ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
62# endif 97# endif
63 98
64#endif 99#endif
65 100
66#include <math.h> 101#include <math.h>
76#include <time.h> 111#include <time.h>
77 112
78#include <signal.h> 113#include <signal.h>
79 114
80#ifndef _WIN32 115#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 116# include <sys/time.h>
83# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
84#else 119#else
85# define WIN32_LEAN_AND_MEAN 120# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 121# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 122# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 123# define EV_SELECT_IS_WINSOCKET 1
90#endif 125#endif
91 126
92/**/ 127/**/
93 128
94#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
96#endif 135#endif
97 136
98#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 139#endif
102 140
103#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
104# ifdef _WIN32 142# ifdef _WIN32
105# define EV_USE_POLL 0 143# define EV_USE_POLL 0
114 152
115#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
117#endif 155#endif
118 156
119#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
121#endif 159#endif
122 160
123/**/ 161/**/
124 162
125#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
137#endif 175#endif
138 176
139/**/ 177/**/
140 178
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
145 183
146#ifdef EV_H 184#ifdef EV_H
147# include EV_H 185# include EV_H
148#else 186#else
149# include "ev.h" 187# include "ev.h"
150#endif 188#endif
151 189
152#if __GNUC__ >= 3 190#if __GNUC__ >= 3
153# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
154# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
155#else 200#else
156# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
157# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
158#endif 205#endif
159 206
160#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
162 209
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
165 212
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
167 215
168typedef struct ev_watcher *W; 216typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
171 219
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
173 221
174#ifdef _WIN32 222#ifdef _WIN32
175# include "ev_win32.c" 223# include "ev_win32.c"
177 225
178/*****************************************************************************/ 226/*****************************************************************************/
179 227
180static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
181 229
230void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 232{
184 syserr_cb = cb; 233 syserr_cb = cb;
185} 234}
186 235
187static void 236static void noinline
188syserr (const char *msg) 237syserr (const char *msg)
189{ 238{
190 if (!msg) 239 if (!msg)
191 msg = "(libev) system error"; 240 msg = "(libev) system error";
192 241
199 } 248 }
200} 249}
201 250
202static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
203 252
253void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 255{
206 alloc = cb; 256 alloc = cb;
207} 257}
208 258
209static void * 259static void *
251 #include "ev_vars.h" 301 #include "ev_vars.h"
252 #undef VAR 302 #undef VAR
253 }; 303 };
254 #include "ev_wrap.h" 304 #include "ev_wrap.h"
255 305
256 struct ev_loop default_loop_struct; 306 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 307 struct ev_loop *ev_default_loop_ptr;
258 308
259#else 309#else
260 310
261 ev_tstamp ev_rt_now; 311 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 313 #include "ev_vars.h"
264 #undef VAR 314 #undef VAR
265 315
266 static int default_loop; 316 static int ev_default_loop_ptr;
267 317
268#endif 318#endif
269 319
270/*****************************************************************************/ 320/*****************************************************************************/
271 321
281 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 333#endif
284} 334}
285 335
286inline ev_tstamp 336ev_tstamp inline_size
287get_clock (void) 337get_clock (void)
288{ 338{
289#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
291 { 341 {
304{ 354{
305 return ev_rt_now; 355 return ev_rt_now;
306} 356}
307#endif 357#endif
308 358
309#define array_roundsize(type,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
310 360
311#define array_needsize(type,base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
313 { \ 363 { \
314 int newcnt = cur; \ 364 int newcnt = cur; \
334#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 386
337/*****************************************************************************/ 387/*****************************************************************************/
338 388
339static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
340anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
341{ 419{
342 while (count--) 420 while (count--)
343 { 421 {
344 base->head = 0; 422 base->head = 0;
347 425
348 ++base; 426 ++base;
349 } 427 }
350} 428}
351 429
352void 430void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
380{ 432{
381 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 434 ev_io *w;
383 435
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 437 {
386 int ev = w->events & revents; 438 int ev = w->events & revents;
387 439
388 if (ev) 440 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
394ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 447{
396 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
397} 449}
398 450
399/*****************************************************************************/ 451void inline_size
400
401static void
402fd_reify (EV_P) 452fd_reify (EV_P)
403{ 453{
404 int i; 454 int i;
405 455
406 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
407 { 457 {
408 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 460 ev_io *w;
411 461
412 int events = 0; 462 int events = 0;
413 463
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 465 events |= w->events;
416 466
417#if EV_SELECT_IS_WINSOCKET 467#if EV_SELECT_IS_WINSOCKET
418 if (events) 468 if (events)
419 { 469 {
423 } 473 }
424#endif 474#endif
425 475
426 anfd->reify = 0; 476 anfd->reify = 0;
427 477
428 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 479 anfd->events = events;
430 } 480 }
431 481
432 fdchangecnt = 0; 482 fdchangecnt = 0;
433} 483}
434 484
435static void 485void inline_size
436fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
437{ 487{
438 if (anfds [fd].reify) 488 if (expect_false (anfds [fd].reify))
439 return; 489 return;
440 490
441 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
442 492
443 ++fdchangecnt; 493 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
446} 496}
447 497
448static void 498void inline_speed
449fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
450{ 500{
451 struct ev_io *w; 501 ev_io *w;
452 502
453 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
454 { 504 {
455 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 507 }
458} 508}
459 509
460static int 510int inline_size
461fd_valid (int fd) 511fd_valid (int fd)
462{ 512{
463#ifdef _WIN32 513#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 514 return _get_osfhandle (fd) != -1;
465#else 515#else
466 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
467#endif 517#endif
468} 518}
469 519
470/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
471static void 521static void noinline
472fd_ebadf (EV_P) 522fd_ebadf (EV_P)
473{ 523{
474 int fd; 524 int fd;
475 525
476 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
480} 530}
481 531
482/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 533static void noinline
484fd_enomem (EV_P) 534fd_enomem (EV_P)
485{ 535{
486 int fd; 536 int fd;
487 537
488 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
492 return; 542 return;
493 } 543 }
494} 544}
495 545
496/* usually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 547static void noinline
498fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
499{ 549{
500 int fd; 550 int fd;
501 551
502 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
508 } 558 }
509} 559}
510 560
511/*****************************************************************************/ 561/*****************************************************************************/
512 562
513static void 563void inline_speed
514upheap (WT *heap, int k) 564upheap (WT *heap, int k)
515{ 565{
516 WT w = heap [k]; 566 WT w = heap [k];
517 567
518 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
525 heap [k] = w; 575 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
527 577
528} 578}
529 579
530static void 580void inline_speed
531downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
532{ 582{
533 WT w = heap [k]; 583 WT w = heap [k];
534 584
535 while (k < (N >> 1)) 585 while (k < (N >> 1))
549 599
550 heap [k] = w; 600 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
552} 602}
553 603
554inline void 604void inline_size
555adjustheap (WT *heap, int N, int k) 605adjustheap (WT *heap, int N, int k)
556{ 606{
557 upheap (heap, k); 607 upheap (heap, k);
558 downheap (heap, N, k); 608 downheap (heap, N, k);
559} 609}
569static ANSIG *signals; 619static ANSIG *signals;
570static int signalmax; 620static int signalmax;
571 621
572static int sigpipe [2]; 622static int sigpipe [2];
573static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
574static struct ev_io sigev; 624static ev_io sigev;
575 625
576static void 626void inline_size
577signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
578{ 628{
579 while (count--) 629 while (count--)
580 { 630 {
581 base->head = 0; 631 base->head = 0;
601 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
602 errno = old_errno; 652 errno = old_errno;
603 } 653 }
604} 654}
605 655
606void 656void noinline
607ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
608{ 658{
609 WL w; 659 WL w;
610 660
611#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
613#endif 663#endif
614 664
615 --signum; 665 --signum;
616 666
617 if (signum < 0 || signum >= signalmax) 667 if (signum < 0 || signum >= signalmax)
622 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624} 674}
625 675
626static void 676static void
627sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
628{ 678{
629 int signum; 679 int signum;
630 680
631 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
632 gotsig = 0; 682 gotsig = 0;
634 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
637} 687}
638 688
639inline void 689void inline_size
640fd_intern (int fd) 690fd_intern (int fd)
641{ 691{
642#ifdef _WIN32 692#ifdef _WIN32
643 int arg = 1; 693 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 696 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 697 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 698#endif
649} 699}
650 700
651static void 701static void noinline
652siginit (EV_P) 702siginit (EV_P)
653{ 703{
654 fd_intern (sigpipe [0]); 704 fd_intern (sigpipe [0]);
655 fd_intern (sigpipe [1]); 705 fd_intern (sigpipe [1]);
656 706
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
660} 710}
661 711
662/*****************************************************************************/ 712/*****************************************************************************/
663 713
664static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
665 715
666#ifndef _WIN32 716#ifndef _WIN32
667 717
668static struct ev_signal childev; 718static ev_signal childev;
669 719
670#ifndef WCONTINUED 720#ifndef WCONTINUED
671# define WCONTINUED 0 721# define WCONTINUED 0
672#endif 722#endif
673 723
674static void 724void inline_speed
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
676{ 726{
677 struct ev_child *w; 727 ev_child *w;
678 728
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
681 { 731 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid; 733 w->rpid = pid;
684 w->rstatus = status; 734 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 } 736 }
687} 737}
688 738
689static void 739static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
691{ 741{
692 int pid, status; 742 int pid, status;
693 743
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 745 {
696 /* make sure we are called again until all childs have been reaped */ 746 /* make sure we are called again until all childs have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 749
699 child_reap (EV_A_ sw, pid, pid, status); 750 child_reap (EV_A_ sw, pid, pid, status);
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 } 752 }
702} 753}
703 754
704#endif 755#endif
705 756
706/*****************************************************************************/ 757/*****************************************************************************/
707 758
759#if EV_USE_PORT
760# include "ev_port.c"
761#endif
708#if EV_USE_KQUEUE 762#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 763# include "ev_kqueue.c"
710#endif 764#endif
711#if EV_USE_EPOLL 765#if EV_USE_EPOLL
712# include "ev_epoll.c" 766# include "ev_epoll.c"
729{ 783{
730 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
731} 785}
732 786
733/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
734static int 788int inline_size
735enable_secure (void) 789enable_secure (void)
736{ 790{
737#ifdef _WIN32 791#ifdef _WIN32
738 return 0; 792 return 0;
739#else 793#else
740 return getuid () != geteuid () 794 return getuid () != geteuid ()
741 || getgid () != getegid (); 795 || getgid () != getegid ();
742#endif 796#endif
743} 797}
744 798
745int 799unsigned int
746ev_method (EV_P) 800ev_supported_backends (void)
747{ 801{
748 return method; 802 unsigned int flags = 0;
803
804 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
805 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
806 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
807 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
808 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
809
810 return flags;
811}
812
813unsigned int
814ev_recommended_backends (void)
815{
816 unsigned int flags = ev_supported_backends ();
817
818#ifndef __NetBSD__
819 /* kqueue is borked on everything but netbsd apparently */
820 /* it usually doesn't work correctly on anything but sockets and pipes */
821 flags &= ~EVBACKEND_KQUEUE;
822#endif
823#ifdef __APPLE__
824 // flags &= ~EVBACKEND_KQUEUE; for documentation
825 flags &= ~EVBACKEND_POLL;
826#endif
827
828 return flags;
829}
830
831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
840ev_backend (EV_P)
841{
842 return backend;
749} 843}
750 844
751static void 845static void
752loop_init (EV_P_ int methods) 846loop_init (EV_P_ unsigned int flags)
753{ 847{
754 if (!method) 848 if (!backend)
755 { 849 {
756#if EV_USE_MONOTONIC 850#if EV_USE_MONOTONIC
757 { 851 {
758 struct timespec ts; 852 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 853 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
764 ev_rt_now = ev_time (); 858 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 859 mn_now = get_clock ();
766 now_floor = mn_now; 860 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 861 rtmn_diff = ev_rt_now - mn_now;
768 862
769 if (methods == EVMETHOD_AUTO) 863 if (!(flags & EVFLAG_NOENV)
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 864 && !enable_secure ()
865 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 866 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 867
775 method = 0; 868 if (!(flags & 0x0000ffffUL))
869 flags |= ev_recommended_backends ();
870
871 backend = 0;
872#if EV_USE_PORT
873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
874#endif
776#if EV_USE_KQUEUE 875#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 877#endif
779#if EV_USE_EPOLL 878#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 879 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 880#endif
782#if EV_USE_POLL 881#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 882 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 883#endif
785#if EV_USE_SELECT 884#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 886#endif
788 887
789 ev_init (&sigev, sigcb); 888 ev_init (&sigev, sigcb);
790 ev_set_priority (&sigev, EV_MAXPRI); 889 ev_set_priority (&sigev, EV_MAXPRI);
791 } 890 }
792} 891}
793 892
794void 893static void
795loop_destroy (EV_P) 894loop_destroy (EV_P)
796{ 895{
797 int i; 896 int i;
798 897
898#if EV_USE_PORT
899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
900#endif
799#if EV_USE_KQUEUE 901#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 902 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 903#endif
802#if EV_USE_EPOLL 904#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 905 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 906#endif
805#if EV_USE_POLL 907#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 908 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 909#endif
808#if EV_USE_SELECT 910#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 912#endif
811 913
812 for (i = NUMPRI; i--; ) 914 for (i = NUMPRI; i--; )
813 array_free (pending, [i]); 915 array_free (pending, [i]);
814 916
815 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 918 array_free (fdchange, EMPTY0);
817 array_free (timer, EMPTY); 919 array_free (timer, EMPTY0);
818#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 921 array_free (periodic, EMPTY0);
820#endif 922#endif
821 array_free (idle, EMPTY); 923 array_free (idle, EMPTY0);
822 array_free (prepare, EMPTY); 924 array_free (prepare, EMPTY0);
823 array_free (check, EMPTY); 925 array_free (check, EMPTY0);
824 926
825 method = 0; 927 backend = 0;
826} 928}
827 929
828static void 930static void
829loop_fork (EV_P) 931loop_fork (EV_P)
830{ 932{
933#if EV_USE_PORT
934 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
935#endif
936#if EV_USE_KQUEUE
937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
938#endif
831#if EV_USE_EPOLL 939#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif
834#if EV_USE_KQUEUE
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
836#endif 941#endif
837 942
838 if (ev_is_active (&sigev)) 943 if (ev_is_active (&sigev))
839 { 944 {
840 /* default loop */ 945 /* default loop */
853 postfork = 0; 958 postfork = 0;
854} 959}
855 960
856#if EV_MULTIPLICITY 961#if EV_MULTIPLICITY
857struct ev_loop * 962struct ev_loop *
858ev_loop_new (int methods) 963ev_loop_new (unsigned int flags)
859{ 964{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 965 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 966
862 memset (loop, 0, sizeof (struct ev_loop)); 967 memset (loop, 0, sizeof (struct ev_loop));
863 968
864 loop_init (EV_A_ methods); 969 loop_init (EV_A_ flags);
865 970
866 if (ev_method (EV_A)) 971 if (ev_backend (EV_A))
867 return loop; 972 return loop;
868 973
869 return 0; 974 return 0;
870} 975}
871 976
884 989
885#endif 990#endif
886 991
887#if EV_MULTIPLICITY 992#if EV_MULTIPLICITY
888struct ev_loop * 993struct ev_loop *
994ev_default_loop_init (unsigned int flags)
889#else 995#else
890int 996int
997ev_default_loop (unsigned int flags)
891#endif 998#endif
892ev_default_loop (int methods)
893{ 999{
894 if (sigpipe [0] == sigpipe [1]) 1000 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe)) 1001 if (pipe (sigpipe))
896 return 0; 1002 return 0;
897 1003
898 if (!default_loop) 1004 if (!ev_default_loop_ptr)
899 { 1005 {
900#if EV_MULTIPLICITY 1006#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1007 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1008#else
903 default_loop = 1; 1009 ev_default_loop_ptr = 1;
904#endif 1010#endif
905 1011
906 loop_init (EV_A_ methods); 1012 loop_init (EV_A_ flags);
907 1013
908 if (ev_method (EV_A)) 1014 if (ev_backend (EV_A))
909 { 1015 {
910 siginit (EV_A); 1016 siginit (EV_A);
911 1017
912#ifndef _WIN32 1018#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1019 ev_signal_init (&childev, childcb, SIGCHLD);
915 ev_signal_start (EV_A_ &childev); 1021 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1022 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1023#endif
918 } 1024 }
919 else 1025 else
920 default_loop = 0; 1026 ev_default_loop_ptr = 0;
921 } 1027 }
922 1028
923 return default_loop; 1029 return ev_default_loop_ptr;
924} 1030}
925 1031
926void 1032void
927ev_default_destroy (void) 1033ev_default_destroy (void)
928{ 1034{
929#if EV_MULTIPLICITY 1035#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1036 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1037#endif
932 1038
933#ifndef _WIN32 1039#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1040 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1041 ev_signal_stop (EV_A_ &childev);
946 1052
947void 1053void
948ev_default_fork (void) 1054ev_default_fork (void)
949{ 1055{
950#if EV_MULTIPLICITY 1056#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1057 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1058#endif
953 1059
954 if (method) 1060 if (backend)
955 postfork = 1; 1061 postfork = 1;
956} 1062}
957 1063
958/*****************************************************************************/ 1064/*****************************************************************************/
959 1065
960static int 1066int inline_size
961any_pending (EV_P) 1067any_pending (EV_P)
962{ 1068{
963 int pri; 1069 int pri;
964 1070
965 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
967 return 1; 1073 return 1;
968 1074
969 return 0; 1075 return 0;
970} 1076}
971 1077
972static void 1078void inline_speed
973call_pending (EV_P) 1079call_pending (EV_P)
974{ 1080{
975 int pri; 1081 int pri;
976 1082
977 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1084 while (pendingcnt [pri])
979 { 1085 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1087
982 if (p->w) 1088 if (expect_true (p->w))
983 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
984 p->w->pending = 0; 1092 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
986 } 1094 }
987 } 1095 }
988} 1096}
989 1097
990static void 1098void inline_size
991timers_reify (EV_P) 1099timers_reify (EV_P)
992{ 1100{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
994 { 1102 {
995 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
996 1104
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998 1106
999 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
1000 if (w->repeat) 1108 if (w->repeat)
1012 1120
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1122 }
1015} 1123}
1016 1124
1017#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1018static void 1126void inline_size
1019periodics_reify (EV_P) 1127periodics_reify (EV_P)
1020{ 1128{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1022 { 1130 {
1023 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1024 1132
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1026 1134
1027 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1029 { 1137 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1138 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1139 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1140 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 1141 }
1035 else if (w->interval) 1142 else if (w->interval)
1036 { 1143 {
1043 1150
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1152 }
1046} 1153}
1047 1154
1048static void 1155static void noinline
1049periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1050{ 1157{
1051 int i; 1158 int i;
1052 1159
1053 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1055 { 1162 {
1056 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1057 1164
1058 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1167 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1065 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1067} 1174}
1068#endif 1175#endif
1069 1176
1070inline int 1177int inline_size
1071time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1072{ 1179{
1073 mn_now = get_clock (); 1180 mn_now = get_clock ();
1074 1181
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1084 return 1; 1191 return 1;
1085 } 1192 }
1086} 1193}
1087 1194
1088static void 1195void inline_size
1089time_update (EV_P) 1196time_update (EV_P)
1090{ 1197{
1091 int i; 1198 int i;
1092 1199
1093#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1095 { 1202 {
1096 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1097 { 1204 {
1098 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1099 1206
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1101 { 1216 {
1102 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1103 1218
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1220 return; /* all is well */
1107 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1223 mn_now = get_clock ();
1109 now_floor = mn_now; 1224 now_floor = mn_now;
1110 } 1225 }
1111 1226
1112# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1114# endif 1229# endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 1232 }
1121 { 1236 {
1122 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1123 1238
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 { 1240 {
1126#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1127 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1128#endif 1243#endif
1129 1244
1130 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1151static int loop_done; 1266static int loop_done;
1152 1267
1153void 1268void
1154ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1155{ 1270{
1156 double block;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1158 1274
1159 do 1275 while (activecnt)
1160 { 1276 {
1161 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1163 { 1279 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1280 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1171 1287
1172 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1289 fd_reify (EV_A);
1174 1290
1175 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1176 1294
1177 /* we only need this for !monotonic clock or timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1178 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1179#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1182 else 1303 else
1183#endif 1304#endif
1184 { 1305 {
1185 ev_rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1186 mn_now = ev_rt_now; 1307 mn_now = ev_rt_now;
1187 } 1308 }
1188 1309
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1194 1311
1195 if (timercnt) 1312 if (timercnt)
1196 { 1313 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1198 if (block > to) block = to; 1315 if (block > to) block = to;
1199 } 1316 }
1200 1317
1201#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1319 if (periodiccnt)
1203 { 1320 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1322 if (block > to) block = to;
1206 } 1323 }
1207#endif 1324#endif
1208 1325
1209 if (block < 0.) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1210 } 1327 }
1211 1328
1212 method_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1213 1331
1214 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1333 time_update (EV_A);
1216 1334
1217 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1339#endif
1222 1340
1223 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1226 1344
1227 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1346 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1347 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1348
1231 call_pending (EV_A); 1349 call_pending (EV_A);
1232 }
1233 while (activecnt && !loop_done);
1234 1350
1235 if (loop_done != 2) 1351 if (expect_false (loop_done))
1236 loop_done = 0; 1352 break;
1353 }
1354
1355 if (loop_done == EVUNLOOP_ONE)
1356 loop_done = EVUNLOOP_CANCEL;
1237} 1357}
1238 1358
1239void 1359void
1240ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1241{ 1361{
1242 loop_done = how; 1362 loop_done = how;
1243} 1363}
1244 1364
1245/*****************************************************************************/ 1365/*****************************************************************************/
1246 1366
1247inline void 1367void inline_size
1248wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1249{ 1369{
1250 elem->next = *head; 1370 elem->next = *head;
1251 *head = elem; 1371 *head = elem;
1252} 1372}
1253 1373
1254inline void 1374void inline_size
1255wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1256{ 1376{
1257 while (*head) 1377 while (*head)
1258 { 1378 {
1259 if (*head == elem) 1379 if (*head == elem)
1264 1384
1265 head = &(*head)->next; 1385 head = &(*head)->next;
1266 } 1386 }
1267} 1387}
1268 1388
1269inline void 1389void inline_speed
1270ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1271{ 1391{
1272 if (w->pending) 1392 if (w->pending)
1273 { 1393 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1395 w->pending = 0;
1276 } 1396 }
1277} 1397}
1278 1398
1279inline void 1399void inline_speed
1280ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1281{ 1401{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284 1404
1285 w->active = active; 1405 w->active = active;
1286 ev_ref (EV_A); 1406 ev_ref (EV_A);
1287} 1407}
1288 1408
1289inline void 1409void inline_size
1290ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1291{ 1411{
1292 ev_unref (EV_A); 1412 ev_unref (EV_A);
1293 w->active = 0; 1413 w->active = 0;
1294} 1414}
1295 1415
1296/*****************************************************************************/ 1416/*****************************************************************************/
1297 1417
1298void 1418void
1299ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1300{ 1420{
1301 int fd = w->fd; 1421 int fd = w->fd;
1302 1422
1303 if (ev_is_active (w)) 1423 if (expect_false (ev_is_active (w)))
1304 return; 1424 return;
1305 1425
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1426 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1427
1308 ev_start (EV_A_ (W)w, 1); 1428 ev_start (EV_A_ (W)w, 1);
1311 1431
1312 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1313} 1433}
1314 1434
1315void 1435void
1316ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1317{ 1437{
1318 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1439 if (expect_false (!ev_is_active (w)))
1320 return; 1440 return;
1321 1441
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1442 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1443
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1444 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1326 1446
1327 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1328} 1448}
1329 1449
1330void 1450void
1331ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1332{ 1452{
1333 if (ev_is_active (w)) 1453 if (expect_false (ev_is_active (w)))
1334 return; 1454 return;
1335 1455
1336 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1337 1457
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1459
1340 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1342 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1343 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1344 1464
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1346} 1466}
1347 1467
1348void 1468void
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1470{
1351 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1472 if (expect_false (!ev_is_active (w)))
1353 return; 1473 return;
1354 1474
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1475 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1356 1476
1357 if (((W)w)->active < timercnt--) 1477 if (expect_true (((W)w)->active < timercnt--))
1358 { 1478 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1479 timers [((W)w)->active - 1] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1480 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1361 } 1481 }
1362 1482
1364 1484
1365 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1366} 1486}
1367 1487
1368void 1488void
1369ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1370{ 1490{
1371 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1372 { 1492 {
1373 if (w->repeat) 1493 if (w->repeat)
1374 { 1494 {
1377 } 1497 }
1378 else 1498 else
1379 ev_timer_stop (EV_A_ w); 1499 ev_timer_stop (EV_A_ w);
1380 } 1500 }
1381 else if (w->repeat) 1501 else if (w->repeat)
1502 {
1503 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1505 }
1383} 1506}
1384 1507
1385#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1386void 1509void
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1511{
1389 if (ev_is_active (w)) 1512 if (expect_false (ev_is_active (w)))
1390 return; 1513 return;
1391 1514
1392 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1516 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1517 else if (w->interval)
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1399 } 1522 }
1400 1523
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1405 1528
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1407} 1530}
1408 1531
1409void 1532void
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1534{
1412 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1536 if (expect_false (!ev_is_active (w)))
1414 return; 1537 return;
1415 1538
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1539 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1417 1540
1418 if (((W)w)->active < periodiccnt--) 1541 if (expect_true (((W)w)->active < periodiccnt--))
1419 { 1542 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1543 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1544 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1422 } 1545 }
1423 1546
1424 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1425} 1548}
1426 1549
1427void 1550void
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 1552{
1430 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1433} 1556}
1434#endif 1557#endif
1435 1558
1436void 1559void
1437ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1438{ 1561{
1439 if (ev_is_active (w)) 1562 if (expect_false (ev_is_active (w)))
1440 return; 1563 return;
1441 1564
1442 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1444 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1445} 1568}
1446 1569
1447void 1570void
1448ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1449{ 1572{
1450 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w)) 1574 if (expect_false (!ev_is_active (w)))
1452 return; 1575 return;
1453 1576
1577 {
1578 int active = ((W)w)->active;
1454 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1455 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1456} 1584}
1457 1585
1458void 1586void
1459ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1460{ 1588{
1461 if (ev_is_active (w)) 1589 if (expect_false (ev_is_active (w)))
1462 return; 1590 return;
1463 1591
1464 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1466 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1467} 1595}
1468 1596
1469void 1597void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1471{ 1599{
1472 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w)) 1601 if (expect_false (!ev_is_active (w)))
1474 return; 1602 return;
1475 1603
1604 {
1605 int active = ((W)w)->active;
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1477 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1478} 1611}
1479 1612
1480void 1613void
1481ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1482{ 1615{
1483 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1484 return; 1617 return;
1485 1618
1486 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1488 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1489} 1622}
1490 1623
1491void 1624void
1492ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1493{ 1626{
1494 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w)) 1628 if (expect_false (!ev_is_active (w)))
1496 return; 1629 return;
1497 1630
1631 {
1632 int active = ((W)w)->active;
1498 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1499 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1500} 1638}
1501 1639
1502#ifndef SA_RESTART 1640#ifndef SA_RESTART
1503# define SA_RESTART 0 1641# define SA_RESTART 0
1504#endif 1642#endif
1505 1643
1506void 1644void
1507ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1508{ 1646{
1509#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 1649#endif
1512 if (ev_is_active (w)) 1650 if (expect_false (ev_is_active (w)))
1513 return; 1651 return;
1514 1652
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1653 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 1654
1517 ev_start (EV_A_ (W)w, 1); 1655 ev_start (EV_A_ (W)w, 1);
1531#endif 1669#endif
1532 } 1670 }
1533} 1671}
1534 1672
1535void 1673void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1537{ 1675{
1538 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 1677 if (expect_false (!ev_is_active (w)))
1540 return; 1678 return;
1541 1679
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1680 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 1681 ev_stop (EV_A_ (W)w);
1544 1682
1545 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1547} 1685}
1548 1686
1549void 1687void
1550ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1551{ 1689{
1552#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 1692#endif
1555 if (ev_is_active (w)) 1693 if (expect_false (ev_is_active (w)))
1556 return; 1694 return;
1557 1695
1558 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560} 1698}
1561 1699
1562void 1700void
1563ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1564{ 1702{
1565 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 1704 if (expect_false (!ev_is_active (w)))
1567 return; 1705 return;
1568 1706
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1571} 1709}
1572 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1573/*****************************************************************************/ 1821/*****************************************************************************/
1574 1822
1575struct ev_once 1823struct ev_once
1576{ 1824{
1577 struct ev_io io; 1825 ev_io io;
1578 struct ev_timer to; 1826 ev_timer to;
1579 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1580 void *arg; 1828 void *arg;
1581}; 1829};
1582 1830
1583static void 1831static void
1592 1840
1593 cb (revents, arg); 1841 cb (revents, arg);
1594} 1842}
1595 1843
1596static void 1844static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 1846{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 1848}
1601 1849
1602static void 1850static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 1852{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 1854}
1607 1855
1608void 1856void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1857ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 1858{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1859 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 1860
1613 if (!once) 1861 if (expect_false (!once))
1862 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1863 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 1864 return;
1616 { 1865 }
1866
1617 once->cb = cb; 1867 once->cb = cb;
1618 once->arg = arg; 1868 once->arg = arg;
1619 1869
1620 ev_init (&once->io, once_cb_io); 1870 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 1871 if (fd >= 0)
1622 { 1872 {
1623 ev_io_set (&once->io, fd, events); 1873 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 1874 ev_io_start (EV_A_ &once->io);
1625 } 1875 }
1626 1876
1627 ev_init (&once->to, once_cb_to); 1877 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 1878 if (timeout >= 0.)
1629 { 1879 {
1630 ev_timer_set (&once->to, timeout, 0.); 1880 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 1881 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 1882 }
1634} 1883}
1635 1884
1636#ifdef __cplusplus 1885#ifdef __cplusplus
1637} 1886}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines