ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.71 by root, Tue Nov 6 13:17:55 2007 UTC vs.
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
64#include <assert.h> 108#include <assert.h>
65#include <errno.h> 109#include <errno.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#ifndef PERL
70# include <signal.h> 113#include <signal.h>
71#endif
72 114
73#ifndef WIN32 115#ifndef _WIN32
74# include <unistd.h>
75# include <sys/time.h> 116# include <sys/time.h>
76# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
77#endif 124# endif
125#endif
126
78/**/ 127/**/
79 128
80#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
82#endif 135#endif
83 136
84#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
85# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
86#endif 139#endif
87 140
88#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
89# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
90#endif 147#endif
91 148
92#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
93# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
94#endif 151#endif
95 152
96#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
97# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
98#endif 155#endif
99 156
100#ifndef EV_USE_WIN32
101# ifdef WIN32
102# define EV_USE_WIN32 0 /* it does not exist, use select */
103# undef EV_USE_SELECT
104# define EV_USE_SELECT 1
105# else
106# define EV_USE_WIN32 0
107# endif
108#endif
109
110#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
111# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
112#endif 159#endif
113 160
114/**/ 161/**/
115 162
116#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
121#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
122# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
123# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
124#endif 171#endif
125 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
126/**/ 177/**/
127 178
128#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
129#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
130#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
131/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
132 183
184#ifdef EV_H
185# include EV_H
186#else
133#include "ev.h" 187# include "ev.h"
188#endif
134 189
135#if __GNUC__ >= 3 190#if __GNUC__ >= 3
136# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
137# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
138#else 200#else
139# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
140# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
141#endif 205#endif
142 206
143#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
144#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
145 209
146#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
147#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
148 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
149typedef struct ev_watcher *W; 216typedef ev_watcher *W;
150typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
151typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
152 219
153static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
154 221
155#if WIN32 222#ifdef _WIN32
156/* note: the comment below could not be substantiated, but what would I care */ 223# include "ev_win32.c"
157/* MSDN says this is required to handle SIGFPE */
158volatile double SIGFPE_REQ = 0.0f;
159#endif 224#endif
160 225
161/*****************************************************************************/ 226/*****************************************************************************/
162 227
163static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
211typedef struct 276typedef struct
212{ 277{
213 WL head; 278 WL head;
214 unsigned char events; 279 unsigned char events;
215 unsigned char reify; 280 unsigned char reify;
281#if EV_SELECT_IS_WINSOCKET
282 SOCKET handle;
283#endif
216} ANFD; 284} ANFD;
217 285
218typedef struct 286typedef struct
219{ 287{
220 W w; 288 W w;
221 int events; 289 int events;
222} ANPENDING; 290} ANPENDING;
223 291
224#if EV_MULTIPLICITY 292#if EV_MULTIPLICITY
225 293
226struct ev_loop 294 struct ev_loop
227{ 295 {
296 ev_tstamp ev_rt_now;
297 #define ev_rt_now ((loop)->ev_rt_now)
228# define VAR(name,decl) decl; 298 #define VAR(name,decl) decl;
229# include "ev_vars.h" 299 #include "ev_vars.h"
230};
231# undef VAR 300 #undef VAR
301 };
232# include "ev_wrap.h" 302 #include "ev_wrap.h"
303
304 static struct ev_loop default_loop_struct;
305 struct ev_loop *ev_default_loop_ptr;
233 306
234#else 307#else
235 308
309 ev_tstamp ev_rt_now;
236# define VAR(name,decl) static decl; 310 #define VAR(name,decl) static decl;
237# include "ev_vars.h" 311 #include "ev_vars.h"
238# undef VAR 312 #undef VAR
313
314 static int ev_default_loop_ptr;
239 315
240#endif 316#endif
241 317
242/*****************************************************************************/ 318/*****************************************************************************/
243 319
244inline ev_tstamp 320ev_tstamp noinline
245ev_time (void) 321ev_time (void)
246{ 322{
247#if EV_USE_REALTIME 323#if EV_USE_REALTIME
248 struct timespec ts; 324 struct timespec ts;
249 clock_gettime (CLOCK_REALTIME, &ts); 325 clock_gettime (CLOCK_REALTIME, &ts);
253 gettimeofday (&tv, 0); 329 gettimeofday (&tv, 0);
254 return tv.tv_sec + tv.tv_usec * 1e-6; 330 return tv.tv_sec + tv.tv_usec * 1e-6;
255#endif 331#endif
256} 332}
257 333
258inline ev_tstamp 334ev_tstamp inline_size
259get_clock (void) 335get_clock (void)
260{ 336{
261#if EV_USE_MONOTONIC 337#if EV_USE_MONOTONIC
262 if (expect_true (have_monotonic)) 338 if (expect_true (have_monotonic))
263 { 339 {
268#endif 344#endif
269 345
270 return ev_time (); 346 return ev_time ();
271} 347}
272 348
349#if EV_MULTIPLICITY
273ev_tstamp 350ev_tstamp
274ev_now (EV_P) 351ev_now (EV_P)
275{ 352{
276 return rt_now; 353 return ev_rt_now;
277} 354}
355#endif
278 356
279#define array_roundsize(base,n) ((n) | 4 & ~3) 357#define array_roundsize(type,n) (((n) | 4) & ~3)
280 358
281#define array_needsize(base,cur,cnt,init) \ 359#define array_needsize(type,base,cur,cnt,init) \
282 if (expect_false ((cnt) > cur)) \ 360 if (expect_false ((cnt) > cur)) \
283 { \ 361 { \
284 int newcnt = cur; \ 362 int newcnt = cur; \
285 do \ 363 do \
286 { \ 364 { \
287 newcnt = array_roundsize (base, newcnt << 1); \ 365 newcnt = array_roundsize (type, newcnt << 1); \
288 } \ 366 } \
289 while ((cnt) > newcnt); \ 367 while ((cnt) > newcnt); \
290 \ 368 \
291 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
292 init (base + cur, newcnt - cur); \ 370 init (base + cur, newcnt - cur); \
293 cur = newcnt; \ 371 cur = newcnt; \
294 } 372 }
295 373
296#define array_slim(stem) \ 374#define array_slim(type,stem) \
297 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
298 { \ 376 { \
299 stem ## max = array_roundsize (stem ## cnt >> 1); \ 377 stem ## max = array_roundsize (stem ## cnt >> 1); \
300 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
301 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
302 } 380 }
303
304/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
305/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
306#define array_free_microshit(stem) \
307 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
308 381
309#define array_free(stem, idx) \ 382#define array_free(stem, idx) \
310 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
311 384
312/*****************************************************************************/ 385/*****************************************************************************/
313 386
314static void 387void inline_size
315anfds_init (ANFD *base, int count) 388anfds_init (ANFD *base, int count)
316{ 389{
317 while (count--) 390 while (count--)
318 { 391 {
319 base->head = 0; 392 base->head = 0;
322 395
323 ++base; 396 ++base;
324 } 397 }
325} 398}
326 399
327static void 400void noinline
328event (EV_P_ W w, int events) 401ev_feed_event (EV_P_ void *w, int revents)
329{ 402{
330 if (w->pending) 403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
331 { 406 {
332 pendings [ABSPRI (w)][w->pending - 1].events |= events; 407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
333 return; 408 return;
334 } 409 }
335 410
336 w->pending = ++pendingcnt [ABSPRI (w)]; 411 w_->pending = ++pendingcnt [ABSPRI (w_)];
337 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
338 pendings [ABSPRI (w)][w->pending - 1].w = w; 413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
339 pendings [ABSPRI (w)][w->pending - 1].events = events; 414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
340} 415}
341 416
342static void 417static void
343queue_events (EV_P_ W *events, int eventcnt, int type) 418queue_events (EV_P_ W *events, int eventcnt, int type)
344{ 419{
345 int i; 420 int i;
346 421
347 for (i = 0; i < eventcnt; ++i) 422 for (i = 0; i < eventcnt; ++i)
348 event (EV_A_ events [i], type); 423 ev_feed_event (EV_A_ events [i], type);
349} 424}
350 425
351static void 426void inline_speed
352fd_event (EV_P_ int fd, int events) 427fd_event (EV_P_ int fd, int revents)
353{ 428{
354 ANFD *anfd = anfds + fd; 429 ANFD *anfd = anfds + fd;
355 struct ev_io *w; 430 ev_io *w;
356 431
357 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
358 { 433 {
359 int ev = w->events & events; 434 int ev = w->events & revents;
360 435
361 if (ev) 436 if (ev)
362 event (EV_A_ (W)w, ev); 437 ev_feed_event (EV_A_ (W)w, ev);
363 } 438 }
439}
440
441void
442ev_feed_fd_event (EV_P_ int fd, int revents)
443{
444 fd_event (EV_A_ fd, revents);
364} 445}
365 446
366/*****************************************************************************/ 447/*****************************************************************************/
367 448
368static void 449void inline_size
369fd_reify (EV_P) 450fd_reify (EV_P)
370{ 451{
371 int i; 452 int i;
372 453
373 for (i = 0; i < fdchangecnt; ++i) 454 for (i = 0; i < fdchangecnt; ++i)
374 { 455 {
375 int fd = fdchanges [i]; 456 int fd = fdchanges [i];
376 ANFD *anfd = anfds + fd; 457 ANFD *anfd = anfds + fd;
377 struct ev_io *w; 458 ev_io *w;
378 459
379 int events = 0; 460 int events = 0;
380 461
381 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
382 events |= w->events; 463 events |= w->events;
383 464
465#if EV_SELECT_IS_WINSOCKET
466 if (events)
467 {
468 unsigned long argp;
469 anfd->handle = _get_osfhandle (fd);
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
471 }
472#endif
473
384 anfd->reify = 0; 474 anfd->reify = 0;
385 475
386 method_modify (EV_A_ fd, anfd->events, events); 476 backend_modify (EV_A_ fd, anfd->events, events);
387 anfd->events = events; 477 anfd->events = events;
388 } 478 }
389 479
390 fdchangecnt = 0; 480 fdchangecnt = 0;
391} 481}
392 482
393static void 483void inline_size
394fd_change (EV_P_ int fd) 484fd_change (EV_P_ int fd)
395{ 485{
396 if (anfds [fd].reify) 486 if (expect_false (anfds [fd].reify))
397 return; 487 return;
398 488
399 anfds [fd].reify = 1; 489 anfds [fd].reify = 1;
400 490
401 ++fdchangecnt; 491 ++fdchangecnt;
402 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
403 fdchanges [fdchangecnt - 1] = fd; 493 fdchanges [fdchangecnt - 1] = fd;
404} 494}
405 495
406static void 496void inline_speed
407fd_kill (EV_P_ int fd) 497fd_kill (EV_P_ int fd)
408{ 498{
409 struct ev_io *w; 499 ev_io *w;
410 500
411 while ((w = (struct ev_io *)anfds [fd].head)) 501 while ((w = (ev_io *)anfds [fd].head))
412 { 502 {
413 ev_io_stop (EV_A_ w); 503 ev_io_stop (EV_A_ w);
414 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
415 } 505 }
416} 506}
417 507
418static int 508int inline_size
419fd_valid (int fd) 509fd_valid (int fd)
420{ 510{
421#ifdef WIN32 511#ifdef _WIN32
422 return !!win32_get_osfhandle (fd); 512 return _get_osfhandle (fd) != -1;
423#else 513#else
424 return fcntl (fd, F_GETFD) != -1; 514 return fcntl (fd, F_GETFD) != -1;
425#endif 515#endif
426} 516}
427 517
428/* called on EBADF to verify fds */ 518/* called on EBADF to verify fds */
429static void 519static void noinline
430fd_ebadf (EV_P) 520fd_ebadf (EV_P)
431{ 521{
432 int fd; 522 int fd;
433 523
434 for (fd = 0; fd < anfdmax; ++fd) 524 for (fd = 0; fd < anfdmax; ++fd)
436 if (!fd_valid (fd) == -1 && errno == EBADF) 526 if (!fd_valid (fd) == -1 && errno == EBADF)
437 fd_kill (EV_A_ fd); 527 fd_kill (EV_A_ fd);
438} 528}
439 529
440/* called on ENOMEM in select/poll to kill some fds and retry */ 530/* called on ENOMEM in select/poll to kill some fds and retry */
441static void 531static void noinline
442fd_enomem (EV_P) 532fd_enomem (EV_P)
443{ 533{
444 int fd; 534 int fd;
445 535
446 for (fd = anfdmax; fd--; ) 536 for (fd = anfdmax; fd--; )
449 fd_kill (EV_A_ fd); 539 fd_kill (EV_A_ fd);
450 return; 540 return;
451 } 541 }
452} 542}
453 543
454/* usually called after fork if method needs to re-arm all fds from scratch */ 544/* usually called after fork if backend needs to re-arm all fds from scratch */
455static void 545static void noinline
456fd_rearm_all (EV_P) 546fd_rearm_all (EV_P)
457{ 547{
458 int fd; 548 int fd;
459 549
460 /* this should be highly optimised to not do anything but set a flag */ 550 /* this should be highly optimised to not do anything but set a flag */
466 } 556 }
467} 557}
468 558
469/*****************************************************************************/ 559/*****************************************************************************/
470 560
471static void 561void inline_speed
472upheap (WT *heap, int k) 562upheap (WT *heap, int k)
473{ 563{
474 WT w = heap [k]; 564 WT w = heap [k];
475 565
476 while (k && heap [k >> 1]->at > w->at) 566 while (k && heap [k >> 1]->at > w->at)
483 heap [k] = w; 573 heap [k] = w;
484 ((W)heap [k])->active = k + 1; 574 ((W)heap [k])->active = k + 1;
485 575
486} 576}
487 577
488static void 578void inline_speed
489downheap (WT *heap, int N, int k) 579downheap (WT *heap, int N, int k)
490{ 580{
491 WT w = heap [k]; 581 WT w = heap [k];
492 582
493 while (k < (N >> 1)) 583 while (k < (N >> 1))
507 597
508 heap [k] = w; 598 heap [k] = w;
509 ((W)heap [k])->active = k + 1; 599 ((W)heap [k])->active = k + 1;
510} 600}
511 601
602void inline_size
603adjustheap (WT *heap, int N, int k)
604{
605 upheap (heap, k);
606 downheap (heap, N, k);
607}
608
512/*****************************************************************************/ 609/*****************************************************************************/
513 610
514typedef struct 611typedef struct
515{ 612{
516 WL head; 613 WL head;
520static ANSIG *signals; 617static ANSIG *signals;
521static int signalmax; 618static int signalmax;
522 619
523static int sigpipe [2]; 620static int sigpipe [2];
524static sig_atomic_t volatile gotsig; 621static sig_atomic_t volatile gotsig;
525static struct ev_io sigev; 622static ev_io sigev;
526 623
527static void 624void inline_size
528signals_init (ANSIG *base, int count) 625signals_init (ANSIG *base, int count)
529{ 626{
530 while (count--) 627 while (count--)
531 { 628 {
532 base->head = 0; 629 base->head = 0;
537} 634}
538 635
539static void 636static void
540sighandler (int signum) 637sighandler (int signum)
541{ 638{
542#if WIN32 639#if _WIN32
543 signal (signum, sighandler); 640 signal (signum, sighandler);
544#endif 641#endif
545 642
546 signals [signum - 1].gotsig = 1; 643 signals [signum - 1].gotsig = 1;
547 644
552 write (sigpipe [1], &signum, 1); 649 write (sigpipe [1], &signum, 1);
553 errno = old_errno; 650 errno = old_errno;
554 } 651 }
555} 652}
556 653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
557static void 674static void
558sigcb (EV_P_ struct ev_io *iow, int revents) 675sigcb (EV_P_ ev_io *iow, int revents)
559{ 676{
560 WL w;
561 int signum; 677 int signum;
562 678
563 read (sigpipe [0], &revents, 1); 679 read (sigpipe [0], &revents, 1);
564 gotsig = 0; 680 gotsig = 0;
565 681
566 for (signum = signalmax; signum--; ) 682 for (signum = signalmax; signum--; )
567 if (signals [signum].gotsig) 683 if (signals [signum].gotsig)
568 { 684 ev_feed_signal_event (EV_A_ signum + 1);
569 signals [signum].gotsig = 0;
570
571 for (w = signals [signum].head; w; w = w->next)
572 event (EV_A_ (W)w, EV_SIGNAL);
573 }
574} 685}
575 686
576static void 687void inline_size
688fd_intern (int fd)
689{
690#ifdef _WIN32
691 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
693#else
694 fcntl (fd, F_SETFD, FD_CLOEXEC);
695 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif
697}
698
699static void noinline
577siginit (EV_P) 700siginit (EV_P)
578{ 701{
579#ifndef WIN32 702 fd_intern (sigpipe [0]);
580 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 703 fd_intern (sigpipe [1]);
581 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
582
583 /* rather than sort out wether we really need nb, set it */
584 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
585 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
586#endif
587 704
588 ev_io_set (&sigev, sigpipe [0], EV_READ); 705 ev_io_set (&sigev, sigpipe [0], EV_READ);
589 ev_io_start (EV_A_ &sigev); 706 ev_io_start (EV_A_ &sigev);
590 ev_unref (EV_A); /* child watcher should not keep loop alive */ 707 ev_unref (EV_A); /* child watcher should not keep loop alive */
591} 708}
592 709
593/*****************************************************************************/ 710/*****************************************************************************/
594 711
595static struct ev_child *childs [PID_HASHSIZE]; 712static ev_child *childs [PID_HASHSIZE];
596 713
597#ifndef WIN32 714#ifndef _WIN32
598 715
599static struct ev_signal childev; 716static ev_signal childev;
600 717
601#ifndef WCONTINUED 718#ifndef WCONTINUED
602# define WCONTINUED 0 719# define WCONTINUED 0
603#endif 720#endif
604 721
605static void 722void inline_speed
606child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
607{ 724{
608 struct ev_child *w; 725 ev_child *w;
609 726
610 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
611 if (w->pid == pid || !w->pid) 728 if (w->pid == pid || !w->pid)
612 { 729 {
613 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
614 w->rpid = pid; 731 w->rpid = pid;
615 w->rstatus = status; 732 w->rstatus = status;
616 event (EV_A_ (W)w, EV_CHILD); 733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
617 } 734 }
618} 735}
619 736
620static void 737static void
621childcb (EV_P_ struct ev_signal *sw, int revents) 738childcb (EV_P_ ev_signal *sw, int revents)
622{ 739{
623 int pid, status; 740 int pid, status;
624 741
625 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
626 { 743 {
627 /* make sure we are called again until all childs have been reaped */ 744 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */
628 event (EV_A_ (W)sw, EV_SIGNAL); 746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
629 747
630 child_reap (EV_A_ sw, pid, pid, status); 748 child_reap (EV_A_ sw, pid, pid, status);
631 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
632 } 750 }
633} 751}
634 752
635#endif 753#endif
636 754
637/*****************************************************************************/ 755/*****************************************************************************/
638 756
757#if EV_USE_PORT
758# include "ev_port.c"
759#endif
639#if EV_USE_KQUEUE 760#if EV_USE_KQUEUE
640# include "ev_kqueue.c" 761# include "ev_kqueue.c"
641#endif 762#endif
642#if EV_USE_EPOLL 763#if EV_USE_EPOLL
643# include "ev_epoll.c" 764# include "ev_epoll.c"
660{ 781{
661 return EV_VERSION_MINOR; 782 return EV_VERSION_MINOR;
662} 783}
663 784
664/* return true if we are running with elevated privileges and should ignore env variables */ 785/* return true if we are running with elevated privileges and should ignore env variables */
665static int 786int inline_size
666enable_secure (void) 787enable_secure (void)
667{ 788{
668#ifdef WIN32 789#ifdef _WIN32
669 return 0; 790 return 0;
670#else 791#else
671 return getuid () != geteuid () 792 return getuid () != geteuid ()
672 || getgid () != getegid (); 793 || getgid () != getegid ();
673#endif 794#endif
674} 795}
675 796
676int 797unsigned int
677ev_method (EV_P) 798ev_supported_backends (void)
678{ 799{
679 return method; 800 unsigned int flags = 0;
801
802 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
803 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
804 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
805 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
806 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
807
808 return flags;
809}
810
811unsigned int
812ev_recommended_backends (void)
813{
814 unsigned int flags = ev_supported_backends ();
815
816#ifndef __NetBSD__
817 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE;
820#endif
821#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation
823 flags &= ~EVBACKEND_POLL;
824#endif
825
826 return flags;
827}
828
829unsigned int
830ev_embeddable_backends (void)
831{
832 return EVBACKEND_EPOLL
833 | EVBACKEND_KQUEUE
834 | EVBACKEND_PORT;
835}
836
837unsigned int
838ev_backend (EV_P)
839{
840 return backend;
680} 841}
681 842
682static void 843static void
683loop_init (EV_P_ int methods) 844loop_init (EV_P_ unsigned int flags)
684{ 845{
685 if (!method) 846 if (!backend)
686 { 847 {
687#if EV_USE_MONOTONIC 848#if EV_USE_MONOTONIC
688 { 849 {
689 struct timespec ts; 850 struct timespec ts;
690 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 851 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
691 have_monotonic = 1; 852 have_monotonic = 1;
692 } 853 }
693#endif 854#endif
694 855
695 rt_now = ev_time (); 856 ev_rt_now = ev_time ();
696 mn_now = get_clock (); 857 mn_now = get_clock ();
697 now_floor = mn_now; 858 now_floor = mn_now;
698 rtmn_diff = rt_now - mn_now; 859 rtmn_diff = ev_rt_now - mn_now;
699 860
700 if (methods == EVMETHOD_AUTO) 861 if (!(flags & EVFLAG_NOENV)
701 if (!enable_secure () && getenv ("LIBEV_METHODS")) 862 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS"))
702 methods = atoi (getenv ("LIBEV_METHODS")); 864 flags = atoi (getenv ("LIBEV_FLAGS"));
703 else
704 methods = EVMETHOD_ANY;
705 865
706 method = 0; 866 if (!(flags & 0x0000ffffUL))
707#if EV_USE_WIN32 867 flags |= ev_recommended_backends ();
708 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 868
869 backend = 0;
870#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
709#endif 872#endif
710#if EV_USE_KQUEUE 873#if EV_USE_KQUEUE
711 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
712#endif 875#endif
713#if EV_USE_EPOLL 876#if EV_USE_EPOLL
714 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 877 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
715#endif 878#endif
716#if EV_USE_POLL 879#if EV_USE_POLL
717 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 880 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
718#endif 881#endif
719#if EV_USE_SELECT 882#if EV_USE_SELECT
720 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
721#endif 884#endif
722 885
723 ev_watcher_init (&sigev, sigcb); 886 ev_init (&sigev, sigcb);
724 ev_set_priority (&sigev, EV_MAXPRI); 887 ev_set_priority (&sigev, EV_MAXPRI);
725 } 888 }
726} 889}
727 890
728void 891static void
729loop_destroy (EV_P) 892loop_destroy (EV_P)
730{ 893{
731 int i; 894 int i;
732 895
733#if EV_USE_WIN32 896#if EV_USE_PORT
734 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
735#endif 898#endif
736#if EV_USE_KQUEUE 899#if EV_USE_KQUEUE
737 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 900 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
738#endif 901#endif
739#if EV_USE_EPOLL 902#if EV_USE_EPOLL
740 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 903 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
741#endif 904#endif
742#if EV_USE_POLL 905#if EV_USE_POLL
743 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 906 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
744#endif 907#endif
745#if EV_USE_SELECT 908#if EV_USE_SELECT
746 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
747#endif 910#endif
748 911
749 for (i = NUMPRI; i--; ) 912 for (i = NUMPRI; i--; )
750 array_free (pending, [i]); 913 array_free (pending, [i]);
751 914
752 /* have to use the microsoft-never-gets-it-right macro */ 915 /* have to use the microsoft-never-gets-it-right macro */
753 array_free_microshit (fdchange); 916 array_free (fdchange, EMPTY0);
754 array_free_microshit (timer); 917 array_free (timer, EMPTY0);
755 array_free_microshit (periodic); 918#if EV_PERIODIC_ENABLE
756 array_free_microshit (idle); 919 array_free (periodic, EMPTY0);
757 array_free_microshit (prepare); 920#endif
758 array_free_microshit (check); 921 array_free (idle, EMPTY0);
922 array_free (prepare, EMPTY0);
923 array_free (check, EMPTY0);
759 924
760 method = 0; 925 backend = 0;
761} 926}
762 927
763static void 928static void
764loop_fork (EV_P) 929loop_fork (EV_P)
765{ 930{
931#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif
934#if EV_USE_KQUEUE
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif
766#if EV_USE_EPOLL 937#if EV_USE_EPOLL
767 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
771#endif 939#endif
772 940
773 if (ev_is_active (&sigev)) 941 if (ev_is_active (&sigev))
774 { 942 {
775 /* default loop */ 943 /* default loop */
788 postfork = 0; 956 postfork = 0;
789} 957}
790 958
791#if EV_MULTIPLICITY 959#if EV_MULTIPLICITY
792struct ev_loop * 960struct ev_loop *
793ev_loop_new (int methods) 961ev_loop_new (unsigned int flags)
794{ 962{
795 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
796 964
797 memset (loop, 0, sizeof (struct ev_loop)); 965 memset (loop, 0, sizeof (struct ev_loop));
798 966
799 loop_init (EV_A_ methods); 967 loop_init (EV_A_ flags);
800 968
801 if (ev_method (EV_A)) 969 if (ev_backend (EV_A))
802 return loop; 970 return loop;
803 971
804 return 0; 972 return 0;
805} 973}
806 974
818} 986}
819 987
820#endif 988#endif
821 989
822#if EV_MULTIPLICITY 990#if EV_MULTIPLICITY
823struct ev_loop default_loop_struct;
824static struct ev_loop *default_loop;
825
826struct ev_loop * 991struct ev_loop *
992ev_default_loop_init (unsigned int flags)
827#else 993#else
828static int default_loop;
829
830int 994int
995ev_default_loop (unsigned int flags)
831#endif 996#endif
832ev_default_loop (int methods)
833{ 997{
834 if (sigpipe [0] == sigpipe [1]) 998 if (sigpipe [0] == sigpipe [1])
835 if (pipe (sigpipe)) 999 if (pipe (sigpipe))
836 return 0; 1000 return 0;
837 1001
838 if (!default_loop) 1002 if (!ev_default_loop_ptr)
839 { 1003 {
840#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
841 struct ev_loop *loop = default_loop = &default_loop_struct; 1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
842#else 1006#else
843 default_loop = 1; 1007 ev_default_loop_ptr = 1;
844#endif 1008#endif
845 1009
846 loop_init (EV_A_ methods); 1010 loop_init (EV_A_ flags);
847 1011
848 if (ev_method (EV_A)) 1012 if (ev_backend (EV_A))
849 { 1013 {
850 siginit (EV_A); 1014 siginit (EV_A);
851 1015
852#ifndef WIN32 1016#ifndef _WIN32
853 ev_signal_init (&childev, childcb, SIGCHLD); 1017 ev_signal_init (&childev, childcb, SIGCHLD);
854 ev_set_priority (&childev, EV_MAXPRI); 1018 ev_set_priority (&childev, EV_MAXPRI);
855 ev_signal_start (EV_A_ &childev); 1019 ev_signal_start (EV_A_ &childev);
856 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* child watcher should not keep loop alive */
857#endif 1021#endif
858 } 1022 }
859 else 1023 else
860 default_loop = 0; 1024 ev_default_loop_ptr = 0;
861 } 1025 }
862 1026
863 return default_loop; 1027 return ev_default_loop_ptr;
864} 1028}
865 1029
866void 1030void
867ev_default_destroy (void) 1031ev_default_destroy (void)
868{ 1032{
869#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
870 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
871#endif 1035#endif
872 1036
873#ifndef WIN32 1037#ifndef _WIN32
874 ev_ref (EV_A); /* child watcher */ 1038 ev_ref (EV_A); /* child watcher */
875 ev_signal_stop (EV_A_ &childev); 1039 ev_signal_stop (EV_A_ &childev);
876#endif 1040#endif
877 1041
878 ev_ref (EV_A); /* signal watcher */ 1042 ev_ref (EV_A); /* signal watcher */
886 1050
887void 1051void
888ev_default_fork (void) 1052ev_default_fork (void)
889{ 1053{
890#if EV_MULTIPLICITY 1054#if EV_MULTIPLICITY
891 struct ev_loop *loop = default_loop; 1055 struct ev_loop *loop = ev_default_loop_ptr;
892#endif 1056#endif
893 1057
894 if (method) 1058 if (backend)
895 postfork = 1; 1059 postfork = 1;
896} 1060}
897 1061
898/*****************************************************************************/ 1062/*****************************************************************************/
899 1063
900static void 1064int inline_size
1065any_pending (EV_P)
1066{
1067 int pri;
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074}
1075
1076void inline_speed
901call_pending (EV_P) 1077call_pending (EV_P)
902{ 1078{
903 int pri; 1079 int pri;
904 1080
905 for (pri = NUMPRI; pri--; ) 1081 for (pri = NUMPRI; pri--; )
906 while (pendingcnt [pri]) 1082 while (pendingcnt [pri])
907 { 1083 {
908 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
909 1085
910 if (p->w) 1086 if (expect_true (p->w))
911 { 1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending));
1089
912 p->w->pending = 0; 1090 p->w->pending = 0;
913 p->w->cb (EV_A_ p->w, p->events); 1091 EV_CB_INVOKE (p->w, p->events);
914 } 1092 }
915 } 1093 }
916} 1094}
917 1095
918static void 1096void inline_size
919timers_reify (EV_P) 1097timers_reify (EV_P)
920{ 1098{
921 while (timercnt && ((WT)timers [0])->at <= mn_now) 1099 while (timercnt && ((WT)timers [0])->at <= mn_now)
922 { 1100 {
923 struct ev_timer *w = timers [0]; 1101 ev_timer *w = timers [0];
924 1102
925 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
926 1104
927 /* first reschedule or stop timer */ 1105 /* first reschedule or stop timer */
928 if (w->repeat) 1106 if (w->repeat)
929 { 1107 {
930 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109
931 ((WT)w)->at = mn_now + w->repeat; 1110 ((WT)w)->at += w->repeat;
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
932 downheap ((WT *)timers, timercnt, 0); 1114 downheap ((WT *)timers, timercnt, 0);
933 } 1115 }
934 else 1116 else
935 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
936 1118
937 event (EV_A_ (W)w, EV_TIMEOUT); 1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
938 } 1120 }
939} 1121}
940 1122
941static void 1123#if EV_PERIODIC_ENABLE
1124void inline_size
942periodics_reify (EV_P) 1125periodics_reify (EV_P)
943{ 1126{
944 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
945 { 1128 {
946 struct ev_periodic *w = periodics [0]; 1129 ev_periodic *w = periodics [0];
947 1130
948 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1131 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
949 1132
950 /* first reschedule or stop timer */ 1133 /* first reschedule or stop timer */
951 if (w->interval) 1134 if (w->reschedule_cb)
952 { 1135 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1138 downheap ((WT *)periodics, periodiccnt, 0);
1139 }
1140 else if (w->interval)
1141 {
953 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
954 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
955 downheap ((WT *)periodics, periodiccnt, 0); 1144 downheap ((WT *)periodics, periodiccnt, 0);
956 } 1145 }
957 else 1146 else
958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
959 1148
960 event (EV_A_ (W)w, EV_PERIODIC); 1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
961 } 1150 }
962} 1151}
963 1152
964static void 1153static void noinline
965periodics_reschedule (EV_P) 1154periodics_reschedule (EV_P)
966{ 1155{
967 int i; 1156 int i;
968 1157
969 /* adjust periodics after time jump */ 1158 /* adjust periodics after time jump */
970 for (i = 0; i < periodiccnt; ++i) 1159 for (i = 0; i < periodiccnt; ++i)
971 { 1160 {
972 struct ev_periodic *w = periodics [i]; 1161 ev_periodic *w = periodics [i];
973 1162
1163 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
974 if (w->interval) 1165 else if (w->interval)
975 {
976 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
977
978 if (fabs (diff) >= 1e-4)
979 {
980 ev_periodic_stop (EV_A_ w);
981 ev_periodic_start (EV_A_ w);
982
983 i = 0; /* restart loop, inefficient, but time jumps should be rare */
984 }
985 }
986 } 1167 }
987}
988 1168
989inline int 1169 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i);
1172}
1173#endif
1174
1175int inline_size
990time_update_monotonic (EV_P) 1176time_update_monotonic (EV_P)
991{ 1177{
992 mn_now = get_clock (); 1178 mn_now = get_clock ();
993 1179
994 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
995 { 1181 {
996 rt_now = rtmn_diff + mn_now; 1182 ev_rt_now = rtmn_diff + mn_now;
997 return 0; 1183 return 0;
998 } 1184 }
999 else 1185 else
1000 { 1186 {
1001 now_floor = mn_now; 1187 now_floor = mn_now;
1002 rt_now = ev_time (); 1188 ev_rt_now = ev_time ();
1003 return 1; 1189 return 1;
1004 } 1190 }
1005} 1191}
1006 1192
1007static void 1193void inline_size
1008time_update (EV_P) 1194time_update (EV_P)
1009{ 1195{
1010 int i; 1196 int i;
1011 1197
1012#if EV_USE_MONOTONIC 1198#if EV_USE_MONOTONIC
1014 { 1200 {
1015 if (time_update_monotonic (EV_A)) 1201 if (time_update_monotonic (EV_A))
1016 { 1202 {
1017 ev_tstamp odiff = rtmn_diff; 1203 ev_tstamp odiff = rtmn_diff;
1018 1204
1019 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1020 { 1214 {
1021 rtmn_diff = rt_now - mn_now; 1215 rtmn_diff = ev_rt_now - mn_now;
1022 1216
1023 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1024 return; /* all is well */ 1218 return; /* all is well */
1025 1219
1026 rt_now = ev_time (); 1220 ev_rt_now = ev_time ();
1027 mn_now = get_clock (); 1221 mn_now = get_clock ();
1028 now_floor = mn_now; 1222 now_floor = mn_now;
1029 } 1223 }
1030 1224
1225# if EV_PERIODIC_ENABLE
1031 periodics_reschedule (EV_A); 1226 periodics_reschedule (EV_A);
1227# endif
1032 /* no timer adjustment, as the monotonic clock doesn't jump */ 1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1033 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1034 } 1230 }
1035 } 1231 }
1036 else 1232 else
1037#endif 1233#endif
1038 { 1234 {
1039 rt_now = ev_time (); 1235 ev_rt_now = ev_time ();
1040 1236
1041 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1042 { 1238 {
1239#if EV_PERIODIC_ENABLE
1043 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1241#endif
1044 1242
1045 /* adjust timers. this is easy, as the offset is the same for all */ 1243 /* adjust timers. this is easy, as the offset is the same for all */
1046 for (i = 0; i < timercnt; ++i) 1244 for (i = 0; i < timercnt; ++i)
1047 ((WT)timers [i])->at += rt_now - mn_now; 1245 ((WT)timers [i])->at += ev_rt_now - mn_now;
1048 } 1246 }
1049 1247
1050 mn_now = rt_now; 1248 mn_now = ev_rt_now;
1051 } 1249 }
1052} 1250}
1053 1251
1054void 1252void
1055ev_ref (EV_P) 1253ev_ref (EV_P)
1066static int loop_done; 1264static int loop_done;
1067 1265
1068void 1266void
1069ev_loop (EV_P_ int flags) 1267ev_loop (EV_P_ int flags)
1070{ 1268{
1071 double block;
1072 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL;
1073 1272
1074 do 1273 while (activecnt)
1075 { 1274 {
1076 /* queue check watchers (and execute them) */ 1275 /* queue check watchers (and execute them) */
1077 if (expect_false (preparecnt)) 1276 if (expect_false (preparecnt))
1078 { 1277 {
1079 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1086 1285
1087 /* update fd-related kernel structures */ 1286 /* update fd-related kernel structures */
1088 fd_reify (EV_A); 1287 fd_reify (EV_A);
1089 1288
1090 /* calculate blocking time */ 1289 /* calculate blocking time */
1290 {
1291 double block;
1091 1292
1092 /* we only need this for !monotonic clockor timers, but as we basically 1293 if (flags & EVLOOP_NONBLOCK || idlecnt)
1093 always have timers, we just calculate it always */ 1294 block = 0.; /* do not block at all */
1295 else
1296 {
1297 /* update time to cancel out callback processing overhead */
1094#if EV_USE_MONOTONIC 1298#if EV_USE_MONOTONIC
1095 if (expect_true (have_monotonic)) 1299 if (expect_true (have_monotonic))
1096 time_update_monotonic (EV_A); 1300 time_update_monotonic (EV_A);
1097 else 1301 else
1098#endif 1302#endif
1099 { 1303 {
1100 rt_now = ev_time (); 1304 ev_rt_now = ev_time ();
1101 mn_now = rt_now; 1305 mn_now = ev_rt_now;
1102 } 1306 }
1103 1307
1104 if (flags & EVLOOP_NONBLOCK || idlecnt)
1105 block = 0.;
1106 else
1107 {
1108 block = MAX_BLOCKTIME; 1308 block = MAX_BLOCKTIME;
1109 1309
1110 if (timercnt) 1310 if (timercnt)
1111 { 1311 {
1112 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1113 if (block > to) block = to; 1313 if (block > to) block = to;
1114 } 1314 }
1115 1315
1316#if EV_PERIODIC_ENABLE
1116 if (periodiccnt) 1317 if (periodiccnt)
1117 { 1318 {
1118 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1119 if (block > to) block = to; 1320 if (block > to) block = to;
1120 } 1321 }
1322#endif
1121 1323
1122 if (block < 0.) block = 0.; 1324 if (expect_false (block < 0.)) block = 0.;
1123 } 1325 }
1124 1326
1125 method_poll (EV_A_ block); 1327 backend_poll (EV_A_ block);
1328 }
1126 1329
1127 /* update rt_now, do magic */ 1330 /* update ev_rt_now, do magic */
1128 time_update (EV_A); 1331 time_update (EV_A);
1129 1332
1130 /* queue pending timers and reschedule them */ 1333 /* queue pending timers and reschedule them */
1131 timers_reify (EV_A); /* relative timers called last */ 1334 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE
1132 periodics_reify (EV_A); /* absolute timers called first */ 1336 periodics_reify (EV_A); /* absolute timers called first */
1337#endif
1133 1338
1134 /* queue idle watchers unless io or timers are pending */ 1339 /* queue idle watchers unless other events are pending */
1135 if (!pendingcnt) 1340 if (idlecnt && !any_pending (EV_A))
1136 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1137 1342
1138 /* queue check watchers, to be executed first */ 1343 /* queue check watchers, to be executed first */
1139 if (checkcnt) 1344 if (expect_false (checkcnt))
1140 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1141 1346
1142 call_pending (EV_A); 1347 call_pending (EV_A);
1143 }
1144 while (activecnt && !loop_done);
1145 1348
1146 if (loop_done != 2) 1349 if (expect_false (loop_done))
1147 loop_done = 0; 1350 break;
1351 }
1352
1353 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL;
1148} 1355}
1149 1356
1150void 1357void
1151ev_unloop (EV_P_ int how) 1358ev_unloop (EV_P_ int how)
1152{ 1359{
1153 loop_done = how; 1360 loop_done = how;
1154} 1361}
1155 1362
1156/*****************************************************************************/ 1363/*****************************************************************************/
1157 1364
1158inline void 1365void inline_size
1159wlist_add (WL *head, WL elem) 1366wlist_add (WL *head, WL elem)
1160{ 1367{
1161 elem->next = *head; 1368 elem->next = *head;
1162 *head = elem; 1369 *head = elem;
1163} 1370}
1164 1371
1165inline void 1372void inline_size
1166wlist_del (WL *head, WL elem) 1373wlist_del (WL *head, WL elem)
1167{ 1374{
1168 while (*head) 1375 while (*head)
1169 { 1376 {
1170 if (*head == elem) 1377 if (*head == elem)
1175 1382
1176 head = &(*head)->next; 1383 head = &(*head)->next;
1177 } 1384 }
1178} 1385}
1179 1386
1180inline void 1387void inline_speed
1181ev_clear_pending (EV_P_ W w) 1388ev_clear_pending (EV_P_ W w)
1182{ 1389{
1183 if (w->pending) 1390 if (w->pending)
1184 { 1391 {
1185 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1392 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1186 w->pending = 0; 1393 w->pending = 0;
1187 } 1394 }
1188} 1395}
1189 1396
1190inline void 1397void inline_speed
1191ev_start (EV_P_ W w, int active) 1398ev_start (EV_P_ W w, int active)
1192{ 1399{
1193 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1194 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1195 1402
1196 w->active = active; 1403 w->active = active;
1197 ev_ref (EV_A); 1404 ev_ref (EV_A);
1198} 1405}
1199 1406
1200inline void 1407void inline_size
1201ev_stop (EV_P_ W w) 1408ev_stop (EV_P_ W w)
1202{ 1409{
1203 ev_unref (EV_A); 1410 ev_unref (EV_A);
1204 w->active = 0; 1411 w->active = 0;
1205} 1412}
1206 1413
1207/*****************************************************************************/ 1414/*****************************************************************************/
1208 1415
1209void 1416void
1210ev_io_start (EV_P_ struct ev_io *w) 1417ev_io_start (EV_P_ ev_io *w)
1211{ 1418{
1212 int fd = w->fd; 1419 int fd = w->fd;
1213 1420
1214 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1215 return; 1422 return;
1216 1423
1217 assert (("ev_io_start called with negative fd", fd >= 0)); 1424 assert (("ev_io_start called with negative fd", fd >= 0));
1218 1425
1219 ev_start (EV_A_ (W)w, 1); 1426 ev_start (EV_A_ (W)w, 1);
1220 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1221 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1428 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1222 1429
1223 fd_change (EV_A_ fd); 1430 fd_change (EV_A_ fd);
1224} 1431}
1225 1432
1226void 1433void
1227ev_io_stop (EV_P_ struct ev_io *w) 1434ev_io_stop (EV_P_ ev_io *w)
1228{ 1435{
1229 ev_clear_pending (EV_A_ (W)w); 1436 ev_clear_pending (EV_A_ (W)w);
1230 if (!ev_is_active (w)) 1437 if (expect_false (!ev_is_active (w)))
1231 return; 1438 return;
1439
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1232 1441
1233 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1234 ev_stop (EV_A_ (W)w); 1443 ev_stop (EV_A_ (W)w);
1235 1444
1236 fd_change (EV_A_ w->fd); 1445 fd_change (EV_A_ w->fd);
1237} 1446}
1238 1447
1239void 1448void
1240ev_timer_start (EV_P_ struct ev_timer *w) 1449ev_timer_start (EV_P_ ev_timer *w)
1241{ 1450{
1242 if (ev_is_active (w)) 1451 if (expect_false (ev_is_active (w)))
1243 return; 1452 return;
1244 1453
1245 ((WT)w)->at += mn_now; 1454 ((WT)w)->at += mn_now;
1246 1455
1247 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1248 1457
1249 ev_start (EV_A_ (W)w, ++timercnt); 1458 ev_start (EV_A_ (W)w, ++timercnt);
1250 array_needsize (timers, timermax, timercnt, (void)); 1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1251 timers [timercnt - 1] = w; 1460 timers [timercnt - 1] = w;
1252 upheap ((WT *)timers, timercnt - 1); 1461 upheap ((WT *)timers, timercnt - 1);
1253 1462
1254 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1255} 1464}
1256 1465
1257void 1466void
1258ev_timer_stop (EV_P_ struct ev_timer *w) 1467ev_timer_stop (EV_P_ ev_timer *w)
1259{ 1468{
1260 ev_clear_pending (EV_A_ (W)w); 1469 ev_clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 1470 if (expect_false (!ev_is_active (w)))
1262 return; 1471 return;
1263 1472
1264 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1265 1474
1266 if (((W)w)->active < timercnt--) 1475 if (expect_true (((W)w)->active < timercnt--))
1267 { 1476 {
1268 timers [((W)w)->active - 1] = timers [timercnt]; 1477 timers [((W)w)->active - 1] = timers [timercnt];
1269 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1270 } 1479 }
1271 1480
1272 ((WT)w)->at = w->repeat; 1481 ((WT)w)->at -= mn_now;
1273 1482
1274 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1275} 1484}
1276 1485
1277void 1486void
1278ev_timer_again (EV_P_ struct ev_timer *w) 1487ev_timer_again (EV_P_ ev_timer *w)
1279{ 1488{
1280 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1281 { 1490 {
1282 if (w->repeat) 1491 if (w->repeat)
1283 { 1492 {
1284 ((WT)w)->at = mn_now + w->repeat; 1493 ((WT)w)->at = mn_now + w->repeat;
1285 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1286 } 1495 }
1287 else 1496 else
1288 ev_timer_stop (EV_A_ w); 1497 ev_timer_stop (EV_A_ w);
1289 } 1498 }
1290 else if (w->repeat) 1499 else if (w->repeat)
1500 {
1501 w->at = w->repeat;
1291 ev_timer_start (EV_A_ w); 1502 ev_timer_start (EV_A_ w);
1503 }
1292} 1504}
1293 1505
1506#if EV_PERIODIC_ENABLE
1294void 1507void
1295ev_periodic_start (EV_P_ struct ev_periodic *w) 1508ev_periodic_start (EV_P_ ev_periodic *w)
1296{ 1509{
1297 if (ev_is_active (w)) 1510 if (expect_false (ev_is_active (w)))
1298 return; 1511 return;
1299 1512
1513 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval)
1516 {
1300 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1301
1302 /* this formula differs from the one in periodic_reify because we do not always round up */ 1518 /* this formula differs from the one in periodic_reify because we do not always round up */
1303 if (w->interval)
1304 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1520 }
1305 1521
1306 ev_start (EV_A_ (W)w, ++periodiccnt); 1522 ev_start (EV_A_ (W)w, ++periodiccnt);
1307 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1308 periodics [periodiccnt - 1] = w; 1524 periodics [periodiccnt - 1] = w;
1309 upheap ((WT *)periodics, periodiccnt - 1); 1525 upheap ((WT *)periodics, periodiccnt - 1);
1310 1526
1311 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1312} 1528}
1313 1529
1314void 1530void
1315ev_periodic_stop (EV_P_ struct ev_periodic *w) 1531ev_periodic_stop (EV_P_ ev_periodic *w)
1316{ 1532{
1317 ev_clear_pending (EV_A_ (W)w); 1533 ev_clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w)) 1534 if (expect_false (!ev_is_active (w)))
1319 return; 1535 return;
1320 1536
1321 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1322 1538
1323 if (((W)w)->active < periodiccnt--) 1539 if (expect_true (((W)w)->active < periodiccnt--))
1324 { 1540 {
1325 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1541 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1326 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1327 } 1543 }
1328 1544
1329 ev_stop (EV_A_ (W)w); 1545 ev_stop (EV_A_ (W)w);
1330} 1546}
1331 1547
1332void 1548void
1549ev_periodic_again (EV_P_ ev_periodic *w)
1550{
1551 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w);
1554}
1555#endif
1556
1557void
1333ev_idle_start (EV_P_ struct ev_idle *w) 1558ev_idle_start (EV_P_ ev_idle *w)
1334{ 1559{
1335 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1336 return; 1561 return;
1337 1562
1338 ev_start (EV_A_ (W)w, ++idlecnt); 1563 ev_start (EV_A_ (W)w, ++idlecnt);
1339 array_needsize (idles, idlemax, idlecnt, (void)); 1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1340 idles [idlecnt - 1] = w; 1565 idles [idlecnt - 1] = w;
1341} 1566}
1342 1567
1343void 1568void
1344ev_idle_stop (EV_P_ struct ev_idle *w) 1569ev_idle_stop (EV_P_ ev_idle *w)
1345{ 1570{
1346 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1347 if (ev_is_active (w)) 1572 if (expect_false (!ev_is_active (w)))
1348 return; 1573 return;
1349 1574
1575 {
1576 int active = ((W)w)->active;
1350 idles [((W)w)->active - 1] = idles [--idlecnt]; 1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1351 ev_stop (EV_A_ (W)w); 1581 ev_stop (EV_A_ (W)w);
1352} 1582}
1353 1583
1354void 1584void
1355ev_prepare_start (EV_P_ struct ev_prepare *w) 1585ev_prepare_start (EV_P_ ev_prepare *w)
1356{ 1586{
1357 if (ev_is_active (w)) 1587 if (expect_false (ev_is_active (w)))
1358 return; 1588 return;
1359 1589
1360 ev_start (EV_A_ (W)w, ++preparecnt); 1590 ev_start (EV_A_ (W)w, ++preparecnt);
1361 array_needsize (prepares, preparemax, preparecnt, (void)); 1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1362 prepares [preparecnt - 1] = w; 1592 prepares [preparecnt - 1] = w;
1363} 1593}
1364 1594
1365void 1595void
1366ev_prepare_stop (EV_P_ struct ev_prepare *w) 1596ev_prepare_stop (EV_P_ ev_prepare *w)
1367{ 1597{
1368 ev_clear_pending (EV_A_ (W)w); 1598 ev_clear_pending (EV_A_ (W)w);
1369 if (ev_is_active (w)) 1599 if (expect_false (!ev_is_active (w)))
1370 return; 1600 return;
1371 1601
1602 {
1603 int active = ((W)w)->active;
1372 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1373 ev_stop (EV_A_ (W)w); 1608 ev_stop (EV_A_ (W)w);
1374} 1609}
1375 1610
1376void 1611void
1377ev_check_start (EV_P_ struct ev_check *w) 1612ev_check_start (EV_P_ ev_check *w)
1378{ 1613{
1379 if (ev_is_active (w)) 1614 if (expect_false (ev_is_active (w)))
1380 return; 1615 return;
1381 1616
1382 ev_start (EV_A_ (W)w, ++checkcnt); 1617 ev_start (EV_A_ (W)w, ++checkcnt);
1383 array_needsize (checks, checkmax, checkcnt, (void)); 1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1384 checks [checkcnt - 1] = w; 1619 checks [checkcnt - 1] = w;
1385} 1620}
1386 1621
1387void 1622void
1388ev_check_stop (EV_P_ struct ev_check *w) 1623ev_check_stop (EV_P_ ev_check *w)
1389{ 1624{
1390 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1391 if (ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1392 return; 1627 return;
1393 1628
1629 {
1630 int active = ((W)w)->active;
1394 checks [((W)w)->active - 1] = checks [--checkcnt]; 1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1395 ev_stop (EV_A_ (W)w); 1635 ev_stop (EV_A_ (W)w);
1396} 1636}
1397 1637
1398#ifndef SA_RESTART 1638#ifndef SA_RESTART
1399# define SA_RESTART 0 1639# define SA_RESTART 0
1400#endif 1640#endif
1401 1641
1402void 1642void
1403ev_signal_start (EV_P_ struct ev_signal *w) 1643ev_signal_start (EV_P_ ev_signal *w)
1404{ 1644{
1405#if EV_MULTIPLICITY 1645#if EV_MULTIPLICITY
1406 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1407#endif 1647#endif
1408 if (ev_is_active (w)) 1648 if (expect_false (ev_is_active (w)))
1409 return; 1649 return;
1410 1650
1411 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1412 1652
1413 ev_start (EV_A_ (W)w, 1); 1653 ev_start (EV_A_ (W)w, 1);
1414 array_needsize (signals, signalmax, w->signum, signals_init); 1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1415 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1416 1656
1417 if (!((WL)w)->next) 1657 if (!((WL)w)->next)
1418 { 1658 {
1419#if WIN32 1659#if _WIN32
1420 signal (w->signum, sighandler); 1660 signal (w->signum, sighandler);
1421#else 1661#else
1422 struct sigaction sa; 1662 struct sigaction sa;
1423 sa.sa_handler = sighandler; 1663 sa.sa_handler = sighandler;
1424 sigfillset (&sa.sa_mask); 1664 sigfillset (&sa.sa_mask);
1427#endif 1667#endif
1428 } 1668 }
1429} 1669}
1430 1670
1431void 1671void
1432ev_signal_stop (EV_P_ struct ev_signal *w) 1672ev_signal_stop (EV_P_ ev_signal *w)
1433{ 1673{
1434 ev_clear_pending (EV_A_ (W)w); 1674 ev_clear_pending (EV_A_ (W)w);
1435 if (!ev_is_active (w)) 1675 if (expect_false (!ev_is_active (w)))
1436 return; 1676 return;
1437 1677
1438 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1439 ev_stop (EV_A_ (W)w); 1679 ev_stop (EV_A_ (W)w);
1440 1680
1441 if (!signals [w->signum - 1].head) 1681 if (!signals [w->signum - 1].head)
1442 signal (w->signum, SIG_DFL); 1682 signal (w->signum, SIG_DFL);
1443} 1683}
1444 1684
1445void 1685void
1446ev_child_start (EV_P_ struct ev_child *w) 1686ev_child_start (EV_P_ ev_child *w)
1447{ 1687{
1448#if EV_MULTIPLICITY 1688#if EV_MULTIPLICITY
1449 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1450#endif 1690#endif
1451 if (ev_is_active (w)) 1691 if (expect_false (ev_is_active (w)))
1452 return; 1692 return;
1453 1693
1454 ev_start (EV_A_ (W)w, 1); 1694 ev_start (EV_A_ (W)w, 1);
1455 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1456} 1696}
1457 1697
1458void 1698void
1459ev_child_stop (EV_P_ struct ev_child *w) 1699ev_child_stop (EV_P_ ev_child *w)
1460{ 1700{
1461 ev_clear_pending (EV_A_ (W)w); 1701 ev_clear_pending (EV_A_ (W)w);
1462 if (ev_is_active (w)) 1702 if (expect_false (!ev_is_active (w)))
1463 return; 1703 return;
1464 1704
1465 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1466 ev_stop (EV_A_ (W)w); 1706 ev_stop (EV_A_ (W)w);
1467} 1707}
1468 1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w)
1789{
1790 if (expect_false (ev_is_active (w)))
1791 return;
1792
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1);
1804}
1805
1806void
1807ev_stat_stop (EV_P_ ev_stat *w)
1808{
1809 ev_clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w)))
1811 return;
1812
1813 ev_timer_stop (EV_A_ &w->timer);
1814
1815 ev_stop (EV_A_ (W)w);
1816}
1817#endif
1818
1469/*****************************************************************************/ 1819/*****************************************************************************/
1470 1820
1471struct ev_once 1821struct ev_once
1472{ 1822{
1473 struct ev_io io; 1823 ev_io io;
1474 struct ev_timer to; 1824 ev_timer to;
1475 void (*cb)(int revents, void *arg); 1825 void (*cb)(int revents, void *arg);
1476 void *arg; 1826 void *arg;
1477}; 1827};
1478 1828
1479static void 1829static void
1488 1838
1489 cb (revents, arg); 1839 cb (revents, arg);
1490} 1840}
1491 1841
1492static void 1842static void
1493once_cb_io (EV_P_ struct ev_io *w, int revents) 1843once_cb_io (EV_P_ ev_io *w, int revents)
1494{ 1844{
1495 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1496} 1846}
1497 1847
1498static void 1848static void
1499once_cb_to (EV_P_ struct ev_timer *w, int revents) 1849once_cb_to (EV_P_ ev_timer *w, int revents)
1500{ 1850{
1501 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1502} 1852}
1503 1853
1504void 1854void
1505ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1506{ 1856{
1507 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1857 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1508 1858
1509 if (!once) 1859 if (expect_false (!once))
1860 {
1510 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1861 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1511 else 1862 return;
1512 { 1863 }
1864
1513 once->cb = cb; 1865 once->cb = cb;
1514 once->arg = arg; 1866 once->arg = arg;
1515 1867
1516 ev_watcher_init (&once->io, once_cb_io); 1868 ev_init (&once->io, once_cb_io);
1517 if (fd >= 0) 1869 if (fd >= 0)
1518 { 1870 {
1519 ev_io_set (&once->io, fd, events); 1871 ev_io_set (&once->io, fd, events);
1520 ev_io_start (EV_A_ &once->io); 1872 ev_io_start (EV_A_ &once->io);
1521 } 1873 }
1522 1874
1523 ev_watcher_init (&once->to, once_cb_to); 1875 ev_init (&once->to, once_cb_to);
1524 if (timeout >= 0.) 1876 if (timeout >= 0.)
1525 { 1877 {
1526 ev_timer_set (&once->to, timeout, 0.); 1878 ev_timer_set (&once->to, timeout, 0.);
1527 ev_timer_start (EV_A_ &once->to); 1879 ev_timer_start (EV_A_ &once->to);
1528 }
1529 } 1880 }
1530} 1881}
1531 1882
1883#ifdef __cplusplus
1884}
1885#endif
1886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines