ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
42
43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
73# endif
74
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
81# endif
82
83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
33#endif 99#endif
34 100
35#include <math.h> 101#include <math.h>
36#include <stdlib.h> 102#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 103#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 104#include <stddef.h>
41 105
42#include <stdio.h> 106#include <stdio.h>
43 107
44#include <assert.h> 108#include <assert.h>
45#include <errno.h> 109#include <errno.h>
46#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
47#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
48# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
49#endif 124# endif
50#include <sys/time.h> 125#endif
51#include <time.h>
52 126
53/**/ 127/**/
54 128
55#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
57#endif 135#endif
58 136
59#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
61#endif 139#endif
62 140
63#ifndef EV_USEV_POLL 141#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
65#endif 147#endif
66 148
67#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
69#endif 151#endif
70 152
71#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
73#endif 155#endif
74 156
75#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
77#endif 159#endif
78 160
79/**/ 161/**/
80 162
81#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
86#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
89#endif 171#endif
90 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
91/**/ 177/**/
92 178
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97 183
184#ifdef EV_H
185# include EV_H
186#else
98#include "ev.h" 187# include "ev.h"
188#endif
99 189
100#if __GNUC__ >= 3 190#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
102# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
103#else 200#else
104# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
105# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
106#endif 205#endif
107 206
108#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
110 209
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
114typedef struct ev_watcher *W; 216typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
117 219
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 221
222#ifdef _WIN32
223# include "ev_win32.c"
224#endif
225
120/*****************************************************************************/ 226/*****************************************************************************/
121 227
228static void (*syserr_cb)(const char *msg);
229
230void ev_set_syserr_cb (void (*cb)(const char *msg))
231{
232 syserr_cb = cb;
233}
234
235static void
236syserr (const char *msg)
237{
238 if (!msg)
239 msg = "(libev) system error";
240
241 if (syserr_cb)
242 syserr_cb (msg);
243 else
244 {
245 perror (msg);
246 abort ();
247 }
248}
249
250static void *(*alloc)(void *ptr, long size);
251
252void ev_set_allocator (void *(*cb)(void *ptr, long size))
253{
254 alloc = cb;
255}
256
257static void *
258ev_realloc (void *ptr, long size)
259{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
261
262 if (!ptr && size)
263 {
264 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
265 abort ();
266 }
267
268 return ptr;
269}
270
271#define ev_malloc(size) ev_realloc (0, (size))
272#define ev_free(ptr) ev_realloc ((ptr), 0)
273
274/*****************************************************************************/
275
122typedef struct 276typedef struct
123{ 277{
124 struct ev_watcher_list *head; 278 WL head;
125 unsigned char events; 279 unsigned char events;
126 unsigned char reify; 280 unsigned char reify;
281#if EV_SELECT_IS_WINSOCKET
282 SOCKET handle;
283#endif
127} ANFD; 284} ANFD;
128 285
129typedef struct 286typedef struct
130{ 287{
131 W w; 288 W w;
132 int events; 289 int events;
133} ANPENDING; 290} ANPENDING;
134 291
135#if EV_MULTIPLICITY 292#if EV_MULTIPLICITY
136 293
137struct ev_loop 294 struct ev_loop
138{ 295 {
296 ev_tstamp ev_rt_now;
297 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 298 #define VAR(name,decl) decl;
140# include "ev_vars.h" 299 #include "ev_vars.h"
141};
142# undef VAR 300 #undef VAR
301 };
143# include "ev_wrap.h" 302 #include "ev_wrap.h"
303
304 static struct ev_loop default_loop_struct;
305 struct ev_loop *ev_default_loop_ptr;
144 306
145#else 307#else
146 308
309 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 310 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 311 #include "ev_vars.h"
149# undef VAR 312 #undef VAR
313
314 static int ev_default_loop_ptr;
150 315
151#endif 316#endif
152 317
153/*****************************************************************************/ 318/*****************************************************************************/
154 319
155inline ev_tstamp 320ev_tstamp noinline
156ev_time (void) 321ev_time (void)
157{ 322{
158#if EV_USE_REALTIME 323#if EV_USE_REALTIME
159 struct timespec ts; 324 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 331#endif
167} 332}
168 333
169inline ev_tstamp 334ev_tstamp inline_size
170get_clock (void) 335get_clock (void)
171{ 336{
172#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
174 { 339 {
179#endif 344#endif
180 345
181 return ev_time (); 346 return ev_time ();
182} 347}
183 348
349#if EV_MULTIPLICITY
184ev_tstamp 350ev_tstamp
185ev_now (EV_P) 351ev_now (EV_P)
186{ 352{
187 return rt_now; 353 return ev_rt_now;
188} 354}
355#endif
189 356
190#define array_roundsize(base,n) ((n) | 4 & ~3) 357#define array_roundsize(type,n) (((n) | 4) & ~3)
191 358
192#define array_needsize(base,cur,cnt,init) \ 359#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 360 if (expect_false ((cnt) > cur)) \
194 { \ 361 { \
195 int newcnt = cur; \ 362 int newcnt = cur; \
196 do \ 363 do \
197 { \ 364 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 365 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 366 } \
200 while ((cnt) > newcnt); \ 367 while ((cnt) > newcnt); \
201 \ 368 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 370 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 371 cur = newcnt; \
205 } 372 }
373
374#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 }
381
382#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 384
207/*****************************************************************************/ 385/*****************************************************************************/
208 386
209static void 387void inline_size
210anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
211{ 389{
212 while (count--) 390 while (count--)
213 { 391 {
214 base->head = 0; 392 base->head = 0;
217 395
218 ++base; 396 ++base;
219 } 397 }
220} 398}
221 399
222static void 400void noinline
223event (EV_P_ W w, int events) 401ev_feed_event (EV_P_ void *w, int revents)
224{ 402{
225 if (w->pending) 403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
226 { 406 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 408 return;
229 } 409 }
230 410
231 w->pending = ++pendingcnt [ABSPRI (w)]; 411 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 415}
236 416
237static void 417static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 418queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 419{
240 int i; 420 int i;
241 421
242 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
244} 424}
245 425
246static void 426void inline_speed
247fd_event (EV_P_ int fd, int events) 427fd_event (EV_P_ int fd, int revents)
248{ 428{
249 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 430 ev_io *w;
251 431
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 433 {
254 int ev = w->events & events; 434 int ev = w->events & revents;
255 435
256 if (ev) 436 if (ev)
257 event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
258 } 438 }
439}
440
441void
442ev_feed_fd_event (EV_P_ int fd, int revents)
443{
444 fd_event (EV_A_ fd, revents);
259} 445}
260 446
261/*****************************************************************************/ 447/*****************************************************************************/
262 448
263static void 449void inline_size
264fd_reify (EV_P) 450fd_reify (EV_P)
265{ 451{
266 int i; 452 int i;
267 453
268 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
269 { 455 {
270 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 458 ev_io *w;
273 459
274 int events = 0; 460 int events = 0;
275 461
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 463 events |= w->events;
278 464
465#if EV_SELECT_IS_WINSOCKET
466 if (events)
467 {
468 unsigned long argp;
469 anfd->handle = _get_osfhandle (fd);
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
471 }
472#endif
473
279 anfd->reify = 0; 474 anfd->reify = 0;
280 475
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 476 backend_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 477 anfd->events = events;
285 }
286 } 478 }
287 479
288 fdchangecnt = 0; 480 fdchangecnt = 0;
289} 481}
290 482
291static void 483void inline_size
292fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
293{ 485{
294 if (anfds [fd].reify || fdchangecnt < 0) 486 if (expect_false (anfds [fd].reify))
295 return; 487 return;
296 488
297 anfds [fd].reify = 1; 489 anfds [fd].reify = 1;
298 490
299 ++fdchangecnt; 491 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
302} 494}
303 495
304static void 496void inline_speed
305fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
306{ 498{
307 struct ev_io *w; 499 ev_io *w;
308 500
309 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
310 { 502 {
311 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 505 }
506}
507
508int inline_size
509fd_valid (int fd)
510{
511#ifdef _WIN32
512 return _get_osfhandle (fd) != -1;
513#else
514 return fcntl (fd, F_GETFD) != -1;
515#endif
314} 516}
315 517
316/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
317static void 519static void noinline
318fd_ebadf (EV_P) 520fd_ebadf (EV_P)
319{ 521{
320 int fd; 522 int fd;
321 523
322 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 525 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
326} 528}
327 529
328/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 531static void noinline
330fd_enomem (EV_P) 532fd_enomem (EV_P)
331{ 533{
332 int fd = anfdmax; 534 int fd;
333 535
334 while (fd--) 536 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 537 if (anfds [fd].events)
336 { 538 {
337 close (fd);
338 fd_kill (EV_A_ fd); 539 fd_kill (EV_A_ fd);
339 return; 540 return;
340 } 541 }
341} 542}
342 543
343/* susually called after fork if method needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 545static void noinline
345fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
346{ 547{
347 int fd; 548 int fd;
348 549
349 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 551 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 552 if (anfds [fd].events)
352 { 553 {
353 anfds [fd].events = 0; 554 anfds [fd].events = 0;
354 fd_change (fd); 555 fd_change (EV_A_ fd);
355 } 556 }
356} 557}
357 558
358/*****************************************************************************/ 559/*****************************************************************************/
359 560
360static void 561void inline_speed
361upheap (WT *heap, int k) 562upheap (WT *heap, int k)
362{ 563{
363 WT w = heap [k]; 564 WT w = heap [k];
364 565
365 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
366 { 567 {
367 heap [k] = heap [k >> 1]; 568 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 569 ((W)heap [k])->active = k + 1;
369 k >>= 1; 570 k >>= 1;
370 } 571 }
371 572
372 heap [k] = w; 573 heap [k] = w;
373 heap [k]->active = k + 1; 574 ((W)heap [k])->active = k + 1;
374 575
375} 576}
376 577
377static void 578void inline_speed
378downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
379{ 580{
380 WT w = heap [k]; 581 WT w = heap [k];
381 582
382 while (k < (N >> 1)) 583 while (k < (N >> 1))
388 589
389 if (w->at <= heap [j]->at) 590 if (w->at <= heap [j]->at)
390 break; 591 break;
391 592
392 heap [k] = heap [j]; 593 heap [k] = heap [j];
393 heap [k]->active = k + 1; 594 ((W)heap [k])->active = k + 1;
394 k = j; 595 k = j;
395 } 596 }
396 597
397 heap [k] = w; 598 heap [k] = w;
398 heap [k]->active = k + 1; 599 ((W)heap [k])->active = k + 1;
600}
601
602void inline_size
603adjustheap (WT *heap, int N, int k)
604{
605 upheap (heap, k);
606 downheap (heap, N, k);
399} 607}
400 608
401/*****************************************************************************/ 609/*****************************************************************************/
402 610
403typedef struct 611typedef struct
404{ 612{
405 struct ev_watcher_list *head; 613 WL head;
406 sig_atomic_t volatile gotsig; 614 sig_atomic_t volatile gotsig;
407} ANSIG; 615} ANSIG;
408 616
409static ANSIG *signals; 617static ANSIG *signals;
410static int signalmax; 618static int signalmax;
411 619
412static int sigpipe [2]; 620static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
622static ev_io sigev;
414 623
415static void 624void inline_size
416signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
417{ 626{
418 while (count--) 627 while (count--)
419 { 628 {
420 base->head = 0; 629 base->head = 0;
425} 634}
426 635
427static void 636static void
428sighandler (int signum) 637sighandler (int signum)
429{ 638{
639#if _WIN32
640 signal (signum, sighandler);
641#endif
642
430 signals [signum - 1].gotsig = 1; 643 signals [signum - 1].gotsig = 1;
431 644
432 if (!gotsig) 645 if (!gotsig)
433 { 646 {
434 int old_errno = errno; 647 int old_errno = errno;
436 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
437 errno = old_errno; 650 errno = old_errno;
438 } 651 }
439} 652}
440 653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
441static void 674static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
443{ 676{
444 struct ev_watcher_list *w;
445 int signum; 677 int signum;
446 678
447 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
448 gotsig = 0; 680 gotsig = 0;
449 681
450 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
452 { 684 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458} 685}
459 686
460static void 687void inline_size
688fd_intern (int fd)
689{
690#ifdef _WIN32
691 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
693#else
694 fcntl (fd, F_SETFD, FD_CLOEXEC);
695 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif
697}
698
699static void noinline
461siginit (EV_P) 700siginit (EV_P)
462{ 701{
463#ifndef WIN32 702 fd_intern (sigpipe [0]);
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 703 fd_intern (sigpipe [1]);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471 704
472 ev_io_set (&sigev, sigpipe [0], EV_READ); 705 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev); 706 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 708}
476 709
477/*****************************************************************************/ 710/*****************************************************************************/
478 711
712static ev_child *childs [PID_HASHSIZE];
713
479#ifndef WIN32 714#ifndef _WIN32
715
716static ev_signal childev;
480 717
481#ifndef WCONTINUED 718#ifndef WCONTINUED
482# define WCONTINUED 0 719# define WCONTINUED 0
483#endif 720#endif
484 721
485static void 722void inline_speed
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
487{ 724{
488 struct ev_child *w; 725 ev_child *w;
489 726
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
492 { 729 {
493 w->priority = sw->priority; /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 731 w->rpid = pid;
495 w->rstatus = status; 732 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 734 }
498} 735}
499 736
500static void 737static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
502{ 739{
503 int pid, status; 740 int pid, status;
504 741
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 743 {
507 /* make sure we are called again until all childs have been reaped */ 744 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */
508 event (EV_A_ (W)sw, EV_SIGNAL); 746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 747
510 child_reap (EV_A_ sw, pid, pid, status); 748 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
512 } 750 }
513} 751}
514 752
515#endif 753#endif
516 754
517/*****************************************************************************/ 755/*****************************************************************************/
518 756
757#if EV_USE_PORT
758# include "ev_port.c"
759#endif
519#if EV_USE_KQUEUE 760#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 761# include "ev_kqueue.c"
521#endif 762#endif
522#if EV_USE_EPOLL 763#if EV_USE_EPOLL
523# include "ev_epoll.c" 764# include "ev_epoll.c"
524#endif 765#endif
525#if EV_USEV_POLL 766#if EV_USE_POLL
526# include "ev_poll.c" 767# include "ev_poll.c"
527#endif 768#endif
528#if EV_USE_SELECT 769#if EV_USE_SELECT
529# include "ev_select.c" 770# include "ev_select.c"
530#endif 771#endif
540{ 781{
541 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
542} 783}
543 784
544/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
545static int 786int inline_size
546enable_secure (void) 787enable_secure (void)
547{ 788{
548#ifdef WIN32 789#ifdef _WIN32
549 return 0; 790 return 0;
550#else 791#else
551 return getuid () != geteuid () 792 return getuid () != geteuid ()
552 || getgid () != getegid (); 793 || getgid () != getegid ();
553#endif 794#endif
554} 795}
555 796
556int 797unsigned int
557ev_method (EV_P) 798ev_supported_backends (void)
558{ 799{
559 return method; 800 unsigned int flags = 0;
801
802 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
803 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
804 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
805 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
806 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
807
808 return flags;
809}
810
811unsigned int
812ev_recommended_backends (void)
813{
814 unsigned int flags = ev_supported_backends ();
815
816#ifndef __NetBSD__
817 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE;
820#endif
821#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation
823 flags &= ~EVBACKEND_POLL;
824#endif
825
826 return flags;
827}
828
829unsigned int
830ev_embeddable_backends (void)
831{
832 return EVBACKEND_EPOLL
833 | EVBACKEND_KQUEUE
834 | EVBACKEND_PORT;
835}
836
837unsigned int
838ev_backend (EV_P)
839{
840 return backend;
560} 841}
561 842
562static void 843static void
563loop_init (EV_P_ int methods) 844loop_init (EV_P_ unsigned int flags)
564{ 845{
565 if (!method) 846 if (!backend)
566 { 847 {
567#if EV_USE_MONOTONIC 848#if EV_USE_MONOTONIC
568 { 849 {
569 struct timespec ts; 850 struct timespec ts;
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 851 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 852 have_monotonic = 1;
572 } 853 }
573#endif 854#endif
574 855
575 rt_now = ev_time (); 856 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 857 mn_now = get_clock ();
577 now_floor = mn_now; 858 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 859 rtmn_diff = ev_rt_now - mn_now;
579 860
580 if (methods == EVMETHOD_AUTO) 861 if (!(flags & EVFLAG_NOENV)
581 if (!enable_secure () && getenv ("LIBEV_METHODS")) 862 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 864 flags = atoi (getenv ("LIBEV_FLAGS"));
583 else
584 methods = EVMETHOD_ANY;
585 865
586 method = 0; 866 if (!(flags & 0x0000ffffUL))
867 flags |= ev_recommended_backends ();
868
869 backend = 0;
870#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif
587#if EV_USE_KQUEUE 873#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
589#endif 875#endif
590#if EV_USE_EPOLL 876#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
592#endif 878#endif
593#if EV_USEV_POLL 879#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
595#endif 881#endif
596#if EV_USE_SELECT 882#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
598#endif 884#endif
599 }
600}
601 885
602void 886 ev_init (&sigev, sigcb);
887 ev_set_priority (&sigev, EV_MAXPRI);
888 }
889}
890
891static void
603loop_destroy (EV_P) 892loop_destroy (EV_P)
604{ 893{
894 int i;
895
896#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif
605#if EV_USE_KQUEUE 899#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
607#endif 901#endif
608#if EV_USE_EPOLL 902#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 903 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
610#endif 904#endif
611#if EV_USEV_POLL 905#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 906 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
613#endif 907#endif
614#if EV_USE_SELECT 908#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
616#endif 910#endif
617 911
618 method = 0; 912 for (i = NUMPRI; i--; )
619 /*TODO*/ 913 array_free (pending, [i]);
620}
621 914
622void 915 /* have to use the microsoft-never-gets-it-right macro */
916 array_free (fdchange, EMPTY0);
917 array_free (timer, EMPTY0);
918#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0);
920#endif
921 array_free (idle, EMPTY0);
922 array_free (prepare, EMPTY0);
923 array_free (check, EMPTY0);
924
925 backend = 0;
926}
927
928static void
623loop_fork (EV_P) 929loop_fork (EV_P)
624{ 930{
625 /*TODO*/ 931#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif
934#if EV_USE_KQUEUE
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif
626#if EV_USE_EPOLL 937#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
628#endif 939#endif
629#if EV_USE_KQUEUE 940
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 941 if (ev_is_active (&sigev))
631#endif 942 {
943 /* default loop */
944
945 ev_ref (EV_A);
946 ev_io_stop (EV_A_ &sigev);
947 close (sigpipe [0]);
948 close (sigpipe [1]);
949
950 while (pipe (sigpipe))
951 syserr ("(libev) error creating pipe");
952
953 siginit (EV_A);
954 }
955
956 postfork = 0;
632} 957}
633 958
634#if EV_MULTIPLICITY 959#if EV_MULTIPLICITY
635struct ev_loop * 960struct ev_loop *
636ev_loop_new (int methods) 961ev_loop_new (unsigned int flags)
637{ 962{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
639 964
965 memset (loop, 0, sizeof (struct ev_loop));
966
640 loop_init (EV_A_ methods); 967 loop_init (EV_A_ flags);
641 968
642 if (ev_methods (EV_A)) 969 if (ev_backend (EV_A))
643 return loop; 970 return loop;
644 971
645 return 0; 972 return 0;
646} 973}
647 974
648void 975void
649ev_loop_destroy (EV_P) 976ev_loop_destroy (EV_P)
650{ 977{
651 loop_destroy (EV_A); 978 loop_destroy (EV_A);
652 free (loop); 979 ev_free (loop);
653} 980}
654 981
655void 982void
656ev_loop_fork (EV_P) 983ev_loop_fork (EV_P)
657{ 984{
658 loop_fork (EV_A); 985 postfork = 1;
659} 986}
660 987
661#endif 988#endif
662 989
663#if EV_MULTIPLICITY 990#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 991struct ev_loop *
992ev_default_loop_init (unsigned int flags)
668#else 993#else
669static int default_loop;
670
671int 994int
995ev_default_loop (unsigned int flags)
672#endif 996#endif
673ev_default_loop (int methods)
674{ 997{
675 if (sigpipe [0] == sigpipe [1]) 998 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe)) 999 if (pipe (sigpipe))
677 return 0; 1000 return 0;
678 1001
679 if (!default_loop) 1002 if (!ev_default_loop_ptr)
680 { 1003 {
681#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct; 1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
683#else 1006#else
684 default_loop = 1; 1007 ev_default_loop_ptr = 1;
685#endif 1008#endif
686 1009
687 loop_init (EV_A_ methods); 1010 loop_init (EV_A_ flags);
688 1011
689 if (ev_method (EV_A)) 1012 if (ev_backend (EV_A))
690 { 1013 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 1014 siginit (EV_A);
694 1015
695#ifndef WIN32 1016#ifndef _WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 1017 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 1018 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 1019 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 1021#endif
701 } 1022 }
702 else 1023 else
703 default_loop = 0; 1024 ev_default_loop_ptr = 0;
704 } 1025 }
705 1026
706 return default_loop; 1027 return ev_default_loop_ptr;
707} 1028}
708 1029
709void 1030void
710ev_default_destroy (void) 1031ev_default_destroy (void)
711{ 1032{
712#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
714#endif 1035#endif
715 1036
1037#ifndef _WIN32
716 ev_ref (EV_A); /* child watcher */ 1038 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 1039 ev_signal_stop (EV_A_ &childev);
1040#endif
718 1041
719 ev_ref (EV_A); /* signal watcher */ 1042 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev); 1043 ev_io_stop (EV_A_ &sigev);
721 1044
722 close (sigpipe [0]); sigpipe [0] = 0; 1045 close (sigpipe [0]); sigpipe [0] = 0;
724 1047
725 loop_destroy (EV_A); 1048 loop_destroy (EV_A);
726} 1049}
727 1050
728void 1051void
729ev_default_fork (EV_P) 1052ev_default_fork (void)
730{ 1053{
731 loop_fork (EV_A); 1054#if EV_MULTIPLICITY
1055 struct ev_loop *loop = ev_default_loop_ptr;
1056#endif
732 1057
733 ev_io_stop (EV_A_ &sigev); 1058 if (backend)
734 close (sigpipe [0]); 1059 postfork = 1;
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 1060}
741 1061
742/*****************************************************************************/ 1062/*****************************************************************************/
743 1063
744static void 1064int inline_size
1065any_pending (EV_P)
1066{
1067 int pri;
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074}
1075
1076void inline_speed
745call_pending (EV_P) 1077call_pending (EV_P)
746{ 1078{
747 int pri; 1079 int pri;
748 1080
749 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri]) 1082 while (pendingcnt [pri])
751 { 1083 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 1085
754 if (p->w) 1086 if (expect_true (p->w))
755 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
756 p->w->pending = 0; 1090 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
758 } 1092 }
759 } 1093 }
760} 1094}
761 1095
762static void 1096void inline_size
763timers_reify (EV_P) 1097timers_reify (EV_P)
764{ 1098{
765 while (timercnt && timers [0]->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
766 { 1100 {
767 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
1102
1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
768 1104
769 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
770 if (w->repeat) 1106 if (w->repeat)
771 { 1107 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109
773 w->at = mn_now + w->repeat; 1110 ((WT)w)->at += w->repeat;
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
774 downheap ((WT *)timers, timercnt, 0); 1114 downheap ((WT *)timers, timercnt, 0);
775 } 1115 }
776 else 1116 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1118
779 event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1120 }
781} 1121}
782 1122
783static void 1123#if EV_PERIODIC_ENABLE
1124void inline_size
784periodics_reify (EV_P) 1125periodics_reify (EV_P)
785{ 1126{
786 while (periodiccnt && periodics [0]->at <= rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
787 { 1128 {
788 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
1130
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
789 1132
790 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
791 if (w->interval) 1134 if (w->reschedule_cb)
792 { 1135 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1138 downheap ((WT *)periodics, periodiccnt, 0);
1139 }
1140 else if (w->interval)
1141 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
795 downheap ((WT *)periodics, periodiccnt, 0); 1144 downheap ((WT *)periodics, periodiccnt, 0);
796 } 1145 }
797 else 1146 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1148
800 event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1150 }
802} 1151}
803 1152
804static void 1153static void noinline
805periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
806{ 1155{
807 int i; 1156 int i;
808 1157
809 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
811 { 1160 {
812 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
813 1162
1163 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1165 else if (w->interval)
815 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
817
818 if (fabs (diff) >= 1e-4)
819 {
820 ev_periodic_stop (EV_A_ w);
821 ev_periodic_start (EV_A_ w);
822
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 }
825 }
826 } 1167 }
827}
828 1168
829inline int 1169 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i);
1172}
1173#endif
1174
1175int inline_size
830time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
831{ 1177{
832 mn_now = get_clock (); 1178 mn_now = get_clock ();
833 1179
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 { 1181 {
836 rt_now = rtmn_diff + mn_now; 1182 ev_rt_now = rtmn_diff + mn_now;
837 return 0; 1183 return 0;
838 } 1184 }
839 else 1185 else
840 { 1186 {
841 now_floor = mn_now; 1187 now_floor = mn_now;
842 rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
843 return 1; 1189 return 1;
844 } 1190 }
845} 1191}
846 1192
847static void 1193void inline_size
848time_update (EV_P) 1194time_update (EV_P)
849{ 1195{
850 int i; 1196 int i;
851 1197
852#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
854 { 1200 {
855 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
856 { 1202 {
857 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
858 1204
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
860 { 1214 {
861 rtmn_diff = rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
862 1216
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */ 1218 return; /* all is well */
865 1219
866 rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
867 mn_now = get_clock (); 1221 mn_now = get_clock ();
868 now_floor = mn_now; 1222 now_floor = mn_now;
869 } 1223 }
870 1224
1225# if EV_PERIODIC_ENABLE
871 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1227# endif
872 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 } 1230 }
875 } 1231 }
876 else 1232 else
877#endif 1233#endif
878 { 1234 {
879 rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
880 1236
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 { 1238 {
1239#if EV_PERIODIC_ENABLE
883 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1241#endif
884 1242
885 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now; 1245 ((WT)timers [i])->at += ev_rt_now - mn_now;
888 } 1246 }
889 1247
890 mn_now = rt_now; 1248 mn_now = ev_rt_now;
891 } 1249 }
892} 1250}
893 1251
894void 1252void
895ev_ref (EV_P) 1253ev_ref (EV_P)
906static int loop_done; 1264static int loop_done;
907 1265
908void 1266void
909ev_loop (EV_P_ int flags) 1267ev_loop (EV_P_ int flags)
910{ 1268{
911 double block;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
913 1272
914 do 1273 while (activecnt)
915 { 1274 {
916 /* queue check watchers (and execute them) */ 1275 /* queue check watchers (and execute them) */
917 if (expect_false (preparecnt)) 1276 if (expect_false (preparecnt))
918 { 1277 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1279 call_pending (EV_A);
921 } 1280 }
922 1281
1282 /* we might have forked, so reify kernel state if necessary */
1283 if (expect_false (postfork))
1284 loop_fork (EV_A);
1285
923 /* update fd-related kernel structures */ 1286 /* update fd-related kernel structures */
924 fd_reify (EV_A); 1287 fd_reify (EV_A);
925 1288
926 /* calculate blocking time */ 1289 /* calculate blocking time */
1290 {
1291 double block;
927 1292
928 /* we only need this for !monotonic clockor timers, but as we basically 1293 if (flags & EVLOOP_NONBLOCK || idlecnt)
929 always have timers, we just calculate it always */ 1294 block = 0.; /* do not block at all */
1295 else
1296 {
1297 /* update time to cancel out callback processing overhead */
930#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1299 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A); 1300 time_update_monotonic (EV_A);
933 else 1301 else
934#endif 1302#endif
935 { 1303 {
936 rt_now = ev_time (); 1304 ev_rt_now = ev_time ();
937 mn_now = rt_now; 1305 mn_now = ev_rt_now;
938 } 1306 }
939 1307
940 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.;
942 else
943 {
944 block = MAX_BLOCKTIME; 1308 block = MAX_BLOCKTIME;
945 1309
946 if (timercnt) 1310 if (timercnt)
947 { 1311 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
949 if (block > to) block = to; 1313 if (block > to) block = to;
950 } 1314 }
951 1315
1316#if EV_PERIODIC_ENABLE
952 if (periodiccnt) 1317 if (periodiccnt)
953 { 1318 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
955 if (block > to) block = to; 1320 if (block > to) block = to;
956 } 1321 }
1322#endif
957 1323
958 if (block < 0.) block = 0.; 1324 if (expect_false (block < 0.)) block = 0.;
959 } 1325 }
960 1326
961 method_poll (EV_A_ block); 1327 backend_poll (EV_A_ block);
1328 }
962 1329
963 /* update rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
964 time_update (EV_A); 1331 time_update (EV_A);
965 1332
966 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE
968 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1337#endif
969 1338
970 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
971 if (!pendingcnt) 1340 if (idlecnt && !any_pending (EV_A))
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973 1342
974 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
975 if (checkcnt) 1344 if (expect_false (checkcnt))
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 1346
978 call_pending (EV_A); 1347 call_pending (EV_A);
979 }
980 while (activecnt && !loop_done);
981 1348
982 if (loop_done != 2) 1349 if (expect_false (loop_done))
983 loop_done = 0; 1350 break;
1351 }
1352
1353 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL;
984} 1355}
985 1356
986void 1357void
987ev_unloop (EV_P_ int how) 1358ev_unloop (EV_P_ int how)
988{ 1359{
989 loop_done = how; 1360 loop_done = how;
990} 1361}
991 1362
992/*****************************************************************************/ 1363/*****************************************************************************/
993 1364
994inline void 1365void inline_size
995wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
996{ 1367{
997 elem->next = *head; 1368 elem->next = *head;
998 *head = elem; 1369 *head = elem;
999} 1370}
1000 1371
1001inline void 1372void inline_size
1002wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1003{ 1374{
1004 while (*head) 1375 while (*head)
1005 { 1376 {
1006 if (*head == elem) 1377 if (*head == elem)
1011 1382
1012 head = &(*head)->next; 1383 head = &(*head)->next;
1013 } 1384 }
1014} 1385}
1015 1386
1016inline void 1387void inline_speed
1017ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1018{ 1389{
1019 if (w->pending) 1390 if (w->pending)
1020 { 1391 {
1021 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 w->pending = 0; 1393 w->pending = 0;
1023 } 1394 }
1024} 1395}
1025 1396
1026inline void 1397void inline_speed
1027ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1028{ 1399{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031 1402
1032 w->active = active; 1403 w->active = active;
1033 ev_ref (EV_A); 1404 ev_ref (EV_A);
1034} 1405}
1035 1406
1036inline void 1407void inline_size
1037ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1038{ 1409{
1039 ev_unref (EV_A); 1410 ev_unref (EV_A);
1040 w->active = 0; 1411 w->active = 0;
1041} 1412}
1042 1413
1043/*****************************************************************************/ 1414/*****************************************************************************/
1044 1415
1045void 1416void
1046ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1047{ 1418{
1048 int fd = w->fd; 1419 int fd = w->fd;
1049 1420
1050 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1051 return; 1422 return;
1052 1423
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 1424 assert (("ev_io_start called with negative fd", fd >= 0));
1054 1425
1055 ev_start (EV_A_ (W)w, 1); 1426 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1428 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058 1429
1059 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1060} 1431}
1061 1432
1062void 1433void
1063ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1064{ 1435{
1065 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 1437 if (expect_false (!ev_is_active (w)))
1067 return; 1438 return;
1439
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1068 1441
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 1443 ev_stop (EV_A_ (W)w);
1071 1444
1072 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1073} 1446}
1074 1447
1075void 1448void
1076ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1077{ 1450{
1078 if (ev_is_active (w)) 1451 if (expect_false (ev_is_active (w)))
1079 return; 1452 return;
1080 1453
1081 w->at += mn_now; 1454 ((WT)w)->at += mn_now;
1082 1455
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 1457
1085 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1086 array_needsize (timers, timermax, timercnt, ); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1087 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1088 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1089}
1090 1462
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1464}
1465
1091void 1466void
1092ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1093{ 1468{
1094 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 1470 if (expect_false (!ev_is_active (w)))
1096 return; 1471 return;
1097 1472
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1474
1098 if (w->active < timercnt--) 1475 if (expect_true (((W)w)->active < timercnt--))
1099 { 1476 {
1100 timers [w->active - 1] = timers [timercnt]; 1477 timers [((W)w)->active - 1] = timers [timercnt];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1102 } 1479 }
1103 1480
1104 w->at = w->repeat; 1481 ((WT)w)->at -= mn_now;
1105 1482
1106 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1107} 1484}
1108 1485
1109void 1486void
1110ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1111{ 1488{
1112 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1113 { 1490 {
1114 if (w->repeat) 1491 if (w->repeat)
1115 { 1492 {
1116 w->at = mn_now + w->repeat; 1493 ((WT)w)->at = mn_now + w->repeat;
1117 downheap ((WT *)timers, timercnt, w->active - 1); 1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1118 } 1495 }
1119 else 1496 else
1120 ev_timer_stop (EV_A_ w); 1497 ev_timer_stop (EV_A_ w);
1121 } 1498 }
1122 else if (w->repeat) 1499 else if (w->repeat)
1500 {
1501 w->at = w->repeat;
1123 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1503 }
1124} 1504}
1125 1505
1506#if EV_PERIODIC_ENABLE
1126void 1507void
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1128{ 1509{
1129 if (ev_is_active (w)) 1510 if (expect_false (ev_is_active (w)))
1130 return; 1511 return;
1131 1512
1513 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval)
1516 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1520 }
1137 1521
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1140 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1142}
1143 1526
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1528}
1529
1144void 1530void
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1146{ 1532{
1147 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 1534 if (expect_false (!ev_is_active (w)))
1149 return; 1535 return;
1150 1536
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1538
1151 if (w->active < periodiccnt--) 1539 if (expect_true (((W)w)->active < periodiccnt--))
1152 { 1540 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 1541 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1155 } 1543 }
1156 1544
1157 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1158} 1546}
1159 1547
1160void 1548void
1549ev_periodic_again (EV_P_ ev_periodic *w)
1550{
1551 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w);
1554}
1555#endif
1556
1557void
1161ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1162{ 1559{
1163 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1164 return; 1561 return;
1165 1562
1166 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, ); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1168 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1169} 1566}
1170 1567
1171void 1568void
1172ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1173{ 1570{
1174 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 1572 if (expect_false (!ev_is_active (w)))
1176 return; 1573 return;
1177 1574
1575 {
1576 int active = ((W)w)->active;
1178 idles [w->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1179 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1180} 1582}
1181 1583
1182void 1584void
1183ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1184{ 1586{
1185 if (ev_is_active (w)) 1587 if (expect_false (ev_is_active (w)))
1186 return; 1588 return;
1187 1589
1188 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, ); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1190 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1191} 1593}
1192 1594
1193void 1595void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1195{ 1597{
1196 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 1599 if (expect_false (!ev_is_active (w)))
1198 return; 1600 return;
1199 1601
1602 {
1603 int active = ((W)w)->active;
1200 prepares [w->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1201 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1202} 1609}
1203 1610
1204void 1611void
1205ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1206{ 1613{
1207 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1208 return; 1615 return;
1209 1616
1210 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, ); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1212 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1213} 1620}
1214 1621
1215void 1622void
1216ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1217{ 1624{
1218 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1220 return; 1627 return;
1221 1628
1629 {
1630 int active = ((W)w)->active;
1222 checks [w->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1223 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1224} 1636}
1225 1637
1226#ifndef SA_RESTART 1638#ifndef SA_RESTART
1227# define SA_RESTART 0 1639# define SA_RESTART 0
1228#endif 1640#endif
1229 1641
1230void 1642void
1231ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1232{ 1644{
1233#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1235#endif 1647#endif
1236 if (ev_is_active (w)) 1648 if (expect_false (ev_is_active (w)))
1237 return; 1649 return;
1238 1650
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240 1652
1241 ev_start (EV_A_ (W)w, 1); 1653 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init); 1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244 1656
1245 if (!w->next) 1657 if (!((WL)w)->next)
1246 { 1658 {
1659#if _WIN32
1660 signal (w->signum, sighandler);
1661#else
1247 struct sigaction sa; 1662 struct sigaction sa;
1248 sa.sa_handler = sighandler; 1663 sa.sa_handler = sighandler;
1249 sigfillset (&sa.sa_mask); 1664 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1665 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 1666 sigaction (w->signum, &sa, 0);
1667#endif
1252 } 1668 }
1253} 1669}
1254 1670
1255void 1671void
1256ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1257{ 1673{
1258 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w)) 1675 if (expect_false (!ev_is_active (w)))
1260 return; 1676 return;
1261 1677
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w); 1679 ev_stop (EV_A_ (W)w);
1264 1680
1265 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1266 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1267} 1683}
1268 1684
1269void 1685void
1270ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1271{ 1687{
1272#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1274#endif 1690#endif
1275 if (ev_is_active (w)) 1691 if (expect_false (ev_is_active (w)))
1276 return; 1692 return;
1277 1693
1278 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1280} 1696}
1281 1697
1282void 1698void
1283ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1284{ 1700{
1285 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w)) 1702 if (expect_false (!ev_is_active (w)))
1287 return; 1703 return;
1288 1704
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1291} 1707}
1292 1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1293/*****************************************************************************/ 1819/*****************************************************************************/
1294 1820
1295struct ev_once 1821struct ev_once
1296{ 1822{
1297 struct ev_io io; 1823 ev_io io;
1298 struct ev_timer to; 1824 ev_timer to;
1299 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1300 void *arg; 1826 void *arg;
1301}; 1827};
1302 1828
1303static void 1829static void
1306 void (*cb)(int revents, void *arg) = once->cb; 1832 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 1833 void *arg = once->arg;
1308 1834
1309 ev_io_stop (EV_A_ &once->io); 1835 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 1836 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 1837 ev_free (once);
1312 1838
1313 cb (revents, arg); 1839 cb (revents, arg);
1314} 1840}
1315 1841
1316static void 1842static void
1317once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1318{ 1844{
1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1320} 1846}
1321 1847
1322static void 1848static void
1323once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1324{ 1850{
1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1326} 1852}
1327 1853
1328void 1854void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 1856{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 1857 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 1858
1333 if (!once) 1859 if (expect_false (!once))
1860 {
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1861 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 1862 return;
1336 { 1863 }
1864
1337 once->cb = cb; 1865 once->cb = cb;
1338 once->arg = arg; 1866 once->arg = arg;
1339 1867
1340 ev_watcher_init (&once->io, once_cb_io); 1868 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 1869 if (fd >= 0)
1342 { 1870 {
1343 ev_io_set (&once->io, fd, events); 1871 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io); 1872 ev_io_start (EV_A_ &once->io);
1345 } 1873 }
1346 1874
1347 ev_watcher_init (&once->to, once_cb_to); 1875 ev_init (&once->to, once_cb_to);
1348 if (timeout >= 0.) 1876 if (timeout >= 0.)
1349 { 1877 {
1350 ev_timer_set (&once->to, timeout, 0.); 1878 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to); 1879 ev_timer_start (EV_A_ &once->to);
1352 }
1353 } 1880 }
1354} 1881}
1355 1882
1883#ifdef __cplusplus
1884}
1885#endif
1886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines