREQUENT_CHECK;
2460}
2461
2462void noinline
1672ev_signal_stop (EV_P_ ev_signal *w) 2463ev_signal_stop (EV_P_ ev_signal *w)
1673{ 2464{
1674 ev_clear_pending (EV_A_ (W)w); 2465 clear_pending (EV_A_ (W)w);
1675 if (expect_false (!ev_is_active (w))) 2466 if (expect_false (!ev_is_active (w)))
1676 return; 2467 return;
1677 2468
2469 EV_FREQUENT_CHECK;
2470
1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2471 wlist_del (&signals [w->signum - 1].head, (WL)w);
1679 ev_stop (EV_A_ (W)w); 2472 ev_stop (EV_A_ (W)w);
1680 2473
1681 if (!signals [w->signum - 1].head) 2474 if (!signals [w->signum - 1].head)
1682 signal (w->signum, SIG_DFL); 2475 signal (w->signum, SIG_DFL);
2476
2477 EV_FREQUENT_CHECK;
1683} 2478}
1684 2479
1685void 2480void
1686ev_child_start (EV_P_ ev_child *w) 2481ev_child_start (EV_P_ ev_child *w)
1687{ 2482{
1688#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1690#endif 2485#endif
1691 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
1692 return; 2487 return;
1693 2488
2489 EV_FREQUENT_CHECK;
2490
1694 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2492 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2493
2494 EV_FREQUENT_CHECK;
1696} 2495}
1697 2496
1698void 2497void
1699ev_child_stop (EV_P_ ev_child *w) 2498ev_child_stop (EV_P_ ev_child *w)
1700{ 2499{
1701 ev_clear_pending (EV_A_ (W)w); 2500 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2501 if (expect_false (!ev_is_active (w)))
1703 return; 2502 return;
1704 2503
2504 EV_FREQUENT_CHECK;
2505
1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2506 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1706 ev_stop (EV_A_ (W)w); 2507 ev_stop (EV_A_ (W)w);
1707}
1708 2508
2509 EV_FREQUENT_CHECK;
2510}
2511
1709#if EV_EMBED_ENABLE 2512#if EV_STAT_ENABLE
2513
2514# ifdef _WIN32
2515# undef lstat
2516# define lstat(a,b) _stati64 (a,b)
2517# endif
2518
2519#define DEF_STAT_INTERVAL 5.0074891
2520#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2521#define MIN_STAT_INTERVAL 0.1074891
2522
2523static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2524
2525#if EV_USE_INOTIFY
2526# define EV_INOTIFY_BUFSIZE 8192
2527
1710void noinline 2528static void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w) 2529infy_add (EV_P_ ev_stat *w)
1712{ 2530{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK); 2531 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2532
2533 if (w->wd < 0)
2534 {
2535 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2536 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2537
2538 /* monitor some parent directory for speedup hints */
2539 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2540 /* but an efficiency issue only */
2541 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2542 {
2543 char path [4096];
2544 strcpy (path, w->path);
2545
2546 do
2547 {
2548 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2549 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2550
2551 char *pend = strrchr (path, '/');
2552
2553 if (!pend || pend == path)
2554 break;
2555
2556 *pend = 0;
2557 w->wd = inotify_add_watch (fs_fd, path, mask);
2558 }
2559 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2560 }
2561 }
2562
2563 if (w->wd >= 0)
2564 {
2565 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2566
2567 /* now local changes will be tracked by inotify, but remote changes won't */
2568 /* unless the filesystem it known to be local, we therefore still poll */
2569 /* also do poll on <2.6.25, but with normal frequency */
2570 struct statfs sfs;
2571
2572 if (fs_2625 && !statfs (w->path, &sfs))
2573 if (sfs.f_type == 0x1373 /* devfs */
2574 || sfs.f_type == 0xEF53 /* ext2/3 */
2575 || sfs.f_type == 0x3153464a /* jfs */
2576 || sfs.f_type == 0x52654973 /* reiser3 */
2577 || sfs.f_type == 0x01021994 /* tempfs */
2578 || sfs.f_type == 0x58465342 /* xfs */)
2579 return;
2580
2581 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2582 ev_timer_again (EV_A_ &w->timer);
2583 }
2584}
2585
2586static void noinline
2587infy_del (EV_P_ ev_stat *w)
2588{
2589 int slot;
2590 int wd = w->wd;
2591
2592 if (wd < 0)
2593 return;
2594
2595 w->wd = -2;
2596 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2597 wlist_del (&fs_hash [slot].head, (WL)w);
2598
2599 /* remove this watcher, if others are watching it, they will rearm */
2600 inotify_rm_watch (fs_fd, wd);
2601}
2602
2603static void noinline
2604infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2605{
2606 if (slot < 0)
2607 /* overflow, need to check for all hash slots */
2608 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2609 infy_wd (EV_A_ slot, wd, ev);
2610 else
2611 {
2612 WL w_;
2613
2614 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2615 {
2616 ev_stat *w = (ev_stat *)w_;
2617 w_ = w_->next; /* lets us remove this watcher and all before it */
2618
2619 if (w->wd == wd || wd == -1)
2620 {
2621 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2622 {
2623 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2624 w->wd = -1;
2625 infy_add (EV_A_ w); /* re-add, no matter what */
2626 }
2627
2628 stat_timer_cb (EV_A_ &w->timer, 0);
2629 }
2630 }
2631 }
1714} 2632}
1715 2633
1716static void 2634static void
1717embed_cb (EV_P_ ev_io *io, int revents) 2635infy_cb (EV_P_ ev_io *w, int revents)
1718{ 2636{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2637 char buf [EV_INOTIFY_BUFSIZE];
2638 struct inotify_event *ev = (struct inotify_event *)buf;
2639 int ofs;
2640 int len = read (fs_fd, buf, sizeof (buf));
1720 2641
1721 if (ev_cb (w)) 2642 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2643 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1723 else
1724 ev_embed_sweep (loop, w);
1725} 2644}
1726 2645
1727void 2646inline_size void
1728ev_embed_start (EV_P_ ev_embed *w) 2647check_2625 (EV_P)
1729{ 2648{
1730 if (expect_false (ev_is_active (w))) 2649 /* kernels < 2.6.25 are borked
2650 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2651 */
2652 struct utsname buf;
2653 int major, minor, micro;
2654
2655 if (uname (&buf))
1731 return; 2656 return;
1732 2657
1733 { 2658 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return; 2659 return;
1751 2660
1752 ev_io_stop (EV_A_ &w->io); 2661 if (major < 2
2662 || (major == 2 && minor < 6)
2663 || (major == 2 && minor == 6 && micro < 25))
2664 return;
1753 2665
1754 ev_stop (EV_A_ (W)w); 2666 fs_2625 = 1;
1755} 2667}
1756#endif
1757 2668
1758#if EV_STAT_ENABLE 2669inline_size void
2670infy_init (EV_P)
2671{
2672 if (fs_fd != -2)
2673 return;
1759 2674
2675 fs_fd = -1;
2676
2677 check_2625 (EV_A);
2678
2679 fs_fd = inotify_init ();
2680
2681 if (fs_fd >= 0)
2682 {
2683 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2684 ev_set_priority (&fs_w, EV_MAXPRI);
2685 ev_io_start (EV_A_ &fs_w);
2686 }
2687}
2688
2689inline_size void
2690infy_fork (EV_P)
2691{
2692 int slot;
2693
2694 if (fs_fd < 0)
2695 return;
2696
2697 close (fs_fd);
2698 fs_fd = inotify_init ();
2699
2700 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2701 {
2702 WL w_ = fs_hash [slot].head;
2703 fs_hash [slot].head = 0;
2704
2705 while (w_)
2706 {
2707 ev_stat *w = (ev_stat *)w_;
2708 w_ = w_->next; /* lets us add this watcher */
2709
2710 w->wd = -1;
2711
2712 if (fs_fd >= 0)
2713 infy_add (EV_A_ w); /* re-add, no matter what */
2714 else
2715 ev_timer_again (EV_A_ &w->timer);
2716 }
2717 }
2718}
2719
2720#endif
2721
1760# ifdef _WIN32 2722#ifdef _WIN32
1761# define lstat(a,b) stat(a,b) 2723# define EV_LSTAT(p,b) _stati64 (p, b)
2724#else
2725# define EV_LSTAT(p,b) lstat (p, b)
1762# endif 2726#endif
1763 2727
1764void 2728void
1765ev_stat_stat (EV_P_ ev_stat *w) 2729ev_stat_stat (EV_P_ ev_stat *w)
1766{ 2730{
1767 if (lstat (w->path, &w->attr) < 0) 2731 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0; 2732 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink) 2733 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1; 2734 w->attr.st_nlink = 1;
1771} 2735}
1772 2736
1773static void 2737static void noinline
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2738stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{ 2739{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2740 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777 2741
1778 /* we copy this here each the time so that */ 2742 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */ 2743 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr; 2744 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w); 2745 ev_stat_stat (EV_A_ w);
1782 2746
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2747 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2748 if (
2749 w->prev.st_dev != w->attr.st_dev
2750 || w->prev.st_ino != w->attr.st_ino
2751 || w->prev.st_mode != w->attr.st_mode
2752 || w->prev.st_nlink != w->attr.st_nlink
2753 || w->prev.st_uid != w->attr.st_uid
2754 || w->prev.st_gid != w->attr.st_gid
2755 || w->prev.st_rdev != w->attr.st_rdev
2756 || w->prev.st_size != w->attr.st_size
2757 || w->prev.st_atime != w->attr.st_atime
2758 || w->prev.st_mtime != w->attr.st_mtime
2759 || w->prev.st_ctime != w->attr.st_ctime
2760 ) {
2761 #if EV_USE_INOTIFY
2762 if (fs_fd >= 0)
2763 {
2764 infy_del (EV_A_ w);
2765 infy_add (EV_A_ w);
2766 ev_stat_stat (EV_A_ w); /* avoid race... */
2767 }
2768 #endif
2769
1784 ev_feed_event (EV_A_ w, EV_STAT); 2770 ev_feed_event (EV_A_ w, EV_STAT);
2771 }
1785} 2772}
1786 2773
1787void 2774void
1788ev_stat_start (EV_P_ ev_stat *w) 2775ev_stat_start (EV_P_ ev_stat *w)
1789{ 2776{
1790 if (expect_false (ev_is_active (w))) 2777 if (expect_false (ev_is_active (w)))
1791 return; 2778 return;
1792 2779
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w); 2780 ev_stat_stat (EV_A_ w);
1798 2781
2782 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2783 w->interval = MIN_STAT_INTERVAL;
2784
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2785 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1800 ev_set_priority (&w->timer, ev_priority (w)); 2786 ev_set_priority (&w->timer, ev_priority (w));
2787
2788#if EV_USE_INOTIFY
2789 infy_init (EV_A);
2790
2791 if (fs_fd >= 0)
2792 infy_add (EV_A_ w);
2793 else
2794#endif
1801 ev_timer_start (EV_A_ &w->timer); 2795 ev_timer_again (EV_A_ &w->timer);
1802 2796
1803 ev_start (EV_A_ (W)w, 1); 2797 ev_start (EV_A_ (W)w, 1);
2798
2799 EV_FREQUENT_CHECK;
1804} 2800}
1805 2801
1806void 2802void
1807ev_stat_stop (EV_P_ ev_stat *w) 2803ev_stat_stop (EV_P_ ev_stat *w)
1808{ 2804{
1809 ev_clear_pending (EV_A_ (W)w); 2805 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2806 if (expect_false (!ev_is_active (w)))
1811 return; 2807 return;
1812 2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_INOTIFY
2812 infy_del (EV_A_ w);
2813#endif
1813 ev_timer_stop (EV_A_ &w->timer); 2814 ev_timer_stop (EV_A_ &w->timer);
1814 2815
1815 ev_stop (EV_A_ (W)w); 2816 ev_stop (EV_A_ (W)w);
2817
2818 EV_FREQUENT_CHECK;
2819}
2820#endif
2821
2822#if EV_IDLE_ENABLE
2823void
2824ev_idle_start (EV_P_ ev_idle *w)
2825{
2826 if (expect_false (ev_is_active (w)))
2827 return;
2828
2829 pri_adjust (EV_A_ (W)w);
2830
2831 EV_FREQUENT_CHECK;
2832
2833 {
2834 int active = ++idlecnt [ABSPRI (w)];
2835
2836 ++idleall;
2837 ev_start (EV_A_ (W)w, active);
2838
2839 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2840 idles [ABSPRI (w)][active - 1] = w;
2841 }
2842
2843 EV_FREQUENT_CHECK;
2844}
2845
2846void
2847ev_idle_stop (EV_P_ ev_idle *w)
2848{
2849 clear_pending (EV_A_ (W)w);
2850 if (expect_false (!ev_is_active (w)))
2851 return;
2852
2853 EV_FREQUENT_CHECK;
2854
2855 {
2856 int active = ev_active (w);
2857
2858 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2859 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2860
2861 ev_stop (EV_A_ (W)w);
2862 --idleall;
2863 }
2864
2865 EV_FREQUENT_CHECK;
2866}
2867#endif
2868
2869void
2870ev_prepare_start (EV_P_ ev_prepare *w)
2871{
2872 if (expect_false (ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_start (EV_A_ (W)w, ++preparecnt);
2878 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2879 prepares [preparecnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2882}
2883
2884void
2885ev_prepare_stop (EV_P_ ev_prepare *w)
2886{
2887 clear_pending (EV_A_ (W)w);
2888 if (expect_false (!ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
2892
2893 {
2894 int active = ev_active (w);
2895
2896 prepares [active - 1] = prepares [--preparecnt];
2897 ev_active (prepares [active - 1]) = active;
2898 }
2899
2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904
2905void
2906ev_check_start (EV_P_ ev_check *w)
2907{
2908 if (expect_false (ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 ev_start (EV_A_ (W)w, ++checkcnt);
2914 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2915 checks [checkcnt - 1] = w;
2916
2917 EV_FREQUENT_CHECK;
2918}
2919
2920void
2921ev_check_stop (EV_P_ ev_check *w)
2922{
2923 clear_pending (EV_A_ (W)w);
2924 if (expect_false (!ev_is_active (w)))
2925 return;
2926
2927 EV_FREQUENT_CHECK;
2928
2929 {
2930 int active = ev_active (w);
2931
2932 checks [active - 1] = checks [--checkcnt];
2933 ev_active (checks [active - 1]) = active;
2934 }
2935
2936 ev_stop (EV_A_ (W)w);
2937
2938 EV_FREQUENT_CHECK;
2939}
2940
2941#if EV_EMBED_ENABLE
2942void noinline
2943ev_embed_sweep (EV_P_ ev_embed *w)
2944{
2945 ev_loop (w->other, EVLOOP_NONBLOCK);
2946}
2947
2948static void
2949embed_io_cb (EV_P_ ev_io *io, int revents)
2950{
2951 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2952
2953 if (ev_cb (w))
2954 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2955 else
2956 ev_loop (w->other, EVLOOP_NONBLOCK);
2957}
2958
2959static void
2960embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2961{
2962 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2963
2964 {
2965 struct ev_loop *loop = w->other;
2966
2967 while (fdchangecnt)
2968 {
2969 fd_reify (EV_A);
2970 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2971 }
2972 }
2973}
2974
2975static void
2976embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2977{
2978 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2979
2980 ev_embed_stop (EV_A_ w);
2981
2982 {
2983 struct ev_loop *loop = w->other;
2984
2985 ev_loop_fork (EV_A);
2986 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2987 }
2988
2989 ev_embed_start (EV_A_ w);
2990}
2991
2992#if 0
2993static void
2994embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2995{
2996 ev_idle_stop (EV_A_ idle);
2997}
2998#endif
2999
3000void
3001ev_embed_start (EV_P_ ev_embed *w)
3002{
3003 if (expect_false (ev_is_active (w)))
3004 return;
3005
3006 {
3007 struct ev_loop *loop = w->other;
3008 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3009 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3010 }
3011
3012 EV_FREQUENT_CHECK;
3013
3014 ev_set_priority (&w->io, ev_priority (w));
3015 ev_io_start (EV_A_ &w->io);
3016
3017 ev_prepare_init (&w->prepare, embed_prepare_cb);
3018 ev_set_priority (&w->prepare, EV_MINPRI);
3019 ev_prepare_start (EV_A_ &w->prepare);
3020
3021 ev_fork_init (&w->fork, embed_fork_cb);
3022 ev_fork_start (EV_A_ &w->fork);
3023
3024 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3025
3026 ev_start (EV_A_ (W)w, 1);
3027
3028 EV_FREQUENT_CHECK;
3029}
3030
3031void
3032ev_embed_stop (EV_P_ ev_embed *w)
3033{
3034 clear_pending (EV_A_ (W)w);
3035 if (expect_false (!ev_is_active (w)))
3036 return;
3037
3038 EV_FREQUENT_CHECK;
3039
3040 ev_io_stop (EV_A_ &w->io);
3041 ev_prepare_stop (EV_A_ &w->prepare);
3042 ev_fork_stop (EV_A_ &w->fork);
3043
3044 EV_FREQUENT_CHECK;
3045}
3046#endif
3047
3048#if EV_FORK_ENABLE
3049void
3050ev_fork_start (EV_P_ ev_fork *w)
3051{
3052 if (expect_false (ev_is_active (w)))
3053 return;
3054
3055 EV_FREQUENT_CHECK;
3056
3057 ev_start (EV_A_ (W)w, ++forkcnt);
3058 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3059 forks [forkcnt - 1] = w;
3060
3061 EV_FREQUENT_CHECK;
3062}
3063
3064void
3065ev_fork_stop (EV_P_ ev_fork *w)
3066{
3067 clear_pending (EV_A_ (W)w);
3068 if (expect_false (!ev_is_active (w)))
3069 return;
3070
3071 EV_FREQUENT_CHECK;
3072
3073 {
3074 int active = ev_active (w);
3075
3076 forks [active - 1] = forks [--forkcnt];
3077 ev_active (forks [active - 1]) = active;
3078 }
3079
3080 ev_stop (EV_A_ (W)w);
3081
3082 EV_FREQUENT_CHECK;
3083}
3084#endif
3085
3086#if EV_ASYNC_ENABLE
3087void
3088ev_async_start (EV_P_ ev_async *w)
3089{
3090 if (expect_false (ev_is_active (w)))
3091 return;
3092
3093 evpipe_init (EV_A);
3094
3095 EV_FREQUENT_CHECK;
3096
3097 ev_start (EV_A_ (W)w, ++asynccnt);
3098 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3099 asyncs [asynccnt - 1] = w;
3100
3101 EV_FREQUENT_CHECK;
3102}
3103
3104void
3105ev_async_stop (EV_P_ ev_async *w)
3106{
3107 clear_pending (EV_A_ (W)w);
3108 if (expect_false (!ev_is_active (w)))
3109 return;
3110
3111 EV_FREQUENT_CHECK;
3112
3113 {
3114 int active = ev_active (w);
3115
3116 asyncs [active - 1] = asyncs [--asynccnt];
3117 ev_active (asyncs [active - 1]) = active;
3118 }
3119
3120 ev_stop (EV_A_ (W)w);
3121
3122 EV_FREQUENT_CHECK;
3123}
3124
3125void
3126ev_async_send (EV_P_ ev_async *w)
3127{
3128 w->sent = 1;
3129 evpipe_write (EV_A_ &gotasync);
1816} 3130}
1817#endif 3131#endif
1818 3132
1819/*****************************************************************************/ 3133/*****************************************************************************/
1820 3134
1830once_cb (EV_P_ struct ev_once *once, int revents) 3144once_cb (EV_P_ struct ev_once *once, int revents)
1831{ 3145{
1832 void (*cb)(int revents, void *arg) = once->cb; 3146 void (*cb)(int revents, void *arg) = once->cb;
1833 void *arg = once->arg; 3147 void *arg = once->arg;
1834 3148
1835 ev_io_stop (EV_A_ &once->io); 3149 ev_io_stop (EV_A_ &once->io);
1836 ev_timer_stop (EV_A_ &once->to); 3150 ev_timer_stop (EV_A_ &once->to);
1837 ev_free (once); 3151 ev_free (once);
1838 3152
1839 cb (revents, arg); 3153 cb (revents, arg);
1840} 3154}
1841 3155
1842static void 3156static void
1843once_cb_io (EV_P_ ev_io *w, int revents) 3157once_cb_io (EV_P_ ev_io *w, int revents)
1844{ 3158{
1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3159 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3160
3161 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1846} 3162}
1847 3163
1848static void 3164static void
1849once_cb_to (EV_P_ ev_timer *w, int revents) 3165once_cb_to (EV_P_ ev_timer *w, int revents)
1850{ 3166{
1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3167 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3168
3169 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1852} 3170}
1853 3171
1854void 3172void
1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3173ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1856{ 3174{
1878 ev_timer_set (&once->to, timeout, 0.); 3196 ev_timer_set (&once->to, timeout, 0.);
1879 ev_timer_start (EV_A_ &once->to); 3197 ev_timer_start (EV_A_ &once->to);
1880 } 3198 }
1881} 3199}
1882 3200
3201/*****************************************************************************/
3202
3203#if 0
3204void
3205ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3206{
3207 int i, j;
3208 ev_watcher_list *wl, *wn;
3209
3210 if (types & (EV_IO | EV_EMBED))
3211 for (i = 0; i < anfdmax; ++i)
3212 for (wl = anfds [i].head; wl; )
3213 {
3214 wn = wl->next;
3215
3216#if EV_EMBED_ENABLE
3217 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3218 {
3219 if (types & EV_EMBED)
3220 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3221 }
3222 else
3223#endif
3224#if EV_USE_INOTIFY
3225 if (ev_cb ((ev_io *)wl) == infy_cb)
3226 ;
3227 else
3228#endif
3229 if ((ev_io *)wl != &pipeev)
3230 if (types & EV_IO)
3231 cb (EV_A_ EV_IO, wl);
3232
3233 wl = wn;
3234 }
3235
3236 if (types & (EV_TIMER | EV_STAT))
3237 for (i = timercnt + HEAP0; i-- > HEAP0; )
3238#if EV_STAT_ENABLE
3239 /*TODO: timer is not always active*/
3240 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3241 {
3242 if (types & EV_STAT)
3243 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3244 }
3245 else
3246#endif
3247 if (types & EV_TIMER)
3248 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3249
3250#if EV_PERIODIC_ENABLE
3251 if (types & EV_PERIODIC)
3252 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3253 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3254#endif
3255
3256#if EV_IDLE_ENABLE
3257 if (types & EV_IDLE)
3258 for (j = NUMPRI; i--; )
3259 for (i = idlecnt [j]; i--; )
3260 cb (EV_A_ EV_IDLE, idles [j][i]);
3261#endif
3262
3263#if EV_FORK_ENABLE
3264 if (types & EV_FORK)
3265 for (i = forkcnt; i--; )
3266 if (ev_cb (forks [i]) != embed_fork_cb)
3267 cb (EV_A_ EV_FORK, forks [i]);
3268#endif
3269
3270#if EV_ASYNC_ENABLE
3271 if (types & EV_ASYNC)
3272 for (i = asynccnt; i--; )
3273 cb (EV_A_ EV_ASYNC, asyncs [i]);
3274#endif
3275
3276 if (types & EV_PREPARE)
3277 for (i = preparecnt; i--; )
3278#if EV_EMBED_ENABLE
3279 if (ev_cb (prepares [i]) != embed_prepare_cb)
3280#endif
3281 cb (EV_A_ EV_PREPARE, prepares [i]);
3282
3283 if (types & EV_CHECK)
3284 for (i = checkcnt; i--; )
3285 cb (EV_A_ EV_CHECK, checks [i]);
3286
3287 if (types & EV_SIGNAL)
3288 for (i = 0; i < signalmax; ++i)
3289 for (wl = signals [i].head; wl; )
3290 {
3291 wn = wl->next;
3292 cb (EV_A_ EV_SIGNAL, wl);
3293 wl = wn;
3294 }
3295
3296 if (types & EV_CHILD)
3297 for (i = EV_PID_HASHSIZE; i--; )
3298 for (wl = childs [i]; wl; )
3299 {
3300 wn = wl->next;
3301 cb (EV_A_ EV_CHILD, wl);
3302 wl = wn;
3303 }
3304/* EV_STAT 0x00001000 /* stat data changed */
3305/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3306}
3307#endif
3308
3309#if EV_MULTIPLICITY
3310 #include "ev_wrap.h"
3311#endif
3312
1883#ifdef __cplusplus 3313#ifdef __cplusplus
1884} 3314}
1885#endif 3315#endif
1886 3316

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines